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Abstract—Global sensitivity analysis (GSA) of distribution sys-
tem with respect to stochastic PV and load variations plays an
important role in designing optimal voltage control schemes. This
paper proposes a data-driven framework for GSA of distribu-
tion system. In particular, two representative surrogate modeling-
based approaches are developed, including the traditional
Gaussian process-based and the analysis of variance (ANOVA)
kernel ones. The key idea is to develop a surrogate model that
captures the hidden global relationship between voltage and real
and reactive power injections from the historical data. With the
surrogate model, the Sobol indices can be conveniently calculated
through either the sampling-based method or the analytical method
to assess the global sensitivity of voltage to variations of load and PV
power injections. The sampling-based method estimates the Sobol
indices using Monte Carlo simulations while the analytical method
calculates them by resorting to the ANOVA expansion framework.
Comparison results with other model-based GSA methods on the
unbalanced three-phase IEEE 37-bus and 123-bus distribution
systems show that the proposed framework can achieve much
higher computational efficiency with negligible loss of accuracy.
The results on a real 240-bus distribution system using actual smart
meter data further validate the feasibility and scalability of the
proposed framework.

Index Terms—ANOVA kernel, distribution system analysis,
Gaussian process, PVs, global sensitivity analysis, sobol indices.
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NOMENCLATURE

Abbreviations

ANOV A Analysis of variance

GP Gaussian process

GSA Global sensitivity analysis

LSA Local sensitivity analysis

MC Monte Carlo

PCE Polynomial chaos expansion

MAPE Mean absolute percentage error

RMSE Root mean square error

SI Sobol index

Mathematical Symbols

β, β̂ Coefficients of mean function and their estimates

θ, θ̂ Kernel parameter and its estimate

F Regression matrix of f
f(·) Basis of mean function

K Covariance matrix

k(·) Kernel function

σ2, σ̂2 Variance of Gaussian process and its estimate

k̃ Cross-variance

m(·) mean function or trend of Gaussian process

Other Symbols

N Number of samples

n PCE degree

P I Power injection

PL Loads

Sobol Indices

M Original model

MkA ANOVA kernel-based Kriging surrogate model

Mkr Kriging surrogate model

Mpc PCE surrogate model

Mpf Power flow model

eM Model prediction error (using MAPE)

eSI Sobol indices approximation error (using RMSE)

S Sobol indices

ST Total Sobol indices

V Variance of output

x′ Another observation that is independent with x
x∼i Observation of x with ith input variable excluded
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I. INTRODUCTION

W
ITH the increased penetration of stochastic and un-

certain solar PVs into the distribution systems, there

is an emergent concern about the voltage security. Thus, un-

derstanding the sensitivity of voltage variations due to those

stochastic and uncertain resources is important for designing

appropriate control schemes. Indeed, the local voltage to real

and reactive power sensitivity has been widely used to coordinate

voltage control, generation resource dispatch, and distribution

network management [1]–[4]. Sensitivity analysis (SA) can be

divided into two main categories, i.e., local sensitivity analysis

(LSA) [1]–[7] and global sensitivity analysis (GSA) [8]–[11].

For LSA, it studies the impact of small perturbations on the

model output by estimating the partial derivative with respect

to the inputs at a specific point. In power systems, the Jacobian

matrix is usually employed to achieve that. For example, in [3],

the Jacobian matrix-based LSA is applied to distribution net-

work voltage management. To mitigate the model uncertainties

and errors, the measurement-based Jacobin matrix estimation

for voltage to power sensitivity analysis is developed in [4].

However, these methods exclude the interactions of inputs on

the model outputs and are typically limited to investigating

the small variations of uncertain inputs. As a result, LSA fails

to reveal the global impacts of various control devices on the

voltage changes and therefore GSA becomes necessary [12]. By

establishing sensitivity indices in covering the entire input space,

GSA provides more accurate and comprehensive information

of the global relationship between inputs and outputs. GSA

methods include the Morris method, the Sobol indices (SIs),

and the Kucherenko indices [13]. Among them, SIs are widely

adopted in the variance-based analysis framework [14]. The

main idea is to decompose the model into summands that satisfy

the orthogonality condition. Then, the influence of the variability

of the input on the model response can be conveniently quan-

tified [15]. Note that the Monte Carlo (MC) simulations are

usually used for SIs calculation, which can be time-consuming.

To deal with the computational burden of MC-based SIs

calculations, the surrogate modeling techniques are advocated.

In particular, an approximated reduced order model is derived to

replace the original one so that a higher computational efficiency

can be reached with only slight loss of accuracy [16], [17]. For

example, in [11], the polynomial chaos expansion (PCE) based

approach is developed for distribution system GSA. The PCE-

based technique is also applied for probabilistic power flow [18],

[19]. However, the calculation of PCE coefficients requires

accurate physical model. This is very difficult to achieve for

practical distribution system, especially with the increased pen-

etration of PVs, flexible loads, and advanced demand response

program [20]. Moreover, PCE suffers from the curse of dimen-

sionality and thus the application of it to large-scale systems is

limited. Another commonly-used method is the Kriging [21],

i.e., Gaussian process regression. As a statistical interpolation

method, it can be applied directly on a set of observations and

the required number of samples is much smaller than PCE. But

the application of it to distribution system GSA is not trivial.

In summary, LSA only investigates the impacts of uncertain

inputs within a small region of domain while practical problems

also require the examination of the interactions of inputs on the

outputs across the whole input space. The GSA addresses that

but existing works are model-based. However, the distribution

system models are of large uncertainties and subject to various

types of errors. Furthermore, the existing GSA methods are not

computationally efficient to handle large number of uncertain

inputs in a large-scale distribution system. This paper aims to

bridge these gaps and proposes a data-driven GSA framework

for distribution system with PVs, yielding the following contri-

butions:
� It is data-driven and the assumptions on accurate physical

model as well as the probabilistic distributions of uncertain

inputs are not needed.
� It can reflect the global voltage variations to uncertain real

and reactive power injections for unbalanced three-phase

system. The impacts of PV injections with different capac-

ities and distributions are investigated.
� Under the new framework, two approaches are proposed to

calculate the Sobol indices in a computationally efficient

manner, including the data-driven Kriging-based method

using MC and the data-driven Kriging with analytical

analysis of variance (ANOVA) kernel method. The former

one constructs a Kriging model, based on which Sobol

indices are estimated using MC simulations. This leads

to higher computational efficiency than performing MC

simulations on the original physical model. The ANOVA

kernel-based method, on the other hand, derives the Sobol

indices analytically after establishing Kriging model. By

avoiding MC simulations, it achieves even higher compu-

tational efficiency than the first approach in the presence of

large number of uncertain inputs. These are demonstrated

via the results in Section IV.

The paper is organized as follows: Section II shows the prob-

lem statement and the proposed data-driven GSA framework is

elaborated in Section III. Section IV analyzes the test results and

finally Section V concludes the paper.

II. PROBLEM STATEMENT

Let y=M(x) be the model with random input vector x=
[x1, . . . , xd]

T and model response y. For three-phase distri-

bution systems, the uncertain model inputs may include PV

injections and loads while the outputs are typically bus voltage

magnitudes, voltage angles, line flows, etc. Sensitivity analysis

aims to quantify how the model response is affected by each

input or their combinations. To estimate the sensitivity at x̃,

the corresponding partial derivative (∂y/∂x)x=x̃ is commonly

used. This approach belongs to LSA since the perturbations

occur in the neighborhood of the nominal values. Therefore,

the index is reliable only in a small range of the inputs. As for

distribution system LSA, the sensitivity information can be de-

rived from Jacobian matrix. Via the linearization on branch flow

equations, [3] formulates the sensitivity of voltage magnitude

with respect to real and reactive power injections P and Q as

∆|V | ≈
∑

i

(
∂|V |

∂Pi
×∆Pi +

∂|V |

∂Qi
×∆Qi

)
(1)
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Fig. 1. Framework of the proposed data-driven GSA, where SI represents the Sobol index and two methods are developed for implementations.

Note that LSA index is reliable only in a small range of the

inputs. However, the stochastic PV injections can change rapidly

within their lower and upper bounds and LSA may not be reli-

able. Furthermore, LSA can only capture the local information

with individual components and does not reflect the true global

sensitivity of model response to all inputs. The PV injections can

also have joint impacts on the interested node voltages, which are

especially the case when multiple PV inverters are coordinated

for voltage regulation. This has been ignored by LSA. Finally,

for the distribution network, the derivatives in Jacobian matrix

only consider the buses that are directly connected to. But those

power injections that are not far away can have large impacts on

the interested buses, which are shown in the numerical results.

By contrast, GSA reveals the global relationship between

input variations and output variations by providing a quanti-

tative importance ranking with respect to each input and the

combination thereof. Based on that, the following objectives

can be achieved: i) identification of the most influential inputs;

ii) characterizing the relationship of the input variation and the

output behavior, especially the joint impacts of several uncertain

inputs on the model outputs, such as voltage to real and reactive

power sensitivity; iii) observability analysis of the parameters for

identification. More discussions on the usefulness of GSA for

power system applications are shown in Section III-E. One of the

widely used GSA methods is the Sobol indices-based technique.

Sobol indices measure the contribution of uncertain sources and

their interactions to predictive uncertainty of model response.

The calculations of SIs are often realized via MC simulations that

are computationally expensive. This calls for the development of

more computationally efficient methods. Approximate methods,

such as the surrogate modeling-based ones, are alternatives of

speeding up the calculations although a lot of samples are still

needed. On the other hand, analytical method avoids sampling

from models and thus further improves the computational effi-

ciency. In this paper, we develop and compare the approximate

and analytical methods under the data-driven framework, while

achieving significant computational efficiency improvement.

III. PROPOSED DATA-DRIVEN GSA APPROACH

The proposed framework is shown in Fig. 1, where two ap-

proaches are developed to perform GSA in a computationally ef-

ficient manner, including the data-driven Kriging-based method

using MC simulations and the data-driven Kriging with ANOVA

kernel method. From the numerical results shown in Section IV,

the latter method is recommended for practical applications. The

general steps include the data generation/collection, surrogate

modeling and Sobol indices calculation. Specifically, the data-

driven surrogate model is realized by traditional Kriging and

the ANOVA kernel Kriging. In this section, we first present the

theory of Sobol indices for GSA, followed by the two data-driven

approaches and their algorithm implementations.

A. Sobol Indices

Assume the inputs follow independently uniform distribution

with support Dx=[0, 1]d. Based on the idea of decomposing the

model with respect to variance, the ANOVA-representation of

M(x) is defined as [15]:

M(x1, . . . , xd) = M0 +

d∑

i=1

Mi(xi)

+
∑

1≤i<j≤d

Mij(xi, xj) + · · ·+M1,...,d(x1, . . . , xd) (2)

under the condition that
∫ 1

0

Mi1,...,is(xi1 , . . . , xis) dxik = 0 (3)

for 1 ≤ k ≤ s, 1 ≤ s ≤ d, where we have

⎧
⎨
⎩

M0 =
∫
Dx

M(x) dx

Mi(xi) =
∫
Dd−1

x

M(x) dx∼i −M0

Mij(zi, zj) =
∫
Dd−2

x

M(x) dx∼(i,j) −M0 −Mi −Mj

(4)

where x∼i denotes the subset of x that excludes ith variable

xi and Dd−1
x is the corresponding support. Assuming M(x)

is square-integrable, [15] indicates that by squaring (2) and

integrating over Dx, one can get

∫

Dx

M2(x) dx−M2
0=

d∑

s=1

d∑

i1<...<is

∫
M2

i1,...,is
dxi1 · · · dxis

According to the expression of variance, the left-hand side

denotes the variance of model response. Thus, we get [16]

var(Y ) = V =

d∑

s=1

d∑

i1<...<is

∫
M2

i1,...,is
dxi1 · · · dxis (5)
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On account of the orthogonality condition, the variance of model

response can be expanded and (5) becomes

V =

d∑

i=1

Vi +

d∑

i<j

Vij + · · ·+ V1,...,d (6)

Then, the Sobol indices are defined as

SI =
VI

V
(7)

where I ⊂ {1, . . . , d}. Sobol indices represent the contribution

of input components to the output variance. The first-order

Sobol index Si measures the effect of individual input while

higher-order Sobol indices Si1...is quantify the contribution by

the interactions of xi1 , . . . xis . Si plays the similar role of LSA

whileSi1...is allows us to count the joint impacts of inputs on the

outputs, which are not available from LSA. To further determine

the general importance of each input, the total Sobol index is

defined as

ST
i =

∑

{i1,...,is}⊃i

Si1...is (8)

The MC simulations are typically used to calculate Sobol indices

but they are time-consuming. This paper presents data-driven

approaches to address this challenge.

B. Kriging-Based Surrogate Model

This paper advocates the use of Kriging method as it has [22]:

1) strong theoretical justifications and proofs in building the sur-

rogate model, 2) data-driven formulation that does not need the

physical model and the probabilistic distributions of uncertain

inputs, 3) high accuracy using only few samples, which is a huge

advantage over other machine learning algorithms that need a

large amount of data.

The Sobol indices are typically calculated based on MC simu-

lations that rely on the original physical models. Reduced order

model to speed up the process can be used as well [11]. However,

the accurate physical model is assumed, which is challenging

to achieve for practical distribution systems. To deal with that,

data-driven surrogate model via Kriging is developed for Sobol

indices calculations. Kriging assumes that the model response

is an observation of a Gaussian process (GP), i.e.,

Mkr(x) = m(x) + Z(x;σ2,θ) (9)

where m(x)=βTf(x) represents the mean function or the

trend;Z(x;σ2,θ) is a centered GP with zero mean, variance σ2,

and covariance kernel function k(x,x′; θ). The mean function

m(x) gives Kriging predictor for the model response. The

Kriging variance Z(x;σ2,θ) quantifies the uncertainty at the

corresponding point. f(x) is typically prescribed while param-

etersβ, σ2, andθ need to be estimated, such as via the maximum

likelihood (ML) estimator. Assume the Kriging model is based

on observation X={x(1), . . . ,x(N)} (N by d-dimensional

samples) and responsey={M(x(1)), . . . ,M(x(N))}with pre-

determined trends that consist l functions {fj , j=1, . . . , l}.

Then, the unknown parameters are estimated using ML esti-

mator [23], [24]:

⎧
⎪⎪⎨
⎪⎪⎩

β̂ = β(θ) = (F TK(θ)−1F )−1F TK(θ)−1y

σ̂2 = σ2(θ) = 1
N (y − F β̂

T
K(θ)−1(y − F β̂))

θ̂ = argmin
θ

σ̂2[detK(θ)]1/m
(10)

where F is the regression matrix with elements {Fij =
fj(x), i = 1, . . . , N, j = 0, . . . , l} and K(θ) is the covariance

matrix with unknown hyperparameter θ.

In the prediction step, the model response is approximated

by employing the covariance function k(x,x′;θ) that measures

the closeness of the inputs. Specifically, the prediction is ỹ ∼
N (µỹ(x̃), σ

2
ỹ(x̃)) with the parameters calculated as follows:

{
µỹ = fT β̂ + k̃K−1(y − F β̂)

σ2
ỹ = σ̂2(1− k̃K−1)k̃ + uT (F TK−1F−1)u

(11)

where β̂ and σ̂2 are the generalized least-squares estimates

from (10); k̃ is the cross-covariance between x̃ and x with

components k̃i=k(x̃,x(i)), i=1, . . . , N ; K is the covariance

matrix of X with elements Kij=k(x(i),x(j)), i, j=1, . . . , N ;

u=F TK−1k̃−f . Note that the common trends are linear and

quadratic [23] while the kernel functions include exponential

kernel, Gaussian kernel, Matérn kernel, etc.

Sobol indices calculations: The construction of Kriging

model is completed and the model predictions can be obtained.

After that, the MC-based Sobol indices can be calculated via the

surrogate model as follows:

⎧
⎪⎨
⎪⎩

V̂0 = 1
N

∑N
n=1 Mkr(x

(n))

V̂ = 1
N

∑N
n=1 M

2
kr(x

(n))− V̂ 2
0

V̂i =
1
N

∑N
n=1 Mkr(x

(n)
i ,x

(n)
∼i )Mkr(x

(n)
i ,x′(n)

∼i )− V̂ 2
0

(12)

where x
(n)
∼i is the observation with ith input variable excluded;

x′ is another realization of X and is independent with x.

C. ANOVA Kernel-Based Kriging

To further improve the efficiency of the previous Kriging-

based GSA, a specific type of ANOVA kernel is utilized to

obtain the closed-form ANOVA representation of m(x) in (9),

where the Sobol indices can be derived analytically. This avoids

sampling from surrogate models and thus accelerates the GSA

procedure especially in the presence of large number of unknown

inputs.

By rewriting the interpolator m(x) in the form of kernel, we

get

m(x) = k(x)TK−1y (13)

where k(x) denotes the vector of covariances between the test

point and the training set, i.e. k(·) is the column vector of

(K(x(i), ·))1≤i≤N ; K represents the Gram matrix with terms

Kij = k(x(i),x(j)), where k belongs to symmetric positive

definite function, such as Gaussian or Matérn. The original
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ANOVA kernel is given by

k(x) = 1+
∑

I⊂1,...,d

⊙

i∈I

ki(xi) (14)

where 1 is the bias term, i.e., a column vector with all ones; d
represents the dimension of input;

⊙
denotes entrywise product:

(
⊙

i∈I k
i(xi))j=

∏
i∈I k

i(xi, xj). However, the expression of

m(x) based on the original ANOVA kernels does not necessarily

satisfy the demanded orthogonality condition as required by

ANOVA representation (3). To this end, we resort to [21] and

develop the following ANOVA kernels:

k0(x) = 1+
∑

I⊂1,...,d

⊙

i∈I

ki
0(xi) (15)

k0(x, y) = k(x, y)−

∫
D k(x, s) dµ(s)

∫
D k(y, s) dµ(s)∫ ∫

D×D k(s, t) dµ(s)dµ(t)

(16)

where D=D1 × · · · ×Dd is a Cartesian product space of sets

Di ⊂ R; µ=µ1 × · · · × µd is a probability measure over D.

The corresponding ANOVA representation of m(x) is:

m(x) =

[
1+

d∑

i=1

ki
0(xi) +

∑

1≤i<j≤d

ki
0(xi)	 k

j
0(xj)

+ · · ·+
d⊙

i=1

ki
0(xi)

]T

K−1y (17)

According to (17), the term of m indexed by I reads as:

mI =

(⊙

i∈I

k0(xi)

)T

K−1y (18)

Sobol indices calculations: by combining (7) and (18), the

SIs are naturally obtained as:

SI =
var(mI)

var(m)

=
yTK−1(

⊙
i∈I Γi)K

−1y

yTK−1(
⊙d

i=1(1n×n + Γi)− 1n×n)K
−1y

(19)

where Γi =
∫
Di

ki
0(xi)k

i
0(xi)

T dµi(xi) and 1n×n is the n× n
matrix of ones. The integrals of (19) are approximated using a

Rieman sum operator in numerical computation [21].

Remark: the key advantage of the ANOVA kernel-based Krig-

ing over the traditional Kriging-based surrogate model for GSA

assessment is that it has an approximate linear computational

complex increase with the increased number of inputs while this

is not the case for the latter. That is essential for the system with

high dimension of unknown inputs, which will be demonstrated

in the numerical results section.

D. Algorithm Implementation

From Fig. 1, it can be found that the proposed GSA method

includes constructing data-driven surrogate models and Sobol

indices calculations. Two methods are developed and their main

steps of implementations are as follows:

� Step 1: Generate dataset via OpenDSS [25]. Specifically,

OpenDSS calculates the power flows with a set of random

inputs and generates a set of outputs correspondingly, such

as bus voltage magnitudes, real and reactive power injec-

tions. This dataset is taken as the input measurement data

for the proposed methods in the experimental simulation

sections. It is worth noting that for practical distribution

system applications, this step is not required, instead the

historical smart meter and SCADA measurements are di-

rectly used.
� Step 2: Construct Kriging surrogate model. For surrogate

model-based Kriging, the data-driven Kriging model is

obtained using (10). Alternatively, we can build ANOVA

kernel-based method using the ANOVA kernel via (15).
� Step 3: Calculate Sobol indices. For surrogate-based Krig-

ing, MC-based Sobol indices calculations are performed

through (12) with (11). For ANOVA kernel-based Kriging,

the corresponding Sobol indices are directly obtained in

closed form via (19).

E. Potential Applications of GSA

GSA aims to assess the importance of all uncertain sources in

a global view, which provides valuable information about how

each uncertain PV affects the desired output and to what degree

the influence is. This leads to several potential applications,

which are summarized as follows:
� Importance ranking of uncertain sources: GSA provides

a quantitative measure for the importance of each input

variable on the model outputs. For example, by ranking the

calculated SIs, we can find out the most influential inputs

on model outputs, such as those PVs that affect most the

voltage variations. There are also some other applications

developed in the literature. SA is utilized in [1] to investi-

gate PV buses and tap position adjustments for simulating

controllers in distribution systems. The sensitivity analysis

using partial derivatives is conducted to check for any

violations in the regulated bus voltage magnitudes. SA

is also applied to voltage contingency ranking, where the

effect of the contingency on the states and stability margin

is determined through partial derivatives [9]. Consequently,

a severity index is calculated for each contingency. The

proposed data-driven GSA is a more general approach that

considers the sensitivity in the whole range and can be

easily applied to these problems.
� Overall model sensitivity estimation: GSA allows explor-

ing the relationship between the input variations and the

output behavior. GSA is utilized in [8] for microgrid max-

imum loadablility analysis. The polynomial chaos expan-

sion is used for GSA calculation. In [10], GSA is performed

to measure the effect of distributed generation. Using the

ranking of each input factor, the voltage sag based fault

location can be achieved. These methods are model-based

while our framework is data-driven and thus more appli-

cable of addressing the inaccurate physical model issues.
� Network clustering: Assume GSA is conducted for all de-

sired outputs in the power system, we can cluster nodes that
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have similar sensitivity pattern into several areas, which

further helps distributed applications, such as distributed

voltage control. A community detection algorithm based

on voltage sensitivity matrix is proposed by [5] in order

to partition the distribution network into clusters for zonal

voltage control. In [6], the relationship between voltage

and distributed generation power injections characterized

by voltage sensitivity analysis is used to evaluating the elec-

trical distance, which is further used for network partition.
� Distribution network management: The GSA results con-

tain useful information of the whole system. The explo-

ration of such sensitivity coefficients leads to further appli-

cations, such as distribution network voltage-var optimiza-

tion, selection of feeders for conservation voltage reduction

implementation, etc. The sensitivity coefficients from each

participating node or voltage regulator are collected to help

distribution management system perform optimization and

control [2].
� Model parameter identifiability assessment: GSA can as-

sess how the parameter variations affect the quality of

the output. This allows us to identify the most influen-

tial parameters for identification. The polynomial chaos

expansion-based GSA for generator model problematic

parameter identification in [26]. The GSA can be also

extended to assist the selection of parameters of dynamic

loads, DERs, etc., for estimation and calibration.

Remark: If topology changes or reconfigurations happen in

distribution systems, the sensitivity is affected and this requires

the updating of surrogate model to calculate new SIs. It should be

noted that those topology changes or reconfigurations typically

affect some local nodes due to the sparsity of the distribution

systems. This means that only the SIs associated with those

local nodes need to be updated. One excellent characteristic

of Kriging-based method is that it needs a few samples to

reconstruct and update the surrogate model. This process is also

swift to accomplish and thus allows our proposed method to

quickly adapt to topology changes and reconfigurations.

IV. NUMERICAL RESULTS

Numerical results carried out on the modified IEEE 37- and

123-bus system considering PVs are used to demonstrate the

performance of the proposed method. The schematic is shown

in Fig. 2. The inputs include random variations of loads and

PV injections while the model responses, voltage magnitudes

are used for illustrations. The model-based PCE [11] and the

proposed two data-driven methods are compared with the bench-

mark obtained from the MC simulations. The mean absolute

percentage error (MAPE) and root mean square error (RMSE)

are used to quantify the surrogate model prediction accuracy and

Sobol indices estimation accuracy, i.e.,

{
MAPE = 1

N

∑
|y

∗−ỹ
y∗ | × 100%

RMSE =
√

1
N

∑
(S∗ − S̃)2

(20)

where y∗ and ỹ are the true and estimated model response, re-

spectively; S∗ and S̃ are the true and estimated SIs, respectively.

Fig. 2. Single line diagram of IEEE 37-bus system with PVs.

All simulations are carried out in MATLAB with 2.60 GHz Intel

Core i7-6700HQ.1

The AC power flow model Mpf is used as the benchmark

to estimate the total SIs ST
pf via MC simulations. Meanwhile,

the inputs X are generated from known distributions and the

corresponding model responses y are obtained though Mpf . In

this paper, all realizations are calculated from OpenDSS [25].

Then, the generated data {X,y} are used to construct three

surrogate models {Mpc,Mkr,MkA} for PCE, Kriging, and

Kriging with ANOVA kernel, respectively. Their corresponding

total SIs are {ST
pc, S

T
kr, S

T
kA}.

The organization of this section is as follows: Section IV-A

and IV-B validate the proposed framework in several scenarios

with different numbers and probability distributions of PVs and

loads. Section IV-C investigates the robustness to measurement

noise and IV-D tests the proposed method in a larger system

with more numbers of uncertain inputs. Finally, an actual system

with smart meter data is used to validate the scalability of the

proposed framework in Section IV-E.

A. Sobol Indices Validation

The inputs include six random variables x=[x1, . . . , x6],
where [x1, x2, x3] are loads at nodes [731b, 733a, 735c]
and [x4, x5, x6] are power injections from PVs at nodes

[731b, 733a, 735c]. Note that a, b, and c denote different phases.

The corresponding model responses are y=[y1, . . . , y9] whose

elements are three-phase voltage magnitudes at nodes [731, 733,

735]. The distributions of inputs in Scenario 3 shown in Table I

are used here for illustration. All models are constructed with

N=200 samples. The degree of PCE is set ton=2. Linear trend

and Gaussian kernel are used for Mkr while linear trend and

ANOVA kernel are utilized for MkA.

Table II shows the comparisons between three methods. The

overall index to quantify surrogate model accuracy is the average

1The code to implement the proposed method can be obtained by sending
email to the corresponding author.
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Fig. 3. (a)-(d) correspond to the case that there is no error with system model while (e)-(h) are the results considering system model error.

TABLE I
LOAD AND PV DISTRIBUTIONS FOR SCENARIOS 1-4

TABLE II
COMPARISON RESULTS OF DIFFERENT METHODS ON 37-BUS SYSTEM

value of all MAPEs, denoted as eM . Similarly, the overall

accuracy index for SIs is eSI . Once established offline, the

surrogate models can replace the original power flow model and

further realize SIs calculations online. The CPU time means the

time for Sobol indices online calculations. A number of 10 000

samples is used for MC benchmark. According to Table II,

PCE is the fastest method as only a small number of data is

used. ANOVA kernel-based Kriging method shows a similar

computational efficiency as PCE. The advantage of the proposed

analytical method in terms of computational efficiency will

become significant when a larger-scale system is tested. Note

that all three methods can achieve very accurate results for

model response predictions and SIs calculations while being

much more computational efficient than the MC-based method.

This validates the effectiveness of our data-driven methods.

Figs. 3 (a)-(d) demonstrate the total Sobol indices for V731c,

V733c, V735b, and V735c by three models for illustrations. It is

observed that only three inputs have noticeable effects on V731c

and the dominant factors are power fluctuations at phase b. For

voltages at phase b, major influence comes from those at phase

a. Results also show that voltage magnitudes at the same phase

share a similar pattern of total SIs. According to the total index,

load fluctuation of 10% has more impacts than PV injections

with power rating 30 kW in terms of sensitivity.

In practice, the distribution system model and the measure-

ments are always subject to errors. To test the robustness of

these methods when the model is subject to errors, we assume

there are uncertainties of distribution line parameters, following

independent Gaussian distribution NLL∼(0, (0.05µLL)
2). For

input observation X , Gaussian noise is added with zero mean

and standard derivations are set to be a proportion of the true

mean: σnx=0.01µx. For the data-driven approaches, measure-

ment error is introduced for model response with a variance

σny=0.01%µy . Figs. 3 (e)-(h) display the results, from which

it can be observed that the proposed method is only slightly

affected. By contrast, due to model errors, the model-based PCE

yields much larger errors in total SIs, see (e) and (g) for example.

B. Sensitivity in Different Scenarios

Further tests, including different PV injections and distribu-

tions are conducted to examine the proposed method, see Table I.

Note that the model uncertainties are not considered in this

section and the PCE is added for comparisons. Fig. 4 shows the

results of models for different scenarios and all models achieve

similar performances. From Scenarios 1 and 2, it is observed

that the increase of power injections enlarges the SI of input

P731b as expected. The comparison of Scenarios 2 and 3 shows

the similar trend in terms of increased load uncertainty. This is

because the variation of distribution results in a similar pattern

of changing the fluctuation ranges of loads and PV injections.

The results in Scenarios 3 and 4 are similar since the parameter
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Fig. 4. Total Sobol indices calculated by different methods under scenarios
1-4 for V731c.

TABLE III
MODEL PERFORMANCES IN SCENARIOS 1-4

setting of PV injections in Scenario 4 yields analogous distri-

bution as that in Scenario 3. Table III demonstrates the model

accuracy under different scenarios, justifying the high accuracy

of the proposed methods. These results also demonstrate that our

proposed methods are able to track the sensitivity changes and

reveal the complicated global sensitivity relationships between

changing inputs and outputs.

C. Robustness to Noise

This case study is to assess the robustness of the proposed

methods to measurement noise. Both inputs and outputs are

subject to noise {σnx,σny} as discussed in IV-A. The proposed

methods are Kriging-based methods and therefore are able to

handle additive noise [23]. In the model construction step, a good

number of samples can help Kriging achieve better surrogate

model. Note that for the collected measurements, noise reduction

algorithm can be used to preprocess the data. Fig. 5 and 6

demonstrate the robustness of the proposed methods to noise

with moderately increased number of samples, where the V733c

sensitivity is used for illustration. It can be observed that the

proposed methods achieve better capability of filtering out the

noise with more samples. The traditional Kriging is more robust

to noise than the ANOVA kernel-based method. Compared with

the results in Section IV-A, we find that to achieve similar

estimation accuracy due to measurement noise, the number of

data samples should be increased. This is expected as handling

Fig. 5. Robustness of Mkr to measurement noise for V733c sensitivity.

Fig. 6. Robustness of MkA to measurement noise for V733c sensitivity.

TABLE IV
LOAD AND PV SETTINGS FOR IEEE 123-BUS SYSTEM

measurement noise requires a better redundancy. Therefore, in

practical applications, the trade-off between robustness to noise

and the use of appropriate number of samples should be paid

attention to. For higher noise levels and more inputs, more

advanced noise reduction algorithm can be investigated, such

as principle component analysis (PCA) or kernel PCA [27].

D. Scalability to Larger Distribution Systems

The proposed Kriging methods are also tested in the IEEE

123-bus system to demonstrate their scalability. For this system,

it is assumed that there are 30 uncertain inputs whose detailed

descriptions can be found in Table IV. The single line diagram

of the 123-bus system with PVs is displayed in Fig. 7. For

PCE, its number of degrees is adapted to n=2 : 4 during the

model construction stage and the number of samples is increased

to be Npc=1000 due to the increased number of uncertain

inputs and the complexity of system model. By contrast, the

hyperparameters of the Kriging methods and the numbers of

samplings are the same as those in Section IV-A. Similar to
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Fig. 7. Single line diagram of IEEE 123-bus system with PVs.

TABLE V
LOAD AND PV DISTRIBUTIONS FOR SCENARIOS 5 AND 6

TABLE VI
COMPARISON RESULTS OF DIFFERENT METHODS IN 123-BUS SYSTEM

Section IV-A, the Sobol indices calculated by the MC-based

approach with 10 000 samples are used for the baseline.

Table VI shows the comparison results for all methods. Com-

pared with the those shown in Table II, it can be observed that the

surrogate model prediction accuracy eM has been decreased due

to the increased complexity of the system. However, their level of

accuracies are still high and sufficient for practical applications.

Figs. 8 and 9 display the results of V64c under Scenarios 5 and

6 for illustrations, where the experimental settings can be found

in Table V. In general, all three methods are able to get accurate

estimates of total SIs even with increased number of uncertain

inputs. On the other hand, similar to Fig. 3, a few inputs have

significant impacts on the final outputs. For V64c, the major

effects come from the PV injection at node 62c and the load

fluctuation on the same node 64b. Power fluctuations at nearby

nodes of phases b and c also contribute a certain proportion of

total SIs. Furthermore, it can be observed that the increase of

PV ratings leads to the increase of total SIs. It is worth noting

that the ANOVA kernel-based Kriging method has small errors

at nodes where the total SIs are supposed to be close to zero. A

possible reason is that the error accumulates during analytical

TABLE VII
COMPARISON RESULTS OF DIFFERENT METHODS ON 240-BUS SYSTEM

calculation and thus ST
kA tends to be subtle when true total SIs

are almost zero. However, such error is negligible and is small

enough to be removed through post-processing procedure in

practical applications as we are usually looking for the most

influential factors for voltage regulations.

In terms of computational efficiency, it can be observed

from Table VI that the MC-based method is extremely time-

consuming for practical applications. Although the PCE and tra-

ditional Kriging-based methods significantly improve the com-

putational efficiency, they are still much more computationally

expensive than our ANOVA kernel-based analytical calculation

method, i.e., 8 times and 14 times faster than PCE and transi-

tional Kriging method, respectively. Note that with the increased

number of uncertain inputs, the PCE and Kriging face the curse

of dimensionality issue. The degree of PCE needs to increase as

well for larger and more complex systems. Similarly, Kriging

has a higher requirement for estimating its hyperparameters.

Although Kriging requires less number of training samples than

PCE, the size of the covariance matrixK will eventually become

unacceptable. By contrast, the ANOVA kernel-based method

calculates the SIs analytically and has approximately linear

complexity relationship with the number of uncertain inputs.

Thus, it is more suitable for practical distribution systems with

vast uncertain PVs and loads.

E. Test Results on a Real Distribution System

The proposed method is also tested on a real 240-bus distri-

bution system in the US with smart meter data, see Fig. 10. The

data are open public and can be found via [28]. In particular,

the feeder C is selected, where there are 11 PVs installed and

their locations can be found in Fig. 10. These nodes with PVs are

regarded as uncertain resources. The smart meter dataset consists

of one-year voltage, real and reactive power data with 8760 sam-

ples. The parameters and configurations for three methods are

the same as those in Section IV-A. Fig. 11 shows the calculated

total SIs for this 240-bus system while Table VII displays the

computational efficiency of each method. It can be observed that

the proposed analytical method achieves better accuracy than

the other approaches while maintaining the best computational

efficiency. Take the results for node 3034 as an example, it is

found that the voltage of that node is mostly impacted by PVs

at nodes 3024, 3085, 3090, and 3095. This is consistent with

their distance to the target node and power ratings. Most other

nodes have negligible impacts since they are far away from node

3034, such as nodes 3065, 3144 and 3158. Note that the power

rating of PV node 3020 is close to zero and that is why it has
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Fig. 8. Total Sobol indices for V64c in the IEEE 123-bus system under Scenario 5.

Fig. 9. Total Sobol indices for V64c in the IEEE 123-bus system under Scenario 6.

Fig. 10. Single line diagram of feeder C of 240-bus system with PVs.

neglectable impact on node 3034 voltage, which is also reflected

by the total SIs.

V. CONCLUSION

In this paper, a data-driven GSA framework is proposed

for three-phase distribution systems with stochastic loads and

uncertain PVs. GSA allows us to quantify the overall impacts

of uncertain inputs on model response, i.e., the voltage vari-

ations to PVs and loads. The proposed method has two key

Fig. 11. Total Sobol indices result for V3034.

components, namely the surrogate modeling via data-driven

Kriging and Sobol indices calculation. Two approaches have

been proposed, namely the traditional Kriging-based and the

ANOVA kernel-based Kriging. The former one still requires

MC simulations to calculate Sobol indices while the latter an-

alytically derives the Sobol indices from the data and therefore

achieves much higher computational efficiency, especially in the

presence of large number of uncertain inputs. Simulation results

on the unbalanced IEEE 37- and 123-bus systems show that

our data-driven approaches can achieve comparable accuracy as

the benchmark but being much more computational efficient.

The proposed framework is also tested on a real 240-bus system

with smart meter data to demonstrate its feasibility and scal-

ability. Future work will be on developing closed-loop voltage

control algorithm utilizing the global voltage sensitivity analysis

outcomes.
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