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A Data-Driven Global Sensitivity Analysis
Framework for Three-Phase Distribution
System With PVs
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Abstract—Global sensitivity analysis (GSA) of distribution sys-
tem with respect to stochastic PV and load variations plays an
important role in designing optimal voltage control schemes. This
paper proposes a data-driven framework for GSA of distribu-
tion system. In particular, two representative surrogate modeling-
based approaches are developed, including the traditional
Gaussian process-based and the analysis of variance (ANOVA)
kernel ones. The key idea is to develop a surrogate model that
captures the hidden global relationship between voltage and real
and reactive power injections from the historical data. With the
surrogate model, the Sobol indices can be conveniently calculated
through either the sampling-based method or the analytical method
to assess the global sensitivity of voltage to variations of load and PV
power injections. The sampling-based method estimates the Sobol
indices using Monte Carlo simulations while the analytical method
calculates them by resorting to the ANOVA expansion framework.
Comparison results with other model-based GSA methods on the
unbalanced three-phase IEEE 37-bus and 123-bus distribution
systems show that the proposed framework can achieve much
higher computational efficiency with negligible loss of accuracy.
The results on a real 240-bus distribution system using actual smart
meter data further validate the feasibility and scalability of the
proposed framework.

Index Terms—ANOVA Kernel, distribution system analysis,
Gaussian process, PVs, global sensitivity analysis, sobol indices.
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NOMENCLATURE

Abbreviations
ANOV A Analysis of variance

GP Gaussian process

GSA Global sensitivity analysis
LSA Local sensitivity analysis

MC Monte Carlo

PCFE Polynomial chaos expansion
MAPE  Mean absolute percentage error
RMSE  Root mean square error

S1 Sobol index

Mathematical Symbols

3, /@ Coefficients of mean function and their estimates
0,0 Kernel parameter and its estimate

F Regression matrix of f

) Basis of mean function

K Covariance matrix

k(") Kernel function

o2, o2 Variance of Gaussian process and its estimate

k Cross-variance

m(+) mean function or trend of Gaussian process
Other Symbols

N Number of samples

n PCE degree

P! Power injection

pr Loads

Sobol Indices

M Original model

Mpa ANOVA kernel-based Kriging surrogate model
M Kriging surrogate model

M PCE surrogate model

Mys Power flow model

em Model prediction error (using MAPE)

esr Sobol indices approximation error (using RMSE)
S Sobol indices

ST Total Sobol indices

\%4 Variance of output

x/ Another observation that is independent with z
T Observation of = with sth input variable excluded
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I. INTRODUCTION

ITH the increased penetration of stochastic and un-
chrtain solar PVs into the distribution systems, there
is an emergent concern about the voltage security. Thus, un-
derstanding the sensitivity of voltage variations due to those
stochastic and uncertain resources is important for designing
appropriate control schemes. Indeed, the local voltage to real
andreactive power sensitivity has been widely used to coordinate
voltage control, generation resource dispatch, and distribution
network management [1]—[4]. Sensitivity analysis (SA) can be
divided into two main categories, i.e., local sensitivity analysis
(LSA) [1]-[7] and global sensitivity analysis (GSA) [8]-[11].
For LSA, it studies the impact of small perturbations on the
model output by estimating the partial derivative with respect
to the inputs at a specific point. In power systems, the Jacobian
matrix is usually employed to achieve that. For example, in [3],
the Jacobian matrix-based LSA is applied to distribution net-
work voltage management. To mitigate the model uncertainties
and errors, the measurement-based Jacobin matrix estimation
for voltage to power sensitivity analysis is developed in [4].
However, these methods exclude the interactions of inputs on
the model outputs and are typically limited to investigating
the small variations of uncertain inputs. As a result, LSA fails
to reveal the global impacts of various control devices on the
voltage changes and therefore GSA becomes necessary [12]. By
establishing sensitivity indices in covering the entire input space,
GSA provides more accurate and comprehensive information
of the global relationship between inputs and outputs. GSA
methods include the Morris method, the Sobol indices (SIs),
and the Kucherenko indices [13]. Among them, SIs are widely
adopted in the variance-based analysis framework [14]. The
main idea is to decompose the model into summands that satisfy
the orthogonality condition. Then, the influence of the variability
of the input on the model response can be conveniently quan-
tified [15]. Note that the Monte Carlo (MC) simulations are
usually used for SIs calculation, which can be time-consuming.

To deal with the computational burden of MC-based SIs
calculations, the surrogate modeling techniques are advocated.
In particular, an approximated reduced order model is derived to
replace the original one so that a higher computational efficiency
can be reached with only slight loss of accuracy [16], [17]. For
example, in [11], the polynomial chaos expansion (PCE) based
approach is developed for distribution system GSA. The PCE-
based technique is also applied for probabilistic power flow [18],
[19]. However, the calculation of PCE coefficients requires
accurate physical model. This is very difficult to achieve for
practical distribution system, especially with the increased pen-
etration of PVs, flexible loads, and advanced demand response
program [20]. Moreover, PCE suffers from the curse of dimen-
sionality and thus the application of it to large-scale systems is
limited. Another commonly-used method is the Kriging [21],
i.e., Gaussian process regression. As a statistical interpolation
method, it can be applied directly on a set of observations and
the required number of samples is much smaller than PCE. But
the application of it to distribution system GSA is not trivial.

In summary, LSA only investigates the impacts of uncertain
inputs within a small region of domain while practical problems
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also require the examination of the interactions of inputs on the
outputs across the whole input space. The GSA addresses that
but existing works are model-based. However, the distribution
system models are of large uncertainties and subject to various
types of errors. Furthermore, the existing GSA methods are not
computationally efficient to handle large number of uncertain
inputs in a large-scale distribution system. This paper aims to
bridge these gaps and proposes a data-driven GSA framework
for distribution system with PVs, yielding the following contri-
butions:

e ]t is data-driven and the assumptions on accurate physical
model as well as the probabilistic distributions of uncertain
inputs are not needed.

et can reflect the global voltage variations to uncertain real
and reactive power injections for unbalanced three-phase
system. The impacts of PV injections with different capac-
ities and distributions are investigated.

e Under the new framework, two approaches are proposed to
calculate the Sobol indices in a computationally efficient
manner, including the data-driven Kriging-based method
using MC and the data-driven Kriging with analytical
analysis of variance (ANOVA) kernel method. The former
one constructs a Kriging model, based on which Sobol
indices are estimated using MC simulations. This leads
to higher computational efficiency than performing MC
simulations on the original physical model. The ANOVA
kernel-based method, on the other hand, derives the Sobol
indices analytically after establishing Kriging model. By
avoiding MC simulations, it achieves even higher compu-
tational efficiency than the first approach in the presence of
large number of uncertain inputs. These are demonstrated
via the results in Section IV.

The paper is organized as follows: Section II shows the prob-
lem statement and the proposed data-driven GSA framework is
elaborated in Section III. Section IV analyzes the test results and
finally Section V concludes the paper.

II. PROBLEM STATEMENT

Let y=M(x) be the model with random input vector x =
[x1, .. T and model response y. For three-phase distri-
bution systems, the uncertain model inputs may include PV
injections and loads while the outputs are typically bus voltage
magnitudes, voltage angles, line flows, etc. Sensitivity analysis
aims to quantify how the model response is affected by each
input or their combinations. To estimate the sensitivity at x,
the corresponding partial derivative (0y/0x)z—z is commonly
used. This approach belongs to LSA since the perturbations
occur in the neighborhood of the nominal values. Therefore,
the index is reliable only in a small range of the inputs. As for
distribution system LSA, the sensitivity information can be de-
rived from Jacobian matrix. Via the linearization on branch flow
equations, [3] formulates the sensitivity of voltage magnitude
with respect to real and reactive power injections P and Q@ as

-y Ld
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Fig. 1.

Note that LSA index is reliable only in a small range of the
inputs. However, the stochastic PV injections can change rapidly
within their lower and upper bounds and LSA may not be reli-
able. Furthermore, LSA can only capture the local information
with individual components and does not reflect the true global
sensitivity of model response to all inputs. The PV injections can
also have joint impacts on the interested node voltages, which are
especially the case when multiple PV inverters are coordinated
for voltage regulation. This has been ignored by LSA. Finally,
for the distribution network, the derivatives in Jacobian matrix
only consider the buses that are directly connected to. But those
power injections that are not far away can have large impacts on
the interested buses, which are shown in the numerical results.
By contrast, GSA reveals the global relationship between
input variations and output variations by providing a quanti-
tative importance ranking with respect to each input and the
combination thereof. Based on that, the following objectives
can be achieved: i) identification of the most influential inputs;
ii) characterizing the relationship of the input variation and the
output behavior, especially the joint impacts of several uncertain
inputs on the model outputs, such as voltage to real and reactive
power sensitivity; iii) observability analysis of the parameters for
identification. More discussions on the usefulness of GSA for
power system applications are shown in Section III-E. One of the
widely used GSA methods is the Sobol indices-based technique.
Sobol indices measure the contribution of uncertain sources and
their interactions to predictive uncertainty of model response.
The calculations of SIs are often realized via MC simulations that
are computationally expensive. This calls for the development of
more computationally efficient methods. Approximate methods,
such as the surrogate modeling-based ones, are alternatives of
speeding up the calculations although a lot of samples are still
needed. On the other hand, analytical method avoids sampling
from models and thus further improves the computational effi-
ciency. In this paper, we develop and compare the approximate
and analytical methods under the data-driven framework, while
achieving significant computational efficiency improvement.

III. PROPOSED DATA-DRIVEN GSA APPROACH

The proposed framework is shown in Fig. 1, where two ap-
proaches are developed to perform GSA in a computationally ef-
ficient manner, including the data-driven Kriging-based method
using MC simulations and the data-driven Kriging with ANOVA

Kriging with [~ 1 Sampling

Gaussian kernel [ Mir | Method
Kriging with Iy Analytical

ANOVA kernel [ Miea | Calculation

Step 3: Sobol Indices Calculation

Framework of the proposed data-driven GSA, where SI represents the Sobol index and two methods are developed for implementations.

kernel method. From the numerical results shown in Section IV,
the latter method is recommended for practical applications. The
general steps include the data generation/collection, surrogate
modeling and Sobol indices calculation. Specifically, the data-
driven surrogate model is realized by traditional Kriging and
the ANOVA kernel Kriging. In this section, we first present the
theory of Sobol indices for GSA, followed by the two data-driven
approaches and their algorithm implementations.

A. Sobol Indices

Assume the inputs follow independently uniform distribution
with support D, = [0, 1]. Based on the idea of decomposing the
model with respect to variance, the ANOVA-representation of
M(z) is defined as [15]:

d
M(z1,...,2q) = Mo +ZM¢(mi)

i=1
+ Z Mij(zi,zi) + -+ My, alzr, ... zq) (2)
1<i<j<d
under the condition that
1
/ ./\/lihm,is(:cil,...,xis)dxik =0 (3)
0

for1 <k <s,1 <s <d, where we have

My = sz M(x)dx

Mz(xl) = ng—l M(Il?) de.; — M()

Mij (25, 25) = [pae M(@) dz (5 5) = Mo — M = M;

(4)

where x.; denotes the subset of o that excludes ith variable
x; and D41 is the corresponding support. Assuming M (x)
is square-integrable, [15] indicates that by squaring (2) and
integrating over D,,, one can get

d d
/M2(:B)dw—M(2):Z Z /Mlz17___’isdxil"'d$is
Dy

s=1141<...<ig

According to the expression of variance, the left-hand side
denotes the variance of model response. Thus, we get [16]
d

d
var(Y)=V = Z Z /Mfll dx;, ---dx;,  (5)

s=111<...<is
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On account of the orthogonality condition, the variance of model
response can be expanded and (5) becomes

d d
V= Vit Vi+--+Vi 4 6)
i=1

i<j

Then, the Sobol indices are defined as

\%
Sr=1 @)
where I C {1,...,d}. Sobol indices represent the contribution

of input components to the output variance. The first-order
Sobol index S; measures the effect of individual input while
higher-order Sobol indices S;, .. ;, quantify the contribution by
the interactions of x;,, ... x;,. S; plays the similar role of LSA
while S;, . ;. allows us to count the joint impacts of inputs on the
outputs, which are not available from LSA. To further determine
the general importance of each input, the total Sobol index is
defined as

Sf= > Si.i (8)

{i1,0.85}D1

The MC simulations are typically used to calculate Sobol indices
but they are time-consuming. This paper presents data-driven
approaches to address this challenge.

B. Kriging-Based Surrogate Model

This paper advocates the use of Kriging method as it has [22]:
1) strong theoretical justifications and proofs in building the sur-
rogate model, 2) data-driven formulation that does not need the
physical model and the probabilistic distributions of uncertain
inputs, 3) high accuracy using only few samples, which is a huge
advantage over other machine learning algorithms that need a
large amount of data.

The Sobol indices are typically calculated based on MC simu-
lations that rely on the original physical models. Reduced order
model to speed up the process can be used as well [11]. However,
the accurate physical model is assumed, which is challenging
to achieve for practical distribution systems. To deal with that,
data-driven surrogate model via Kriging is developed for Sobol
indices calculations. Kriging assumes that the model response
is an observation of a Gaussian process (GP), i.e.,

My, (x) = m(x) + Z(x;0%,0) )

where m(x) =" f(z) represents the mean function or the
trend; Z (x; 02, 0) is a centered GP with zero mean, variance o2,
and covariance kernel function k(x, «’; ). The mean function
m(x) gives Kriging predictor for the model response. The
Kriging variance Z(x;0?,6) quantifies the uncertainty at the
corresponding point. f(x) is typically prescribed while param-
eters 3, o2, and 0 need to be estimated, such as via the maximum
likelihood (ML) estimator. Assume the Kriging model is based
on observation X ={x™ ... (™} (N by d-dimensional
samples) and response y = { M (z")), ..., M(2™))} with pre-
determined trends that consist ! functions {f;,j=1,...,l}.
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Then, the unknown parameters are estimated using ML esti-
mator [23], [24]:

=B(6)=(F'K(0)'F) 'F'K() 'y
2= 0%(0) = k(y~ FB K(0)\(y -~ FP))
= argmeinUQ[det K(6)Y/m™

®)

(10)

) Q

where F' is the regression matrix with elements {F;; =
fi(x),i=1,...,N,j=0,...,l} and K (0) is the covariance
matrix with unknown hyperparameter 6.

In the prediction step, the model response is approximated
by employing the covariance function k(x, «’; @) that measures
the closeness of the inputs. Specifically, the prediction is 3 ~
N(pg(x), cr%(a"i;)) with the parameters calculated as follows:

) 2 11
02=02(1-kK Yk +u"(FTK'F )u (b

{Mz? =f'B+kK '(y - Fp)
2=
where f‘)’ and o2 are the generalized least-squares estimates
from (10); k is the cross-covariance between & and = with
components k; =k(&,2)),i=1,...,N; K is the covariance
matrix of X with elements K;; =k(z®,2()),i,j=1,...,N;
u=FTK 'k— f. Note that the common trends are linear and
quadratic [23] while the kernel functions include exponential
kernel, Gaussian kernel, Matérn kernel, etc.

Sobol indices calculations: The construction of Kriging
model is completed and the model predictions can be obtained.
After that, the MC-based Sobol indices can be calculated via the
surrogate model as follows:

)

0= % 27]:;1 Mkr(a’(n))

o i " ~
‘//:: %ZT;V:I Mir(m( )) 7V02 =R
Vi= & Caoy Mier (@ 0 ) M (2, 2/ 0) — V2

(12)
where :c(:? is the observation with ¢th input variable excluded;

x’ is another realization of X and is independent with .

C. ANOVA Kernel-Based Kriging

To further improve the efficiency of the previous Kriging-
based GSA, a specific type of ANOVA kernel is utilized to
obtain the closed-form ANOVA representation of m(x) in (9),
where the Sobol indices can be derived analytically. This avoids
sampling from surrogate models and thus accelerates the GSA
procedure especially in the presence of large number of unknown
inputs.

By rewriting the interpolator m () in the form of kernel, we
get

m(z) = k(z)" K 'y (13)
where k(x) denotes the vector of covariances between the test
point and the training set, i.e. k(-) is the column vector of
(K(x®,.))1<i<n: K represents the Gram matrix with terms
K;j = k(z®,21)), where k belongs to symmetric positive
definite function, such as Gaussian or Matérn. The original
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ANOVA kernel is given by

k@) =1+ > (K ()

Icl,...d i€l

(14)

where 1 is the bias term, i.e., a column vector with all ones; d
represents the dimension of input; () denotes entrywise product:
(Oyer k' (20))j =111 k' (x4, 2;). However, the expression of
m(x) based on the original ANOVA kernels does not necessarily
satisfy the demanded orthogonality condition as required by
ANOVA representation (3). To this end, we resort to [21] and
develop the following ANOVA kernels:

ko()=1+ > (ki)
Icl,...,d i€l
Jp Kz, 8)du(s) [ k(y, s) dp(s)
ffDXD k‘(s,t) dﬂ(s)dU(t)

15)

ko(z,y) = k(x,y) —

(16)

where D= D x --- X Dy is a Cartesian product space of sets
D; C R; p=py X -+ X jiq is a probability measure over D.
The corresponding ANOVA representation of m(x) is:

d
m(x) = (14> k(@) + Y kjla)©k)(x;)
i=1 1<i<j<d
d T
+o+ (Oki()| Ky (17)
i=1
According to (17), the term of m indexed by I reads as:
T
my = (@ k:o(xi)> Ky (18)
il

Sobol indices calculations: by combining (7) and (18), the
SIs are naturally obtained as:
5, — var(mr)
var(m)
_ yTKil(QieI I‘i)Kily
yTK71 (@?:1 (1n><n + Fz) - 1n><n)K71y

where T; = [, kg (2:)k (2:)" dpi(2:) and 1,5, is the n x n
matrix of ones. The integrals of (19) are approximated using a
Rieman sum operator in numerical computation [21].

Remark: the key advantage of the ANOVA kernel-based Krig-
ing over the traditional Kriging-based surrogate model for GSA
assessment is that it has an approximate linear computational
complex increase with the increased number of inputs while this
is not the case for the latter. That is essential for the system with
high dimension of unknown inputs, which will be demonstrated
in the numerical results section.

19)

D. Algorithm Implementation

From Fig. 1, it can be found that the proposed GSA method
includes constructing data-driven surrogate models and Sobol
indices calculations. Two methods are developed and their main
steps of implementations are as follows:

4813

e Step 1: Generate dataset via OpenDSS [25]. Specifically,
OpenDSS calculates the power flows with a set of random
inputs and generates a set of outputs correspondingly, such
as bus voltage magnitudes, real and reactive power injec-
tions. This dataset is taken as the input measurement data
for the proposed methods in the experimental simulation
sections. It is worth noting that for practical distribution
system applications, this step is not required, instead the
historical smart meter and SCADA measurements are di-
rectly used.

e Step 2: Construct Kriging surrogate model. For surrogate
model-based Kriging, the data-driven Kriging model is
obtained using (10). Alternatively, we can build ANOVA
kernel-based method using the ANOVA kernel via (15).

e Step 3: Calculate Sobol indices. For surrogate-based Krig-
ing, MC-based Sobol indices calculations are performed
through (12) with (11). For ANOVA kernel-based Kriging,
the corresponding Sobol indices are directly obtained in
closed form via (19).

E. Potential Applications of GSA

GSA aims to assess the importance of all uncertain sources in
a global view, which provides valuable information about how
each uncertain PV affects the desired output and to what degree
the influence is. This leads to several potential applications,
which are summarized as follows:
® [mportance ranking of uncertain sources: GSA provides
a quantitative measure for the importance of each input
variable on the model outputs. For example, by ranking the
calculated SIs, we can find out the most influential inputs
on model outputs, such as those PVs that affect most the
voltage variations. There are also some other applications
developed in the literature. SA is utilized in [1] to investi-
gate PV buses and tap position adjustments for simulating
controllers in distribution systems. The sensitivity analysis
using partial derivatives is conducted to check for any
violations in the regulated bus voltage magnitudes. SA
is also applied to voltage contingency ranking, where the
effect of the contingency on the states and stability margin
is determined through partial derivatives [9]. Consequently,
a severity index is calculated for each contingency. The
proposed data-driven GSA is a more general approach that
considers the sensitivity in the whole range and can be
easily applied to these problems.
® Overall model sensitivity estimation: GSA allows explor-
ing the relationship between the input variations and the
output behavior. GSA is utilized in [8] for microgrid max-
imum loadablility analysis. The polynomial chaos expan-
sionis used for GSA calculation. In [10], GSA is performed
to measure the effect of distributed generation. Using the
ranking of each input factor, the voltage sag based fault
location can be achieved. These methods are model-based
while our framework is data-driven and thus more appli-
cable of addressing the inaccurate physical model issues.
® Network clustering: Assume GSA is conducted for all de-
sired outputs in the power system, we can cluster nodes that
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have similar sensitivity pattern into several areas, which
further helps distributed applications, such as distributed
voltage control. A community detection algorithm based
on voltage sensitivity matrix is proposed by [5] in order
to partition the distribution network into clusters for zonal
voltage control. In [6], the relationship between voltage
and distributed generation power injections characterized
by voltage sensitivity analysis is used to evaluating the elec-
trical distance, which is further used for network partition.
o Distribution network management: The GSA results con-
tain useful information of the whole system. The explo-
ration of such sensitivity coefficients leads to further appli-
cations, such as distribution network voltage-var optimiza-
tion, selection of feeders for conservation voltage reduction
implementation, etc. The sensitivity coefficients from each
participating node or voltage regulator are collected to help
distribution management system perform optimization and
control [2].

® Model parameter identifiability assessment: GSA can as-
sess how the parameter variations affect the quality of
the output. This allows us to identify the most influen-
tial parameters for identification. The polynomial chaos
expansion-based GSA for generator model problematic
parameter identification in [26]. The GSA can be also
extended to assist the selection of parameters of dynamic
loads, DERSs, etc., for estimation and calibration.

Remark: If topology changes or reconfigurations happen in
distribution systems, the sensitivity is affected and this requires
the updating of surrogate model to calculate new SIs. It should be
noted that those topology changes or reconfigurations typically
affect some local nodes due to the sparsity of the distribution
systems. This means that only the SIs associated with those
local nodes need to be updated. One excellent characteristic
of Kriging-based method is that it needs a few samples to
reconstruct and update the surrogate model. This process is also
swift to accomplish and thus allows our proposed method to
quickly adapt to topology changes and reconfigurations.

IV. NUMERICAL RESULTS

Numerical results carried out on the modified IEEE 37- and
123-bus system considering PVs are used to demonstrate the
performance of the proposed method. The schematic is shown
in Fig. 2. The inputs include random variations of loads and
PV injections while the model responses, voltage magnitudes
are used for illustrations. The model-based PCE [11] and the
proposed two data-driven methods are compared with the bench-
mark obtained from the MC simulations. The mean absolute
percentage error (MAPE) and root mean square error (RMSE)
are used to quantify the surrogate model prediction accuracy and
Sobol indices estimation accuracy, i.e.,

Y_U| % 100%

MAPE = 3 |%-
RMSE = /£ 3°(8 — 5)2

where y* and g are the true and estimated model response, re-
spectively; S* and S are the true and estimated Sls, respectively.

(20)
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Fig. 2.  Single line diagram of IEEE 37-bus system with PVs.

All simulations are carried out in MATLAB with 2.60 GHz Intel
Core i7-6700HQ.!

The AC power flow model M, is used as the benchmark
to estimate the total Sls SPT f via MC simulations. Meanwhile,
the inputs X are generated from known distributions and the
corresponding model responses y are obtained though M, ;. In
this paper, all realizations are calculated from OpenDSS [25].
Then, the generated data {X,y} are used to construct three
surrogate models { M., My, M4} for PCE, Kriging, and
Kriging with ANOVA kernel, respectively. Their corresponding
total SIs are { S, ST, Si{4}-

The organization of this section is as follows: Section IV-A
and IV-B validate the proposed framework in several scenarios
with different numbers and probability distributions of PVs and
loads. Section I'V-C investigates the robustness to measurement
noise and IV-D tests the proposed method in a larger system
with more numbers of uncertain inputs. Finally, an actual system
with smart meter data is used to validate the scalability of the
proposed framework in Section I'V-E.

A. Sobol Indices Validation

The inputs include six random variables x=[z1, ..., z¢],
where [z1,29,23] are loads at nodes [731b,733a,735¢|
and [z4,x5,26] are power injections from PVs at nodes
[731b, 733a, 735c¢]. Note that a, b, and ¢ denote different phases.
The corresponding model responses are y = [y1, . . . , Y9| whose
elements are three-phase voltage magnitudes at nodes [731, 733,
735]. The distributions of inputs in Scenario 3 shown in Table I
are used here for illustration. All models are constructed with
N =200 samples. The degree of PCE is set to n =2. Linear trend
and Gaussian kernel are used for My, while linear trend and
ANOVA kernel are utilized for M 4.

Table IT shows the comparisons between three methods. The
overall index to quantify surrogate model accuracy is the average

'The code to implement the proposed method can be obtained by sending
email to the corresponding author.
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TABLE I

LOAD AND PV DISTRIBUTIONS FOR SCENARIOS 1-4

Pinj (kW) Pload(kW)
Scenario 1 20 x Beta(3,2.2) N (P, (0.05 load)2)
Scenario 2 30 x Beta(3,2.2) /\/'(Pload, (0.05P, )?)
Scenario 3 30 X Beta(3,2.2)  N(P} load’ (0. 1Pfoad)2)
Scenario 4 Weibull(15,3)  N(P},, 4 (0.1P}  1)?)

TABLE II
COMPARISON RESULTS OF DIFFERENT METHODS ON 37-BUS SYSTEM

Accuracy .
Model ear (X1T0-°%) [ 51 (X10-2) CPU time (s)
My — — 103
Mpe 3.825 0.869 1.243
My 3.713 0.811 4.854
Mia 3.078 0.752 1.404

value of all MAPEs, denoted as ej;. Similarly, the overall
accuracy index for SIs is egr. Once established offline, the
surrogate models can replace the original power flow model and
further realize SIs calculations online. The CPU time means the
time for Sobol indices online calculations. A number of 10 000
samples is used for MC benchmark. According to Table II,
PCE is the fastest method as only a small number of data is
used. ANOVA kernel-based Kriging method shows a similar
computational efficiency as PCE. The advantage of the proposed
analytical method in terms of computational efficiency will
become significant when a larger-scale system is tested. Note
that all three methods can achieve very accurate results for
model response predictions and Sls calculations while being
much more computational efficient than the MC-based method.
This validates the effectiveness of our data-driven methods.
Figs. 3 (a)-(d) demonstrate the total Sobol indices for V731,
Visses Virssp, and Vrzss. by three models for illustrations. It is
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(a)-(d) correspond to the case that there is no error with system model while (e)-(h) are the results considering system model error.

observed that only three inputs have noticeable effects on V731,
and the dominant factors are power fluctuations at phase b. For
voltages at phase b, major influence comes from those at phase
a. Results also show that voltage magnitudes at the same phase
share a similar pattern of total SIs. According to the total index,
load fluctuation of 10% has more impacts than PV injections
with power rating 30 kW in terms of sensitivity.

In practice, the distribution system model and the measure-
ments are always subject to errors. To test the robustness of
these methods when the model is subject to errors, we assume
there are uncertainties of distribution line parameters, following
independent Gaussian distribution N7z, ~ (0, (0.05z, 1 )?). For
input observation X, Gaussian noise is added with zero mean
and standard derivations are set to be a proportion of the true
mean: g, =0.01 . For the data-driven approaches, measure-
ment error is introduced for model response with a variance
01y =0.01% . Figs. 3 (e)-(h) display the results, from which
it can be observed that the proposed method is only slightly
affected. By contrast, due to model errors, the model-based PCE
yields much larger errors in total SIs, see (¢) and (g) for example.

B. Sensitivity in Different Scenarios

Further tests, including different PV injections and distribu-
tions are conducted to examine the proposed method, see Table I.
Note that the model uncertainties are not considered in this
section and the PCE is added for comparisons. Fig. 4 shows the
results of models for different scenarios and all models achieve
similar performances. From Scenarios 1 and 2, it is observed
that the increase of power injections enlarges the SI of input
Pr313 as expected. The comparison of Scenarios 2 and 3 shows
the similar trend in terms of increased load uncertainty. This is
because the variation of distribution results in a similar pattern
of changing the fluctuation ranges of loads and PV injections.
The results in Scenarios 3 and 4 are similar since the parameter
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Fig. 4. Total Sobol indices calculated by different methods under scenarios
1-4 for V731c.

TABLE III
MODEL PERFORMANCES IN SCENARIOS 1-4

SI error es;(x1072)  Mpe My, Mpa
Scenario 1 0.617 0.684 0.716
Scenario 2 1.114  1.331 1.172
Scenario 3 0.869 0811 0.752
Scenario 4 0.891  0.960 1.030

setting of PV injections in Scenario 4 yields analogous distri-
bution as that in Scenario 3. Table III demonstrates the model
accuracy under different scenarios, justifying the high accuracy
of the proposed methods. These results also demonstrate that our
proposed methods are able to track the sensitivity changes and
reveal the complicated global sensitivity relationships between
changing inputs and outputs.

C. Robustness to Noise

This case study is to assess the robustness of the proposed
methods to measurement noise. Both inputs and outputs are
subject to noise {0, 0y } as discussed in IV-A. The proposed
methods are Kriging-based methods and therefore are able to
handle additive noise [23]. In the model construction step, a good
number of samples can help Kriging achieve better surrogate
model. Note that for the collected measurements, noise reduction
algorithm can be used to preprocess the data. Fig. 5 and 6
demonstrate the robustness of the proposed methods to noise
with moderately increased number of samples, where the V733,
sensitivity is used for illustration. It can be observed that the
proposed methods achieve better capability of filtering out the
noise with more samples. The traditional Kriging is more robust
to noise than the ANOVA kernel-based method. Compared with
the results in Section IV-A, we find that to achieve similar
estimation accuracy due to measurement noise, the number of
data samples should be increased. This is expected as handling

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021
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TABLE IV
LOAD AND PV SETTINGS FOR IEEE 123-BUS SYSTEM

Types Locations

Load la, 22b, 30c, 34c¢, 37ac, 41¢, 45a, 52a, 55a, 58b
04CS " §ac, 64b, 68a, T7b, 82a, 87b, 96b, 102¢, 107, 109a
PVs 2b, 24c¢, 46a, 59b, 66¢, Tla, 79a, 83¢, 90b, 111a

measurement noise requires a better redundancy. Therefore, in
practical applications, the trade-off between robustness to noise
and the use of appropriate number of samples should be paid
attention to. For higher noise levels and more inputs, more
advanced noise reduction algorithm can be investigated, such
as principle component analysis (PCA) or kernel PCA [27].

D. Scalability to Larger Distribution Systems

The proposed Kriging methods are also tested in the IEEE
123-bus system to demonstrate their scalability. For this system,
it is assumed that there are 30 uncertain inputs whose detailed
descriptions can be found in Table I'V. The single line diagram
of the 123-bus system with PVs is displayed in Fig. 7. For
PCE, its number of degrees is adapted to n=2 : 4 during the
model construction stage and the number of samples is increased
to be IN,.=1000 due to the increased number of uncertain
inputs and the complexity of system model. By contrast, the
hyperparameters of the Kriging methods and the numbers of
samplings are the same as those in Section IV-A. Similar to
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Fig. 7.  Single line diagram of IEEE 123-bus system with PVs.
TABLE V
LOAD AND PV DISTRIBUTIONS FOR SCENARIOS 5 AND 6
Scenarios Py (KW) Pioga(EW)
Scenario 5 5 x Beta(3,2.2) N(PL 4 (0.05Pfoad)§)
1 7 7
Scenario 6 10 x Beta(2.5,3.5)  N(P}, ., (0.05P}  )?)

TABLE VI
COMPARISON RESULTS OF DIFFERENT METHODS IN 123-BUS SYSTEM

Accuracy . .
Model enr (XT0-°%) [ 51 (X10-9) CPU time (s)
My — — 8286.299
Mope 6.838 0.386 41.677
M 6.194 0.378 73.365
Mpa 6.271 0.413 5.860

Section IV-A, the Sobol indices calculated by the MC-based
approach with 10 000 samples are used for the baseline.

Table VI shows the comparison results for all methods. Com-
pared with the those shown in Table I1, it can be observed that the
surrogate model prediction accuracy ey, has been decreased due
to the increased complexity of the system. However, their level of
accuracies are still high and sufficient for practical applications.
Figs. 8 and 9 display the results of V4. under Scenarios 5 and
6 for illustrations, where the experimental settings can be found
in Table V. In general, all three methods are able to get accurate
estimates of total SIs even with increased number of uncertain
inputs. On the other hand, similar to Fig. 3, a few inputs have
significant impacts on the final outputs. For Vg4, the major
effects come from the PV injection at node 62c and the load
fluctuation on the same node 64b. Power fluctuations at nearby
nodes of phases b and c also contribute a certain proportion of
total SIs. Furthermore, it can be observed that the increase of
PV ratings leads to the increase of total SIs. It is worth noting
that the ANOVA kernel-based Kriging method has small errors
at nodes where the total SIs are supposed to be close to zero. A
possible reason is that the error accumulates during analytical
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TABLE VII
COMPARISON RESULTS OF DIFFERENT METHODS ON 240-BUS SYSTEM

Accuracy .
Model enr (XT0-°%) [ 51 (X10-9) CPU time (s)
My — — 1462.135
Mope 6.578 0.766 18.331
M 5.560 0.637 16.278
Mpa 5.087 0.482 2.558

calculation and thus S, tends to be subtle when true total SIs
are almost zero. However, such error is negligible and is small
enough to be removed through post-processing procedure in
practical applications as we are usually looking for the most
influential factors for voltage regulations.

In terms of computational efficiency, it can be observed
from Table VI that the MC-based method is extremely time-
consuming for practical applications. Although the PCE and tra-
ditional Kriging-based methods significantly improve the com-
putational efficiency, they are still much more computationally
expensive than our ANOVA kernel-based analytical calculation
method, i.e., 8 times and 14 times faster than PCE and transi-
tional Kriging method, respectively. Note that with the increased
number of uncertain inputs, the PCE and Kriging face the curse
of dimensionality issue. The degree of PCE needs to increase as
well for larger and more complex systems. Similarly, Kriging
has a higher requirement for estimating its hyperparameters.
Although Kriging requires less number of training samples than
PCE, the size of the covariance matrix K will eventually become
unacceptable. By contrast, the ANOVA kernel-based method
calculates the SIs analytically and has approximately linear
complexity relationship with the number of uncertain inputs.
Thus, it is more suitable for practical distribution systems with
vast uncertain PVs and loads.

E. Test Results on a Real Distribution System

The proposed method is also tested on a real 240-bus distri-
bution system in the US with smart meter data, see Fig. 10. The
data are open public and can be found via [28]. In particular,
the feeder C is selected, where there are 11 PVs installed and
their locations can be found in Fig. 10. These nodes with PVs are
regarded as uncertain resources. The smart meter dataset consists
of one-year voltage, real and reactive power data with 8760 sam-
ples. The parameters and configurations for three methods are
the same as those in Section I'V-A. Fig. 11 shows the calculated
total SIs for this 240-bus system while Table VII displays the
computational efficiency of each method. It can be observed that
the proposed analytical method achieves better accuracy than
the other approaches while maintaining the best computational
efficiency. Take the results for node 3034 as an example, it is
found that the voltage of that node is mostly impacted by PVs
at nodes 3024, 3085, 3090, and 3095. This is consistent with
their distance to the target node and power ratings. Most other
nodes have negligible impacts since they are far away from node
3034, such as nodes 3065, 3144 and 3158. Note that the power
rating of PV node 3020 is close to zero and that is why it has
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neglectable impact on node 3034 voltage, which is also reflected
by the total SIs.

V. CONCLUSION

In this paper, a data-driven GSA framework is proposed
for three-phase distribution systems with stochastic loads and
uncertain PVs. GSA allows us to quantify the overall impacts
of uncertain inputs on model response, i.e., the voltage vari-
ations to PVs and loads. The proposed method has two key

components, namely the surrogate modeling via data-driven
Kriging and Sobol indices calculation. Two approaches have
been proposed, namely the traditional Kriging-based and the
ANOVA kernel-based Kriging. The former one still requires
MC simulations to calculate Sobol indices while the latter an-
alytically derives the Sobol indices from the data and therefore
achieves much higher computational efficiency, especially in the
presence of large number of uncertain inputs. Simulation results
on the unbalanced IEEE 37- and 123-bus systems show that
our data-driven approaches can achieve comparable accuracy as
the benchmark but being much more computational efficient.
The proposed framework is also tested on a real 240-bus system
with smart meter data to demonstrate its feasibility and scal-
ability. Future work will be on developing closed-loop voltage
control algorithm utilizing the global voltage sensitivity analysis
outcomes.
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