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Global Sensitivity Analysis of Large Distribution System With PVs
Using Deep Gaussian Process
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Abstract—Global sensitivity analysis (GSA) of voltage to uncer-
tain power injection variations plays an important role for appro-
priate Volt-VAR optimization. This paper proposes a data-driven
GSA method for large-scale distribution systems with a large num-
ber of uncertain sources. Specifcally, the deep Gaussian process is
used to identify the mapping relationship between uncertain power
injections and voltages. This allows resorting to the analysis of vari-
ance framework to calculate the Sobol indices for GSA. Unlike the
existing polynomial chaos expansion and Gaussian process-based
approaches, our proposed method has much better scalability. Test
results on the EPRI 1747-node K1 circuit with different numbers
of uncertain sources with various uncertain levels and different PV
distributions demonstrate that the proposed method can achieve
accurate GSA.

Index Terms—Distribution system analysis, deep Gaussian
process, PVs, global sensitivity analysis, Sobol indices.

I. INTRODUCTION

THE increased penetration of uncertain distributed energy re-
sources (DERs), especially PVs, brings challenges for Volt-

VAR optimization. The Jacobian matrix-based local sensitivity
analysis (LSA) of voltage to real and reactive power injections has
been widely used to guide the voltage control [1], [2]. However,
LSA could not exhibit the overall impacts of the uncertain sources
on voltage variations. By contrast, global sensitivity analysis (GSA)
allows us to quantify how voltage variations are correlated with
variation of each uncertain input and their joint contributions. To
this end, the polynomial chaos expansion (PCE)-based GSA is
developed for distribution systems [3] and for microgrids [4]. How-
ever, PCE is model-based and has the curse of dimensionality issue
when the number of uncertain inputs is large, which is typically the
case for large-scale distribution systems. To mitigate the modeling
challenge, data-driven method for GSA can also be developed via
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Fig. 1. The overall framework of GSA.

kriging, i.e., Gaussian process (GP) [5]. But GP still has the curse
of dimensionality issue. This letter develops a scalable data-driven
GSA framework for large-scale distribution systems. Instead of
using the single layer GP, we advocate the deep Gaussian process
(DGP) by constructing the GP model hierarchically [7]. The DGP
is used to identify the surrogate model that retains the relationships
between uncertain power injections from uncertain sources and
voltage variations. We use the Sobol indices (SI) in assessing the
GSA.

II. PROPOSED DATA-DRIVEN GSA FRAMEWORK

The proposed framework is shown in Fig. 1 and it contains three
main procedures, namely the data collection, surrogate modeling
and SI calculation. The surrogate model can be achieved offline by
PCE, or Kriging, or DGP. After that, SI is computed online using
Monte-Carlo (MC) sampling method.

A. Voltage Sensitivity Analysis

Let y = M(x) the model with d-dimensional random input
vector x = [x1, . . . , xd]

T and model response y. For three-phase
distribution system voltage sensitivity analysis, the uncertain model
inputs are PV injections and loads while the outputs are typically
bus voltage magnitudesV . Sensitivity analysis aims to quantify how
the model response is affected by each input or their combinations.
LSA studies the impacts of small perturbations on the model output
by estimating the partial derivative with respect to the inputs at a
specific point: (∂y/∂xk)x=x∗ . This approach is called local since
the perturbations occur in the neighborhood of the nominal values.
By contrast, GSA reveals the global relationship between input and
output variations by providing a quantitative importance ranking
with respect to each input and the combination thereof.

B. Sobol Indices

Assume the input variable x is with support Dx = [0, 1]d. Using
the analysis of variance framework [3], the function M(x) can be
decomposed as:
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M(x1, . . . , xd) = M0 +

d∑
i=1

Mi(xi) +

∑
1≤i<j≤d

Mij(xi, xj) + · · ·+M1,...,d(x1, . . . , xd) (1)

with the condition:
∫ 1
0 Mi1,...,is(xi1 , . . . , xis) dxi=0.

Using the variance operator over Dx, the expression of variance
decomposition is:

var(Y ) = V =

d∑
i=1

Vi +

d∑
i<j

Vij + · · ·+ V1,...,d (2)

Based on that, the SI is defined as: SI = VI/V , where I ⊂
{1, . . . , d}. SI measures the contribution of each input variable to
the output variability. The first-order Sobol index represents the
impact of each individual uncertain source on the variance of the
output. The higher order SI quantifies the effect of the interaction of
grouped inputs. To consider the overall importance of each input, the
total SI is ST

i =
∑

{i1,...,is}⊃i Si1...is . A commonly used approach
to estimate SI is based on MC simulations, i.e.,⎧⎪⎨
⎪⎩

V̂0 = 1
N

∑N
n=1 M(x(n))

V̂ = 1
N

∑N
n=1 M2(x(n))− V̂ 2

0

V̂i =
1
N

∑N
n=1 M(x

(n)
i ,x

(n)
∼i )Mkr(x

(n)
i ,x′(n)

∼i )− V̂ 2
0

(3)

where x
(n)
∼i denotes the collocation points with ith input variable

excluded; x′ is another sample of uncertain space that is indepen-
dent with x. To improve the computational efficiency of calculating
(3), the PCE and GP-based surrogate models Mpce and Mkrg can
be developed. But they have curse of dimensionality issue when the
number of uncertain inputs is large.

C. Deep Gaussian Process-Based GSA

GP has strong theoretical justifications in surrogate modeling. It
is data-driven and does not need the physical model and probability
distributions of uncertain inputs. However, the standard GP has high
computational burden with a large number of uncertain inputs [6].
In this letter, we develop the DGP-based GSA to address that.

GP infers a real-valued function f :X→y with a set of N pairs
X∈RN×D and y∈RN×1. Its regression form is [7]:

y = f(X) + ε (4)

where f is drawn from GP defined by the mean function and
the covariance function, i.e., f∼GP(m(X), k(X,X)), and ε∼
N (0, σ2

ε I). The inference of GP is computationally expensive with
O(N3) complexity. To this end, variational compression approach
is utilized to capture the information of the original data. A set of M
inducing points Z={z1, . . . , zM} jointly distributed as a GP with
the original data is used for compression, yielding the following
joint density

p(y,f ,u) = p(y|f)p(f |u)p(u) (5)

where f andu are the function values f(X) and f(Z), respectively.
In (5), the conditional p(f |u) can be expressed as N (μ,Σ), where
μ=KXZK−1

ZZu, Σ=KXX−KXZK−1
ZZKT

XZ with KXZ de-
notes the covariance matrix with terms [KXZ ]ij=k(Xi, Zj). By
minimizing the Kullback-Leibler divergence between the varia-
tional and the true posteriors, the joint posterior is approximated
with the variational posterior q(f ,u)=p(f |u)q(u), where q(u)=

N (u|m,S), allowing for the closed-form marginal

q(f |m,S) =

∫
p(f |u)q(u) du = N (f |μ̃, Σ̃) (6)

Similarly, the mean and covariance functions are expressed as: μ̃=

KXZK−1
ZZm, Σ̃=KXX−KXZK−1

ZZ(KZZ−S)K−1
ZZKT

XZ .
By stacking GP into a composite multilayer model, DGP can be

obtained [6]:

y = fL(fL−1(· · · f1(X))) + ε (7)

where fl denotes the l-th layer function with inducing inputs Zl

and corresponding outputs ul. Analogously, the joint density of
multilayer Gaussian process is:

p(y, {f l}Ll=1, {ul}Ll=1) = p(y|fL)

L∏
l=1

p(f l|ul)p(ul) (8)

The complexity and nonlinearity introduced during GP stacking
bring difficulties for handling correlations within and between
layers. Doubly stochastic variational inference is used to achieve
accurate approxiamtions while maintaining the conditional struc-
ture. The posterior of layer outputs is similar to single-layer GP,
i.e.,

q({f l}Ll=1) =

L∏
l=1

N (f l|μ̃l, Σ̃l) (9)

where μ̃ and Σ̃ denotes the mean and covariance functions of
the layer inputs. The variational parameters are determined by
optimizing the lower bound on the marginal likelihood:

L = Eq(fL)[log p(y|fL)]−
L∑

l=1

KL[q(ul)||p(ul)], (10)

where the expectation is estimated by MC sampling based on the
variational posterior. The DGP model Mdgp can be obtained once
the parameters are determined.

Implementation of DGP-based GSA: i) with given historical
PV, load and voltage measurements, the DGP is used to build
the surrogate model Mdgp via (4)-(10); ii) In (3), the SI can be
computed by replacing M in (3) with Mdgp.

Remark: GSA aims to assess the importance of all uncertain
sources in a global view, which provides valuable information about
how each uncertain PV affects the desired output and to what degree
the influence is. GSA can characterize the joint impacts of PV
injections on the model outputs via the global voltage to real and
reactive power sensitivity indices. It can also benefit other applica-
tions, such as importance ranking of uncertain sources [1], overall
model sensitivity estimation [4], network clustering [8], distribution
network management [9], etc. This work focuses on the impacts of
utility scale PVs and the aggregated PVs, i.e., aggregations of many
low voltage side PVs on voltage sensitivity. Under these scenarios,
the uncertain PV generation data are available for the utilities. For
the low-voltage distribution systems, the rooftop PV generations
are typically not available to utilities. In this case, it is challenging
to specifically assess the impacts of rooftop PVs on the voltage
sensitivity. However, the smart meters that show the net-loads are
available to utilities. Our method can treat the net-loads as uncertain
sources and assess the impacts of them on voltage sensitivity. Note
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Fig. 2. Case 1: K1 system with 60 uncertain sources.

Fig. 3. Case 1: total SIs for 10 most significant inputs of each method.

that we can also aggregate several customers with rooftop PVs and
assess their impacts on voltage sensitivity.

III. NUMERICAL RESULTS

The proposed method is tested on the EPRI K1 feeder, which
contains 1747 nodes and 320 loads [10]. The uncertain inputs
include flexible loads and PVs while the model responses are
node voltage magnitudes. Three surrogate models are examined
and compared with the benchmark obtained from MC simulations
using the OpenDSS software. The mean absolute percentage error
is used to quantify the accuracies of surrogate model prediction
and total SI, i.e., eM and eaveSI . Since most SIs are close to zero,
only the 10 significant nodes with large total SIs are shown due to
space limitation. The average total SI error eaveSI is also provided. All
simulations are conducted in MATLAB on a PC with with 2.60 GHz
Intel Core i7-6700HQ and 6 GB Nvidia GTX 1060. The AC power
flow model Mpf in OpenDSS is viewed as the original model,
on which the corresponding benchmark SIs are calculated via MC
simulations. Three surrogate models, {Mpce,Mkrg,Mdgp}, are
constructed using PCE, Kriging, DGP, respectively.

Two cases are investigated: 1) Case 1: 60 uncertain sources,
i.e., 20 loads and 40 PVs as shown in Fig. 2 and 2) Case 2: 100
uncertain sources, i.e., 40 loads and 60 PVs as illustrated in Fig. 4.
The settings of loads and PVs are following [10]. For PCE, an
adaptive sparse scheme is utilized for high-dimensional inputs [11].
The degree of PCE is n=2:4 and the number of used historical
measurements is 2000. For Kriging with Gaussian kernel, 500
historical data are sufficient for these two cases. More data leads
to limited improvement on accuracy but affects the computational
efficiency. The parameters of DGP are similar to those of Kriging
except that DGP has 2 layers and 150 inducing points.

Fig. 4. Case 2: K1 system with 100 uncertain sources.

TABLE I
TESTS WITH DIFFERENT KERNEL FUNCTIONS

TABLE II
COMPARISON RESULTS OF DIFFERENT METHODS ON K1 SYSTEM WITH 60

UNCERTAIN SOURCES

In the literature, the most widely used kernel functions are
Gaussian, exponential, and Matern. The hyperparameters of the
kernels are calculated using the maximum likelihood estimator. To
justify the choice of Gaussian kernel function in this letter, we have
tested the performance by using different kernel functions and the
results are shown in Table I. In general, the differences between
these kernel functions are minor but the Gaussian kernel performs
best.

The test results for Case 1 are shown in Fig. 3 and Table II. It
can be found that with 60 uncertain inputs, all three methods can
achieve good surrogate model prediction accuracy as well as SIs.
Kringing and the proposed DGP-based methods have much higher
computational efficiency than the MC and PCE-based methods.
DGP-based method slightly outperforms the Kringing in terms of
calculating accuracy of SIs. By contrast, the results for Case 2 with
uncertain inputs increased from 60 to 100 are demonstrated in Fig. 5
and Table III. It can be observed that the performances of the PCE-
and Kringing-based approaches have been significantly affected.
Their average total SI estimation errors are 19.32% and 16.36%,
respectively. The proposed method only has 4.11% estimation error
while being much more computationally efficient than all other
methods. This case clearly demonstrates the curse of dimensionality
issues of the PCE and Kringing-based approaches. Our proposed
method can deal with that and thus more suitable for practical
large-scale distribution system GSA with a high penetration level
of uncertain sources.
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Fig. 5. Case 2: total SIs for 10 most significant inputs of each method.

TABLE III
COMPARISON RESULTS OF DIFFERENT METHODS ON K1 SYSTEM WITH 100

UNCERTAIN SOURCES

Fig. 6. Total SIs of 10 most significant inputs with Beta distribution of PVs.

Fig. 7. Total SIs of 10 most significant inputs with Gaussian distribution of
PVs.

To investigate the impacts of different distributions of PVs on SIs,
the Beta, Gaussian, and uniform distributions for PVs are tested.
The results are shown in Figs. 6–8 and it can be found the proposed
method is able to achieve similar outcomes with the benchmark
Monte Carlo method, demonstrating its high accuracy. From the
theoretical point of review, with the accumulation of data, especially
the adoption of deep layers, the data distribution will tend to be
Gaussian according to the central limit theorem. This justifies why

Fig. 8. Total SIs of 10 most significant inputs with Uniform distribution of
PVs.

the performance of DGP is only slightly affected by non-Gaussian
distributions of uncertain inputs.

IV. CONCLUSION

This paper proposes a GSA framework for large-scale three-
phase distribution systems with uncertain flexible loads and PVs.
The framework consists of surrogate modeling and Monte Carlo-
based Sobol indices calculation. In particular, the data-driven DGP
is developed to deal with the curse of dimensionality issues faced by
PCE and Kringing-based approaches. Test results on the large-scale
EPRI K1 system with different number of uncertainty sources,
different level of uncertain inputs, and different PV distributions
demonstrate that our proposed DGP-based GSA approach can
significantly outperform other approaches.
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