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Background. Corals, which form the foundation of biodiverse reef ecosystems, are under threat from
warming oceans. Reefs provide essential ecological services, including food, income from tourism,
nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion. Here, we studied
the coral thermal stress response using network methods to analyze transcriptomic and polar
metabolomic data generated from the Hawaiian rice coral Montipora capitata. Coral nubbins were
exposed to ambient or thermal stress conditions over a five-week period, coinciding with a mass
spawning event of this species. The major goal of our study was to expand the inventory of thermal
stress-related genes and metabolites present in M. capitata and to study gene-metabolite interactions.
These interactions provide the foundation for functional or genetic analysis of key coral genes as well as
provide potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to
analyze the accumulation of sex hormones prior to and during mass spawning to understand how
thermal stress may impact reproductive success in M. capitata.

Methods. M. capitata was exposed to thermal stress during its spawning cycle over the course of five
weeks, during which time transcriptomic and polar metabolomic data were collected. We analyzed these
data streams individually, and then integrated both data sets using MAGI (Metabolite Annotation and
Gene Integration) to investigate molecular transitions and biochemical reactions.

Results. Our results reveal the complexity of the thermal stress phenome in M. capitata, which includes
many genes involved in redox regulation, biomineralization, and reproduction. The size and number of
modules in the gene co-expression networks expanded from the initial stress response to the onset of
bleaching. The later stages involved the suppression of metabolite transport by the coral host, including
a variety of sodium-coupled transporters and a putative ammonium transporter, possibly as a response
to reduction in algal productivity. The gene-metabolite integration data suggest that thermal treatment
results in the activation of animal redox stress pathways involved in quenching molecular oxygen to
prevent an overabundance of reactive oxygen species. Lastly, evidence that thermal stress affects
reproductive activity was provided by the downregulation of CYP-like genes and the irregular production
of sex hormones during the mass spawning cycle. Overall, redox regulation and metabolite transport are
key components of the coral animal thermal stress phenome. Mass spawning was highly attenuated
under thermal stress, suggesting that global climate change may negatively impact reproductive
behavior in this species.
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Abstract

Background. Corals, that form the foundation of biodiverse reef ecosystems, are under threat
from warming oceans. Reefs provide essential ecological services, including food, income from
tourism, nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion.
Here, we studied the coral thermal stress response using network methods to analyze
transcriptomic and polar metabolomic data generated from the rice coral Montipora capitata, one
of the major reef builders in Hawaiian waters. Coral nubbins were exposed to ambient or thermal
stress conditions over a five-week period, coinciding with a mass spawning event of this species.
The major goal of our study was to expand the inventory of thermal stress-related genes and
metabolites present in M. capitata and to study gene-metabolite interactions. These interactions
provide the foundation for functional or genetic analysis of key coral genes as well as provide
potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to
analyze the accumulation of sex hormones prior to and during mass spawning to understand how
thermal stress may impact reproductive success in M. capitata.
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Methods. M. capitata was exposed to thermal stress during its spawning cycle over the course of
five weeks, during which time transcriptomic and polar metabolomic data were collected. We
analyzed these data streams individually, and then integrated both data sets using MAGI
(Metabolite Annotation and Gene Integration) to investigate molecular transitions and
biochemical reactions.

Results. Our results reveal the complexity of the thermal stress phenome in M. capitata, which
includes many genes involved in redox regulation, biomineralization, and reproduction. The size
and number of modules in the gene co-expression networks expanded from the initial stress
response to the onset of bleaching. The later stages involved the suppression of metabolite
transport by the coral host, including a variety of sodium-coupled transporters and a putative
ammonium transporter, possibly as a response to reduction in algal productivity. The gene-
metabolite integration data suggest that thermal treatment results in the activation of animal
redox stress pathways involved in quenching molecular oxygen to prevent an overabundance of
reactive oxygen species. Lastly, evidence that thermal stress affects reproductive activity was
provided by the downregulation of CYP-like genes and the irregular production of sex hormones
during the mass spawning cycle. Overall, redox regulation and metabolite transport are key
components of the coral animal thermal stress phenome. Mass spawning was highly attenuated
under thermal stress, providing evidence that global climate change may negatively impact
reproductive behavior in this species.

Introduction

Coral reefs are vitally important natural resources because they are home to about one-quarter of
all marine biodiversity (Reaka-Kudla, 1997) and support an estimated one-half to one billion
people living in coastal communities by providing food, income from tourism, and coastal
protection (Woodhead et al., 2019). Since their radiation in the Middle Triassic period ~ 240
million years ago (Ma) (Veron, 1995), stony corals have survived five mass extinction events
(Jackson, 2008). Their long-term survival underscores the inherent resilience of these holobionts
in particular when considering the nutrient-poor marine environments in which they have thrived
(Frankowiak et al., 2016). The coral holobiont (meta-organism) is comprised of the cnidarian
animal host, algal symbionts, fungi, microbial aggregates, and viruses. Under ambient
conditions, the algal cells can provide up to 100% of host energy needs in the form of lipids,
carbohydrates, and amino acids, as well as excess O, (Falkowski et al. 1984). In return, excess
nitrogen and inorganic waste from the coral animal, namely water, ammonium, and CO,, are
recycled by the algae, fueling cell metabolism (Yonge and Nicholls, 1931). Environmental shifts
can lead to destabilization of the symbiosis (dysbiosis) between the coral animal and its partners
because symbionts experience photo-oxidative stress and reduce provision of photosynthetic
products. The coral animals may then expel their symbionts in the phenomenon known as “coral
bleaching” (Muscatine and Porter, 1977). The target of our study, the hermaphroditic, broadcast
spawning Hawaiian coral Montipora capitata (Fig. 1A), is a robust species that resists bleaching,

Peer] reviewing PDF | (2021:05:61679:1:0:NEW 24 Aug 2021)



PeerJ

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

even under conditions causing mortality in more susceptible species (Jokiel & Brown, 2004).
The basis of bleaching resistance in M. capitata is yet to be fully explained but is most likely due
to heterotrophic feeding (Grottoli et al., 2006).

We subjected M. capitata nubbins (coral fragments) to thermal stress over a 5-week period,
during which time transcriptomic and polar metabolomic data were collected at three different
time points (Fig. 1B). The period of sampling (late May to early June 2019) coincided with the
first of three annual mass-spawning events for M. capitata in the region. Therefore, genes and
metabolites involved in coral reproduction were expected to be present in the RNA-seq and polar
metabolomics data. We studied genes of both known and unknown function (i.e., ‘dark’) and
investigated the temporal dynamics and biological shifts that sustain the coral animal under heat
stress. Dark genes are either novel or too highly diverged (BLASTP e-value cut-off < le™ against
the nonredundant NCBI database) to identify putative homologs in existing data, although some
may encode a known domain associated with novel sequence (Cleves et al., 2020). For example,
33% of dinoflagellate algal genes lack an annotation, but 1.4% of these unknown proteins
contain a known domain (Stephens ef al., 2018).

In our study, differentially expressed genes (DEGs) were filtered to only include reads which
mapped to predicted M. capitata protein-coding genes (Schumaker et al., 2019): i.e., excluding
algal RNA-seq reads. The animal data were integrated using networks to investigate molecular
transitions in the coral. Network analysis can be a powerful framework for studying the structure
of complex biological systems (Edmunds ef al., 2003; Williams et al., 2021) with nodes
representing units at all levels of the biological hierarchy and edges, interactions between them,
including transcriptional control, biochemical interaction, energy flow, and species interactions.
Usage of DEGs allowed us to focus on the most consequential gene expression changes.
Modules containing known genes with known functions were used to investigate their roles in
the thermal stress response, as well as to identify dark genes which provide interesting potential
candidates for future gene knockout or knockdown experiments.

Materials & Methods

Culture conditions and sample collection. Our experimental design was previously described
in Williams et al. (2021). Briefly, water was drawn from Kane‘ohe Bay, O‘ahu and heated to
2.7° - 3.2°C above ambient temperature (27-28°C) in tanks at the Hawai‘i Institute of Marine
Biology (for details, see Williams et al., 2021) (Fig. S1). Given that M. capitata is a stress
resilient coral, these conditions were designed to elicit a stress response in the coral, but not
activate apoptotic (cell death) pathways. Coral nubbins from four colonies were fragmented so
that each timepoint for both conditions had n=3 nubbins. Nubbins were acclimated for four days
after collection from Kane‘ohe Bay before temperature ramp-up was initiated. The temperature
in the heat stressed tanks was increased 0.4°C every two days until they were between 2.7° -
3.2°C above the ambient water temperature. Samples were collected at five time points (T1-5;
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Fig. 1B) during the 5-week experiment (Fig. S1). Samples from T1, T3, and T5 were chosen for
RNA-seq analysis because they represent stress treatments after temperature ramp-up was
complete, the point where bleaching begins (13 days after T1), and the last day of the five-week
period (17 days after T1), respectively (see Fig. 1B). The samples were flash frozen in liquid
nitrogen upon collection and divided for RNA-seq and polar metabolomic analysis. Four
colonies were used for metabolomic analysis but only one (genotype 289) was used to prepare
cDNA libraries. This approach led to 11-13 individual samples per time point in the
metabolomic analysis with 3 nubbins (sometimes 2 or 4) representing each genotype (see
Williams et al., 2021). Approval to collect coral nubbins from the waters of Kane‘ohe Bay, HI
was provided by the Division of Aquatic Resources, State of Hawai‘i under SAP 2019-60.

Color Scores. Color scores, an accepted proxy for bleaching progression, were recorded for the
ambient and stress treated nubbins at each of the five time points (Fig. 1B; Siebeck et al., 2006).
Nubbins were photographed next to a red/blue/green color standard. ImageJ was used to extract
red/blue/green values from the color standard and each nubbin in the tanks. Dividing the
experimental value observed in the nubbins by the corresponding color standards allowed the
coral values to be standardized (Edmunds et al., 2003). Bleaching scores were quantified as PC1
from principal component analysis of these data using the normalized intensity values from each
color channel (Williams et al., 2021).

Polar metabolite processing. Polar metabolite extractions were based on Lu et al., (2017). In a
glass Dounce homogenizer, samples were mechanically ground in 1 mL of 40:40:20
(methanol:acetonitrile:water) (v/v/v) + 0.1 M formic acid extraction buffer after incubation in the
buffer for five minutes. The sample was transferred to a 1.5-mL Eppendorf tube, with an
additional 500 pL of extraction buffer used to rinse the Dounce. The samples were then vortexed
for 10 seconds, before a 10-minute centrifugation (16,000g) at 4°C. A total of 500 pL of the
homogenate was then transferred to another Eppendorf tube and 44 puL of 15% NH4HCO; was
added to neutralize the extraction buffer.

The samples were run on an ultra-high—performance LC-MS (UHPLC-MS), consisting of a
Vanquish Horizon UHPLC system (Thermo Fisher Scientific, Waltham, MA) with XBridge
BEH Amide column (150 mm by 2.1 mm, 2.5-pum particle size; Waters, Milford, MA), and a
Thermo Fisher Scientific Q Exactive Plus with a HESI source. The solvent and run conditions
for both the UHPLC and the MS are described in Williams et al. (2021), along with an in-depth
metabolite extraction protocol.

Metabolite data. Metabolomic data for the time points analyzed in this study were published by
Williams et al. (2021) and are available as supplementary information associated with the
manuscript (https://advances.sciencemag.org/content/suppl/2020/12/21/7.1.eabd4210.DC1).
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c¢DNA library preparation. Total RNA was extracted using liquid nitrogen and a mortar and
pestle. RNA was isolated with the Qiagen AllPrep DNA/RNA/miRNA Universal Kit and strand
specific cDNA libraries prepared using the TruSeq RNA Sample Preparation Kit v2 (Illumina)
following the manufacturer’s instructions. This protocol includes poly-A selection to target
eukaryotic cells, eliminating reads from the prokaryotic microbiome. Quality control for the
libraries was done using an Agilent Bioanalyer, with library length being ~250 bp. Sequencing
was performed on the NovaSeq (2x150bp) by the vendor GeneWiz. These RNA-seq data are
available under NCBI BioProject ID: PRINA694677 (see also Table S1).

RNA-seq preprocessing. RNA-seq reads were trimmed using Trimmomatic v0.38 (mode ‘PE’;
ILLUMINACLIP:adapters.fasta:2:30:10 SLIDINGWINDOW:4:5 LEADING:5 TRAILING:S5
MINLEN:25) (Bolger et al., 2014), only pairs for which both mates remained after trimming
were used for subsequent analysis.

Functional annotation. The reference M. capitata proteins were annotated using the Uniprot
database (release 2020 06). BLASTP (version 2.7.1+, parameters: e-value le™ -seg yes -

soft masking true and pident > 30%) was used to query the predicted proteins against the
Uniprot (SwissProt + TTEMBL) protein database. Function assignment was based on the best hit
criterion. Proteins without hits against Uniprot or annotated as “Unknown” were compared using
BLASTP against the current NCBI nr database.

Differentially expressed genes (DEGs). Expression of the available M. capitata genes
(Schumaker et al., 2019) over the sequenced timepoints was quantified using Salmon v1.10 (--
allowDovetail --validateMappings --seqBias --gcBias) (Patro ef al., 2017). We retained genes
with a TPM value > 5 in each sample. The R-package DESeq2 (Love ef al., 2014) was used to
find the DEGs by comparing the ambient versus stressed condition for each time point. Genes of
interest, identified as being differentially expressed between the ambient versus high temperature
treatments, were further analyzed by checking for differential expression between T1 and T3,
and T3 and TS5 for both thermally stressed and ambient samples. An adjusted p-value of <0.05
and log2-fold change (FC) >1 was used for initial filtering of differential expression results.

Co-expression networks. The R-package DGCA (McKenzie et al., 2016) was used to determine
the correlation between pairs of genes respectively for each time point. The pairwise correlation
was calculated with the function matCorr using Pearson method. The functions matCorSig and
adjustPVals were used to calculate and adjust (with the Benjamini-Hochberg method) the
correlation p-values, respectively. Only pairs with an adjusted p-value < 0.05 were used to
construct the co-expression networks. Module detection was done using the functions hclust
(method = “average”) and cutreeDynamicTree (minModuleSize = 10 and deepSplit = TRUE).
Modules were labeled manually based on our interpretation of the data.
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Differentially accumulated metabolites (DAMs). The R-package mixOmics (Rohart et al.,
2017) was used to detect differentially accumulated metabolites (DAMs) (VIP score > 1 and FC
> 2). The code used for the DAM + gene/metabolite co-expression networks have been
submitted to https://github.com/dbsymbiosis/Construct Networks.

Data integration. To integrate the gene-metabolite data, we used MAGI (Metabolite Annotation
and Gene Integration; Erbilgin et al., 2019) because it is suited for non-model organisms. In
these taxa, gene annotations are based on bioinformatic transfer of function and gene
membership in many well-characterized biochemical pathways are unvalidated. Coupling
metabolomic and genome-wide gene expression data in challenging models such as corals
provides a basis for improving the annotation of both types of data and a way to meaningfully
interpret observed trends. Briefly, MAGI uses a biochemical reaction network to numerically
score the provided Liquid chromatography-Mass Spectrometry (LCMS) features (Liu &
Locasale, 2017) and protein or gene sequences provided by the user. The putative compound
identification and input sequences are connected to biochemical reactions by a chemical
similarity network and evaluated based on sequence homology against a reference database
(Erbilgin et al., 2019). The likelihood of identifying an LCMS feature/gene function increases if
there is a gene function/metabolite feature to substantiate that metabolite identity/gene function.
Therefore, MAGI leverages the association between genes and metabolites to create higher
quality annotations for both datasets. The MAGI score is a geometric mean of the homology
score, reciprocal score, reaction connection score, and compound score, representing the
probability and strength of the gene-metabolite association.

The metabolic features given to MAGI were defined using the mass-to-charge ratio (m/z) and
retention time (rt). The MAGI results were filtered, whereby only DAM-DEG connections with a
compound score = 1, e score r2g (reaction-to-gene) > 5, ¢ score g2r (gene-to-reaction) > 5,
and reciprocal score = 2 were retained. A stringent e score g2r and e _score r2g cut-off of > 5
was used to ensure reliability of the connections between DAMs and DEGs. We checked each
reaction manually for DAMs and DEGs of interest.

Results

The early stress response

Because there was an unexpected warming event in Kane‘ohe Bay during the experiment that
increased the ambient seawater temperature by ca. 2°C (Williams et al., 2021), we expected the
gene co-expression data to show evidence of thermal stress at T1, that should become more
pronounced at T3 and TS5. The color scores for M. capitata nubbins do not reflect this prediction
of stress at T1, likely due to the high stress resistance of M. capitata (Fig. 1B), however, lower
color scores and partial bleaching are apparent at T5. The network statistics reflect the temporal
growth in complexity of the stress response (Table S2).
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Inspection of the full network of DEGs at T1 shows differential regulation of a limited number of
stress pathways (Fig. 2; Supplementary file 1 [Cytoscape file]). The most strongly upregulated
candidates are in module M3 and include genes involved in molecular chaperone functions such
as brichos domain-containing proteins (M. capitata gene g29710, fold-change [FC] = 5.94;
229707 FC = 5.40) and a previously described protein in sea urchin and sea cucumber that is
involved in embryo development (fibropellin-1, g71193, FC = 5.47; Bisgrove et al., 1995; Ba et
al., 2015). Interestingly, fibropellin-1 gene family expression remains upregulated but at a much
lower fold-change at TS (see below) that follows the mass spawning event of M. capitata
(g30756 FC = 1.49; g30753 FC =1.37). Within M2 in the T1 network are well-characterized
genes such as C-type lysozyme that is involved in bacteriolysis and the immune response
(829445 FC = 2.41; Ragland & Criss, 2017). This gene has the highest degree value (56) in the
T1 network (i.e., number of edges linked to a node) which indicates that it acts as an important
regulatory component of the transcriptional network (Schumaker et al., 2019). Genes with a
potential role in biomineralization, a glutamic acid-rich protein (adi2mcaRNA37907 RO, FC = -
1.12) and galaxin-2 (g25962, FC = -2.04), whose products are associated with the coral skeletal
organic matrix (SOM) (Conci et al., 2019), are weakly to moderately downregulated in modules
M4 and M35, respectively. Also occupying key positions in the T1 network are dark genes that
are marked as “DG” in Fig. 2, with gene numbers shown. We highlight M. capitata dark gene
£36545 that has a weak hit to a N-terminal death-domain superfamily (e-value = 6.79¢"%4) and a
high degree value = 43. Analysis of distribution demonstrates that dark gene g36545 is shared
by, and limited, to other stony corals (Fig. S2).

Downregulated genes in the later stress response

Next, we focused on the networks generated from the T3 and TS DEG data for M. capitata.
These networks are larger than the T1 network; each comprising 20 modules (Fig. S3). We
identified some genes with high degree in these networks, as well as dark genes, but will focus
here (not exhaustively) on individual modules with previously well-characterized thermal stress
response genes in the TS network to gain insights into the later stage of the thermal stress
response. M1 in the TP5 network (Fig. 3) contains many significantly downregulated genes that
are dominated by metabolite transporters. These include a variety of sodium-coupled transporters
(ST), including a sodium-coupled neutral amino acid transporter (gene adi2mcaRNA35257 RO,
FC =-1.61), a sodium-coupled monocarboxylate transporter 1 (g37389 FC = -1.53) putatively
involved in the transport of a variety of substrates including short-chain fatty acids and lactate
(Song et al., 2020), and a probable sodium/potassium-transporting ATPase subunit (g39446 FC
= -1.68) involved in the sodium-coupled active transport of nutrients (Song et al., 2020). The
transporter with the highest degree (deg) in this module (deg = 36) is a putative ammonium
transporter that is weakly downregulated (g26425, deg = 36, FC = -1.29; Fig. 3).

Another key component of module M1 is the skeletal aspartic acid-rich protein 3 that is related to
coral acid-rich protein 4 (CARP4; ca. 40% protein identity) involved in biomineralization
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(CaCQOs, aragonite in corals). CARPs are largely independently derived, secreted proteins rich in
glutamic and aspartic acid residues that accumulate in the calicoblastic space of corals, playing
roles in calcification (Drake et al., 2013; Guzman et al., 2018; Peled et al., 2020; Levy et al.,
2021). CARP-encoding genes are differentially expressed during coral development with
CARP4 and CARPS strongly up-regulated in the calcifying spat stage of Pocillopora damicornis
(Mass et al., 2016; Bhattacharya et al., 2016). In M1, a single CARP is present, that is centrally
located in the network (deg = 21) and downregulated at TP5 (FC = -1.53). A maximum
likelihood phylogeny of this protein (Fig. S4) shows this gene to be present in non-coral species
and to have undergone ancient gene duplications (provisionally named C1-C4 and R1-R4 for
complex and robust coral species, respectively) within the scleractinian lineage with M. capitata
encoding divergent paralogs. However, only the gene (g43402) encoding CARP4 is significantly
downregulated under thermal stress in this species. These results indicate that the M. capitata
thermal stress phenome includes suppression of the biomineralization reaction (also evident in
TP1, see above) with the concomitant down-regulation of a putative carbonic anhydrase 2 (Fig.
3) that is the most highly downregulated gene in M1 (g48223 FC = -3.11). This zinc
metalloenzyme catalyzes the reversible hydration of carbon dioxide to bicarbonate (Bhattacharya
etal.,2016).

Up-regulated genes after five weeks of thermal stress

Another module of interest in TP5 is M4 (Fig. 4A), that contains a variety of significantly up-
regulated genes with roles in signaling and immunity (e.g., netrin receptor UNC5C [g6679 FC =
2.00], two neuronal pentraxin-like genes [g46559, g46566 FC = 1.79, 2.45, respectively]) and
transcriptional regulation (e.g., BTG1 protein [g32300 FC = 1.27], MafB [g30496 FC = 2.36],
thyrotroph embryonic factor [g57753 FC = 1.42]). BTG family members are transcriptional
regulators that can enhance or repress the activity of transcription factors. Maf proteins are
widespread among metazoans, including corals, and are bZIP (basic [DNA-binding] and leucine
zipper [homo- or heterodimerization] domains) transcriptional factors that are involved in
oxidative stress and detoxification pathways (Kannan et al., 2021; Shinzato ef al., 2012).
Multiple Maf genes are upregulated at TP5 in M2, including mafF (g30493 FC = 2.39) and two
Maf domain-containing proteins (g30494, g30495 FC = 1.96, 2.04, respectively). Two Maf
domain-containing proteins are present in M18 (g2209, g26625 FC = 1.41, 1.24, respectively). In
M4, the pentraxin domain-containing proteins are of interest because these are multimeric,
calcium-binding proteins often involved in immunological responses (Ma & Garred, 2018).
Located in this module are two proteins that interact with calcium: one is a calcium-binding EF-
hand protein (g14108 FC = 1.67) and the second is a calcium-activated potassium channel
subunit (g16479 FC = 1.86).

Embedded within this network of conserved stress response proteins are 4 dark genes, two of

which are paralogs that comprise highly connected hubs in this module (g59122 and g59123,
both have deg = 18 and lack a domain hit using CDSEARCH). This gene family was only
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detected in stony corals (Fig. 4B) and offers a promising target for functional analysis. These
dark genes show a high fold-change in gene expression when compared to ambient conditions
(g59122, FC = 3.55) with g59123 having the highest value in this module (FC = 4.48).

Gene-metabolite interactions.

Animal response to redox stress

Analysis of the MAGI output provided clear evidence of redox stress in the coral animal (Table
1), with 21/27 of the high-confidence upregulated reactions at TS having oxidoreductase
functions (Table S3). Of these 21 reactions, 10 involve O, as a substrate and the release of a
water molecule, the majority of which include cytochrome P450 domains. The rate of
metabolism at higher temperatures increases and can lead to physiological hyperoxia. Under
elevated temperatures, oxygen absorbs excitation energy and becomes active in the form of
superoxide radicals and hydrogen peroxide (Lesser, 1997). These reactive oxygen species (ROS),
which are likely to be key contributors to coral thermal stress (Cziesielski et al., 2018; Cleves et
al., 2020), derive their reactivity from the unpaired electron. Hence, the enrichment of
oxidoreductases is an expected outcome. Their catalysis solely involves the transfer of electrons;
therefore, we postulate that corals utilize oxidoreductases to maintain redox homeostasis, remove
excess molecular oxygen, and thereby, limit the production of ROS.

Upregulation of the phenylalanine-4-hydroxylase pathway

A pathway of particular interest with regard to the coral thermal stress response involves
phenylalanine-4-hydroxylase (P4H), which is a homotetramer of four phenylalanine hydroxylase
(PH) enzymes, each containing three domains (a regulatory N-terminal domain, a catalytic
domain, and a C-terminal domain) that use a non-heme Fe(II) cofactor (Fitzpatrick, 1999). PAH
catalyzes the bidirectional reaction of L-phenylalanine to L-tyrosine with (6R)-L-erythro-5,6,7,8-
tetrahydrobiopterin (BH,) as a cofactor (Table 1). The gene expression and metabolite
integration results show upregulation of the p44 gene [FC = 1.27], as well as increased ion
counts for all reaction participants except BH,. BH4 donates two electrons to reduce the iron
atom to ferrous iron and cleaves O, to reduce phenylalanine (Phe) to tyrosine (Tyr). Molecular
oxygen can oxidize the ferrous iron, regenerating the enzyme. In this pathway, 40-hydroxy-
tetrahydropterin is first dehydrated and then reduced by an NADH-dependent component of
P4H, the phenylalanine hydroxylase stimulator (PHS) (Lei & Kaufman, 1998). Phe and Tyr are
both synthesized by scleractinian corals, either from intermediates in glycolysis,
gluconeogenesis, the pentose phosphate pathway (PPP), the tricarboxylic acid cycle (TCA), or
the pentose phosphate shunt, depending on the substrate used in previous studies (Fitzgerald &
Szmant, 1997). When coral samples are incubated with “C lysine, Tyr and Phe are produced
through gluconeogenesis, glycolysis, or the PPP following the TCA cycle. Corals can also take
up dissolved free amino acids from surrounding sea water (Ferrier, 1991). These results could
explain the lack of reactant depletion in the P4H pathway. Although P4H can function
bidirectionally, it is more likely that the enzyme is reducing Phe to Tyr. The reverse reaction is
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not energetically favored because P4H preferentially binds Phe rather than Tyr, and one of the
most important biological roles of Phe is producing Tyr, a substrate for receptor tyrosine kinases
that are implicated in the coral stress response (Bellantuono et al., 2012).

Dysregulation of spawning during thermal stress

CYP-like genes, which facilitate the biotransformation of important intracellular compounds (Lu
et al., 2020), are implicated in several pathways at TP5 in our MAGI results (Table 1). One of
these involved the downregulation of progesterone and a CYP-like gene (FC = -1.10) during the
M. capitata spawning period. Beyond the MAGI results regarding progesterone, analysis of
existing metabolite ion counts from untargeted UHPLC-MS analysis of M. capitata (Williams et
al., 2021) shows that predicted sex steroids in this species follow the expected increase in
accumulation (e.g., testosterone, estrone, androstenedione) under ambient conditions during the
mass spawning event (Fig. 5).

Discussion

Coral reefs are under worldwide threat from warming oceans and local human-caused stressors
such as over-fishing, the discharge of pollutants, and uncontrolled development (National
Academies of Sciences, Engineering, and Medicine, 2019). In response, many advances have
been made in identifying individual gene and metabolite markers of coral thermal stress
(National Academies of Sciences, Engineering, and Medicine, 2019), but little has been done to
link these two omics data sources. This is explained by the complexity of holobiont metabolomic
interactions, combined with the massive number of dark genes and dark metabolites in corals for
which currently no function, and therefore no causal relationship exists (Williams et al., 2021).
In addition, because metabolites are shared among holobiont members, obscuring metabolite
origin, it is challenging to make biologically meaningful predictions from these data alone. For
this reason, we used MAGTI to find links between polar metabolite accumulation and gene
expression. This approach provides a foundation for studying non-model systems by exploiting
the consensus between metabolite identification and gene annotation to generate metabolite-gene
associations (Erbilgin et al., 2019). The MAGI analysis revealed the heightened response of the
coral animal to redox stress, including the scavenging of excess molecular oxygen. The rate of
metabolism at higher temperatures increases and can lead to physiological hyperoxia. Under
elevated temperatures, oxygen absorbs excitation energy and becomes active in the form of
superoxide radicals and hydrogen peroxide (Lesser, 1997). These ROS, which are likely to be
key contributors to coral thermal stress (Cziesielski et al., 2018; Cleves et al., 2020), derive their
reactivity from the unpaired electron. Hence, the enrichment of oxidoreductases is an expected
outcome. Their catalysis solely involves the transfer of electrons; therefore, we postulate that
corals utilize oxidoreductases to maintain redox homeostasis, remove excess molecular oxygen,
and thereby, limit the production of ROS.
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In addition, we find evidence that progesterone metabolism may be implicated in the
unsynchronized mass spawning events that have occurred at the study site in recent years
(Fogarty et al., 2019). Progesterone, a sex steroid, can be produced multiple ways, but usually
involves f-hydroxylation reactions catalyzed by CYP enzymes (Lu ef al., 2020). Many examples
of CYP enzymes metabolizing progesterones occur in metazoans (Baker, 2001), such as CYP1A
in humans (Lu et al., 2020) and CPY 17 dehydrogenase (CYP17) in scleractinian corals (Rougee
et al., 2015; Blomquist ef al., 2006). There is evidence that sex steroids may regulate
scleractinian reproduction (Tarrant et al., 1999). CYP17 converts progesterone to androgens and
Rougée et al. (2015) found that in the absence of thermal stress the enzymatic activity of CYP17
remained consistent over the lunar cycle in the brooding coral Pocillopora damicornis. Twan et
al. (2003) found that the production of androgens increased prior to spawning in Euphylia
ancora. The dysregulation of coral spawning due to environmental stress has been reported
(Fogarty et al., 2019) and occurred during the first mass spawning event for M. capitata around
Oahu, HI in June 2019. Therefore, our results indicate that thermal stress, among other functions,
affects the production of hormones contributing to reproductive activity.

One of the most notable findings of the co-expression network analysis is that they are
dominated by downregulated metabolite transport genes. The suppression of metabolite transport
by the coral host may potentially be a response to reduction in algal productivity. More likely, it
indicates redox stress, resulting from the animal host and/or algal symbionts, which leads to the
generation of reactive species due to dysfunction in electron transport (see below; Roberty et al.,
2016). The inhibition of organic carbon production by the algae, precipitated by prolonged
thermal stress (Hillyer et al., 2017), can ultimately lead to their expulsion, resulting in bleaching
(Slavov et al., 2016). That is, in addition to a role in host processes, the coral animal may be
dampening algal proliferation by reducing access to nutrients needed for growth such as
ammonium, as demonstrated in the cnidarian model Aiptasia under the symbiotic stage (Cui et
al., 2019). This hypothesis conflicts with the findings of Fernandes de Barros Marangoni ef al.
(2020) who found that ammonium enrichment reduced thermal stress in the coral Stylophora
pistillata and supported symbiont stability. This aspect may be less important for Hawaiian M.
capitata that can meet 100% of its energy needs through heterotrophic feeding during periods of
bleaching (Grottoli et al., 2006).

Our study provides important advances in the areas described above, however, three aspects of
the results deserve further discussion. The first is the gene-metabolite interaction analysis of the
phenylalanine-4-hydroxylase pathway in which BH4 was unexpectedly absent in the MAGI
results. Some plausible explanations for this result are as follows. In the kinetic model, P4H
requires BHy, Phe, and O, to be bound, in that order (Volner et al., 2003). BH,4 binds first,
converting the enzyme to its inactive form, E;, until sufficient Phe is present in plasma, at which
point Phe binds and converts P4H to its activated form, E, (Xia et al., 1994); BH, bound to P4H
would not have been detected in our analysis. Given that BH, is involved in other cellular
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functions it is possible that its levels might be depleted under heat stress, despite upregulation of
the P4H pathway. This is relevant when considering the stoichiometry of the reaction,
specifically, the number of BH4 molecules needed as cofactors depends on cellular conditions.
Higher pH and temperature may require more than one BH,4 to reduce two iron atoms
(Fitzpatrick, 2003), further reducing the number of free BH, molecules available for detection. It
is also possible that another tetrahydropterin was used as an electron donor because BH, is
primarily used to combat oxidative stress (Kraft et al., 2020), potentially limiting its supply
during high temperature stress. Existing data demonstrate the likely involvement of P4H in the
symbiotic relationship between Hydra viridissima and its photosymbiont Chlorella sp. A99
(Hamada et al., 2018).

The second aspect is the impact of thermal stress on the coral reproductive cycle. Inspection of
Fig. 5 shows that sex steroid accumulation is generally reduced under thermal stress, however, at
T5, recover to near ambient and wild sample levels for several compounds (e.g., estrone,
androstenedione, testosterone). This suggests that M. capitata may be able to partially acclimate
to warming waters vis-a-vis sex steroid production, although these preliminary results need
validation. More broadly, our results demonstrate that thermal stress impacts the production of
hormones linked to reproductive activity. It is likely that the negative impact of environmental
stress on coral mass spawning events will become more prevalent as oceans become warmer
(Majerova et al., 2021). Despite this not being the original intent of our study, the data we have
generated provides valuable insights into how thermal stress disturbs the reproductive cycle of
broadcast spawning corals. The consequences of this disturbance may have profound impacts not
only on the health of existing reef ecosystems, but also on the ability of coral reefs to recover and
recolonize an area after a major bleaching event or any environmental disturbance. The
combined impact of thermal stress and mass spawning were addressed in our study, and it is
possible that their interactions make it more difficult to interpret thermal stress impacts in
isolation. Peak bleaching occurs in Hawaiian M. capitata in the month of October when the
water temperatures are at their highest (Cunning et al., 2016). However, as our study in 2019
demonstrated (Williams et al., 2021), local warming events can occur during mass spawning
periods and will impact coral reproduction (current data). Therefore, rather than being weakened
by the co-occurrence of warming and spawning in our study corals, we consider our data to be
important for understanding how these combined stresses may impact future coral health as local
warming events, like those we encountered, become more frequent.

Finally, it should be noted that although the interaction between the coral and its algal
endosymbionts represents the cornerstone of reef ecosystems, we chose to target the host animal
response to thermal stress in this study. Whereas the metabolomic data analyzed here is derived
from the whole holobiont (i.e., coral, algae, and other microbiome components), the RNA-seq
data only captured transcripts from the eukaryotic component (i.e., coral and algae). The
integration of the algal data was hindered by the lack of reference genomes for the
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endosymbionts of M. capitata and the likely presence of cryptic eukaryotic components of the
holobiont that might contribute to non-animal RNA-seq data (Kwong et al., 2019). A recent
paper demonstrated that Symbiodiniaceae genomes are highly diverged, even between species in
a single genus (Symbiodinium; Gonzalez-Pech et al., 2021) and that multiple algal symbionts
from different genera may reside in a single coral nubbin. Furthermore, metabolomes of the host
and symbiont are not affected by variation in the abundance of the two algal symbionts that
dominate Hawaiian M. capitata colonies (i.e., Durusdinium glynnii and Cladocopium spp.)
(Matthews et al., 2020). For these reasons, we concluded that the host response to thermal stress,
reflecting the holobiont contribution, was the best target for this poorly characterized coral
model. The results presented here provide a foundation upon which questions regarding coral-
algal interactions during stress can be addressed in future studies.

Conclusions

This work contributes to our understanding of the coral response to thermal stress and the
potential effects that a warming ocean will have on the reproductive health of these organisms.
The early thermal stress response of M. capitata involves the downregulation of growth and
DNA replication and the upregulation of signaling and the immune response. Later stages show
downregulation of metabolite transport and biomineralization, as well as an upregulation of
transcriptional regulators. Activation of animal redox stress pathways potentially as a mechanism
for the detoxification of reactive oxygen species was found to be a major outcome of thermal
stress. Whereas there was a noticeable increase in sex hormones (e.g., progesterone) in our
samples prior to a natural mass spawning event, the release of egg-sperm bundles by M. capitata
was highly attenuated in June 2019 (DB, HMP unpublished data), suggesting that thermal stress
may negatively impact the reproductive behavior in this species. Significant effort will be needed
to modify this polygenic trait in coral holobionts to boost resilience to thermal stress in the long
term. Nonetheless, we have identified several novel genes that are promising candidates for
functional analysis using the recently developed CRISPR/Cas9 tools for corals (Cleves et al.,
2018; Cleves et al., 2020). It is important to remember that the algal symbionts of corals play a
key role in holobiont biology and stress response vis-a-vis symbiotic nutrient cycling (Radecker
et al., 2021). Therefore, future gene-metabolite interaction analyses need to address in sifu algal
gene expression to address the integration of the host-symbiont response to thermal stress.
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Figure legends

Figure 1. Analysis of the rice coral Montipora capitata. (A) M. capitata photographed in
waters near the Hawai‘i Institute of Marine Biology (HIMB) in O‘ahu, HI. Photo credit:
Debashish Bhattacharya. (B) Color scores and their standard errors for the ambient (green line)
and high temperature (red line) treated M. capitata nubbins that were cultured in tanks at HIMB.
Low color scores indicate the bleaching phenotype in coral holobionts. The omics data sampling
points are shown with the white lines at T1 (5/22/19), T3 (6/03/19), and T5 (6/07/19) (for details,
see Williams et al. (2021)). The date of the New Moon in June 2019 is also shown.

Figure 2. Gene co-expression analysis of M. capitata. Network of differentially expressed
genes in M. capitata at TP1 (the early thermal stress phenome) showing the different gene
modules and their interactions. Purple nodes are up-regulated and green nodes are down-
regulated. All dark genes are marked with DG with M. capitata gene IDs shown. The down-
regulated genes in M6 that are dominated by members of the small cysteine-rich protein family,
often involved in signaling and protein interactions, are annotated. Only selected genes are
annotated in this network and module annotations provide a representation of overall function(s).
The annotations of all genes (when known) in each module in this, and all networks generated by
this study, are available in Supplementary file 1 (Cytoscape file).

Figure 3. M. capitata TPS module M1 of significantly down-regulated genes that includes
many transporters. The legend for level of downregulation is shown. Dark genes are identified
with DG and genes encoding sodium-coupled transporters are marked with ST.

Figure 4. M. capitata TPS module M4 of significantly upregulated genes. (A) The legend for
level of upregulation is shown. Dark genes are identified with DG. (B) Maximum likelihood (IQ-
Tree; Trifinopoulos ef al., 2016) phylogenetic analysis of paralogous coral dark genes g59122
and g59133 and related homologs inferred using default parameters and 1000 ultrafast bootstrap
replicates. The results of the bootstrap analysis are shown on the branches when >60%. The
legend shows the expected substitution rate for the protein dataset. Complex and robust coral
species are shown in brown and blue text, respectively.

Figure 5. Analysis of sex steroids in M. capitata. Accumulation of a variety of predicted sex
steroids in M. capitata nubbins over the duration of the ambient and thermal stress treatments as
well as from wild populations collected after TS5 from the same colonies used in the tank
experiments (FS; for details, see Williams ef al., 2021). Each dot represents a single nubbin
measurement from four different genotypes (2-4 nubbins (usually 3)/genotype were sampled).
The pattern of metabolite accumulation suggests that these steroid levels increased at T5 (Fig.
1B), which preceded the expected mass spawning event (arrow labeled with “New Moon”
between T3 and T5) for this species in June 2019. The putative functions of these steroids are as
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follows: 17a-hydroxypregnenolone — a neuromodulator generated by the action of mitochondrial
cytochrome P450 enzyme 17a-hydroxylase (CYP17A1) that is an intermediate in the delta-5
pathway of biosynthesis of gonadal steroid hormones and adrenal corticosteroids; 17a-
hydroxyprogesterone — progestogen that is a chemical intermediate in the biosynthesis of
androgens, estrogens, glucocorticoids, and mineralocorticoids; estriol — female sex hormone
(weak estrogen), with a large amount produced in humans by the placenta; estrone — another
female sex hormone (weak estrogen), binds to the estrogen response element and promotes
transcription of genes involved in the female reproductive system functions; androstenedione -
weak androgen steroid hormone, precursor of testosterone and other androgens; testosterone -
primary male sex hormone involved in development of male reproductive tissues.

Table legends

Table 1. Results of the MAGI analysis. Pathways with the highest MAGI scores that are
upregulated under thermal stress at TP5 are shown.
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Supplements

Figure S1. Temperature profiles for the ambient and high temperature treatments done at the
Hawai‘i Institute of Marine Biology (HIMB). Ambient temperature tank profiles are shown in
variations of blue and high temperature tanks in variations of red. Vertical black lines indicate
sampling points T1, T3, and T5 (see Methods).

Figure S2. Maximum likelihood (IQ-Tree) phylogenetic analysis of M. capitata dark gene
36545 done using default parameters and 1000 ultrafast bootstrap replicates. The results of the
bootstrap analysis are shown on the branches when >60%. The legends show the expected
substitution rate for the protein dataset.

Figure S3. M. capitata networks of differentially expressed genes at TP3 (top) and TP5 (bottom)
showing the different gene modules and their interactions. Red nodes are up-regulated, green
nodes are down-regulated, and selected dark genes are the yellow nodes with gene IDs shown.
The fold change (FC) and network degree value (deg) are also shown for some genes.

Figure S4. Maximum likelihood (IQ-Tree) phylogenetic analysis of coral CARPS homologs
inferred using default parameters and 1000 ultrafast bootstrap replicates. The results of the
bootstrap analysis are shown on the branches when >60%. The legend shows the expected
substitution rate for the protein dataset. Complex and robust coral species are shown in brown
and blue text, respectively. Four putative CARPS5 paralog clades are indicated. The thick
branches mark a major gene duplication event in the common ancestor of complex and robust
coral species.

Table S1. [llumina RNA-seq data generated from Montipora capitata as part of this study
(NCBI BioProject ID: PRINA694677).

Table S2. Network size and gene expression direction of individual modules for TP1, TP3, and
TPS.

Table S3. MAGI output at TP5, showing the highest scoring gene-metabolite interactions with a
MAGTI score > 5. The gene annotations, analyte identifications, MAGI scores, and reaction IDs
are shown for both genes (GT5) and metabolites (MRTS) at TP5. Rows highlighted in blue
indicate redox reactions. Entries in the bold text take part in the same biochemical reaction.

Supplementary file 1. Cytoscape file containing the full networks and modules with gene and
network information for the TP1, TP3, and TP5 gene co-expression results.
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Figure 1

Analysis of the rice coral Montipora capitata.

(A) M. capitata photographed in waters near the Hawai‘i Institute of Marine Biology (HIMB) in
O‘ahu, HI. Photo credit: Debashish Bhattacharya. (B) Color scores and their standard errors
for the ambient (green line) and high temperature (red line) treated M. capitata nubbins that
were cultured in tanks at HIMB. Low color scores indicate the bleaching phenotype in coral
holobionts. The omics data sampling points are shown with the white lines at T1 (5/22/19), T3
(6/03/19), and T5 (6/07/19) (for details, see Williams et al. (2021)). The date of the New Moon

in June 2019 is also shown.
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Figure 2

Gene co-expression analysis of M. capitata.

Network of differentially expressed genes in M. capitata at TP1 (the early thermal stress
phenome) showing the different gene modules and their interactions. Purple nodes are up-
requlated and green nodes are down-regulated. All dark genes are marked with DG with M.
capitata gene IDs shown. The down-regulated genes in M6 that are dominated by members
of the small cysteine-rich protein family, often involved in signaling and protein interactions,
are annotated. Only selected genes are annotated in this network and module annotations
provide a representation of overall function(s). The annotations of all genes (when known) in
each module in this, and all networks generated by this study, are available in

Supplementary file 1 (Cytoscape file).
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Figure 3
M. capitata TP5 module M1 of significantly down-regulated genes that includes many
transporters.

The legend for level of downregulation is shown. Dark genes are identified with DG and

genes encoding sodium-coupled transporters are marked with ST.
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Figure 4

M. capitata TP5 module M4 of significantly upregulated genes.

(A) The legend for level of upregulation is shown. Dark genes are identified with DG. (B)
Maximum likelihood (IQ-Tree; Trifinopoulos et al., 2016) phylogenetic analysis of paralogous
coral dark genes g59122 and g59133 and related homologs inferred using default
parameters and 1000 ultrafast bootstrap replicates. The results of the bootstrap analysis are
shown on the branches when >60%. The legend shows the expected substitution rate for the
protein dataset. Complex and robust coral species are shown in brown and blue text,

respectively.
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Figure 5

Analysis of sex steroids in M. capitata.

Accumulation of a variety of predicted sex steroids in M. capitata nubbins over the duration
of the ambient and thermal stress treatments as well as from wild populations collected after
T5 from the same colonies used in the tank experiments (FS; for details, see Williams et al.,
2021). Each dot represents a single nubbin measurement from four different genotypes (2-4
nubbins (usually 3)/genotype were sampled). The pattern of metabolite accumulation
suggests that these steroid levels increased at T5 (Fig. 1B), which preceded the expected
mass spawning event (arrow labeled with “New Moon” between T3 and T5) for this species in
June 2019. The putative functions of these steroids are as follows: 17a-hydroxypregnenolone
- a neuromodulator generated by the action of mitochondrial cytochrome P450 enzyme 17a-
hydroxylase (CYP17A1) that is an intermediate in the delta-5 pathway of biosynthesis of
gonadal steroid hormones and adrenal corticosteroids; 17a-hydroxyprogesterone -
progestogen that is a chemical intermediate in the biosynthesis of androgens, estrogens,
glucocorticoids, and mineralocorticoids; estriol - female sex hormone (weak estrogen), with a
large amount produced in humans by the placenta; estrone - another female sex hormone
(weak estrogen), binds to the estrogen response element and promotes transcription of
genes involved in the female reproductive system functions; androstenedione - weak
androgen steroid hormone, precursor of testosterone and other androgens; testosterone -

primary male sex hormone involved in development of male reproductive tissues.
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Table 1(on next page)

Results of the MAGI analysis.

Pathways with the highest MAGI scores that are upregulated under thermal stress at TP5 are
shown.
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1 Table 1. Results of the MAGI analysis. Pathways with the highest MAGI scores that are
2 upregulated under thermal stress at TP5 are shown.
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