

Important declarations

Please remove this info from manuscript text if it is also present there.

Associated Data

New DNA/RNA/peptide etc. sequences were reported.

Sequences supplied by author here:

The novel RNA-seq data are available under NCBI BioProject ID: PRJNA694677 and the metabolomic data are available as the supplementary information associated with this manuscript (<https://advances.sciencemag.org/content/suppl/2020/12/21/7.1.eabd4210.DC1>).

Data supplied by the author:

The RNA-seq data can be downloaded at NCBI BioProject ID: PRJNA694677 and the code used for the DAM + gene/metabolite co-expression networks are available at https://github.com/dbsymbiosis/Construct_Networks

Required Statements

Competing Interest statement:

The authors declare that they have no competing interests.

Funding statement:

This work was supported by a seed grant awarded to D.B. from the office of the Vice Chancellor for Research and Innovation at Rutgers University and by NSF grants NSF-OCE 1756616 and NSF-OCE 1756623 (D.B., H.M.P.). D.B. was supported by a NIFA-USDA Hatch grant (NJ01180). HMP was supported by the USDA National Institute of Food and Agriculture, Hatch project 1017848; RI0019-H020. The metabolomics analysis performed by the Rutgers Cancer Institute of New Jersey Metabolomics Shared Resource was supported, in part, with funding from NCI-CCSG P30CA072720-5923.

Multi-omic characterization of the thermal stress phenotype in the stony coral *Montipora capitata*

Amanda Williams ¹, Jananan Pathmanathan ², Timothy Stephens ², Xiaoyang Su ^{3,4}, Eric Chiles ⁴, Dennis Conetta ⁵, Hollie Putnam ⁵, Debashish Bhattacharya ^{Corresp. 2}

¹ Microbial Biology Graduate Program, Rutgers University, New Brunswick, United States

² Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States

³ Department of Medicine, Division of Endocrinology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, United States

⁴ Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, United States

⁵ Department of Biological Sciences, University of Rhode Island, Kingston, United States

Corresponding Author: Debashish Bhattacharya

Email address: dbhattac@rutgers.edu

Background. Corals, which form the foundation of biodiverse reef ecosystems, are under threat from warming oceans. Reefs provide essential ecological services, including food, income from tourism, nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion. Here, we studied the coral thermal stress response using network methods to analyze transcriptomic and polar metabolomic data generated from the Hawaiian rice coral *Montipora capitata*. Coral nubbins were exposed to ambient or thermal stress conditions over a five-week period, coinciding with a mass spawning event of this species. The major goal of our study was to expand the inventory of thermal stress-related genes and metabolites present in *M. capitata* and to study gene-metabolite interactions. These interactions provide the foundation for functional or genetic analysis of key coral genes as well as provide potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to analyze the accumulation of sex hormones prior to and during mass spawning to understand how thermal stress may impact reproductive success in *M. capitata*.

Methods. *M. capitata* was exposed to thermal stress during its spawning cycle over the course of five weeks, during which time transcriptomic and polar metabolomic data were collected. We analyzed these data streams individually, and then integrated both data sets using MAGI (Metabolite Annotation and Gene Integration) to investigate molecular transitions and biochemical reactions.

Results. Our results reveal the complexity of the thermal stress phenotype in *M. capitata*, which includes many genes involved in redox regulation, biomineralization, and reproduction. The size and number of modules in the gene co-expression networks expanded from the initial stress response to the onset of bleaching. The later stages involved the suppression of metabolite transport by the coral host, including a variety of sodium-coupled transporters and a putative ammonium transporter, possibly as a response to reduction in algal productivity. The gene-metabolite integration data suggest that thermal treatment results in the activation of animal redox stress pathways involved in quenching molecular oxygen to prevent an overabundance of reactive oxygen species. Lastly, evidence that thermal stress affects reproductive activity was provided by the downregulation of *CYP-like* genes and the irregular production of sex hormones during the mass spawning cycle. Overall, redox regulation and metabolite transport are key components of the coral animal thermal stress phenotype. Mass spawning was highly attenuated under thermal stress, suggesting that global climate change may negatively impact reproductive behavior in this species.

1 **Multi-omic characterization of the thermal stress phenome in**
2 **the stony coral *Montipora capitata***

3

4

5 Amanda Williams^{1,*}, Jannan S. Pathmanathan^{2,*}, Timothy G. Stephens², Xiaoyang Su^{3,4}, Eric N.
6 Chiles³, Dennis Conetta⁵, Hollie M. Putnam⁵, and Debashish Bhattacharya²,

7

8 ¹Microbial Biology Graduate Program, Rutgers University, New Brunswick, NJ 08901, USA

9 ²Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901,
10 USA

11 ³Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University,
12 New Brunswick, NJ 08901, USA

13 ⁴Department of Medicine, Division of Endocrinology, Robert Wood Johnson Medical School,
14 Rutgers University, New Brunswick, NJ 08901, USA

15 ⁵Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA

16

17 *These authors contributed equally.

18 Corresponding Author:

19 Debashish Bhattacharya

20 59 Dudley Ave., New Brunswick, New Jersey, 08901 USA

21 Email address: d.bhattacharya@rutgers.edu

22

23 **Abstract**

24 **Background.** Corals, that form the foundation of biodiverse reef ecosystems, are under threat
25 from warming oceans. Reefs provide essential ecological services, including food, income from
26 tourism, nutrient cycling, waste removal, and the absorption of wave energy to mitigate erosion.
27 Here, we studied the coral thermal stress response using network methods to analyze
28 transcriptomic and polar metabolomic data generated from the rice coral *Montipora capitata*, one
29 of the major reef builders in Hawaiian waters. Coral nubbins were exposed to ambient or thermal
30 stress conditions over a five-week period, coinciding with a mass spawning event of this species.
31 The major goal of our study was to expand the inventory of thermal stress-related genes and
32 metabolites present in *M. capitata* and to study gene-metabolite interactions. These interactions
33 provide the foundation for functional or genetic analysis of key coral genes as well as provide
34 potentially diagnostic markers of pre-bleaching stress. A secondary goal of our study was to
35 analyze the accumulation of sex hormones prior to and during mass spawning to understand how
36 thermal stress may impact reproductive success in *M. capitata*.

37

38 **Methods.** *M. capitata* was exposed to thermal stress during its spawning cycle over the course of
39 five weeks, during which time transcriptomic and polar metabolomic data were collected. We
40 analyzed these data streams individually, and then integrated both data sets using MAGI
41 (Metabolite Annotation and Gene Integration) to investigate molecular transitions and
42 biochemical reactions.

43

44 **Results.** Our results reveal the complexity of the thermal stress phenotype in *M. capitata*, which
45 includes many genes involved in redox regulation, biomineralization, and reproduction. The size
46 and number of modules in the gene co-expression networks expanded from the initial stress
47 response to the onset of bleaching. The later stages involved the suppression of metabolite
48 transport by the coral host, including a variety of sodium-coupled transporters and a putative
49 ammonium transporter, possibly as a response to reduction in algal productivity. The gene-
50 metabolite integration data suggest that thermal treatment results in the activation of animal
51 redox stress pathways involved in quenching molecular oxygen to prevent an overabundance of
52 reactive oxygen species. Lastly, evidence that thermal stress affects reproductive activity was
53 provided by the downregulation of *CYP-like* genes and the irregular production of sex hormones
54 during the mass spawning cycle. Overall, redox regulation and metabolite transport are key
55 components of the coral animal thermal stress phenotype. Mass spawning was highly attenuated
56 under thermal stress, providing evidence that global climate change may negatively impact
57 reproductive behavior in this species.

58

59 **Introduction**

60 Coral reefs are vitally important natural resources because they are home to about one-quarter of
61 all marine biodiversity (Reaka-Kudla, 1997) and support an estimated one-half to one billion
62 people living in coastal communities by providing food, income from tourism, and coastal
63 protection (Woodhead *et al.*, 2019). Since their radiation in the Middle Triassic period ~ 240
64 million years ago (Ma) (Veron, 1995), stony corals have survived five mass extinction events
65 (Jackson, 2008). Their long-term survival underscores the inherent resilience of these holobionts
66 in particular when considering the nutrient-poor marine environments in which they have thrived
67 (Frankowiak *et al.*, 2016). The coral holobiont (meta-organism) is comprised of the cnidarian
68 animal host, algal symbionts, fungi, microbial aggregates, and viruses. Under ambient
69 conditions, the algal cells can provide up to 100% of host energy needs in the form of lipids,
70 carbohydrates, and amino acids, as well as excess O₂ (Falkowski *et al.* 1984). In return, excess
71 nitrogen and inorganic waste from the coral animal, namely water, ammonium, and CO₂, are
72 recycled by the algae, fueling cell metabolism (Yonge and Nicholls, 1931). Environmental shifts
73 can lead to destabilization of the symbiosis (dysbiosis) between the coral animal and its partners
74 because symbionts experience photo-oxidative stress and reduce provision of photosynthetic
75 products. The coral animals may then expel their symbionts in the phenomenon known as “coral
76 bleaching” (Muscatine and Porter, 1977). The target of our study, the hermaphroditic, broadcast
77 spawning Hawaiian coral *Montipora capitata* (Fig. 1A), is a robust species that resists bleaching,

78 even under conditions causing mortality in more susceptible species (Jokiel & Brown, 2004).
79 The basis of bleaching resistance in *M. capitata* is yet to be fully explained but is most likely due
80 to heterotrophic feeding (Grottoli *et al.*, 2006).

81
82 We subjected *M. capitata* nubbins (coral fragments) to thermal stress over a 5-week period,
83 during which time transcriptomic and polar metabolomic data were collected at three different
84 time points (Fig. 1B). The period of sampling (late May to early June 2019) coincided with the
85 first of three annual mass-spawning events for *M. capitata* in the region. Therefore, genes and
86 metabolites involved in coral reproduction were expected to be present in the RNA-seq and polar
87 metabolomics data. We studied genes of both known and unknown function (i.e., ‘dark’) and
88 investigated the temporal dynamics and biological shifts that sustain the coral animal under heat
89 stress. Dark genes are either novel or too highly diverged (BLASTP *e*-value cut-off $\leq 1e^{-5}$ against
90 the nonredundant NCBI database) to identify putative homologs in existing data, although some
91 may encode a known domain associated with novel sequence (Cleves *et al.*, 2020). For example,
92 33% of dinoflagellate algal genes lack an annotation, but 1.4% of these unknown proteins
93 contain a known domain (Stephens *et al.*, 2018).

94
95 In our study, differentially expressed genes (DEGs) were filtered to only include reads which
96 mapped to predicted *M. capitata* protein-coding genes (Schumaker *et al.*, 2019): i.e., excluding
97 algal RNA-seq reads. The animal data were integrated using networks to investigate molecular
98 transitions in the coral. Network analysis can be a powerful framework for studying the structure
99 of complex biological systems (Edmunds *et al.*, 2003; Williams *et al.*, 2021) with nodes
100 representing units at all levels of the biological hierarchy and edges, interactions between them,
101 including transcriptional control, biochemical interaction, energy flow, and species interactions.
102 Usage of DEGs allowed us to focus on the most consequential gene expression changes.
103 Modules containing known genes with known functions were used to investigate their roles in
104 the thermal stress response, as well as to identify dark genes which provide interesting potential
105 candidates for future gene knockout or knockdown experiments.

106

107 Materials & Methods

108 **Culture conditions and sample collection.** Our experimental design was previously described
109 in Williams *et al.* (2021). Briefly, water was drawn from Kāne‘ohe Bay, O‘ahu and heated to
110 2.7° - 3.2°C above ambient temperature (27-28°C) in tanks at the Hawai‘i Institute of Marine
111 Biology (for details, see Williams *et al.*, 2021) (Fig. S1). Given that *M. capitata* is a stress
112 resilient coral, these conditions were designed to elicit a stress response in the coral, but not
113 activate apoptotic (cell death) pathways. Coral nubbins from four colonies were fragmented so
114 that each timepoint for both conditions had n=3 nubbins. Nubbins were acclimated for four days
115 after collection from Kāne‘ohe Bay before temperature ramp-up was initiated. The temperature
116 in the heat stressed tanks was increased 0.4°C every two days until they were between 2.7° -
117 3.2°C above the ambient water temperature. Samples were collected at five time points (T1-5;

118 Fig. 1B) during the 5-week experiment (Fig. S1). Samples from T1, T3, and T5 were chosen for
119 RNA-seq analysis because they represent stress treatments after temperature ramp-up was
120 complete, the point where bleaching begins (13 days after T1), and the last day of the five-week
121 period (17 days after T1), respectively (see Fig. 1B). The samples were flash frozen in liquid
122 nitrogen upon collection and divided for RNA-seq and polar metabolomic analysis. Four
123 colonies were used for metabolomic analysis but only one (genotype 289) was used to prepare
124 cDNA libraries. This approach led to 11-13 individual samples per time point in the
125 metabolomic analysis with 3 nubbins (sometimes 2 or 4) representing each genotype (see
126 Williams *et al.*, 2021). Approval to collect coral nubbins from the waters of Kāne‘ohe Bay, HI
127 was provided by the Division of Aquatic Resources, State of Hawai‘i under SAP 2019-60.
128

129 **Color Scores.** Color scores, an accepted proxy for bleaching progression, were recorded for the
130 ambient and stress treated nubbins at each of the five time points (Fig. 1B; Siebeck *et al.*, 2006).
131 Nubbins were photographed next to a red/blue/green color standard. ImageJ was used to extract
132 red/blue/green values from the color standard and each nubbin in the tanks. Dividing the
133 experimental value observed in the nubbins by the corresponding color standards allowed the
134 coral values to be standardized (Edmunds *et al.*, 2003). Bleaching scores were quantified as PC1
135 from principal component analysis of these data using the normalized intensity values from each
136 color channel (Williams *et al.*, 2021).
137

138 **Polar metabolite processing.** Polar metabolite extractions were based on Lu *et al.*, (2017). In a
139 glass Dounce homogenizer, samples were mechanically ground in 1 mL of 40:40:20
140 (methanol:acetonitrile:water) (v/v/v) + 0.1 M formic acid extraction buffer after incubation in the
141 buffer for five minutes. The sample was transferred to a 1.5-mL Eppendorf tube, with an
142 additional 500 μ L of extraction buffer used to rinse the Dounce. The samples were then vortexed
143 for 10 seconds, before a 10-minute centrifugation (16,000g) at 4°C. A total of 500 μ L of the
144 homogenate was then transferred to another Eppendorf tube and 44 μ L of 15% NH_4HCO_3 was
145 added to neutralize the extraction buffer.
146

147 The samples were run on an ultra-high–performance LC-MS (UHPLC-MS), consisting of a
148 Vanquish Horizon UHPLC system (Thermo Fisher Scientific, Waltham, MA) with XBridge
149 BEH Amide column (150 mm by 2.1 mm, 2.5- μ m particle size; Waters, Milford, MA), and a
150 Thermo Fisher Scientific Q Exactive Plus with a HESI source. The solvent and run conditions
151 for both the UHPLC and the MS are described in Williams *et al.* (2021), along with an in-depth
152 metabolite extraction protocol.
153

154 **Metabolite data.** Metabolomic data for the time points analyzed in this study were published by
155 Williams *et al.* (2021) and are available as supplementary information associated with the
156 manuscript (<https://advances.sciencemag.org/content/suppl/2020/12/21/7.1.eabd4210.DC1>).
157

158 **cDNA library preparation.** Total RNA was extracted using liquid nitrogen and a mortar and
159 pestle. RNA was isolated with the Qiagen AllPrep DNA/RNA/miRNA Universal Kit and strand
160 specific cDNA libraries prepared using the TruSeq RNA Sample Preparation Kit v2 (Illumina)
161 following the manufacturer's instructions. This protocol includes poly-A selection to target
162 eukaryotic cells, eliminating reads from the prokaryotic microbiome. Quality control for the
163 libraries was done using an Agilent Bioanalyzer, with library length being ~250 bp. Sequencing
164 was performed on the NovaSeq (2x150bp) by the vendor GeneWiz. These RNA-seq data are
165 available under NCBI BioProject ID: PRJNA694677 (see also Table S1).

166

167 **RNA-seq preprocessing.** RNA-seq reads were trimmed using Trimmomatic v0.38 (mode 'PE';
168 ILLUMINACLIP:adapters.fasta:2:30:10 SLIDINGWINDOW:4:5 LEADING:5 TRAILING:5
169 MINLEN:25) (Bolger *et al.*, 2014), only pairs for which both mates remained after trimming
170 were used for subsequent analysis.

171

172 **Functional annotation.** The reference *M. capitata* proteins were annotated using the Uniprot
173 database (release 2020_06). BLASTP (version 2.7.1+, parameters: *e*-value 1e⁻⁵ -seg yes -
174 soft_masking true and pident \geq 30%) was used to query the predicted proteins against the
175 Uniprot (SwissProt + TrEMBL) protein database. Function assignment was based on the best hit
176 criterion. Proteins without hits against Uniprot or annotated as "Unknown" were compared using
177 BLASTP against the current NCBI nr database.

178

179 **Differentially expressed genes (DEGs).** Expression of the available *M. capitata* genes
180 (Schumaker *et al.*, 2019) over the sequenced timepoints was quantified using Salmon v1.10 (--
181 allowDovetail --validateMappings --seqBias --gcBias) (Patro *et al.*, 2017). We retained genes
182 with a TPM value \geq 5 in each sample. The R-package DESeq2 (Love *et al.*, 2014) was used to
183 find the DEGs by comparing the ambient versus stressed condition for each time point. Genes of
184 interest, identified as being differentially expressed between the ambient versus high temperature
185 treatments, were further analyzed by checking for differential expression between T1 and T3,
186 and T3 and T5 for both thermally stressed and ambient samples. An adjusted *p*-value of \leq 0.05
187 and log₂-fold change (FC) \geq 1 was used for initial filtering of differential expression results.

188

189 **Co-expression networks.** The R-package DGCA (McKenzie *et al.*, 2016) was used to determine
190 the correlation between pairs of genes respectively for each time point. The pairwise correlation
191 was calculated with the function matCorr using Pearson method. The functions matCorSig and
192 adjustPVals were used to calculate and adjust (with the Benjamini-Hochberg method) the
193 correlation *p*-values, respectively. Only pairs with an adjusted *p*-value \leq 0.05 were used to
194 construct the co-expression networks. Module detection was done using the functions hclust
195 (method = "average") and cutreeDynamicTree (minModuleSize = 10 and deepSplit = TRUE).
196 Modules were labeled manually based on our interpretation of the data.

197

198 **Differentially accumulated metabolites (DAMs).** The R-package mixOmics (Rohart *et al.*,
199 2017) was used to detect differentially accumulated metabolites (DAMs) (VIP score ≥ 1 and FC
200 ≥ 2). The code used for the DAM + gene/metabolite co-expression networks have been
201 submitted to https://github.com/dbsymbiosis/Construct_Networks.

202

203 **Data integration.** To integrate the gene-metabolite data, we used MAGI (Metabolite Annotation
204 and Gene Integration; Erbilgin *et al.*, 2019) because it is suited for non-model organisms. In
205 these taxa, gene annotations are based on bioinformatic transfer of function and gene
206 membership in many well-characterized biochemical pathways are unvalidated. Coupling
207 metabolomic and genome-wide gene expression data in challenging models such as corals
208 provides a basis for improving the annotation of both types of data and a way to meaningfully
209 interpret observed trends. Briefly, MAGI uses a biochemical reaction network to numerically
210 score the provided Liquid chromatography-Mass Spectrometry (LCMS) features (Liu &
211 Locasale, 2017) and protein or gene sequences provided by the user. The putative compound
212 identification and input sequences are connected to biochemical reactions by a chemical
213 similarity network and evaluated based on sequence homology against a reference database
214 (Erbilgin *et al.*, 2019). The likelihood of identifying an LCMS feature/gene function increases if
215 there is a gene function/metabolite feature to substantiate that metabolite identity/gene function.
216 Therefore, MAGI leverages the association between genes and metabolites to create higher
217 quality annotations for both datasets. The MAGI score is a geometric mean of the homology
218 score, reciprocal score, reaction connection score, and compound score, representing the
219 probability and strength of the gene-metabolite association.

220

221 The metabolic features given to MAGI were defined using the mass-to-charge ratio (m/z) and
222 retention time (rt). The MAGI results were filtered, whereby only DAM-DEG connections with a
223 compound_score = 1, e_score_r2g (reaction-to-gene) > 5 , e_score_g2r (gene-to-reaction) > 5 ,
224 and reciprocal_score = 2 were retained. A stringent e_score_g2r and e_score_r2g cut-off of ≥ 5
225 was used to ensure reliability of the connections between DAMs and DEGs. We checked each
226 reaction manually for DAMs and DEGs of interest.

227

228 **Results**

229 **The early stress response**

230 Because there was an unexpected warming event in Kāne‘ohe Bay during the experiment that
231 increased the ambient seawater temperature by ca. 2°C (Williams *et al.*, 2021), we expected the
232 gene co-expression data to show evidence of thermal stress at T1, that should become more
233 pronounced at T3 and T5. The color scores for *M. capitata* nubbins do not reflect this prediction
234 of stress at T1, likely due to the high stress resistance of *M. capitata* (Fig. 1B), however, lower
235 color scores and partial bleaching are apparent at T5. The network statistics reflect the temporal
236 growth in complexity of the stress response (Table S2).

237

238 Inspection of the full network of DEGs at T1 shows differential regulation of a limited number of
239 stress pathways (Fig. 2; Supplementary file 1 [Cytoscape file]). The most strongly upregulated
240 candidates are in module M3 and include genes involved in molecular chaperone functions such
241 as brichos domain-containing proteins (*M. capitata* gene g29710, fold-change [FC] = 5.94;
242 g29707 FC = 5.40) and a previously described protein in sea urchin and sea cucumber that is
243 involved in embryo development (fibropellin-1, g71193, FC = 5.47; Bisgrove *et al.*, 1995; Ba *et*
244 *al.*, 2015). Interestingly, fibropellin-1 gene family expression remains upregulated but at a much
245 lower fold-change at T5 (see below) that follows the mass spawning event of *M. capitata*
246 (g30756 FC = 1.49; g30753 FC = 1.37). Within M2 in the T1 network are well-characterized
247 genes such as C-type lysozyme that is involved in bacteriolysis and the immune response
248 (g29445 FC = 2.41; Ragland & Criss, 2017). This gene has the highest degree value (56) in the
249 T1 network (i.e., number of edges linked to a node) which indicates that it acts as an important
250 regulatory component of the transcriptional network (Schumaker *et al.*, 2019). Genes with a
251 potential role in biomineralization, a glutamic acid-rich protein (adi2mcaRNA37907_R0, FC = -
252 1.12) and galaxin-2 (g25962, FC = -2.04), whose products are associated with the coral skeletal
253 organic matrix (SOM) (Conci *et al.*, 2019), are weakly to moderately downregulated in modules
254 M4 and M5, respectively. Also occupying key positions in the T1 network are dark genes that
255 are marked as “DG” in Fig. 2, with gene numbers shown. We highlight *M. capitata* dark gene
256 g36545 that has a weak hit to a N-terminal death-domain superfamily (*e*-value = 6.79e⁻⁰⁴) and a
257 high degree value = 43. Analysis of distribution demonstrates that dark gene g36545 is shared
258 by, and limited, to other stony corals (Fig. S2).

259

260 **Downregulated genes in the later stress response**

261 Next, we focused on the networks generated from the T3 and T5 DEG data for *M. capitata*.
262 These networks are larger than the T1 network; each comprising 20 modules (Fig. S3). We
263 identified some genes with high degree in these networks, as well as dark genes, but will focus
264 here (not exhaustively) on individual modules with previously well-characterized thermal stress
265 response genes in the T5 network to gain insights into the later stage of the thermal stress
266 response. M1 in the TP5 network (Fig. 3) contains many significantly downregulated genes that
267 are dominated by metabolite transporters. These include a variety of sodium-coupled transporters
268 (ST), including a sodium-coupled neutral amino acid transporter (gene adi2mcaRNA35257_R0,
269 FC = -1.61), a sodium-coupled monocarboxylate transporter 1 (g37389 FC = -1.53) putatively
270 involved in the transport of a variety of substrates including short-chain fatty acids and lactate
271 (Song *et al.*, 2020), and a probable sodium/potassium-transporting ATPase subunit (g39446 FC
272 = -1.68) involved in the sodium-coupled active transport of nutrients (Song *et al.*, 2020). The
273 transporter with the highest degree (deg) in this module (deg = 36) is a putative ammonium
274 transporter that is weakly downregulated (g26425, deg = 36, FC = -1.29; Fig. 3).

275

276 Another key component of module M1 is the skeletal aspartic acid-rich protein 3 that is related to
277 coral acid-rich protein 4 (CARP4; ca. 40% protein identity) involved in biomineralization

278 (CaCO₃, aragonite in corals). CARPs are largely independently derived, secreted proteins rich in
279 glutamic and aspartic acid residues that accumulate in the calicoblastic space of corals, playing
280 roles in calcification (Drake *et al.*, 2013; Guzman *et al.*, 2018; Peled *et al.*, 2020; Levy *et al.*,
281 2021). CARP-encoding genes are differentially expressed during coral development with
282 CARP4 and CARP5 strongly up-regulated in the calcifying spat stage of *Pocillopora damicornis*
283 (Mass *et al.*, 2016; Bhattacharya *et al.*, 2016). In M1, a single CARP is present, that is centrally
284 located in the network (deg = 21) and downregulated at TP5 (FC = -1.53). A maximum
285 likelihood phylogeny of this protein (Fig. S4) shows this gene to be present in non-coral species
286 and to have undergone ancient gene duplications (provisionally named C1-C4 and R1-R4 for
287 complex and robust coral species, respectively) within the scleractinian lineage with *M. capitata*
288 encoding divergent paralogs. However, only the gene (g43402) encoding CARP4 is significantly
289 downregulated under thermal stress in this species. These results indicate that the *M. capitata*
290 thermal stress genome includes suppression of the biomineralization reaction (also evident in
291 TP1, see above) with the concomitant down-regulation of a putative carbonic anhydrase 2 (Fig.
292 3) that is the most highly downregulated gene in M1 (g48223 FC = -3.11). This zinc
293 metalloenzyme catalyzes the reversible hydration of carbon dioxide to bicarbonate (Bhattacharya
294 *et al.*, 2016).

295

296 **Up-regulated genes after five weeks of thermal stress**

297 Another module of interest in TP5 is M4 (Fig. 4A), that contains a variety of significantly up-
298 regulated genes with roles in signaling and immunity (e.g., netrin receptor UNC5C [g6679 FC =
299 2.00], two neuronal pentraxin-like genes [g46559, g46566 FC = 1.79, 2.45, respectively]) and
300 transcriptional regulation (e.g., BTG1 protein [g32300 FC = 1.27], MafB [g30496 FC = 2.36],
301 thyrotroph embryonic factor [g57753 FC = 1.42]). BTG family members are transcriptional
302 regulators that can enhance or repress the activity of transcription factors. Maf proteins are
303 widespread among metazoans, including corals, and are bZIP (basic [DNA-binding] and leucine
304 zipper [homo- or heterodimerization] domains) transcriptional factors that are involved in
305 oxidative stress and detoxification pathways (Kannan *et al.*, 2021; Shinzato *et al.*, 2012).
306 Multiple Maf genes are upregulated at TP5 in M2, including *mafF* (g30493 FC = 2.39) and two
307 Maf domain-containing proteins (g30494, g30495 FC = 1.96, 2.04, respectively). Two Maf
308 domain-containing proteins are present in M18 (g2209, g26625 FC = 1.41, 1.24, respectively). In
309 M4, the pentraxin domain-containing proteins are of interest because these are multimeric,
310 calcium-binding proteins often involved in immunological responses (Ma & Garred, 2018).
311 Located in this module are two proteins that interact with calcium: one is a calcium-binding EF-
312 hand protein (g14108 FC = 1.67) and the second is a calcium-activated potassium channel
313 subunit (g16479 FC = 1.86).

314

315 Embedded within this network of conserved stress response proteins are 4 dark genes, two of
316 which are paralogs that comprise highly connected hubs in this module (g59122 and g59123,
317 both have deg = 18 and lack a domain hit using CDSEARCH). This gene family was only

318 detected in stony corals (Fig. 4B) and offers a promising target for functional analysis. These
319 dark genes show a high fold-change in gene expression when compared to ambient conditions
320 (g59122, FC = 3.55) with g59123 having the highest value in this module (FC = 4.48).
321

322 **Gene-metabolite interactions.**

323 **Animal response to redox stress**

324 Analysis of the MAGI output provided clear evidence of redox stress in the coral animal (Table
325 1), with 21/27 of the high-confidence upregulated reactions at T5 having oxidoreductase
326 functions (Table S3). Of these 21 reactions, 10 involve O₂ as a substrate and the release of a
327 water molecule, the majority of which include cytochrome P450 domains. The rate of
328 metabolism at higher temperatures increases and can lead to physiological hyperoxia. Under
329 elevated temperatures, oxygen absorbs excitation energy and becomes active in the form of
330 superoxide radicals and hydrogen peroxide (Lesser, 1997). These reactive oxygen species (ROS),
331 which are likely to be key contributors to coral thermal stress (Cziesielski *et al.*, 2018; Cleves *et*
332 *al.*, 2020), derive their reactivity from the unpaired electron. Hence, the enrichment of
333 oxidoreductases is an expected outcome. Their catalysis solely involves the transfer of electrons;
334 therefore, we postulate that corals utilize oxidoreductases to maintain redox homeostasis, remove
335 excess molecular oxygen, and thereby, limit the production of ROS.
336

337 **Upregulation of the phenylalanine-4-hydroxylase pathway**

338 A pathway of particular interest with regard to the coral thermal stress response involves
339 phenylalanine-4-hydroxylase (P4H), which is a homotetramer of four phenylalanine hydroxylase
340 (PH) enzymes, each containing three domains (a regulatory N-terminal domain, a catalytic
341 domain, and a C-terminal domain) that use a non-heme Fe(II) cofactor (Fitzpatrick, 1999). P4H
342 catalyzes the bidirectional reaction of L-phenylalanine to L-tyrosine with (6*R*)-L-*erythro*-5,6,7,8-
343 tetrahydrobiopterin (BH₄) as a cofactor (Table 1). The gene expression and metabolite
344 integration results show upregulation of the *p4h* gene [FC = 1.27], as well as increased ion
345 counts for all reaction participants except BH₄. BH₄ donates two electrons to reduce the iron
346 atom to ferrous iron and cleaves O₂ to reduce phenylalanine (Phe) to tyrosine (Tyr). Molecular
347 oxygen can oxidize the ferrous iron, regenerating the enzyme. In this pathway, 4 α -hydroxy-
348 tetrahydropterin is first dehydrated and then reduced by an NADH-dependent component of
349 P4H, the phenylalanine hydroxylase stimulator (PHS) (Lei & Kaufman, 1998). Phe and Tyr are
350 both synthesized by scleractinian corals, either from intermediates in glycolysis,
351 gluconeogenesis, the pentose phosphate pathway (PPP), the tricarboxylic acid cycle (TCA), or
352 the pentose phosphate shunt, depending on the substrate used in previous studies (Fitzgerald &
353 Szmant, 1997). When coral samples are incubated with ¹⁴C lysine, Tyr and Phe are produced
354 through gluconeogenesis, glycolysis, or the PPP following the TCA cycle. Corals can also take
355 up dissolved free amino acids from surrounding sea water (Ferrier, 1991). These results could
356 explain the lack of reactant depletion in the P4H pathway. Although P4H can function
357 bidirectionally, it is more likely that the enzyme is reducing Phe to Tyr. The reverse reaction is

358 not energetically favored because P4H preferentially binds Phe rather than Tyr, and one of the
359 most important biological roles of Phe is producing Tyr, a substrate for receptor tyrosine kinases
360 that are implicated in the coral stress response (Bellantuono *et al.*, 2012).

361

362 **Dysregulation of spawning during thermal stress**

363 *CYP-like* genes, which facilitate the biotransformation of important intracellular compounds (Lu
364 *et al.*, 2020), are implicated in several pathways at TP5 in our MAGI results (Table 1). One of
365 these involved the downregulation of progesterone and a *CYP-like* gene (FC = -1.10) during the
366 *M. capitata* spawning period. Beyond the MAGI results regarding progesterone, analysis of
367 existing metabolite ion counts from untargeted UHPLC-MS analysis of *M. capitata* (Williams *et*
368 *al.*, 2021) shows that predicted sex steroids in this species follow the expected increase in
369 accumulation (e.g., testosterone, estrone, androstenedione) under ambient conditions during the
370 mass spawning event (Fig. 5).

371

372 **Discussion**

373 Coral reefs are under worldwide threat from warming oceans and local human-caused stressors
374 such as over-fishing, the discharge of pollutants, and uncontrolled development (National
375 Academies of Sciences, Engineering, and Medicine, 2019). In response, many advances have
376 been made in identifying individual gene and metabolite markers of coral thermal stress
377 (National Academies of Sciences, Engineering, and Medicine, 2019), but little has been done to
378 link these two omics data sources. This is explained by the complexity of holobiont metabolomic
379 interactions, combined with the massive number of dark genes and dark metabolites in corals for
380 which currently no function, and therefore no causal relationship exists (Williams *et al.*, 2021).
381 In addition, because metabolites are shared among holobiont members, obscuring metabolite
382 origin, it is challenging to make biologically meaningful predictions from these data alone. For
383 this reason, we used MAGI to find links between polar metabolite accumulation and gene
384 expression. This approach provides a foundation for studying non-model systems by exploiting
385 the consensus between metabolite identification and gene annotation to generate metabolite-gene
386 associations (Erbilgin *et al.*, 2019). The MAGI analysis revealed the heightened response of the
387 coral animal to redox stress, including the scavenging of excess molecular oxygen. The rate of
388 metabolism at higher temperatures increases and can lead to physiological hyperoxia. Under
389 elevated temperatures, oxygen absorbs excitation energy and becomes active in the form of
390 superoxide radicals and hydrogen peroxide (Lesser, 1997). These ROS, which are likely to be
391 key contributors to coral thermal stress (Cziesielski *et al.*, 2018; Cleves *et al.*, 2020), derive their
392 reactivity from the unpaired electron. Hence, the enrichment of oxidoreductases is an expected
393 outcome. Their catalysis solely involves the transfer of electrons; therefore, we postulate that
394 corals utilize oxidoreductases to maintain redox homeostasis, remove excess molecular oxygen,
395 and thereby, limit the production of ROS.

396

397 In addition, we find evidence that progesterone metabolism may be implicated in the
398 unsynchronized mass spawning events that have occurred at the study site in recent years
399 (Fogarty *et al.*, 2019). Progesterone, a sex steroid, can be produced multiple ways, but usually
400 involves β -hydroxylation reactions catalyzed by CYP enzymes (Lu *et al.*, 2020). Many examples
401 of CYP enzymes metabolizing progesterones occur in metazoans (Baker, 2001), such as CYP1A
402 in humans (Lu *et al.*, 2020) and CYP 17 dehydrogenase (CYP17) in scleractinian corals (Rougee
403 *et al.*, 2015; Blomquist *et al.*, 2006). There is evidence that sex steroids may regulate
404 scleractinian reproduction (Tarrant *et al.*, 1999). CYP17 converts progesterone to androgens and
405 Rougée *et al.* (2015) found that in the absence of thermal stress the enzymatic activity of CYP17
406 remained consistent over the lunar cycle in the brooding coral *Pocillopora damicornis*. Twan *et*
407 *al.* (2003) found that the production of androgens increased prior to spawning in *Euphyllia*
408 *ancora*. The dysregulation of coral spawning due to environmental stress has been reported
409 (Fogarty *et al.*, 2019) and occurred during the first mass spawning event for *M. capitata* around
410 Oahu, HI in June 2019. Therefore, our results indicate that thermal stress, among other functions,
411 affects the production of hormones contributing to reproductive activity.

412

413 One of the most notable findings of the co-expression network analysis is that they are
414 dominated by downregulated metabolite transport genes. The suppression of metabolite transport
415 by the coral host may potentially be a response to reduction in algal productivity. More likely, it
416 indicates redox stress, resulting from the animal host and/or algal symbionts, which leads to the
417 generation of reactive species due to dysfunction in electron transport (see below; Roberty *et al.*,
418 2016). The inhibition of organic carbon production by the algae, precipitated by prolonged
419 thermal stress (Hillyer *et al.*, 2017), can ultimately lead to their expulsion, resulting in bleaching
420 (Slavov *et al.*, 2016). That is, in addition to a role in host processes, the coral animal may be
421 dampening algal proliferation by reducing access to nutrients needed for growth such as
422 ammonium, as demonstrated in the cnidarian model *Aiptasia* under the symbiotic stage (Cui *et*
423 *al.*, 2019). This hypothesis conflicts with the findings of Fernandes de Barros Marangoni *et al.*
424 (2020) who found that ammonium enrichment reduced thermal stress in the coral *Stylophora*
425 *pistillata* and supported symbiont stability. This aspect may be less important for Hawaiian *M.*
426 *capitata* that can meet 100% of its energy needs through heterotrophic feeding during periods of
427 bleaching (Grottoli *et al.*, 2006).

428

429 Our study provides important advances in the areas described above, however, three aspects of
430 the results deserve further discussion. The first is the gene-metabolite interaction analysis of the
431 phenylalanine-4-hydroxylase pathway in which BH₄ was unexpectedly absent in the MAGI
432 results. Some plausible explanations for this result are as follows. In the kinetic model, P4H
433 requires BH₄, Phe, and O₂ to be bound, in that order (Volner *et al.*, 2003). BH₄ binds first,
434 converting the enzyme to its inactive form, E_i, until sufficient Phe is present in plasma, at which
435 point Phe binds and converts P4H to its activated form, E_a (Xia *et al.*, 1994); BH₄ bound to P4H
436 would not have been detected in our analysis. Given that BH₄ is involved in other cellular

437 functions it is possible that its levels might be depleted under heat stress, despite upregulation of
438 the P4H pathway. This is relevant when considering the stoichiometry of the reaction,
439 specifically, the number of BH₄ molecules needed as cofactors depends on cellular conditions.
440 Higher pH and temperature may require more than one BH₄ to reduce two iron atoms
441 (Fitzpatrick, 2003), further reducing the number of free BH₄ molecules available for detection. It
442 is also possible that another tetrahydropterin was used as an electron donor because BH₄ is
443 primarily used to combat oxidative stress (Kraft *et al.*, 2020), potentially limiting its supply
444 during high temperature stress. Existing data demonstrate the likely involvement of P4H in the
445 symbiotic relationship between *Hydra viridissima* and its photosymbiont *Chlorella* sp. A99
446 (Hamada *et al.*, 2018).

447

448 The second aspect is the impact of thermal stress on the coral reproductive cycle. Inspection of
449 Fig. 5 shows that sex steroid accumulation is generally reduced under thermal stress, however, at
450 T5, recover to near ambient and wild sample levels for several compounds (e.g., estrone,
451 androstenedione, testosterone). This suggests that *M. capitata* may be able to partially acclimate
452 to warming waters vis-à-vis sex steroid production, although these preliminary results need
453 validation. More broadly, our results demonstrate that thermal stress impacts the production of
454 hormones linked to reproductive activity. It is likely that the negative impact of environmental
455 stress on coral mass spawning events will become more prevalent as oceans become warmer
456 (Majerova *et al.*, 2021). Despite this not being the original intent of our study, the data we have
457 generated provides valuable insights into how thermal stress disturbs the reproductive cycle of
458 broadcast spawning corals. The consequences of this disturbance may have profound impacts not
459 only on the health of existing reef ecosystems, but also on the ability of coral reefs to recover and
460 recolonize an area after a major bleaching event or any environmental disturbance. The
461 combined impact of thermal stress and mass spawning were addressed in our study, and it is
462 possible that their interactions make it more difficult to interpret thermal stress impacts in
463 isolation. Peak bleaching occurs in Hawaiian *M. capitata* in the month of October when the
464 water temperatures are at their highest (Cunning *et al.*, 2016). However, as our study in 2019
465 demonstrated (Williams *et al.*, 2021), local warming events can occur during mass spawning
466 periods and will impact coral reproduction (current data). Therefore, rather than being weakened
467 by the co-occurrence of warming and spawning in our study corals, we consider our data to be
468 important for understanding how these combined stresses may impact future coral health as local
469 warming events, like those we encountered, become more frequent.

470

471 Finally, it should be noted that although the interaction between the coral and its algal
472 endosymbionts represents the cornerstone of reef ecosystems, we chose to target the host animal
473 response to thermal stress in this study. Whereas the metabolomic data analyzed here is derived
474 from the whole holobiont (i.e., coral, algae, and other microbiome components), the RNA-seq
475 data only captured transcripts from the eukaryotic component (i.e., coral and algae). The
476 integration of the algal data was hindered by the lack of reference genomes for the

477 endosymbionts of *M. capitata* and the likely presence of cryptic eukaryotic components of the
478 holobiont that might contribute to non-animal RNA-seq data (Kwong *et al.*, 2019). A recent
479 paper demonstrated that Symbiodiniaceae genomes are highly diverged, even between species in
480 a single genus (*Symbiodinium*; González-Pech *et al.*, 2021) and that multiple algal symbionts
481 from different genera may reside in a single coral nubbin. Furthermore, metabolomes of the host
482 and symbiont are not affected by variation in the abundance of the two algal symbionts that
483 dominate Hawaiian *M. capitata* colonies (i.e., *Durusdinium glynnii* and *Cladocopium* spp.)
484 (Matthews *et al.*, 2020). For these reasons, we concluded that the host response to thermal stress,
485 reflecting the holobiont contribution, was the best target for this poorly characterized coral
486 model. The results presented here provide a foundation upon which questions regarding coral-
487 algal interactions during stress can be addressed in future studies.

488

489 **Conclusions**

490 This work contributes to our understanding of the coral response to thermal stress and the
491 potential effects that a warming ocean will have on the reproductive health of these organisms.
492 The early thermal stress response of *M. capitata* involves the downregulation of growth and
493 DNA replication and the upregulation of signaling and the immune response. Later stages show
494 downregulation of metabolite transport and biomineralization, as well as an upregulation of
495 transcriptional regulators. Activation of animal redox stress pathways potentially as a mechanism
496 for the detoxification of reactive oxygen species was found to be a major outcome of thermal
497 stress. Whereas there was a noticeable increase in sex hormones (e.g., progesterone) in our
498 samples prior to a natural mass spawning event, the release of egg-sperm bundles by *M. capitata*
499 was highly attenuated in June 2019 (DB, HMP unpublished data), suggesting that thermal stress
500 may negatively impact the reproductive behavior in this species. Significant effort will be needed
501 to modify this polygenic trait in coral holobionts to boost resilience to thermal stress in the long
502 term. Nonetheless, we have identified several novel genes that are promising candidates for
503 functional analysis using the recently developed CRISPR/Cas9 tools for corals (Cleves *et al.*,
504 2018; Cleves *et al.*, 2020). It is important to remember that the algal symbionts of corals play a
505 key role in holobiont biology and stress response vis-à-vis symbiotic nutrient cycling (Rädecker
506 *et al.*, 2021). Therefore, future gene-metabolite interaction analyses need to address *in situ* algal
507 gene expression to address the integration of the host-symbiont response to thermal stress.

508

509 **Acknowledgements**

510 We acknowledge members of the Bhattacharya and Putnam labs for their input to the
511 experimental design and bioinformatic analyses.

512

513 **References**

514 Ba, H., Yao, F., Yang, L., Qin, T., Luan, H., Li, Z., Zou, X. and Hou, L., 2015. Identification and
515 expression patterns of extracellular matrix-associated genes fibropellinia and tenascin
516 involved in regeneration of sea cucumber *Apostichopus japonicus*. *Gene* 565(1):96-105.

517 Baker, M.E., 2001. Evolution of 17 β -hydroxysteroid dehydrogenases and their role in androgen,
518 estrogen and retinoid action. *Molecular and Cellular Endocrinology* 171(1-2):211-215.

519 Bellantuono, A.J., Granados-Cifuentes, C., Miller, D.J., Hoegh-Guldberg, O. and Rodriguez-
520 Lanetty, M., 2012. Coral thermal tolerance: tuning gene expression to resist thermal
521 stress. *PLoS One* 7(11):e50685.

522 Bhattacharya, D., Agrawal, S., Aranda, M., Baumgarten, S., Belcaid, M., Drake, J.L., Erwin, D.,
523 Foret, S., Gates, R.D., Gruber, D.F. and Kamel, B., 2016. Comparative genomics
524 explains the evolutionary success of reef-forming corals. *Elife* 5:e13288.

525 Bisgrove, B.W., Andrews, M.E. and Raff, R.A., 1995. Evolution of the fibropellin gene family
526 and patterns of fibropellin gene expression in sea urchin phylogeny. *Journal of Molecular
527 Evolution* 41(1):34-45.

528 Blomquist, C.H., Lima, P.H., Tarrant, A.M., Atkinson, M.J. and Atkinson, S., 2006. 17 β -
529 Hydroxysteroid dehydrogenase (17 β -HSD) in scleractinian corals and
530 zooxanthellae. *Comparative Biochemistry and Physiology Part B: Biochemistry and
531 Molecular Biology* 143(4):397-403.

532 Bolger, A.M., Lohse, M. and Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina
533 sequence data. *Bioinformatics* 30(15):2114-2120.

534 Cleves, P.A., Tinoco, A.I., Bradford J., Perrin D., Bay L.K. and Pringle, J.R., 2020. Reduced
535 thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-
536 shock transcription factor. *Proceedings of the National Academy of Sciences
537 USA* 117(46): 28899-28905.

538 Cleves, P.A., Strader, M.E., Bay, L.K., Pringle, J.R. and Matz, M.V., 2018. CRISPR/Cas9-
539 mediated genome editing in a reef-building coral. *Proceedings of the National Academy of Sciences
540 of Sciences USA* 115(20):5235-5240.

541 Conci, N., Wörheide, G. and Vargas, S., 2019. New non-bilaterian transcriptomes provide novel
542 insights into the evolution of coral skeletomes. *Genome Biology and
543 Evolution* 11(11):3068-3081.

544 Cui, G., Liew, Y.J., Li, Y., Kharbatia, N., Zahran, N.I., Emwas, A.H., Eguiluz, V.M. and Aranda,
545 M., 2019. Host-dependent nitrogen recycling as a mechanism of symbiont control in
546 Aiptasia. *PLoS Genetics* 15(6):e1008189.

547 Cunning, R., Ritson-Williams, R. and gates, R.D., 2016. Patterns of bleaching and recovery of
548 *Montipora capitata* in Kāne‘ohe Bay, Hawai‘i, USA. *Marine Ecology Progress Series*
549 551:131-139.

550 Cziesielski, M.J., Liew, Y.J., Cui, G., Schmidt-Roach, S., Campana, S., Marondedze, C. and
551 Aranda, M., 2018. Multi-omics analysis of thermal stress response in a zooxanthellate
552 cnidarian reveals the importance of associating with thermotolerant
553 symbionts. *Proceedings of the Royal Society B: Biological
554 Sciences* 285(1877):20172654.

555 Drake, J.L., Mass, T., Haramaty, L., Zelzion, E., Bhattacharya, D. and Falkowski, P.G., 2013.
556 Proteomic analysis of skeletal organic matrix from the stony coral *Stylophora*
557 *pistillata*. *Proceedings of the National Academy of Sciences USA* 110(10):3788-3793.

558 Edmunds, P.J., Gates, R.D. and Gleason, D.F., 2003. The tissue composition of *Montastraea*
559 *franksi* during a natural bleaching event in the Florida Keys. *Coral reefs*, 22(1):54-62.

560 Erbilgin, O., Rübel, O., Louie, K.B., Trinh, M., Raad, M.D., Wildish, T., Udwary, D., Hoover,
561 C., Deutsch, S., Northen, T.R. and Bowen, B.P., 2019. MAGI: a method for metabolite
562 annotation and gene integration. *ACS Chemical Biology* 14(4):704-714.

563 Falkowski, P.G., Dubinsky, Z., Muscatine, L. and Porter, J.W., 1984. Light and the bioenergetics
564 of a symbiotic coral. *Bioscience* 34(11):705-709.

565 Fernandes de Barros Marangoni, L.F., Ferrier-Pagès, C., Rottier, C., Bianchini, A. and Grover,
566 R., 2020. Unravelling the different causes of nitrate and ammonium effects on coral
567 bleaching. *Scientific Reports* 10(1):11975.

568 Ferrier, M.D., 1991. Net uptake of dissolved free amino acids by four scleractinian corals. *Coral*
569 *Reefs* 10(4):183-187.

570 Fitzgerald, L.M. and SZMANT, A.M., 1997. Biosynthesis of 'essential' amino acids by
571 scleractinian corals. *Biochemical Journal* 322(1):213-221.

572 Fitzpatrick, P.F., 2003. Mechanism of aromatic amino acid
573 hydroxylation. *Biochemistry* 42(48):14083-14091.

574 Fitzpatrick, P.F., 1999. Tetrahydropterin-dependent amino acid hydroxylases. *Annual Review of*
575 *Biochemistry* 68(1):355-381.

576 Fogarty, N.D. and Marhaver, K.L., 2019. Coral spawning,
577 unsynchronized. *Science* 365(6457):987-988.

578 Frankowiak, K., Wang, X.T., Sigman, D.M., Gothmann, A.M., Kitahara, M.V., Mazur, M.,
579 Meibom, A. and Stolarski, J., 2016. Photosymbiosis and the expansion of shallow-water
580 corals. *Science Advances* 2(11):e1601122.

581 González-Pech, R.A., Stephens, T.G., Chen, Y., Mohamed, A.R., Cheng, Y., Shah, S., Dougan,
582 K.E., Fortuin, M.D., Lagorce, R., Burt, D.W. and Bhattacharya, D., 2021. Comparison of
583 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family
584 Symbiodiniaceae and genus *Symbiodinium*. *BMC Biology* 19(1):73.

585 Grottoli, A.G., Rodrigues, L.J. and Palardy, J.E., 2006. Heterotrophic plasticity and resilience in
586 bleached corals. *Nature* 440(7088):1186-1189.

587 Guzman, C., Shinnzato, C., Lu, T.M. and Conaco, C., 2018. Transcriptome analysis of the reef-
588 building octocoral, *Heliopora coerulea*. *Scientific Reports* 8(1):1-11.

589 Hamada, M., Schröder, K., Bathia, J., Kürn, U., Fraune, S., Khalturina, M., Khalturin, K.,
590 Shinnzato, C., Satoh, N. and Bosch, T.C., 2018. Metabolic co-dependence drives the
591 evolutionarily ancient *Hydra-Chlorella* symbiosis. *Elife* 7:e35122.

592 Hillyer, K.E., Dias, D.A., Lutz, A., Roessner, U. and Davy, S.K., 2017. Mapping carbon fate
593 during bleaching in a model cnidarian symbiosis: the application of ^{13}C
594 metabolomics. *New Phytologist* 214(4):1551-1562.

595 Jackson, J.B., 2008. Ecological extinction and evolution in the brave new ocean. *Proceedings of*
596 *the National Academy of Sciences USA* 105(Supplement 1):11458-11465.

597 Jokiel, P.L. and Brown, E.K., 2004. Global warming, regional trends and inshore environmental
598 conditions influence coral bleaching in Hawaii. *Global Change Biology* 10(10):1627-
599 1641.

600 Kannan, M.B., Solovieva, V. and Blank, V., 2012. The small MAF transcription factors MAFF,
601 MAFG and MAFK: current knowledge and perspectives. *Biochimica et Biophysica Acta*
602 (BBA)-*Molecular Cell Research* 1823(10):1841-1846.

603 Kraft, V.A., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., Merl-Pham,
604 J., Bao, X., Anastasov, N., Kössl, J. and Brandner, S., 2019. GTP cyclohydrolase
605 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. *ACS Central*
606 *Science* 6(1):41-53.

607 Kwong, W.K., del Campo, J., Mathur, V., Vermeij, M.J. and Keeling, P.J., 2019. A widespread
608 coral-infecting apicomplexan with chlorophyll biosynthesis
609 genes. *Nature* 568(7750):103-107.

610 Lei, X.D. and Kaufman, S., 1998. Identification of hepatic nuclear factor 1 binding sites in the 5'
611 flanking region of the human phenylalanine hydroxylase gene: implication of a dual
612 function of phenylalanine hydroxylase stimulator in the phenylalanine hydroxylation
613 system. *Proceedings of the National Academy of Sciences USA* 95(4):1500-1504.

614 Lesser, M.P., 1997. Oxidative stress causes coral bleaching during exposure to elevated
615 temperatures. *Coral Reefs* 16(3):187-192.

616 Levy, S., Elek, A., Grau-Bové, X., Menéndez-Bravo, S., Iglesias, M., Tanay, A., Mass, T. and
617 Sebé-Pedrós, A., 2021. A stony coral cell atlas illuminates the molecular and cellular
618 basis of coral symbiosis, calcification, and immunity. *Cell* 28, April 28, S0092-
619 8674(21)00440-2. Epub ahead of print.

620 Liu, X. and Locasale, J.W., 2017. Metabolomics: a primer. *Trends in Biochemical*
621 *Sciences* 42(4):274-284.

622 Love, M.I., Huber, W. and Anders, S., 2014. Moderated estimation of fold change and dispersion
623 for RNA-seq data with DESeq2. *Genome Biology* 15(12):550.

624 Lu, J., Shang, X., Zhong, W., Xu, Y., Shi, R. and Wang, X., 2020. New insights of CYP1A in
625 endogenous metabolism: a focus on single nucleotide polymorphisms and diseases. *Acta*
626 *Pharmaceutica Sinica B* 10(1):91-104.

627 Lu, W., Su, X., Klein, M.S., Lewis, I.A., Fiehn, O. and Rabinowitz, J.D., 2017. Metabolite
628 measurement: pitfalls to avoid and practices to follow. *Annual Review of*
629 *Biochemistry* 86:277-304.

630 Ma, Y.J. and Garred, P., 2018. Pentraxins in complement activation and regulation. *Frontiers in*
631 *Immunology* 9:3046.

632 Majerova, E., Carey, F.C., Drury, C. and Gates, R.D., 2021. Preconditioning improves bleaching
633 tolerance in the reef-building coral *Pocillopora acuta* through modulations in the

634 programmed cell death pathways. *Molecular Ecology* May 19. doi: 10.1111/mec.15988.
635 Online ahead of print.

636 Mass, T., Putnam, H.M., Drake, J.L., Zelzion, E., Gates, R.D., Bhattacharya, D. and Falkowski,
637 P.G., 2016. Temporal and spatial expression patterns of biomineralization proteins during
638 early development in the stony coral *Pocillopora damicornis*. *Proceedings of the Royal
639 Society B: Biological Sciences* 283(1829):20160322.

640 Matthews, J.L., Cunning, R., Ritson-Williams, R., Oakley, C.A., Lutz, A., Roessner, U.,
641 Grossman, A.R., Weis, V.M., Gates, R.D. and Davy, S.K., 2020. Metabolite pools of the
642 reef building coral *Montipora capitata* are unaffected by Symbiodiniaceae community
643 composition. *Coral Reefs* 39(6):1727-1737.

644 McKenzie, A.T., Katsyv, I., Song, W.M., Wang, M. and Zhang, B., 2016. DGCA: a
645 comprehensive R package for differential gene correlation analysis. *BMC Systems
646 Biology* 10(1):106.

647 Muscatine, L. and Porter, J.W., 1977. Reef corals: mutualistic symbioses adapted to nutrient poor
648 environments. *Bioscience* 27(7):454-460.

649 National Academies of Sciences, Engineering, and Medicine, 2019. A research review of
650 interventions to increase the persistence and resilience of coral reefs. Washington, DC:
651 The National Academies Press.

652 Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. and Kingsford, C., 2017. Salmon provides fast
653 and bias-aware quantification of transcript expression. *Nature Methods* 14(4):417-419.

654 Peled, Y., Drake, J.L., Malik, A., Almuly, R., Lalzar, M., Morgenstern, D. and Mass, T., 2020.
655 Optimization of skeletal protein preparation for LC-MS/MS sequencing yields additional
656 coral skeletal proteins in *Stylophora pistillata*. *BMC Materials* 2(1):8.

657 Rädecker, N., Pogoreutz, C., Gegner, H.M., Cárdenas, A., Roth, F., Bougoure, J., Guagliardo, P.,
658 Wild, C., Pernice, M., Raina, J.B. and Meibom, A., 2021. Heat stress destabilizes
659 symbiotic nutrient cycling in corals. *Proceedings of the National Academy of Sciences
660 USA* 118(5):e2022653118.

661 Ragland, S.A. and Criss, A.K., 2017. From bacterial killing to immune modulation: Recent
662 insights into the functions of lysozyme. *PLoS Pathogens* 13(9):e1006512.

663 Reaka-Kudla, M.L., 1997. The global biodiversity of coral reefs: a comparison with rain
664 forests. *Biodiversity II: Understanding and protecting our biological resources*, 2, p.551.

665 Roberty, S., Furla, P. and Plumier, J.C., 2016. Differential antioxidant response between two
666 *Symbiodinium* species from contrasting environments. *Plant, Cell &
667 Environment* 39(12):2713-2724.

668 Rohart, F., Gautier, B., Singh, A. and Lê Cao, K.A., 2017. mixOmics: An R package for 'omics
669 feature selection and multiple data integration. *PLoS Computational
670 Biology*, 13(11):e1005752.

671 Rougée, L.R., Richmond, R.H. and Collier, A.C., 2015. Molecular reproductive characteristics of
672 the reef coral *Pocillopora damicornis*. *Comparative Biochemistry and Physiology Part A:
673 Molecular & Integrative Physiology* 189:38-44.

674 Shinzato, C., Hamada, M., Shoguchi, E., Kawashima, T. and Satoh, N., 2012. The repertoire of
675 chemical defense genes in the coral *Acropora digitifera* genome. *Zoological*
676 *Science* 29(8):510-517.

677 Shumaker, A., Putnam, H.M., Qiu, H., Price, D.C., Zelzion, E., Harel, A., Wagner, N.E., Gates,
678 R.D., Yoon, H.S. and Bhattacharya, D., 2019. Genome analysis of the rice coral
679 *Montipora capitata*. *Scientific Reports* 9(1):2571.

680 Siebeck, U.E., Marshall, N.J., Klüter, A. and Hoegh-Guldberg, O., 2006. Monitoring coral
681 bleaching using a colour reference card. *Coral Reefs* 25(3):453-460.

682 Slavov, C., Schrammeyer, V., Reus, M., Ralph, P.J., Hill, R., Büchel, C., Larkum, A.W. and
683 Holzwarth, A.R., 2016. "Super-quenching" state protects *Symbiodinium* from thermal
684 stress-implications for coral bleaching. *Biochimica Et Biophysica Acta (BBA)-*
685 *Bioenergetics* 1857(6):840-847.

686 Song, W., Li, D., Tao, L., Luo, Q. and Chen, L., 2020. Solute carrier transporters: the metabolic
687 gatekeepers of immune cells. *Acta Pharmaceutica Sinica B* 10(1):61-78.

688 Stephens, T.G., Ragan, M.A., Bhattacharya, D. and Chan, C.X., 2018. Core genes in diverse
689 dinoflagellate lineages include a wealth of conserved dark genes with unknown
690 functions. *Scientific Reports* 8(1):17175.

691 Tarrant, A.M., Atkinson, S. and Atkinson, M.J., 1999. Estrone and estradiol-17 β concentration in
692 tissue of the scleractinian coral, *Montipora verrucosa*. *Comparative Biochemistry and*
693 *Physiology Part A: Molecular & Integrative Physiology* 122(1):85-92.

694 Trifinopoulos, J., Nguyen, L. -T., von Haeseler, A. and Minh, B. Q., 2016. W-IQ-TREE: a fast
695 online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research* 44:
696 W232-235.

697 Twan, W.H., Hwang, J.S. and Chang, C.F., 2003. Sex steroids in scleractinian coral, *Euphyllia*
698 *ancora*: implication in mass spawning. *Biology of Reproduction* 68(6):2255-2260.

699 Twan, W.H., Hwang, J.S., Lee, Y.H., Wu, H.F., Tung, Y.H. and Chang, C.F., 2006. Hormones
700 and reproduction in scleractinian corals. *Comparative Biochemistry and Physiology Part*
701 *A: Molecular & Integrative Physiology* 144(3):247-253.

702 Veron, J.E.N., 1995. *Corals in space and time: the biogeography and evolution of the*
703 *Scleractinia*. Ithaca: Cornell University Press.

704 Volner, A., Zoidakis, J. and Abu-Omar, M.M., 2003. Order of substrate binding in bacterial
705 phenylalanine hydroxylase and its mechanistic implication for pterin-dependent
706 oxygenases. *JBIC Journal of Biological Inorganic Chemistry* 8(1):121-128.

707 Woodhead, A.J., Hicks, C.C., Norström, A.V., Williams, G.J. and Graham, N.A., 2019. Coral
708 reef ecosystem services in the Anthropocene. *Functional Ecology* 33(6):1023-1034.

709 Xia, T., Gray, D.W. and Shiman, R., 1994. Regulation of rat liver phenylalanine hydroxylase. III.
710 Control of catalysis by (6R)-tetrahydrobiopterin and phenylalanine. *Journal of Biological*
711 *Chemistry* 269(40):24657-24665.

712 Yonge, S.C.M. and Nicholls, A.G., 1931. *The structure, distribution and physiology of the*
713 *zooxanthellae*. London: British Museum.

714

715 **Figure legends**

716 **Figure 1. Analysis of the rice coral *Montipora capitata*.** (A) *M. capitata* photographed in
717 waters near the Hawai‘i Institute of Marine Biology (HIMB) in O‘ahu, HI. Photo credit:
718 Debasish Bhattacharya. (B) Color scores and their standard errors for the ambient (green line)
719 and high temperature (red line) treated *M. capitata* nubbins that were cultured in tanks at HIMB.
720 Low color scores indicate the bleaching phenotype in coral holobionts. The omics data sampling
721 points are shown with the white lines at T1 (5/22/19), T3 (6/03/19), and T5 (6/07/19) (for details,
722 see Williams *et al.* (2021)). The date of the New Moon in June 2019 is also shown.

723

724 **Figure 2. Gene co-expression analysis of *M. capitata*.** Network of differentially expressed
725 genes in *M. capitata* at TP1 (the early thermal stress genome) showing the different gene
726 modules and their interactions. Purple nodes are up-regulated and green nodes are down-
727 regulated. All dark genes are marked with DG with *M. capitata* gene IDs shown. The down-
728 regulated genes in M6 that are dominated by members of the small cysteine-rich protein family,
729 often involved in signaling and protein interactions, are annotated. Only selected genes are
730 annotated in this network and module annotations provide a representation of overall function(s).
731 The annotations of all genes (when known) in each module in this, and all networks generated by
732 this study, are available in Supplementary file 1 (Cytoscape file).

733

734 **Figure 3. *M. capitata* TP5 module M1 of significantly down-regulated genes that includes**
735 **many transporters.** The legend for level of downregulation is shown. Dark genes are identified
736 with DG and genes encoding sodium-coupled transporters are marked with ST.

737

738 **Figure 4. *M. capitata* TP5 module M4 of significantly upregulated genes.** (A) The legend for
739 level of upregulation is shown. Dark genes are identified with DG. (B) Maximum likelihood (IQ-
740 Tree; Trifinopoulos *et al.*, 2016) phylogenetic analysis of paralogous coral dark genes g59122
741 and g59133 and related homologs inferred using default parameters and 1000 ultrafast bootstrap
742 replicates. The results of the bootstrap analysis are shown on the branches when >60%. The
743 legend shows the expected substitution rate for the protein dataset. Complex and robust coral
744 species are shown in brown and blue text, respectively.

745

746 **Figure 5. Analysis of sex steroids in *M. capitata*.** Accumulation of a variety of predicted sex
747 steroids in *M. capitata* nubbins over the duration of the ambient and thermal stress treatments as
748 well as from wild populations collected after T5 from the same colonies used in the tank
749 experiments (FS; for details, see Williams *et al.*, 2021). Each dot represents a single nubbin
750 measurement from four different genotypes (2-4 nubbins (usually 3)/genotype were sampled).
751 The pattern of metabolite accumulation suggests that these steroid levels increased at T5 (Fig.
752 1B), which preceded the expected mass spawning event (arrow labeled with “New Moon”
753 between T3 and T5) for this species in June 2019. The putative functions of these steroids are as

754 follows: 17a-hydroxypregnenolone – a neuromodulator generated by the action of mitochondrial
755 cytochrome P450 enzyme 17 α -hydroxylase (CYP17A1) that is an intermediate in the delta-5
756 pathway of biosynthesis of gonadal steroid hormones and adrenal corticosteroids; 17a-
757 hydroxyprogesterone – progestogen that is a chemical intermediate in the biosynthesis of
758 androgens, estrogens, glucocorticoids, and mineralocorticoids; estriol – female sex hormone
759 (weak estrogen), with a large amount produced in humans by the placenta; estrone – another
760 female sex hormone (weak estrogen), binds to the estrogen response element and promotes
761 transcription of genes involved in the female reproductive system functions; androstenedione -
762 weak androgen steroid hormone, precursor of testosterone and other androgens; testosterone -
763 primary male sex hormone involved in development of male reproductive tissues.
764

765 **Table legends**

766 **Table 1. Results of the MAGI analysis.** Pathways with the highest MAGI scores that are
767 upregulated under thermal stress at TP5 are shown.

768

769 **Supplements**

770 **Figure S1.** Temperature profiles for the ambient and high temperature treatments done at the
771 Hawai‘i Institute of Marine Biology (HIMB). Ambient temperature tank profiles are shown in
772 variations of blue and high temperature tanks in variations of red. Vertical black lines indicate
773 sampling points T1, T3, and T5 (see Methods).

774

775 **Figure S2.** Maximum likelihood (IQ-Tree) phylogenetic analysis of *M. capitata* dark gene
776 g36545 done using default parameters and 1000 ultrafast bootstrap replicates. The results of the
777 bootstrap analysis are shown on the branches when >60%. The legends show the expected
778 substitution rate for the protein dataset.

779

780 **Figure S3.** *M. capitata* networks of differentially expressed genes at TP3 (top) and TP5 (bottom)
781 showing the different gene modules and their interactions. Red nodes are up-regulated, green
782 nodes are down-regulated, and selected dark genes are the yellow nodes with gene IDs shown.
783 The fold change (FC) and network degree value (deg) are also shown for some genes.

784

785 **Figure S4.** Maximum likelihood (IQ-Tree) phylogenetic analysis of coral CARP5 homologs
786 inferred using default parameters and 1000 ultrafast bootstrap replicates. The results of the
787 bootstrap analysis are shown on the branches when >60%. The legend shows the expected
788 substitution rate for the protein dataset. Complex and robust coral species are shown in brown
789 and blue text, respectively. Four putative CARP5 paralog clades are indicated. The thick
790 branches mark a major gene duplication event in the common ancestor of complex and robust
791 coral species.

792

793 **Table S1.** Illumina RNA-seq data generated from *Montipora capitata* as part of this study
794 (NCBI BioProject ID: PRJNA694677).

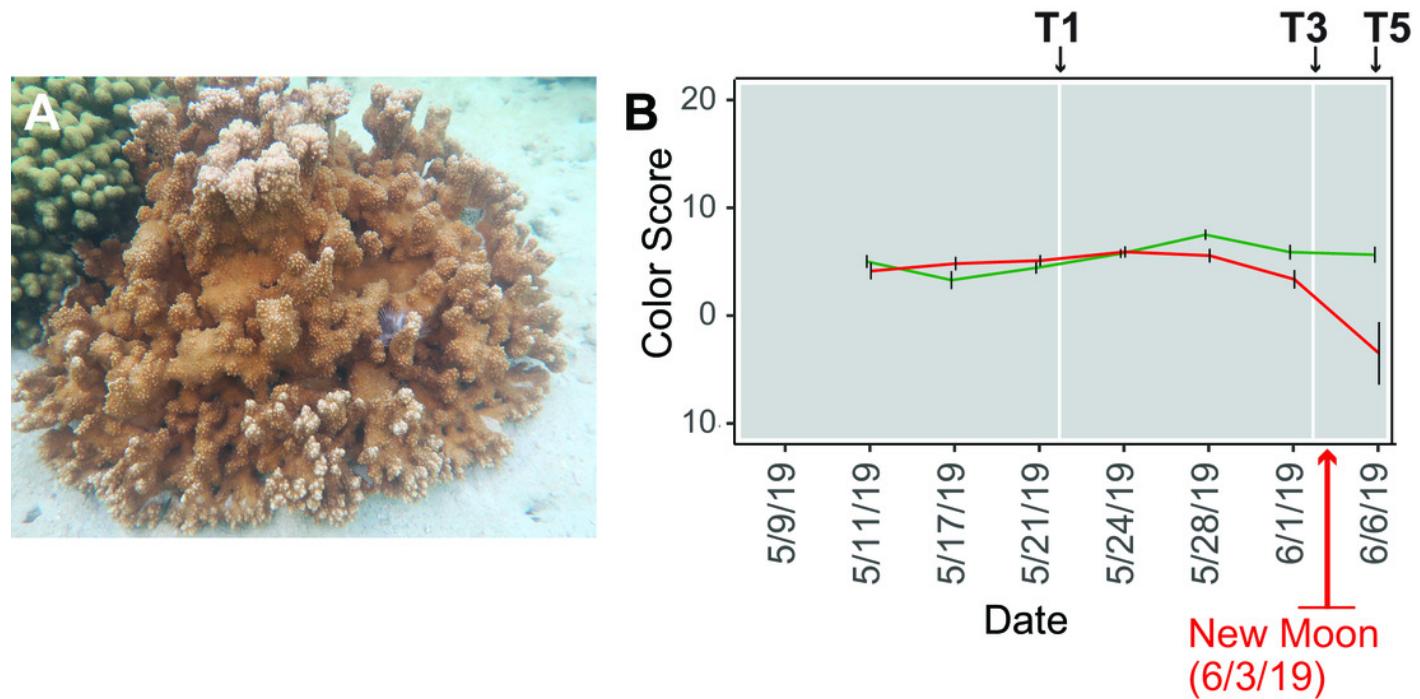
795

796 **Table S2.** Network size and gene expression direction of individual modules for TP1, TP3, and
797 TP5.

798

799 **Table S3.** MAGI output at TP5, showing the highest scoring gene-metabolite interactions with a
800 MAGI score ≥ 5 . The gene annotations, analyte identifications, MAGI scores, and reaction IDs
801 are shown for both genes (GT5) and metabolites (MRT5) at TP5. Rows highlighted in blue
802 indicate redox reactions. Entries in the bold text take part in the same biochemical reaction.

803


804 **Supplementary file 1.** Cytoscape file containing the full networks and modules with gene and
805 network information for the TP1, TP3, and TP5 gene co-expression results.

806

Figure 1

Analysis of the rice coral *Montipora capitata*.

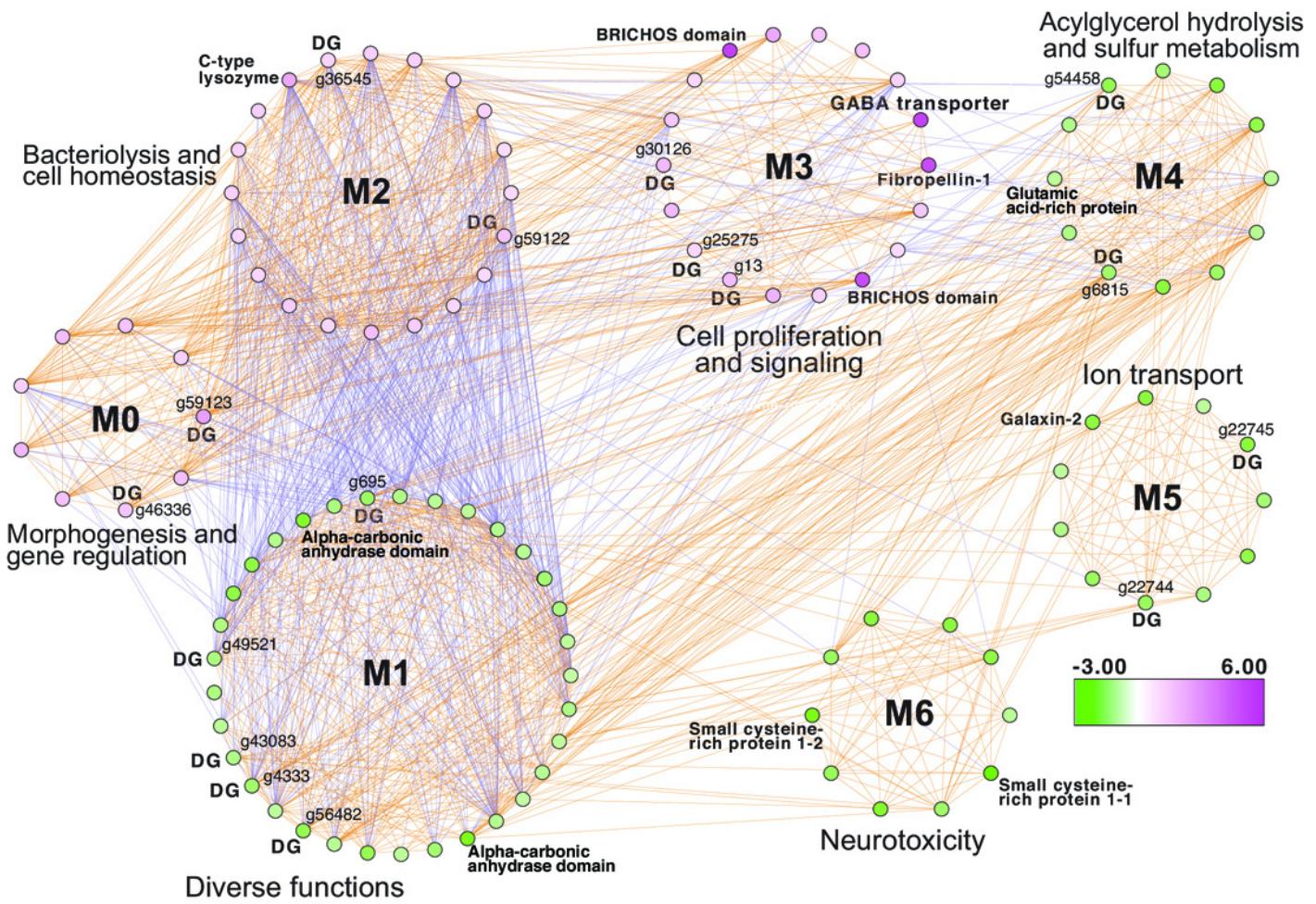

(A) *M. capitata* photographed in waters near the Hawai'i Institute of Marine Biology (HIMB) in O'ahu, HI. Photo credit: Debashish Bhattacharya. (B) Color scores and their standard errors for the ambient (green line) and high temperature (red line) treated *M. capitata* nubbins that were cultured in tanks at HIMB. Low color scores indicate the bleaching phenotype in coral holobionts. The omics data sampling points are shown with the white lines at T1 (5/22/19), T3 (6/03/19), and T5 (6/07/19) (for details, see Williams *et al.* (2021)). The date of the New Moon in June 2019 is also shown.

Figure 2

Gene co-expression analysis of *M. capitata*.

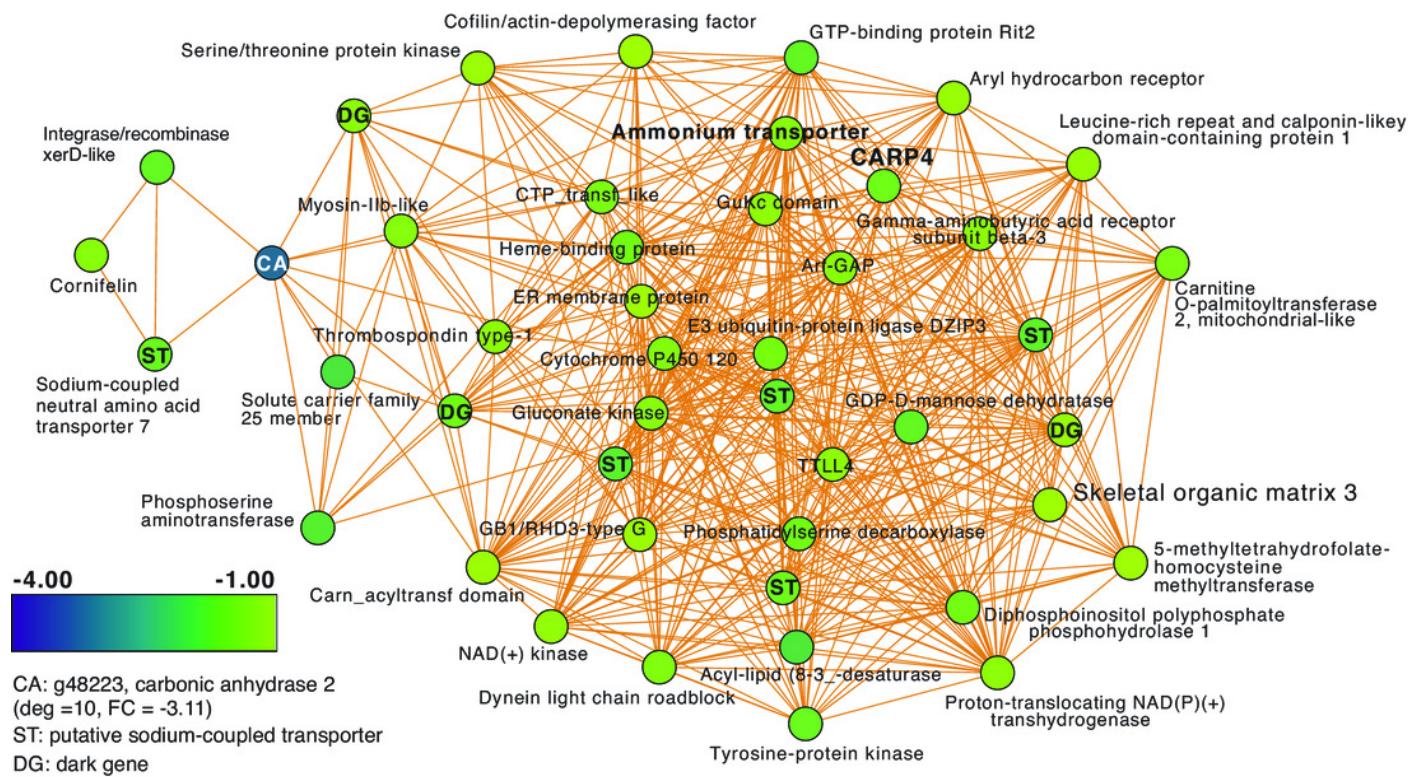

Network of differentially expressed genes in *M. capitata* at TP1 (the early thermal stress phenotype) showing the different gene modules and their interactions. Purple nodes are up-regulated and green nodes are down-regulated. All dark genes are marked with DG with *M. capitata* gene IDs shown. The down-regulated genes in M6 that are dominated by members of the small cysteine-rich protein family, often involved in signaling and protein interactions, are annotated. Only selected genes are annotated in this network and module annotations provide a representation of overall function(s). The annotations of all genes (when known) in each module in this, and all networks generated by this study, are available in Supplementary file 1 (Cytoscape file).

Figure 3

M. capitata TP5 module M1 of significantly down-regulated genes that includes many transporters.

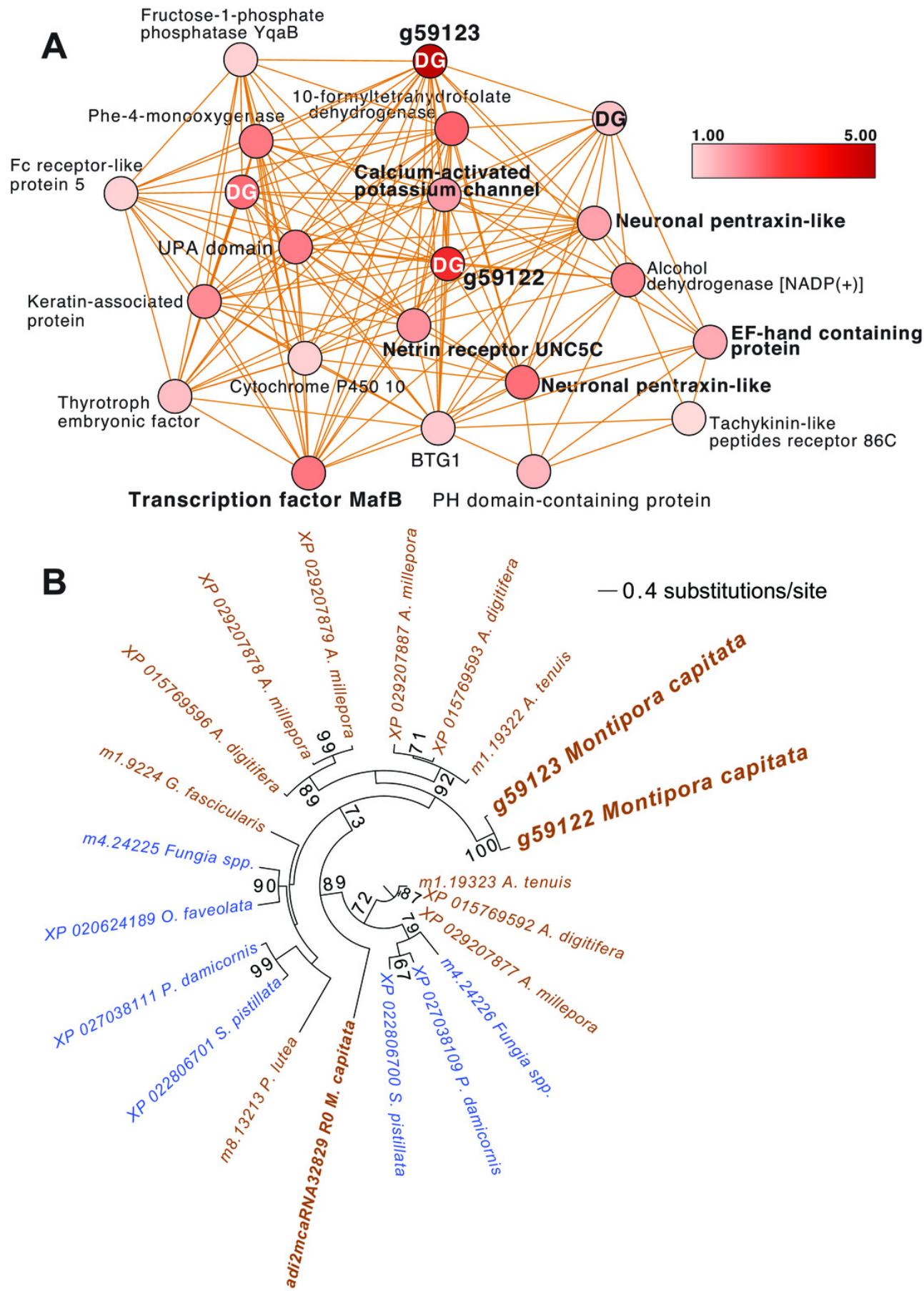

The legend for level of downregulation is shown. Dark genes are identified with DG and genes encoding sodium-coupled transporters are marked with ST.

Figure 4

M. capitata TP5 module M4 of significantly upregulated genes.

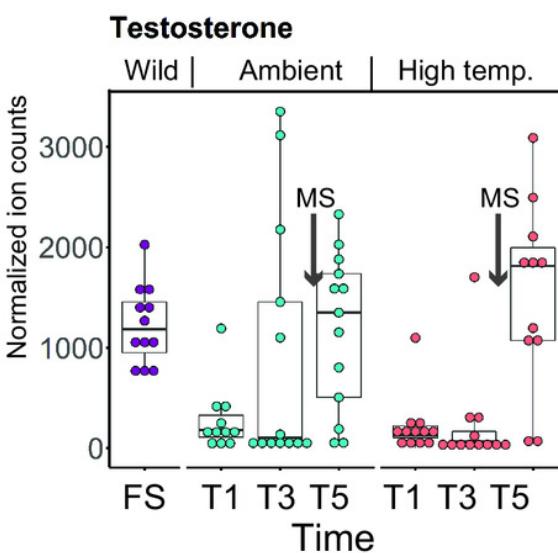
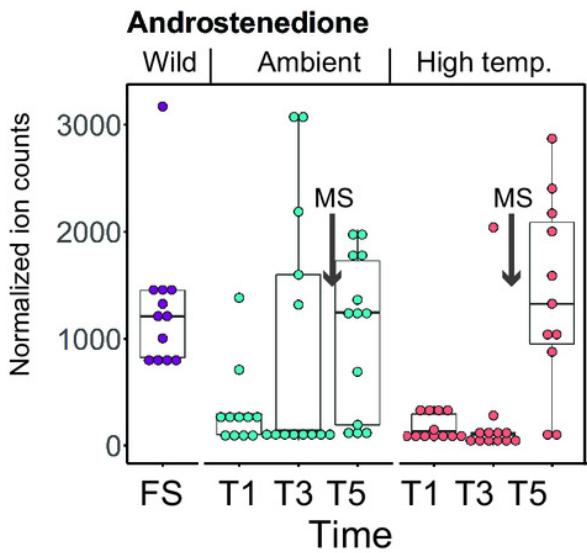
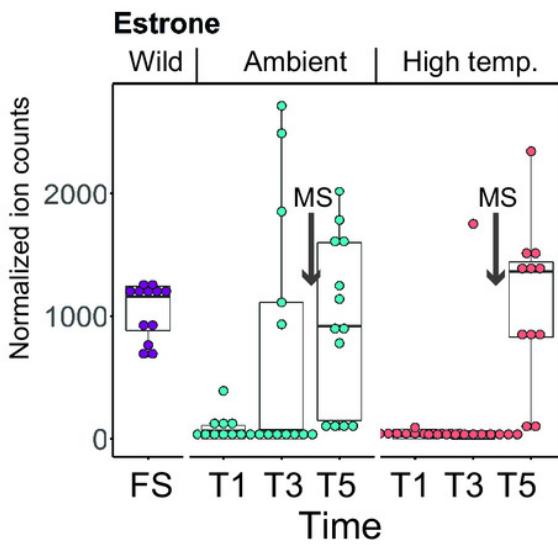
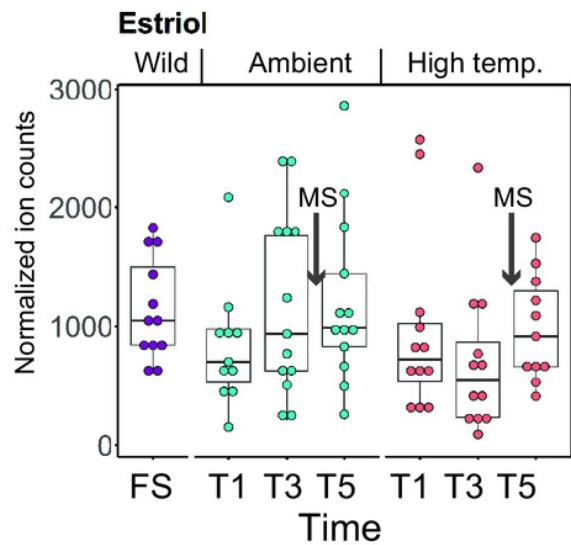
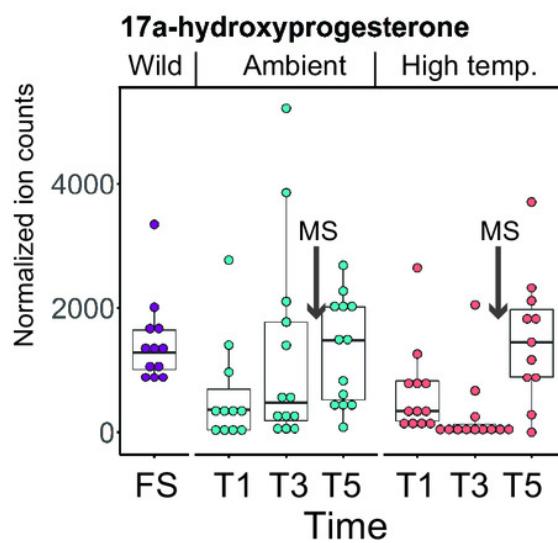
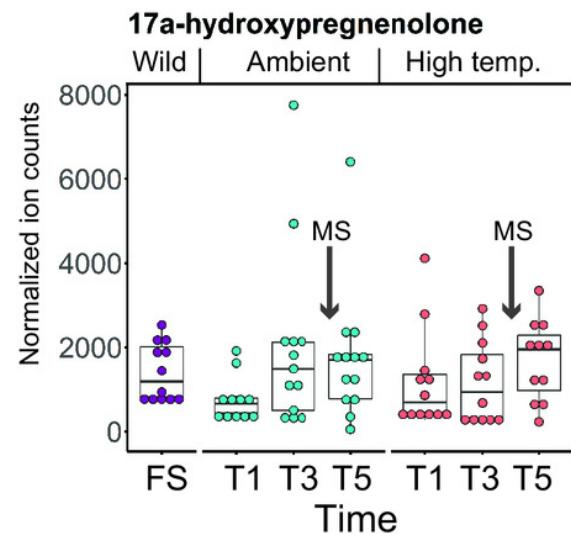






(A) The legend for level of upregulation is shown. Dark genes are identified with DG. (B) Maximum likelihood (IQ-Tree; Trifinopoulos *et al.*, 2016) phylogenetic analysis of paralogous coral dark genes g59122 and g59133 and related homologs inferred using default parameters and 1000 ultrafast bootstrap replicates. The results of the bootstrap analysis are shown on the branches when >60%. The legend shows the expected substitution rate for the protein dataset. Complex and robust coral species are shown in brown and blue text, respectively.

Figure 5

Analysis of sex steroids in *M. capitata*.

Accumulation of a variety of predicted sex steroids in *M. capitata* nubbins over the duration of the ambient and thermal stress treatments as well as from wild populations collected after T5 from the same colonies used in the tank experiments (FS; for details, see Williams *et al.*, 2021). Each dot represents a single nubbin measurement from four different genotypes (2-4 nubbins (usually 3)/genotype were sampled). The pattern of metabolite accumulation suggests that these steroid levels increased at T5 (Fig. 1B), which preceded the expected mass spawning event (arrow labeled with “New Moon” between T3 and T5) for this species in June 2019. The putative functions of these steroids are as follows: 17a-hydroxypregnenolone - a neuromodulator generated by the action of mitochondrial cytochrome P450 enzyme 17 α -hydroxylase (CYP17A1) that is an intermediate in the delta-5 pathway of biosynthesis of gonadal steroid hormones and adrenal corticosteroids; 17a-hydroxyprogesterone - progestogen that is a chemical intermediate in the biosynthesis of androgens, estrogens, glucocorticoids, and mineralocorticoids; estriol - female sex hormone (weak estrogen), with a large amount produced in humans by the placenta; estrone - another female sex hormone (weak estrogen), binds to the estrogen response element and promotes transcription of genes involved in the female reproductive system functions; androstenedione - weak androgen steroid hormone, precursor of testosterone and other androgens; testosterone - primary male sex hormone involved in development of male reproductive tissues.

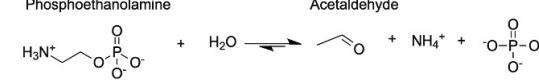
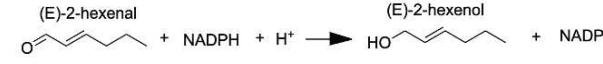
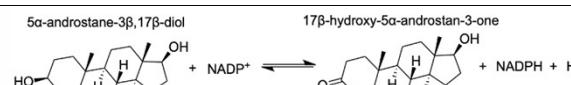
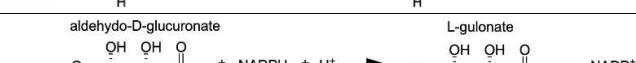
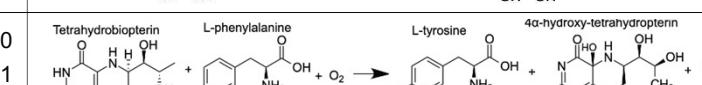
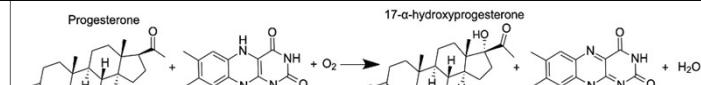
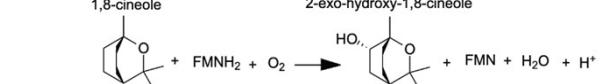
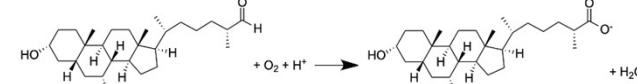
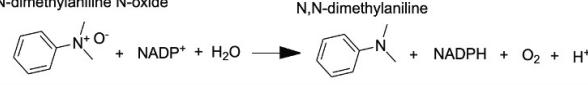
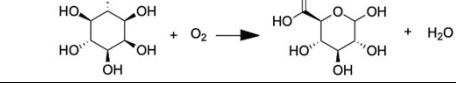
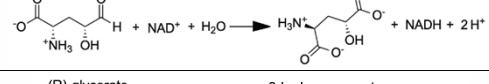












Table 1(on next page)

Results of the MAGI analysis.

Pathways with the highest MAGI scores that are upregulated under thermal stress at TP5 are shown.

1 **Table 1. Results of the MAGI analysis.** Pathways with the highest MAGI scores that are
 2 upregulated under thermal stress at TP5 are shown.
 3

Gene Annotation	Compound Name	MAGI Score	Reaction	
Putative alanine-glyoxylate aminotransferase agt2	Acetaldehyde	10.63	Phosphoethanolamine	Acetaldehyde
Aldo-keto reductase family 1 member A1	(E)-2-hexenal	8.73	(E)-2-hexenal	(E)-2-hexenol
				+ NADP+
Aldo-keto reductase family 1 member A1	Acrolein	8.68	Acrolein	Allyl Alcohol
				+ NADP+
Aldo-keto reductase family 1 member A1	5 α -androstane-3 β ,17 β -diol	9.05	5 α -androstane-3 β ,17 β -diol	17 β -hydroxy-5 α -androstan-3-one
				+ NADPH + H+
Aldo-keto reductase family 1 member A1	L-gulonic acid	7.71	aldehyde-D-glucuronate	L-gulonate
				+ NADP+
Phenylalanine-4-hydroxylase	L-phenylalanine 4 α -hydroxy-tetrahydropterin L-tyrosine	10.80 10.91 11.49	Tetrahydrobiopterin L-phenylalanine	L-tyrosine 4 α -hydroxy-tetrahydropterin
				+ H2O
Cytochrome P450 1A1-like	Progesterone	6.31	Progesterone	17 α -hydroxyprogesterone
Cytochrome P450, family 3, subfamily A, polypeptide 4	1,8-cineole	8.44	1,8-cineole	2-exo-hydroxy-1,8-cineole
				+ FMNH2 + O2
Cytochrome P450 27C1-like isoform X3	(25R)-3 α ,7 α ,12 α -Trihydroxy-5 β -cholestane-26-al	6.60	(25R)-3 α ,7 α ,12 α -Trihydroxy-5 β -cholestane-26-al	(25R)-3 α ,7 α -Dihydroxy-5 β -cholestane-26-al
				+ H2O
Flavin-containing monooxygenase	N,N-dimethylaniline N-oxide	11.20	N,N-dimethylaniline N-oxide	N,N-dimethylaniline
				+ NADPH + O2 + H+
Inositol oxygenase	D-glucuronic Acid	7.26	myo-Inositol	D-glucuronate
				+ O2
Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial	4-hydroxyglutamate semialdehyde	11.23	L-4-hydroxyglutamate semialdehyde	erythro-4-hydroxy-L-glutamate
				+ NADH + 2 H+
Glyoxylate reductase hydroxypyruvate reductase	(2R)-2,3-dihydroxypropanoic acid (Glycerate)	9.97	(R)-glycerate	3-hydroxypyruvate
				+ NADPH