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Abstract—This paper develops a generalized Copula-
polynomial chaos expansion (PCE) framework for power sys-
tem probabilistic power flow that can handle both linear and
nonlinear correlations of uncertain power injections, such as
wind and PVs. A data-driven Copula statistical model is used
to capture the correlations of uncertain power injections. This
allows us to resort to the Rosenblatt transformation to transform
correlated variables into independent ones while preserving the
dependence structure. This paves the way of leveraging the PCE
for surrogate modeling and uncertainty quantification of power
flow results, i.e., achieving the probabilistic distributions of power
flows. Simulations carried out on the IEEE 57-bus system show
that the proposed framework can get much more accurate results
than other alternatives with different linear and nonlinear power
injection correlations.

Index Terms—Probabilistic power flow, polynomial chaos,
uncertainty quantification, copula, nonlinear correlations

I. INTRODUCTION

Power flow has been widely used in today’s energy man-
agement system for contingency analysis. With the increased
penetration of uncertain distributed energy resources (DERs),
such as wind and solar, the voltage magnitudes and angles,
and power flows are subject to uncertainties. To deal with
that, the probabilistic power flow is proposed [1]. Monte Carlo
simulation (MCS) [2] is often employed as a benchmark for
probabilistic power flow as it allows to obtain the solutions
to the ground-truth via an enormous number of samples.
However, it is too time consuming to be applied for practical
power systems with large-scales. To this end, other efficient
techniques are developed, such as perturbation-based [3] and
analytical derivation-based methods [4]. Although they can
improve the computational efficiency, their assumptions on
probability distributions and liberalizations may not be sat-
isfied under various operating conditions.

Probabilistic power flow actually belongs to the uncertainty
quantification that can provide the uncertainty propagation
from inputs to the outputs. The latter are quantified by the
statistics of the model response. Polynomial chaos expan-
sion (PCE) is a well-developed technique for uncertainty
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quantification thanks to its capability of capturing the model
response statistics given the uncertain inputs. Polynomial
Chaos is firstly introduced by Wiener [6] and generalized
by Xiu et al. [7]. PCE and its variants have been used for
both dynamical simulations and probabilistic power flow [4]-
[9]. For example, the sparse PCE is applied for probabilistic
load flow calculation. An enhanced PCE for computational
efficiency improvement via the ANOVA method is developed
[8]. The adaptive sparse PCE for probabilistic power flow is
also developed in [9]. It should be noted that PCE typically
requires that the uncertain variables are independent with each
other. However, the wind and solar exhibits both temporal
and spatial correlations. The existing PCE-based probabilistic
power flow methods can deal with the linear correlations
among uncertain variables. The critical concern is that by
investigating the practical solar farm generations, nonlinear
correlations are identified [10]. This violates the linear assump-
tion and may lead to large errors, which will be demonstrated
in the numerical simulation section.

This paper proposes a generalized Copula-PCE framework
for probabilistic power flow that can handle both linear and
nonlinear dependencies among the uncertain inputs while
achieving high computational efficiency. The data-driven Cop-
ula statistics are utilized to model both the linear and nonlinear
dependence structure of power injections. This is achieved
via the marginal and copula inference. The latter will be
taken as the inputs of Rosenblatt transformation to transform
correlated variables into independent ones while preserving the
dependence structure. As a result, the PCE can be conveniently
adopted for probabilistic power flow. The impacts of different
nonlinear dependence, copula types and parameters on the
proposed method are also investigated.

II. PROBLEM STATEMENT

The probabilistic power flow aims to obtain the statistics of
bus voltage magnitudes and angles, i.e., V and θ. Its model
can be expressed as follows:

y =M(x) (1)

where the input vector is x, i.e., uncertain power injections; y
is the model response, typically V and θ; M is the nonlinear
mapping function represented by power flow equations.

The above problem belongs to the uncertainty quantification
[11] and the surrogate modeling technique is widely used. One
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such choice is the PCE method. PCE is a spectral method to
express y in terms of a polynomial function of x, i.e.,

yPC =
∞∑
i=0

aiΨi(x) (2)

where Ψi is orthogonal basis and ai is the corresponding
coefficient. Replacing original probabilistic power flow model
with a series of polynomial expansion yPC , a surrogate model
MPCE is then established.
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Fig. 1. Joint distribution of two solar farm generations.

PCE model assumes that the input vector x is independent.
Although some techniques have been developed to address
linear correlations of x, this method may not be applicable in
the presence of nonlinear correlations. Indeed, the PV station
generations can exhibit nonlinear dependencies. For example,
by using the realistic data from NREL, the two geographically
close solar farm generations are plotted against each other
and shown in Fig.1. It is clear from the figure that nonlinear
dependence exists. By using the Copula statistics, we find
that the nonlinear dependencies may follow Gumbel, Frank,
Clayton types. As a result, the linear assumption-based PCE
model may yield significant estimation errors. This motivates
us to develop a more general Copula-PCE model that handles
both linear and nonlinear correlations of uncertain inputs.

III. PROPOSED COUPLA-PCE FRAMEWORK

The proposed Coupla-PCE framework is shown in Fig.
2. It contains three key steps, including copula modeling to
capture linear and nonlinear dependencies of input variables,
inverse Rosenblatt Transformation (inverse RT) to transform
dependent variables into independent ones without losing
statistical information, and the surrogate modeling for prob-
abilistic power flow calculations. The first step is achieved
offline based on inferred copula from historical data. After
inverse RT, the independent random vector z is obtained and
this allows the PCE construction.

A. Copula Statistics for Nonlinear Dependence Modeling

Copula statistics have been well-known to be able to cap-
ture the complicated dependence structures among random
variables [12]. The construction of multivariate distribution
is general and flexible by defining the copula type and the

Fig. 2. Framework of copula-based PCE

marginals. According to Sklar’s theorem, for a d-dimensional
continuous random variable x = [x1, .., xd] with marginals
F1, . . . , Fd and joint cumulative distribution function (CDF),
Fx, there exists a copula function C that satisfies [13]

Fx(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (3)

Fj|A(xj |xA) =
∂Cj,i|A\{i}(F (xj |xA\{i}),F (xi|xA\{i}))

∂F (xi|xA\{i})
(4)

where j ∈ A, i ∈ D\A; A is a subset of indices D =
{1, . . . , d};Fj|A denotes the CDF of the random variable xj
conditioned on xA, and C(j|A) is the copula function.

The commonly used copulas include Gaussian, t and Clay-
ton types. Note that most bivariate copulas only require
one parameter to describe the correlation between random
variables. However, these copulas face challenges when being
applied to random vectors with high dimensions. To deal with
that, vine copula is proposed [13]. For regular vine (R-vine)
copulas, the dependency structure is determined by a product
of bivariate copulas and a nested set of trees. Two special cases
of R-vine, i.e., the Canonical vine (C-vine) and Drawable vine
(D-vine), are often utilized to simplify vine structure. In this
paper, the C-vine copula is used and it is expressed as

c(x) =
∏d−1
j=1

∏d−j
i=1 cj,j+i|{1,...,j−1}(xj|{1,...,j−1}, xj+i|{1,...,j−1}) (5)

where cj,j+i|1,...,j−1(xj|1,...,j−1, xj+i|1,...,j−1) is the bivariate
copula between xj , xj+i conditioned on x1, . . . , xj−1. The
copula structure is inferred from data. Firstly, bivariate copulas
are inferred for each pair of random variables. Based on that,
vine copula is deduced, where the parameters are estimated
via the maximum likelihood estimator.

B. Inverse Rosenblatt Transformation

Rosenblatt transformation (RT) allows us to transform de-
pendent random variables into independent random ones. RT
is general and it is able to handle both linear and nonlinear
dependencies. Given a random vector x ∈ Rn and its marginal
CDF Fi and copula C, RT maps x to an independent random
vector u with ui ∼ U [0, 1], (i = 1, . . . , n) [21]. After that, the
independent random vector u can be further transformed into
another random vector z by corresponding inverse probability
integral transform (PIT) [16]. For example, z can be an
independent standard normal distributed random vector if the
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inverse CDF of a standard normal distribution is applied.
Accordingly, the inverse operation of transforming z into x
with dependent structure Cx is provided as follows:

x = T−1RT ◦ TPIT (z) (6)

TPIT : z → u = [Φ(z1),Φ(z2), . . . ,Φ(zn)] (7)

T−1RT : u→ x =


F−11 (u1)
. . .
F−1k|1,...,k−1(un|u1, . . . , uk−1)

. . .
F−1n|1,...,n−1(un|u1, . . . , un−1)

(8)

where F−1k|1,...,k−1 is the inverse CDF of the conditioned
random variable un|u1, . . . , uk−1 and Φ is the CDF of the
standard normal distribution. When the random variable is
Gaussian copula type, RT reduces to the Nataf Transformation.

C. PCE with Nonlinear Dependence of Inputs

As discussed in section II, PCE can be constructed once
the basis Ψi and the corresponding coefficients ai are de-
termined. The construction of basis can be achieved via
the Stiltjes procedures [14]. For independent random vector
x = [x1, x2, . . . , xn] with more than one random variable,
the orthogonal basis is then built based on one-dimensional
PC through the tensor product [16]. For related inner product
calculations, Gaussian quadrature rule can be used. As for
coefficients ai, several methods are available, such as projec-
tion method and least-squares minimization method using a
set of collocation points. Gaussian quadrature is a commonly
used projection method with good accuracy and efficiency
[16]. In particular, Smolyak’s sparse quadrature can be used
to overcome the curse of dimensionality when dealing with
high-dimensional integration [11].

In practice, truncation is performed and (2) becomes

ytPC =

NP∑
i=0

aiΨi(x) (9)

where NP =(n + P )!/(n!P !) − 1, n is the number of com-
ponents in x; P is the degree of the truncated polynomial
function. Note that the adaptive sparse PCE allows one to
build a PCE with growing number of components [16].

With calculated orthogonal basis and the corresponding
coefficients, the mean and variance can be estimated via

E[ytPC ] = a0 var[ytPC ] =
∑NP

i=1 a
2
iE[ψ2

i ] (10)

where E[ψ2
i ]=1 for an orthonormal basis. It is worth pointing

out that the PCE can work as a surrogate model as well
to provide pointwise predictions of model response y. The
surrogate model is more computationally efficient when using
MCS as compared to the original power flow model.

As shown in Fig.1, the practical PV power injections have
nonlinear dependence structure. The traditional PCE using
(9) and (10) assume that the random inputs are independent.
Specifically, in the presence of nonlinear dependency structure,
the orthogonality property does not hold for true [17]. As a

result, some modifications are required to deal with that. In
this paper, two main strategies are identified, Strategy I) re-
construction of PCE that preserves the orthogonality property
even the random inputs have dependencies and Strategy II)
preprocessing on inputs to transform the dependent variables
into independent ones.

Strategy I: the first strategy is to develop a more general
method for constructing a PCE basis. Gram-Schmidt orthonor-
malization is an alternative way to construct basis when tensor
product fails to preserve orthogonality in the presence of de-
pendent inputs [17]. However, applying additional complicated
procedures is conflicting with the initial purpose of simplifying
the probabilistic power flow model. Computational demand
will also increase under this circumstance [17].

Strategy II: the second strategy is to transform dependent
input random vector x into an independent one z. Then, the
PCE can be directly applied to z and obtain the following
form:

ytPC =

NP∑
i=0

a′iΨ
′
i(z) (11)

In this paper, the second strategy is adopted to achieve reduced
complexity and easy implementations.

D. Algorithm Implementation

Fig. 2 illustrates the general procedure of constructing PCE.
For PCE in (11), the basis Ψ and the coefficients ai are the two
fundamental elements. For input x with dependent structure
Cx, additional step for data transformation is required. In
summary, the main steps for implementing the proposed
method are as follows:
• Step 1: Modeling the nonlinear dependent inputs using

copula statistics. Specifically, the CDF (4) is obtained
from inferred copula Cx and its inverse function. Conse-
quently, the inverse RT (8) is then built on inverse CDF.
Note that this step is done offline and data-driven as long
as the dependence structure does not change, which is
the case for practical power systems;

• Step 2: Constructing the PCE basis Ψ based on indepen-
dent random vector z. As discussed in section III-C, this
step involves the Stieltjes procedure [14], tensor product
[16], and parameter estimations.

• Step 3: Calculating coefficients of PCE. Coefficients are
evaluated on a set of observations {(zi, yi)}Nc

(i=1), where
zi are representative samples of the random vector z
and yi are the corresponding responses of the original
model Mpf . Since the original model requires input x,
the collocation points vector z are first transformed to x
via (7) and (8) before being fed into the original model.
Note that the number of collocation points Nc must be
no smaller than the number of basis NP . In addition,
the PCE coefficients estimation process is the most time-
consuming parts of the proposed method but it naturally
fits the parallel computing structure. In the future work,
we will explore the benefits of doing that to further speed
up the computing.
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TABLE I
COMPARISON RESULTS OF DIFFERENT PCE MODELS

Model eµ(×10−2%) eσ2 (%) CPU time (s)
V θ V θ

Mpf — — — — 302.63
Mindep 0.582 13 39.50 55.03 (9.14 + 6.57)
Mlnr 0.224 16 2.14 2.03 (10.64 + 7.66)
Mnonlnr 0.01 0.473 0.46 0.11 (12.52 + 9.07)

IV. NUMERICAL RESULTS

In this section, the performances of the proposed method are
tested on the modified IEEE 57-bus system with integration
of PV and wind generations. PV injections are assumed to
have nonlinear dependencies and modeled by Coupla statis-
tics while the power injections from wind generations are
assumed to be linearly correlated Weibull distribution [23].
Specifically, using the data set from SRML [19] that has
annual year 2019 historical data of 5-minute time interval,
three stations are selected and copula dependence structures
of PV generations Cx are inferred. Cx consists of five random
variables x = [x1, x2, x3, x4, x5], where x1, x2, x3 are power
outputs of PV generations while x4, x5 are those from wind
generations. These five generations are assumed to be at buses
14, 44, 45, 41 and 43, respectively as shown in Fig.3. For
PV power outputs x1, x2, x3, the marginals are estimated
through kernel density estimation. Vine copula structure Cx

for x=[x1, x2, x3, x4, x5] is inferred by maximum likelihood
estimator. Note that the wind power outputs x4, x5 are in-
dependent of PV power outputs x1, x2, x3. The approximated
dependence structure model Cx is used for actual power output
to generate input x.

In this paper, the AC power flow model is taken as the
original model Mpf . The selected responses are voltage
magnitude Vi and voltage angle θi on bus i. The model
outputs are y = [V1, . . . , V57, θ1, . . . , θ57]. For multi-output
systems, each component in y is modeled by an independent
polynomial expansion Pi on the same collocation points. Three
comparison models are considered when the inputs x =
[x1, . . . , x5] have vine copula structure. Model I: All the vari-
ables xi(i = 1, . . . , 5) are independent, that is, constructing
PCE model Mindep ignoring the dependence of input vector
x. Model II: a linear relationship between random variables is
assumed as an approximation. The correlation coefficients can
be employed to describe the dependence structure of the input.
Following that, PCE model Mlnr is constructed. In this case,
the transformation of correlated input x into uncorrelated input
z can be either RT or inverse Cholesky Transformation. Model
III: The proposed method that uses a vine copula structure
and RT to help construct PCE model Mnonlnr considering
both linear and nonlinear dependent inputs. A total number
of 114 polynomial expansions are included in each PCE
model. The performance is evaluated on the evaluation data
set xval, which is sampled from copula Cx. MCS results
yval = Mpf (xval) are used as the baseline to assess the

performance of each PCE models. The mean and variance of
the output of each PCE model are used to calculated and used
to assess the accuracy of each one. Specifically, the percentage
relative absolute error (%RAE) is used as the index and is
shown as follows:

%RMAE =
1

N

∑∣∣∣∣y∗ − ŷy∗

∣∣∣∣ (12)

where ŷ are the estimated results from method while y
represents the true values.

For measuring the distance between two different distri-
butions, the Kullback–Leibler divergence characterizes the
difference with respect to probability density function [17].
Note that voltage magnitudes and angles on reference bus and
the voltage magnitudes on PV generator buses are excluded
from the evaluation index as they are constant. Since the
statistics of the estimation result are the main focuses, %RAE
of mean and variance on each measuring response, {Vi,θj},
are calculated, and the averages of %RAEs are denoted as
{eµ, eσ2}. All simulations are conducted in MATLAB with
3.00 GHz Intel Core i7-9700 PC.

Fig. 3. Modified IEEE 57-bus system with PV and wind integration

A. Validation of the Proposed Method
Due to space limitation, only the results of volt-

age magnitude and angle at bus 45 are used for il-
lustrations. The evaluation results for all four models
{Mpf ,Mindep,Mlnr,Mnonlnr} are provided as demon-
strated in Fig.4. The experiment is based on the data set from
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TABLE II
COMPARISON RESULTS OF DIFFERENT PCE MODEL PERFORMANCES WITH DIFFERENT COPULA TYPES AND PARAMETERS.

Copula Parameter t Copula Type PCE Degree n
1 2 3 4 Frank Gumbel t Clayton 2 3 4 5

eµ
V

Mnonlnr 0.088 0.192 0.078 0.149 0.036 0.177 0.091 0.100 0.218 0.100 0.053 0.013
Mlnr 0.115 0.811 0.189 0.609 0.125 0.206 0.609 2.242 0.587 2.242 1.224 0.557

(×10−3%)
θ

Mnonlnr 4.394 7.418 5.313 7.881 3.147 9.748 6.142 4.735 8.354 4.735 3.14 0.633
Mlnr 25.19 59.99 10.28 41.37 26.72 22.95 44.86 162.4 39.68 162.4 88.86 31.14

eσ2
V

Mnonlnr 0.693 0.853 0.725 0.328 0.328 0.340 0.573 0.462 3.339 0.462 0.469 0.278
Mlnr 2.561 2.439 2.233 1.653 1.828 0.756 1.139 2.141 3.825 2.141 1.576 1.523

(%)
θ

Mnonlnr 0.239 0.306 0.374 0.112 0.145 0.082 0.402 0.109 1.741 0.109 0.250 0.127
Mlnr 2.274 1.827 1.561 1.087 2.491 1.204 1.366 2.033 3.260 2.033 1.140 1.355
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Fig. 4. Comparison results: PDFs of voltage magnitude and angle on bus 45 from {Mpf ,Mindep,Mlnr,Mnonlnr}

TABLE III
COPULA STRUCTURE OF Cx AND PARAMETER SETTINGS

Bivariate copula Family Rotation Parameter t

C3,2 Clayton 0 3.7173
C3,1 Gumbel 180 3.0480
C2,1|3 Gumbel 0 1.3364

C4,5|3,2,1 Gaussian 0 0.6012
others Independent 0 —

SRML introduced in section IV. The validation input data set
xval is sampled from Cx with a sampling number of N=105,
where Cx is inferred from data set. The degree of PCE n=3.
The PDF curve is obtained by kernel density estimation.

Table I shows the comparison results of each method,
including the estimation errors as well as the computing times.
It can be found that if no correlations are modeled for the
inputs,Mindep yields significant errors on both the bus voltage
magnitudes and angles. When the linear correlation is used
to approximate the nonlinear dependence structure among the
inputs, Mlnr achieves significant improvement as compared
to that ofMindep. By contrast, the proposedMnonlnr is able
to effectively capture both linear and nonlinear correlations
of the inputs and yield much more accurate results than the
other two methods. In terms of computational efficiency of

each method, the CPU times are the average values of PCE
construction by implementing the algorithm 100 times. For
the MCS, N = 105 samples are used. It is worth pointing out
that the CPU time for PCE models consists of two main parts,
the collocation points determination via regressions and PCE
model basis, coefficients and voltage magnitudes and angles
calculations. In Table I, the CPU time is divided to reflect
that. It has been elaborated in the algorithm implementation
section that the first part of CPU time can be significantly
reduced via the parallel computing. While for the second part,
more powerful computers and the ANOVA technique can be
leveraged to reduce that. These will be our future works. It
is observed that since the proposed method involves more
complicated process of dealing with nonlinear dependencies,
it takes a little bit more time than the Mlnr. The MCS is of
15 times higher order complexity of the proposed method.

B. Effects of Degree of PCE Orders

It is well-known that the degree of PCE order can impact
both accuracy and computational cost. It is usually set to be
2 in the literature as it allows us to achieve sufficiently high
accuracy. To investigate if this choice works for the scenario,
where nonlinear dependence occurs, different degrees of PCE
orders are tested. Table.II shows the testing results. Note that
the initial experimental settings are the same as those in the
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Section IV-A. It can be found that the overall performance
improves when the order n increases as expected. BothMlnr

andMnonlnr achieve better results on eµ than eσ2 . This is also
clearly demonstrated in Fig. 4. However, there are exceptions
such as eσ2 of n = 3 and n = 4 for Mnonlnr. This indicates
that the nonlinear model is complicated and n can be a hyper-
parameter for tuning. According to (9), model construction
time will also increase with more terms in PCE. For this
power system application, to balance computational efficiency
without loss of accuracy, the number of degrees is chosen to
be n = 3.

C. Effects of Copula Types and Parameters

The inferred copula Cx describes the linear/nonlinear re-
lationship among the uncertain inputs. As a result, different
bivariate copula types and parameters will affect the results.
On other hand, due to weather and geographical changes,
the dependence structure of PV power outputs may vary. To
investigate their impacts on the proposed method, different
copula types are considered. Specifically, the bivariate copula
type of (x3, x2) is set to be {Frank,Gumbel, t}, respectively.
While the bivariate copula parameter t of (x3, x2) is altered
to {2, 3, 4} respectively to investigate the impacts of copula
parameter. The results are presented in Table II. It can be ob-
served that different dependence structures of the random vari-
ables indeed affect PCE model performance. In general, under
various conditions, our proposed method still outperforms the
Mlnr. Specifically, the performances of {Mlnr,Mnonlnr}
on eµ are close. But there are notable differences on eσ2 .
For different copula types,Mnonlnr significantly outperforms
Mlnr for all indices. This indicates that the nonlinear model
has outstanding advantages on these three types. On the other
hand, the performances of both models are close for some
indices and copula types, e.g., eµ on V . Note that for different
copula parameters t, the nonlinear dependencies affect the
degree of nonlinearity. When t=4, Mnonlnr achieves much
better performance than the Mlnr. It is interesting to note
that if the nonlinearity is weak, their performances are close
while Mlnr has better computational efficiency. Therefore,
depending on the degree of nonlinearity, the Mnonlnr and
Mlnr can be effectively combined together to obtain high
accuracy while being computationally attractive. This will be
investigated in the future.

V. CONCLUSION

In this paper, a generalized Copula-PCE framework is
proposed to deal with both linear and nonlinear dependent
uncertain inputs for power system probabilistic power flow.
The critical step is to infer the dependence structure from the
data via copula statistics and leverage the RT to transform
dependent variables into independent ones. The latter allows us
to conveniently adopt PCE for quantifying power flow results.
Simulation results on the IEEE 57-bus system show that the
proposed method can deal with different nonlinear dependence
structures modeled by different copula types and parameters.
Its performance is also much better than the method that only

considers linear correlations. It is also found that the widely
used 2 degrees of order for PCE does not work well for
nonlinear dependent variables, instead a degree of 3 is a good
trade-off between computational efficiency and accuracy.
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