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We perform numerical-relativity simulations of high-energy head-on collisions of charged black holes

with the same charge-to-mass ratio λ. We find that electromagnetic interactions have subdominant effects

already at low Lorentz factors γ, supporting the conjecture that the details of the properties of black holes

(e.g., their spin or charge) play a secondary role in these phenomena. Using this result and conservation of

energy, we argue these events cannot violate cosmic censorship.
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Introduction.—High-energy collisions of black holes are

excellent laboratories to probe general relativity and to

study the theory under extreme conditions (for reviews, see

relevant sections in [1,2]). Because of its highly dynamical

nature, the problem is best approached with numerical

calculations, as the ones that opened this line of research in

2008 [3,4]. Since then, studies have explored most of the

possible variables (mass, impact parameter, spin [3–13]),

with the noticeable exclusion of charge [electric, or

associated to a generic U(1) field]. In this Letter, we tackle

this long overdue problem and present general-relativistic

simulations of head-on collisions of black holes with the

same charge.

One of our main objectives is to test whether “matter

matters” in the ultrarelativistic regime [14–16]. According

to this idea, the details of the properties of bodies (e.g., their

spin, or composition) are irrelevant in collisions with high

center-of-mass energy. The conjecture originates from

considering that ultrarelativistic mergers are dominated

by the kinetic energy, so the details of the interaction

are unimportant. This has been verified numerically for

spinning [8,17] and nonspinning black holes [3,4,7], as

well as for boson fields [18], perfect fluids [19,20], and

plane waves [21]. The problem has also been studied in

higher dimensions [11–13,22,23], where, in case of AdS5,

it is relevant for gauge-gravity dualities. This conjecture is

also at the basis of Monte Carlo event generators [24–26]

for microscopic black holes in particle accelerator. Here, we

test this hypothesis for black holes with charge, a parameter

that has not been considered so far.

Our second goal is to check if it is possible to form naked

singularities with ultrarelativistic collisions, verifying

whether the cosmic censorship conjecture holds. Testing

this has been a recurring theme in this line of research (e.g.,

[3,5,13,23]), but no violation has been found so far in four-

dimensional spacetimes. High-energy collisions of charged

black holes are a particularly interesting setting to inves-

tigate this idea because charge is another way, together with

spin, to reach black-hole extremality. Kerr-Newman

spacetimes with too much charge and/or spin compared

to their mass do not have horizons [27], so overcharging or

overspinning a black hole would be a way to form a naked

singularity. Because of the emission of energy, ultrarelativ-

istic collisions might lead to conditions in which the remnant

would be “overextremal,” and create a naked singularity. In

the case of spinning black holes, this is avoided by radiating

away the excess angular momentum. However, charge is

conserved and cannot be radiated away, constituting a

significant difference compared to spin. Moreover, if charge

does not matter, the colliding black holes will always merge

and will not repel due to electrostatic interaction. So, if the

formation of naked singularities is avoided, it is interesting to

understand how this is achieved.

This Letter focuses on testing whether charge is impor-

tant in the context of high-energy collisions and whether

naked singularities can form in this environment. Our goal

is not to perform a high-precision study, which would

require extreme numerical resolution and sophisticated

initial data (see, e.g., [6,28]), but we aim to describe the

general features of the phenomenon. Our main conclusion

is that we find evidence that, even at a low value of the

boost factor γ, important gauge-independent quantities do

not depend on the charge, supporting the idea that charge

does not matter in ultrarelativistic collisions. Having found

no evidence that all the kinetic energy in the system can be

radiated away, we argue that ultrarelativistic collisions of

black holes with the same charge do not form naked

singularities. These conclusions are robust despite the

overall accuracy of our simulations of order 10%. In

general, our full general relativistic calculations show that

the problem can be well understood with simple semi-

classical arguments, which we present below.

The Letter is structured as follows. First, we describe our

theoretical and numerical setup. Then, we report the results

and our interpretation, and finally, we give some concluding

remarks. We use Gaussian units with G ¼ c ¼ 4πϵ0 ¼ 1,

and we report results in terms of M ¼ M1 þM2, where M1

and M2 are the individual Christodoulou masses [29,30].
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Setup.—We solve the Einstein-Maxwell equations in the

3þ 1 decomposition of the spacetime [31,32] (see also

[33–35]) for head-on collision of equal-mass, equal-charge

black holes with charge-to-mass-ratio λ ∈ f0; 0.2; 0.4; 0.6;
0.8g and initial linear momentum P=M ∈ f0.2; 0.4; 0.6g.
We use the EINSTEIN TOOLKIT [36,37] for the numerical

integration and KUIBIT [38] for the analysis. We adopt the

same setup as in [39], where we provide a more in-depth

discussion. Note that, with the exception of KUIBIT and

TWOCHARGEDPUNCTURES (see below), we use the same

computational tools that are extensively employed in this

line of research (e.g., [3,5–8,10,11,17,40,41]).

We generate constraint-satisfying initial data with

TWOCHARGEDPUNCTURES [30] for two black holes with

masses [29,30]M1 ¼ M2 ¼ 0.5M and charge-to-mass ratio

λ1 ¼ λ2 ¼ λ. The two punctures are aligned along the z axis
with an initial separation of 150M. In the limit of infinite

separation of in the case of isolated black holes,

TWOCHARGEDPUNCTURES [30] reduced to Reissner-

Nordström in isotropic coordinates. The boost factor is

controlled by the Bowen-York momentum P, an input

parameter in TWOCHARGEDPUNCTURES, which is equal

to the Arnowitt-Deser-Misner (ADM) [31,32] linear

momentum for a case of a single black hole [30] and

corresponds to a Lorentz factor of γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4P2=M2
p

.

TWOCHARGEDPUNCTURES employs the conformal-

traceless-traverse approach [30,42–44], extending what is

done by the well-known TWOPUNCTURES [45] pseudospec-

tral solver for the uncharged case. In particular, the code

assumes conformal flatness and Reissner-Nordström

electromagnetic fields. This leads to “junk” radiation,

especially in the electromagnetic sector, that can be up

to a few percent of the total energy. The initial separation is

large enough that we can isolate the real signal from the

spurious one (see also Supplemental Material [46]).

We evolve the spacetime and electromagnetic fields with

the LEAN and PROCAEVOLVE codes [47–49]. LEAN imple-

ments the Baumgarte-Shapiro-Shibata-Nakamura formu-

lation of Einstein’s equation [50,51] and the moving

puncture approach, while PROCAEVOLVE evolves the

electromagnetic vector potential to maintain the magnetic

field divergenceless and has a constraint-damping scheme

for the Gauss constraint. We use the Lorenz gauge for the

electromagnetic potential, the 1þ log and Γ-freezing

slicing conditions for the lapse function and shift vector

[52–54].

The simulations are on CARPET [55] Cartesian grids with

octant symmetry, with two centers of refinement (one

tracking the puncture, and the other fixed in the center)

and 13 levels. The outer boundary is placed at least at 600M,

where it is not in causal contact with the inner part of the grid

throughout the duration of the simulations. We use the

continuous Kreiss-Oliger dissipation introduced in [39].

Since the size of the horizons depends on the charge-to-

mass ratio λ, we change the resolution to ensure that

the black holes are always resolved with at least 80 points.

We estimate the initial horizon radius as if it was a

Reissner-Nordström black hole in isotropic coordinates

[30] and set the finest grid spacing to Δxfinest ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p

=
320M. (In isotropic coordinates, the horizon radius for a

Reissner-Nordström black hole with mass M1 ¼ 0.5M

and charge Q1 ¼ λM1 is
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p

=4M.) Depending on

the charge, this can lead to resolutions up to M=550.
We find that our simple prescription for the grid reso-

lution is effective in properly resolving the black holes. We

locate apparent horizons with AHFINDERDIRECT [56], and

compute their properties with QUASILOCALMEASURESEM

[30], an extension of QUASILOCALMEASURES [57] for full

Einstein-Maxwell theory [58–60]. At the level of the initial

data, we find that the horizons are coordinate ellipsoids

covered by at least 40 points along the semiminor axis.

Then, the horizons expand and for most of the simulation

our grid resolves the semiminor axis with at least 120 points.

The merger remnant is resolved even better. As a result, the

quasilocal properties are well behaved in all our simulations

(e.g., charge is conserved at better than 0.6%).

We extract radiation with the Newman-Penrose formal-

ism [22,49,61] at finite extraction radii ranging from 80M
to 200M. We note that, while the properties of the horizons

are remarkably stable, interpolation across several refine-

ment boundaries and the truncation error in the wave zone

lead to noisy electromagnetic waves (see Supplemental

Material [46]).

Results.—The main conclusion from our simulations

of high-energy head-on collisions of black holes is that

charge does not matter for a number of gauge-independent

quantities. Before we present our results in detail, we define

quantitatively what we mean by “charge does not matter.”

In Newtonian physics, the problem of two charged point

masses is mathematically equivalent to the purely gravita-

tional one upon rescaling of G by a factor ð1 − λ2Þ.
This simple scaling is surprisingly effective in predicting

results of fully general-relativistic calculations [39–41,62].

Therefore, if charge mattered, we would expect most results

(e.g., amplitude of Ψ4) to vary with factors ð1 − λ2Þ for

varying λ and fixed P. Conversely, if charge did not matter,

all the results should become approximately the same

within our error (see Supplemental Material [46]).

We demonstrate that charge has negligible influence in

the dynamics of high-speed mergers by discussing some

key properties of the gravitational waves and of the

horizons. In Fig. 1, we present the real part of the dominant

mode of the Newman-Penrose scalar Ψ4 (l ¼ 2, m ¼ 0) for

simulations with fixed Bowen-York momentum P ¼ 0.4M
and varying charge-to-mass ratios λ. We do not apply any

time shift or any other transformation to align the signals.

The good alignment indicates that charge does not have a

strong impact in the event (compare this with Fig. 5 in [40],

where signals had to be scaled by the factor 1 − λ2; see also

Supplemental Material [46] for a more detailed
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comparison). We find the same properties as in the

uncharged case [3]: there is a precursor signal, a main

burst after the formation of the apparent horizon, and the

ringdown. The time of formation of the common apparent

horizon (vertical dashed line) is nearly independent of the

charge and the peak of the signal occurs always approx-

imately 15M after this time. The total energy lost by

gravitational and electromagnetic waves is reported in

Fig. 2. Collisions from zero initial momenta were studied

in [40], where it was found that there is a significant

contribution from electromagnetic fields to the energy

radiated (up to 25%). Instead, we never find large amounts

of electromagnetic waves in our simulations, and almost all

the energy is lost through gravitational waves. Figure 2

shows how all our simulations at fixed P radiate the same

amount of energy irrespective of λ (within our error, see

Supplemental Material). In Fig. 2, we also plot the estimate

of the energy lost in ultrarelativistic collisions obtained in

the zero-frequency limit (ZFL) [63], which has been shown

to be a good approximation to the fractional energy lost

EGW=MADM for collisions in the absence of charge [3,6].

According to this formalism, EGW=MADM scales as

EGW

MADM

¼E∞

�

1þ2γ2

2γ2
þð1−4γ2Þlnðγþ

ffiffiffiffiffiffiffiffiffiffiffi

γ2−1

p

Þ
2γ3

ffiffiffiffiffiffiffiffiffiffiffi

γ2−1

p

�

; ð1Þ

where E∞ is the energy lost for infinitely boosted black

holes, which has numerically been calibrated to be approx-

imately 0.13. Our simulations also find a good level of

agreement with the ZFL estimate.

Finally, we consider the remnant properties. We find that

the fractional difference of the quasilocal mass of the final

black hole between the charged and uncharged cases is

always below 1%. This implies that the mass of the remnant

does not depend on λ at the level of our accuracy (see

Supplemental Material). Note, however, that apparent

horizons are not completely gauge invariant as they depend

on the spacetime slicing.

Our simulations demonstrate that even with small boosts

(γ ≈ 1.1) charge does not matter in the dynamics of the

event and in a number of gauge-independent quantities, or

if it did, it would do so only at the percent level (contrarily

to what happens for γ ¼ 1 [40]). We can build intuition on

why this happens with the following qualitative semi-

classical argument. Consider a head-on collision of two

black holes with massM, chargeQ ¼ λM, Lorentz factor

γ, and infinite initial distance. Initially, the interaction is

negligible and the motion is completely determined by the

initial velocity. The separation dEM at which the electro-

magnetic interaction starts to be important is when the

magnitude of its associated energy (λ2M2=dEM) is com-

parable to the kinetic energy [2ðγ − 1ÞM]. (The gravita-

tional interaction starts to be important at larger

separations. However, this increases the kinetic energy

and only makes the conclusions stronger.)

dEM ¼ λ2M

2ðγ − 1Þ ¼
λ2

4

MADM

γðγ − 1Þ ; ð2Þ

where we used thatMADM ¼ 2γM. For separations that are

much larger than this value, the bodies can be considered

noninteracting, so charge does not matter. In classical

physics, particles will always reach dEM, where they start

to be repelled by the electrostatic force. This is not what

happens for black holes, where there is another length scale

that we need to consider and that drastically alters this

picture. Assuming that all the initial energy ends up in the

remnant, and callingR ¼ 2MADM its Schwarzschild radius,

FIG. 1. Real part of the dominant multipolar component of

the Newman-Penrose scalar Ψ4 (l ¼ 2, m ¼ 0) for simulations

with different charge-to-mass ratio λ as extracted at radius

rex ¼ 131.430M. Note that no time shift was applied to the

signals: the almost identical alignment indicates that charge has a

negligible influence in these collisions. The time of formation of

the horizon is also nearly insensitive to the value of charge.

FIG. 2. Total energy lost by gravitational and electromagnetic

waves normalized to the initial ADM mass. At any given Bowen-

York momentum P, the energy lost for different values of λ is the
same (within our error, see Supplemental Material [46]). The

black line is the zero-frequency limit (ZFL) prediction [63]

[Eq. (1) with E∞ ¼ 0.13], which has been shown to be accurate

for uncharged collisions [3,6].
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we expect R to be where general-relativistic effects to be

dominant (consider, for example, the hoop conjecture [64]).

When the two initial horizons get closer than R, they stick

together as a newly formed remnant, overcoming the

electrostatic repulsion. So, if dEM ≪ R, electromagnetism

starts to be dominant only after the formation of a common

apparent horizon and charge would be unimportant. We

conclude that charge does not matter when dEM=R ≪ 1,

and, according to our simple model, dEM=R ¼
λ2=½8γðγ − 1Þ�. This value is smaller or much smaller than

one for all λ and P we considered, consistently with the

results of our numerical-relativity simulations.

Established that charge plays a subdominant role in the

dynamics of the event under consideration, we can now

turn to the problem of cosmic censorship. We argue that

the conjecture is not violated in ultrarelativistic head-on

collisions of charged black holes on the grounds that the

final black hole always has λremnant < 1 for any given initial

charge and momentum. We tackle this problem with

conservation arguments. Consider two black holes with

Christodoulou mass M, charge Q ¼ λM boosted

with Lorentz factor γ and initial separation such that they

can be considered noninteracting. Conservation of energy

implies that the mass of the remnant has to be Mremnant ¼
MADM − EGW − EEM, where EGW and EEM are the ener-

gies carried away by gravitational and electromagnetic

waves, respectively. Let us define ϒðγÞ ¼ EEM=EGW and

ZðγÞ ¼ EGW=MADM. As shown in Fig. 2, the ZFL

approach provides a good approximation to ZðγÞ, so we

can use the expression in Eq. (3) in [3], noting that ZðγÞ ≲
0.14 for any value of γ [3,6]. Conversely, we do not have

a good formula for ϒðγÞ. In [40] it was found that

ϒð1Þ ≈ λ2=4, and our simulations show that ϒðγÞ ≪
λ2=4 even for low values of γ, in accordance with the

conjecture that charge does not matter. So, assuming that

the conjecture is true, ϒðγÞ has to be at least bound.

Dividing the equation of energy conservation by MADM

and using Mremnant ¼ 2Q=λremnant (charge is conserved)

and MADM ¼ 2γQ=λ, we find that

λremnantðγÞ ¼
�

1

1 − ½1þϒðγÞ�ZðγÞ

�

λ

γ
: ð3Þ

Given that ϒðγÞ and ZðγÞ are bound, there exists a constant
C such that the term in the brackets is smaller than C for

all γ. Hence, λremnant ≤ Cλ=γ, indicating that λremnant

decreases with γ. In Fig. 3, we show Eq. (3) by reporting

the values of λremnant predicted for various λ assuming

ϒðγÞ ≪ 1. We overlay the result of our simulations with

markers, which are in excellent agreement. Since in the

limit of γ → ∞, Eq. (3) predicts that λremnant goes to zero,

we find agreement with the conjecture that matter does not

matter and we conclude ultrarelativistic head-on collisions

of charged black holes should not be expected to form

naked singularities. This result is robust and only depends

on the assumption that electromagnetic waves cannot

radiate away all the additional kinetic energy, as our general

relativistic calculations show.

Conclusions.—Ultrarelativistic collisions of black holes

are fertile ground for theoretical studies in general relativity

and high-energy physics. In this Letter, we presented the

first results on high-energy head-on mergers of charged

black holes. We found that the intuition built with simple

semiclassical arguments carries over to full general rela-

tivity. First, we found that charge does not play an

important role, supporting the conjecture that matter does

not matter. This is an important step in claiming that the

conclusion holds for generic four-dimensional general-

relativistic black holes. This result is also important in

the context of the production of microscopic black holes in

particle accelerators and cosmic rays. We also argued that,

as a result, we should not expect the formation of naked

singularities in this kind of event.

Given that the expectation that charge is unimportant is

met even with relatively low boosts, we anticipate that

varying the other variables that were not considered here

(mass, impact parameter, charge, spin) will yield the same

results as the uncharged case. This should be tested, along

with expanding the current study to more extreme λ and P
and increasing the accuracy. This might require enhance-

ment in the initial data (e.g., by using better guesses for the

electromagnetic fields and by lifting the assumption of

conformal flatness) and a reduction in the error budget

(e.g., by reducing initial data ambiguity, increasing the

accuracy in the wave zone—possibly with multipatch grids

[65]—and performing interpolation of waves to infinity).

G. B. is indebted to Vasilis Paschalidis for several

insightful conversations and comments on the manuscript.

FIG. 3. Charge-to-mass ratio λremnant for the remnant left by a

merger of two equal-mass black holes with initial Lorentz factor γ

and charge-to-mass ratio λ. The curves are obtained with Eq. (3)

assuming ϒðγÞ ¼ 0 (expected from the fact that charge does not

matter in the energy emitted in these mergers) and the markers are

the values from our simulations. The figure seems to hint that the

only case where we can obtain an overcharged remnant is with λ,

γ → 1, where our approximations break down and previous

studies found no violation [40].
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