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Realizing topological edge states with Rydberg-
atom synthetic dimensions
S. K. Kanungo 1,2✉, J. D. Whalen1,2, Y. Lu1,2, M. Yuan 1,2,3,4, S. Dasgupta1,2, F. B. Dunning1,

K. R. A. Hazzard1,2✉ & T. C. Killian 1,2✉

A discrete degree of freedom can be engineered to match the Hamiltonian of particles

moving in a real-space lattice potential. Such synthetic dimensions are powerful tools for

quantum simulation because of the control they offer and the ability to create configurations

difficult to access in real space. Here, in an ultracold 84Sr atom, we demonstrate a synthetic-

dimension based on Rydberg levels coupled with millimeter waves. Tunneling amplitudes

between synthetic lattice sites and on-site potentials are set by the millimeter-wave ampli-

tudes and detunings respectively. Alternating weak and strong tunneling in a one-dimensional

configuration realizes the single-particle Su-Schrieffer-Heeger (SSH) Hamiltonian, a para-

digmatic model of topological matter. Band structure is probed through optical excitation

from the ground state to Rydberg levels, revealing symmetry-protected topological edge

states at zero energy. Edge-state energies are robust to perturbations of tunneling-rates that

preserve chiral symmetry, but can be shifted by the introduction of on-site potentials.
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A synthetic dimension1,2 is a degree of freedom encoded
into a set of internal or external states that can mimic
motion of a particle in a real-space lattice potential.

Synthetic dimensions are powerful tools for quantum simulation,
opening exciting possibilities such as the realization of higher
dimensional systems1,3,4, non-trivial real space5,6 and band
structure7,8 topologies, and artificial gauge fields9,10. These can be
used in conjunction with real space lattices to create situations
unavailable to either method individually. Experiments have
utilized various degrees of freedom2 to create synthetic dimen-
sions, such as motional11,12, spin9,13–15, and rotational16 levels of
atoms and molecules, and frequency modes, spatial modes, and
arrival times in photonic systems2.

Prominent demonstrations of atomic synthetic dimensions
include observation of artificial gauge fields, spin-orbit coupling,
and chiral edge states in Raman-coupled ground magnetic
sublevels9,13,17 or single-photon-coupled electronic orbitals18,19

grafted onto motion in a real 1D optical lattice. A synthetic
dimension can also be formed by discrete motional states20, such
as free-particle momentum states coupled with momentum-
changing two-photon Bragg transitions21,22. The latter has been
used to observe Anderson localization23, artificial gauge fields24,
and topological states25,26.

Here we harness Rydberg levels of 84Sr to realize a synthetic
lattice for studying quantum matter. Rydberg levels ij i and jji
coupled with amplitude Ωij by resonant millimeter waves are
described by the same Hamiltonian as a particle tunneling
between lattice sites ij i and jji with tunneling amplitude Jij=Ωij/
2. Because of this mathematical equivalence to particles moving
in a real-space lattice, coupled Rydberg levels can function as a
synthetic spatial dimension. This scheme, first suggested in2, is
similar to a proposal for synthetic dimensions based on molecular
rotational levels27–29. It allows for control of the connectivity,
tunneling rates, and on-site potentials, and creation of a broad
range of synthetic dimensional systems, including systems not
realizable in physical space. The number of available Rydberg
levels and strong transition dipole moments make large and
complex synthetic landscapes feasible. Rydberg dipole-dipole

interactions30 provide a mechanism for creating tunable, localized
interactions for many-body systems in synthetic space, which is a
challenge for other atom-based platforms. The concept of a
synthetic dimension was recently used to explain conical inter-
sections in the potential energy curves of Rydberg molecules31.

To demonstrate the capabilities of Rydberg-atom synthetic
dimensions, we realize the Su-Schrieffer-Heeger (SSH) model32 in
synthetic space (Fig. 1), and study its topologically protected edge
states (TPS) and their robustness to disorder. The SSH model
describes a linear conjugated polymer, such as polyacetylene, with
alternating weak and strong tunneling. The configuration with
weak tunneling to edge sites possesses doubly degenerate TPS
with energy centered in the gap between bulk states [Fig. 1d]. TPS
energies are robust against perturbations respecting the chiral
symmetry of the tunneling pattern33,34, as observed in many
systems25,35–37.

Results
Creating and Probing the Synthetic Lattice. The essential ele-
ments of the apparatus are shown in Fig. 1a. 84Sr atoms are
trapped in an optical dipole trap at a peak density of about
1011 cm−3 and a temperature of T= 2 μK. Millimeter waves are
switched on to provide couplings as shown in Fig. 1b or c and
construct a six-site synthetic lattice with three 5sns 3S1(m= 1)
(≡ ns, sites i= 1, 3, 5, with 57s mapped to i= 1) and three 5snp
3P0 (≡ np, i= 2, 4, 6) levels. The resulting Hamiltonian is

Ĥlattice ¼ ∑
5

i¼1
ð�hJi;iþ1 ij i iþ 1h j þ h:c:Þ þ ∑

6

i¼1
hδi ij i ih j; ð1Þ

where Ji,i+1 are the tunneling amplitudes and δi are on-site
potentials set respectively by amplitudes and detunings of the
millimeter-wave couplings, and h is Planck’s constant. To obtain
Eq. (1), we have neglected counter-rotating terms in the
millimeter-wave couplings and transformed into a rotating frame.
The kets ij i correspond to the unperturbed Rydberg levels of 84Sr
up to a time-dependent phase arising from the transformation.
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Fig. 1 Implementing the six-site Su-Schrieffer-Heeger (SSH) model. (a) Experimental schematic. (b) and (c) represent realizations of the SSH model
using six Rydberg levels of 84Sr that, respectively do and do not possess topologically protected edge states (TPS). Double-headed gray arrows denote
near-resonant millimeter-wave couplings, which induce tunneling between sites of the synthetic lattice, and thicker lines correspond to faster tunneling.
Dashed lines show two-photon excitation to a Rydberg level of interest. (d, e) show band structure for (b) and (c) respectively vs. the ratio of strong and
weak tunneling amplitudes, Js/Jw. The site-numbering convention is given in (b), with odd numbers corresponding to ns states.
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δi= 0 yields the SSH model, and the configuration with TPS
has Ji,i+1 = Jw (Js) for i= 1, 3, 5(2, 4) and Jw < Js. For the
configuration without TPS, the weak and strong couplings are
exchanged. Here, the strong coupling Js is varied from 0.5–1.5
MHz, and all data is taken with weak coupling Jw= 100 kHz (Js/
Jw= 5−15). A 4 Gauss magnetic field creates Zeeman splittings
that ensure millimeter-wave couplings to 5sns 3S1(m=−1, 0)
states are negligible.

To populate and probe the synthetic space, the 84Sr ground
state is coupled to the Rydberg levels via two-photon excitation
using the intermediate 5s5p 3P1 level38–40, applied in a 5 μs pulse.
The laser polarizations select excitation to ns(m= 1) levels.
Immediately after excitation, Rydberg populations are detected
using selective field ionization (SFI)41, in which an electric-field
ramp liberates any electrons in an excited Rydberg state. The
electron arrival time on a charged-particle detector heralds the
Rydberg level, or occupied synthetic-lattice site. With the current
experimental resolution, arrival times for states np and (n+ 1)s
are unresolved.

To probe the lattice band structure, the two-photon excitation
laser is tuned, with detuning Δipr

, near the energy of one of the

unperturbed Rydberg levels jipri [Fig. 1b, c]. Neglecting far off-
resonant terms, the Hamiltonian for the entire system can be
written as:

Ĥ ¼
hΩipr

2
jgihiprjei2πΔipr

t þ h:c: þ Ĥlattice; ð2Þ

where Ωipr
denotes the effective two-photon Rabi frequency,

which vanishes for even ipr (np levels), and jgi is the ground state
vector in the frame rotating at the frequency difference of the jipri
and jgi levels. The Rydberg excitation rate before convolving with
instrumental linewidth is well-described as

ΓðΔipr
Þ ¼ π2Ω2

ipr
∑
β
jhβjiprij2δðΔipr

� ϵβ=hÞ; ð3Þ

where jβi and and ϵβ are the eigenstates and eigenenergies of
Ĥlattice [Fig. 1d, e]. These eigenstates in the synthetic dimension
may alternatively be viewed as atomic states dressed by the
millimeter-wave field. Indeed, strong photon coupling of atomic
levels is often described in the language of Autler-Townes
splitting42,43, and the coupling Rabi frequency is related to the
tunneling rate through Ω= 2J. But with increasing system size,
the lattice interpretation becomes more natural: a band structure
emerges even for six levels demonstrated here, as do phenomena,
such as edge states with an energy splitting that is exponentially
small in the number of levels.

SSH Band Structure and State Decomposition. A collection of
spectra, with each spectrum arising from coupling the ground
state jgi to a different lattice site jipri, complement each other to
provide a characterization of the band structure and decom-
position of the eigenstates because the spectral contribution from
each eigenstate is proportional to its overlap with the unperturbed
Rydberg level corresponding to the lattice site ipr.

Figure 2a shows spectra for the configuration with TPS, Js/
Jw= 5, and δi= 0 as a function of probe-laser detuning near each
of the unperturbed Rydberg ns levels (odd ipr). Each spectrum is
normalized by the total signal for its ipr. Contributions to the
spectra near Δipr

¼ 0 (edge states) correspond to population

localized at the upper and lower boundaries of the lattice. Edge
states in a gap of width ~ 2Js between bulk states are hallmark
features of the SSH model.

The edge-state signal is large for probe detuning near the 57s
level (ipr= 1), small for the 58s (ipr= 3) spectrum, and barely

observable for 59s (ipr= 5). The integrated signal intensity
around the peak centered at detuning Δipr

¼ ϵβ=h reflects the

overlap of the lattice eigenstate jβi with jipri [Eq. (3)]. Thus, the
intensity pattern confirms that the edge states are localized on the
weakly coupled boundary sites, with little contribution from
undressed bulk sites 58s (i= 3) and 59s (i= 5). This matches the
expected decomposition of each SSH eigenstate β

�� �
upon the bare

lattice sites, expressed in the factors j βji� �j2, which can be
obtained from direct diagonalization of Eq. (1) [Fig. 2b, β= 3, 4
correspond to edge states]. The widely split bulk states, however,
give rise to the approximately equal spectral contributions at
Δipr

� ±Js in Fig. 2a, revealing the energy splitting in the band

structure. The bulk-state features are strong for gross detuning
near the 58s and 59s undressed levels, and very weak near 57s,

Fig. 2 Band structure and state decomposition for the configuration with
TPS [Fig. 1b]. (a) Rydberg excitation spectra when coupling to ipr= 1(57s),
ipr= 3(58s), and ipr= 5(59s) for Js/Jw= 5. Probe detuning (Δipr

) is from the
undressed Rydberg level. ipr= 3, 5 spectra have been multiplied by a factor
of 2 for clarity. (b) State decomposition weights, j βji� �j2, obtained from
direct diagonalization of Eq. (1) for Js/Jw = 5. Edge states correspond to
β= 3, 4. (c) Same as (a) except for Js/Jw= 15. (d) Peak positions (εβ) in
spectra such as in (a, c), giving the bulk and edge state energies versus Js.
Measurements match the band structure calculated by direct
diagonalization of Eq. (1). Bulk states split by ~ Jw are unresolved in the
spectra. All energies are scaled by Jw. Lines in (a) and (c) are fits of each
feature with a sinc-squared lineshape corresponding to the 5 μs laser
exposure time convolved with a 100 kHz full-width-half-maximum
(FWHM) additional broadening. All error bars denote one standard error
(s.e.) of the mean.
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which is expected because the bulk-state decompositions
[β= 1, 2, 5, 6 in Fig. 2b] show little weight on edge sites 57s
(i= 1) and 59p (i= 6).

Figure 2c shows spectra for stronger coupling Js/Jw= 15, also in
the configuration with TPS. The edge state contributions at
Δipr

¼ 0, indicate greater localization to 57s (i= 1) than for Js/

Jw= 5. Splitting for the bulk states matches Δipr
� ± Js. From the

peak positions in a series of data sets such as Fig. 2a, c, the band
structure as a function of strong-tunneling rate Js can be
measured [Fig. 2d]. It agrees with results from a direct
diagonalization of Eq. (1) with δi= 0.

A series of data sets such as Fig. 2a, c can also be used to study
the variation in state decomposition as a function of strong-
tunneling rate Js. Exact diagonalization, such as Fig. 2b, provides
the decomposition of each SSH eigenstate β

�� �
upon the bare

lattice sites, expressed in the factors j βji� �j2. This can be
compared with experimental measurements of the fraction of
the total spectral area in either the edge or the bulk spectral
features when probing the overlap with a specific lattice site (ipr)
in spectra such as Fig. 2a, c. Spectral area is determined by fitting

each of the three features in a spectrum with a sinc-squared
lineshape corresponding to the 5 μs laser exposure time
convolved with a 100 kHz FWHM Gaussian linewidth from laser
and natural broadening, estimated from independent measure-
ments of spectra in the absence of millimeter-wave fields. Center
frequency and amplitude are varied for fitting. Figure 3 (left)
shows that the experimentally measured edge-state fraction
matches ∑β2edgejhβjiprij2, and Fig. 3 (right) does the same for
the bulk contribution and ∑β2bulkjhβjiprij2. The width of the
calculated line denotes 10% variation in the Rabi frequencies. For
a given Js/Jw, the edge-state measurements in Fig. 3 add to one,
while the bulk-state measurements add to two. This reflects the
fact that there are two edge states and four bulk states for this
system, and half of the weight for the states in each group is in
overlap with even lattice sites, which the photoexcitation probe
does not detect.

For the configuration with strong tunneling to the boundary
sites, which should not have TPS, the Rydberg excitation spectra
show unresolved bulk states split by Δipr

� ± Js, with no states in

the gap between them [Fig. 4a]. A schematic of the full band
structure is shown in Fig. 1e. The state decomposition from direct
diagonalization of Eq. (1) shows that all states have appreciable
bulk character and there are no edge states [Fig. 4b].

State Decomposition with Selective Field Ionization. Because
the spectral probe is only sensitive to ns contributions to the state
vector (odd i), it cannot establish whether the edge states
observed are localized on one boundary site or a superposition of
both. To answer that question, we turn to SFI as a tool for site-
population measurements in Rydberg-atom synthetic dimen-
sions. For Rydberg excitation near 58s, corresponding to ipr= 3,
and for Js/Jw= 5 [Fig. 2a], if the detuning is set to resonance with
the left or right bulk-state peaks (Δipr

� ± 500 kHz), electrons are

liberated at ionization fields for Rydberg levels corresponding
entirely to bulk sites of the synthetic lattice (i= 2−5) [Fig. 5a].
For laser detuning on the edge-state peak (Δipr

� 0), signal arrives

at fields corresponding predominantly to the 57s Rydberg state
(i= 1) [Fig. 5b]. This indicates localization of the edge state on
the boundary in general and, more specifically, on the single
boundary site connected to the ground-state by the two-photon
excitation [Eq. (3)], which is a linear combination of states β= 3
and β= 4. Integrals of SFI signals corresponding to each lattice

Fig. 3 Synthetic-lattice-eigenstate decomposition obtained from spectral-
line areas [e.g. Fig. 2a, c] for the configuration with TPS [Fig. 1b]. Error
bars reflect fit uncertainties. (a) Fraction of the entire signal under the
spectral features corresponding to the edge states for probe tuned near site
ipr (Rydberg level) indicated in the legend. The line is the sum of the
squares of the calculated overlaps of the SSH edge eigenstates with the ipr
site found from a direct diagonalization of Eq. (1) with δi= 0 [e.g. Fig. 2b].
(b) Fraction of the entire signal under the bulk state features and calculated
sum of squares of the overlaps of the SSH bulk eigenstates with the ipr site.

Fig. 4 Study of coupling configuration without TPS [Fig. 1c] at Js/Jw= 5.
(a) Rydberg excitation spectra when coupling to ipr= 1(57s), ipr= 3(58s),
and ipr= 5(59s). Probe detuning (Δipr

) is from the undressed Rydberg level.
Lines are the same as in Fig. 2. Error bars denote one s.e. of the mean. (b)
State decomposition weights, j βji� �j2, obtained from direct diagonalization
of Eq. (1). All states have appreciable bulk character.

Fig. 5 Detection of edge and bulk states by selective field ionization
(SFI). SFI signals for probe laser tuned near the 58s Rydberg level (ipr= 3)
for Js/Jw= 5 [Fig. 2a]. Vertical lines indicate ionization fields for bare
Rydberg levels. Data points are evenly spaced in time. (a) For excitation to
the left and right bulk-state peaks (Δipr

� ±500 kHz), the state excited is
localized on the bulk sites of the synthetic lattice. ((b) For excitation to the
edge-state peak, (Δipr

� 0) the state is localized on the 57s (i= 1) boundary
site. The small contribution to the signal at i= 2, 3, 4, and 5 is
predominantly from the wings of the bulk-state peaks.
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site and for each spectral feature provide a state decomposition
that agrees with expectations as in Fig. 3.

Protected Edge States. The pinning of the edge-state energy to
Δipr

¼ 0 is the defining feature of TPS in the SSH model. It arises

because of an underlying chiral symmetry, which reflects the
system’s bipartite structure (even and odd sites) with all Hamil-
tonian matrix elements vanishing between sites of the same
partition, including diagonal (on-site) matrix elements. To
investigate the robustness of the pinning of the edge-state energy,
we probe the band structure in the presence of perturbations from
the SSH form.

Figure 6a–c shows spectra for ipr= 3 (58s) and ipr= 5 (59s) for
balanced (J2�3 ¼ J4�5 ¼ J0s ) and imbalanced [J2�3 ¼ ð1 ± 0:15ÞJ0s
and J4�5 ¼ ð1� 0:15ÞJ0s ] strong coupling with J0s =Jw ¼ 5. The
bulk states are strongly affected by imbalance. With increased
J2−3 [Fig. 6b], the two bulk states that are more localized on the
i= 3 site show increased splitting. With increased J4−5 [Fig. 6c],
the two bulk states that are more localized on the i= 5 site show
increased splitting. The energy of the edge-state signal, however
[in Fig. 6b, c], is immune to this perturbation, which preserves the
protecting chiral symmetry because the tunneling matrix
elements only connect even and odd sites.

Figure 6d, e shows how the energies of the edge states are
affected by chiral-symmetry-breaking perturbations, in particular
shifts of on-site potentials (i.e. millimeter-wave coupling
frequencies). Spectra are recorded with the probe laser tuned
near the 58s level (ipr= 3) for Js/Jw= 10. For Fig. 6d, the
frequency of the i= 1 to i= 2 (57s-57p) coupling is varied, which
shifts δ1, the on-site potential of the i= 1 (57s) site in the
synthetic lattice. δ1 ≠ 0 yields a diagonal term in the Hamiltonian
[Eq. (1)] that breaks the chiral symmetry, and the edge-state

signal shifts by an amount equal to the detuning from resonance.
For Fig. 6e, the frequency of the i= 5 to i= 6 (59s-59p) coupling
is varied, shifting δ6, and the position of the edge-state signal
remains unchanged. These results confirm that the edge state
coupled to by the probe laser is localized on the i= 1 (57s)
boundary site. The orthogonal edge state is localized on i= 6,
with vanishing weight on odd sites. In general we expect that any
perturbation producing a Hamiltonian term that connects only
even sites to even sites, or odd to odd, will break the chiral
symmetry and shift edge-state energies. This particular form of
perturbation only affects the energy of one of the edge states.

Numerical Simulations of the Spectra and Effects of Deco-
herence. In order to gain more insight into the system and
explore the effects of decoherence, we perform theoretical cal-
culations based on the Lindblad master equation [Eq. (5), given in
the Methods] for the Hamiltonian given in Eq. (2). We consider
one model with no decoherence and one model with decoherence
in the form of white amplitude noise on the millimeter waves.
The choice of decoherence model, and other, less important,
modifications of the idealized picture, are discussed in the
Methods. The master equation is derived from stochastic
Schrödinger equations following standard arguments44. Results
are convolved with a 100 kHz FWHM additional broadening for
the probe field. The dominant experimental source of deco-
herence is not yet determined, but amplitude noise is a simple
model consistent with observations. Moreover, the qualitative
conclusions we reach are not sensitive to the choice of noise, and
would also hold if the noise source were, for example, fluctuating
magnetic fields or frequency noise on the millimeter waves.

The theory with no decoherence fits the spectra extremely well
(Figs. 7 and 8), in particular reproducing the intensities and
linewidths of the observed spectral features, but with a few
notable exceptions as discussed below. In the calculations shown

in the figures, we allow the J
ipr
i;iþ1 and the δ

ipr
i to vary from their

nominal values for the strong bonds, fitting them for each
spectrum (i.e. for each value of ipr). The values determined from
fitting agree with measured values within experimental uncer-
tainties. Linewidths from the numerical simulation match the
time-broadened widths of the sinc-squared lineshapes used in
Figs. 2 and 4 to extract spectral areas for comparison with direct
diagonalizaion of Eq. (1) (Fig. 3).

Discrepancies between observations and decoherence-free
theory are visible in the linewidths for ipr= 5 for the largest
value of strong coupling Js (Fig. 7). Other differences between
theory and experiment are the small reductions in contrast
between the spectral features and a very small increase in weight
and smoothing in the tails of the spectra, which are seen most
strongly for ipr= 5 (Fig. 8). Calculations with decoherence

Fig. 6 Band structure with Hamiltonian perturbations. (a) SSH model:
δi= 0 with balanced tunneling rates (J2−3, J4−5 = J0s and J0s =Jw ¼ 5). Lines
mark positions of the bulk and edge peaks. (b) Strong tunneling rates are
imbalanced to J2�3 ¼ 1:15J0s and J4�5 ¼ 0:85J0s for J0s =Jw ¼ 5. This
perturbation respects chiral symmetry. (c) Same as (b) but J2�3 ¼ 0:85J0s
and J4�5 ¼ 1:15J0s . (d) Edge state spectra in the presence of perturbations
breaking chiral symmetry: tunneling rates are balanced as in the standard
topological SSH configuration, with Js/Jw= 10, but the frequency of the i= 1
to i= 2 (57s-57p) coupling is varied by the value given in the legend.
Spectra are recorded with the probe laser tuned near the 58s level (ipr= 3).
(e) Same as (d), but the i= 5 to i= 6 (59s-59p) coupling frequency is
varied. All error bars denote one s.e. of the mean.

Fig. 7 Noise model analysis. Fits of experimental data with theoretical
calculations assuming no decoherence ( ), and using the amplitude-
noise model [Eq. (6), ]. Data shown are for Js/Jw= 15 [from Fig. 2c,
the ipr= 3, 5 spectra have been multiplied by a factor of 2 for clarity]. All
error bars denote one s.e. of the mean.
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capture these effects and provide values for decoherence rates Γ
ipr
i

by fitting to the spectra for each value of ipr. For simplicity, we

assume that Γ
ipr
i ¼ Cipr Ji;iþ1, which constrains Γ

ipr
i to be propor-

tional to the microwave amplitude for the associated bond, with
the single proportionality constant (Cipr ) determined by fitting.

Trends in the decoherence emerge from this analysis. One
already mentioned is that the decoherence for ipr= 5 is much
larger than for other ipr values when in the topological tunneling
configuration, which is reflected in a value of Cipr¼5 that is ~ 3

times larger than for other ipr. When in the trivial configuration,
no such difference is observed. A possible explanation is that the
fluctuations on the coupling between 5j i and 4j i are particularly
noisy. Another possibility is coupling of one or multiple bare
states to higher angular momentum states by the millimeter-wave
fields, perhaps through multi-photon transitions. Experiments
described here were performed with triplet Rydberg states.
Working with the less-dense manifold of singlet states would
reduce the chance of spurious couplings.

Another trend not visible in the figures, but that emerges from
the fits, is that the parameter characterizing decoherence when
probing near the 57s state (Cipr¼1) in the topological tunneling
configuration is much larger, by a factor of 20 or more, than for
the other ipr, even though the linewidths are not visibly broader.
The reason for this is simply that the eigenstate that the probe
couples to is almost entirely localized on the edge, with very little
weight on other states, so disturbing its superposition with states
away from the edge has little effect on the spectra. Therefore, it
takes very large Γi to create any spectral broadening.

Overall, these dependencies of the fit Γi on ipr may point to
deficiencies in the details of the decoherence models. Refining the
decoherence models will be interesting for future work. The
decoherence is a large contribution to the spectral linewidth for
strong millimeter-wave coupling, so identifying the source of this
decoherence and eliminating it would greatly expand the types of
experiments one could perform with this scheme. There are many
reports in the literature of much longer coherence times with
Rydberg millimeter-wave spectroscopy45,46, suggesting this is not
an intrinsic limitation. Simulations indicate that for fixed Γi,
spectral broadening does not increase with an increasing number
of coupled Rydberg states, which is important for increasing the
size of the synthetic dimension.

Discussion
We have demonstrated Rydberg-atom synthetic dimensions as a
promising platform for the study of quantum matter. The spec-
trum of photo-excitation to the synthetic lattice space formed by
the manifold of coupled Rydberg levels provides the band
structure and decomposition of the lattice eigenstates. SFI of the
excited states provides an additional diagnostic of lattice-site
populations with two-site resolution. TPS were observed in a six-
site SSH model, and the measured band structure and eigenstate
decomposition agree well with theory. Varying the detuning of
the millimeter-wave fields that create tunneling between sites
introduces on-site potentials, and this has been used to break the
chiral symmetry of the SSH model and to shift the energies of
edge states away from the center of the bandgap at Δipr

¼ 0.
Numerical simulations based on the master equation were pre-
sented, which enable investigation of decoherence effects.

Demonstration of the defining features of the SSH model
illustrates the potential of Rydberg-atom synthetic dimensions for
quantum simulation. The size of the synthetic space can be
expanded by applying more millimeter-wave frequency compo-
nents, although this will introduce additional complexity such as
the need to use multiple local oscillators and horns to cover a
wider range of frequencies. The limits imposed by Rydberg-level
decoherence, AC stark shifts, and coupling to ancillary levels need
further study, but our initial investigations, as well as previous
work demonstrating coherent manipulation of Rydberg-level
populations (e.g.45,46), indicate that these should be technical,
rather than fundamental, complications.

Additional millimeter-wave-coupling schemes and tunneling
configurations are possible, such as two-photon transitions and
transitions with larger changes in principal quantum number.
This will enable creation of higher-dimensional synthetic

Fig. 8 Noise model analysis. Same as Fig. 7, but experimental data shown
are for Js/Jw= 5 [from Fig. 2a]. Top panel shows all three ipr while the
bottom three panels show central regions of the same data for the
individual ipr indicated in each panel. All error bars denote one s.e. of
the mean.
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lattices1,3,4 and investigation of systems with non-trivial spatial5

and band-structure7,8 topologies and higher-order topological
states47, for example. Through control of millimeter-wave phases,
tunneling phases around plaquettes and artificial gauge fields can
be introduced48. This platform is also ideally suited for study of
time dependent phenomena, such as Floquet-symmetry-protected
states49, non-equilibrium states50, and wave-packet dynamics in
synthetic space. Tailored time variation of the electric-field
ramp51 may improve site resolution of the SFI diagnostic.

The most exciting prospect is to extend these capabilities to the
study of interacting, many-body systems27,28 using arrays of
single Rydberg atoms in closely spaced optical tweezers52,53 with
appreciable long-range dipolar interactions in real space30 but
negligible tunneling of atoms between microtraps. For the
Rydberg-level arrangement demonstrated here, the dominant
interactions would be flip-flop interactions that couple ns; n0p

�� �
and n0p; ns

�� �
states, giving the many-body Hamiltonian

H ¼ �∑
i;a
tiðcyiaci;aþ1 þ h:c:Þ þ ∑

ij;ab
Vij;abc

y
ibc

y
jaciacjb ð4Þ

where the cia and cyia are annihilation and creation operators
(which can be taken to be either fermionic or bosonic since there
is no real-space tunneling) at synthetic site i and real space site a,
and the interaction matrix elements Vij;ab take the form Vij;ab ¼
1�3cos2θab

r3ab
Mi;jδmod ði�j;2Þ;1 where rab ¼ j r!a � r!bj is the (real-

space) distance between atoms a and b, and θab is the angle of
r!a � r!b relative to the quantization axis. Here the quantization
axis is the one defining the m levels. The matrix element Mi,j falls
off rapidly with jn� n0j54 and thus ∣i− j∣, so, in contrast to many
other types of synthetic dimensions, the interactions are highly
local in the synthetic space. This can give rise to interesting
quantum phases and phase transitions, such as quantum strings
and membranes28,55. We expect this to be just a small sample of
the phenomena these systems can display, with a wide variety of
scenarios arising from the easily tunable and dynamic synthetic
and real-space geometries.

Methods
Experiment. The laser cooling and trapping of 84Sr has been described in detail
elsewhere56,57. Two stages of magneto-optical cooling and trapping are employed
corresponding to 5s21S0 � 5s5p1P1 and 5s21S0 � 5s5p3P1 transitions. Atoms are
then captured in a 1064 nm crossed-sheet optical dipole trap (ODT), and a short
stage of forced evaporation yields samples with 105 atoms, a peak density of
about ~ 1011 cm−3, and a temperature of T= 2 μK.

Millimeter-wave frequencies for coupling Rydberg levels are generated by
combining outputs of five RF synthesizers (<6 GHz) and mixing the result with a
16 GHz local oscillator. A K-band horn antenna rejects the lower sidebands and
directs upper-sidebands to the atoms. The coupling strengths can be varied by
varying the low-frequency-synthesizer output powers. Each coupling is calibrated
using the Autler-Townes splitting42 in a two-level configuration.

A 4 Gauss magnetic field splits the ns magnetic sublevels by 11MHz, which is
large compared to tunneling rates. Millimeter waves are resonant or near-resonant
with ns(m= 1)− np and np− (n+ 1)s(m= 1) transitions for three different n’s as
shown in Fig. 1b. Millimeter-wave frequencies are adjusted to maintain resonant
couplings (δi ≈ 0) unless disorder is intentionally introduced. AC stark shifts are
experimentally determined, and the δi in Eq. (1) are relative to the Stark-shifted
Rydberg levels, with uncertainties of 100 kHz for large Js.

Two-photon Rydberg excitation is performed with an intermediate detuning of
+80MHz from the 5s5p 3P1 level38–40. For selective field ionization (SFI)41, an
electric field of the form E(t)= Ep(1− e−t/τ) is applied, with Ep= 49 V/cm and
τ= 6.5 μs. An atom in level nℓ ionizes at a field given by � 1=½16ðn� α‘Þ4�, where
α0= 3.371 and α1= 2.88758 are the quantum defects of the ns and np states
respectively. Liberated electrons are detected by a micro-channel plate, and the
Rydberg level, or occupied synthetic-lattice site, can be determined from the arrival
time of the electron. Approximately 104 excitation cycles are performed per sample
at a 4 kHz repetition rate, and the two-photon drive is weak enough that either zero
or one atom is excited to the Rydberg manifold each cycle, even when on a strong
resonance peak.

Theory. We first discuss effects neglected in the idealized description of the syn-
thetic lattice [Eq. (2)]. We then describe the techniques we use to treat the most
important effect, which is decoherence.

There are, in principle, several potential causes of the discrepancies between
observations and decoherence-free theory. One is that the idealized analysis has
neglected coupling to off-resonant magnetic sublevels of the ns Rydberg states.
Theoretical simulations including all these states show they produce level shifts on
the order of the observed Stark shifts rather than broadening. Experimentally, we
compensate for this shift by measuring it and setting the detuning of the
millimeter-waves to the resonant values including the shifts. For the strongest Rabi
frequencies we use, the largest shift is about ~500 kHz.

A second effect is the counter-rotating terms that were dropped to arrive at Eq.
(2). This effect is negligible since the synthetic tunneling frequencies are at most
J/h ~ 1.5 MHz, while the frequency difference between any coupled levels is roughly
ΔE/h ~ 20 GHz, and therefore effects are expected to be on the order of 10−4 or
smaller. We have also performed numerical simulations of the system that confirm
this effect is negligible.

A third possible source of deviations between predicted and observed lineshapes,
and likely the most important, is dissipation and decoherence, for which there are
multiple potential sources. Spontaneous emission from the Rydberg level or emission
stimulated by black-body radiation41,59 is expected to give a coherence time of >60 μs
for the Rydberg states that we use. This is long compared to the timescale of our
experiment. At very low millimeter-wave coupling strength, Rabi spectroscopy for an
isolated, two-level 58s-58p system yields full-width-half-maximum linewidths as low as
50 kHz. This is much less than linewidths observed in spectra of synthetic dimensions
with couplings Js/h ~ 1MHz, which implies that fluctuations of stray electric and
magnetic fields are not a major source of decoherence for the studies presented in this
paper (e.g. Figs. 2 and 4).

Driven 58s-58p Rabi oscillations show that the coherence time decreases with
increasing millimeter-wave coupling, with coherence times consistent with values
of Γi derived from theory fits in Figs. 7 and 8 within a factor of 2. This observation
motivates our choice of theoretical models for decoherence. Possible sources of
decoherence consistent with this observation include coupling to higher angular
momentum states and fluctuations in millimeter-wave amplitudes or polarization
giving rise to fluctuating AC stark shifts. Further work is required to identify the
dominant source of decoherence, and this will be important for determining the
ultimate limits on the physics that can be explored.

For theoretical calculations of the spectra, we numerically solve the Lindbladian
master equation,

_ρ ¼ � i
_
½Ĥ; ρ� þ ∑

N

i¼1
Γi LiρL

y
i �

1
2
ðLyi Liρþ ρLyi LiÞ

� �
ð5Þ

where ρ is the density matrix, Ĥ is the Hamiltonian in Eq. (2), and the jump
operators Li depend on the noise model. For millimeter-wave amplitude noise

L amp
i ¼ ij i iþ 1h j þ iþ 1j i ih j if i < N

0 if i ¼ N

�
: ð6Þ

The Γi are determined by fitting spectra, as described in the main text. The noise
model extends the corresponding familiar results for 2-level systems. We also
performed simulations with a model of white frequency noise and obtained similar
results.

In these equations we have included only the magnetic sublevels employed in
the synthetic dimension, i.e. those that are resonantly coupled by the millimeter-
waves, for notational simplicity. We have also performed theoretical calculations
including the off-resonant magnetic sublevels, which are straightforward to
include.

Data availability
Data presented in this publication is available on Figshare with the following identifier.
https://doi.org/10.6084/m9.figshare.18258494.

Code availability
Code for the decoherence simulations and data fitting is available on Figshare with the
following identifier. https://doi.org/10.6084/m9.figshare.18259061.
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