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A model for the structure function tensor is proposed, incorporating the e↵ect of anisotropy as a

linear perturbation to the standard isotropic form. The analysis extends the spectral approach of

Ishihara et al. (2002) [1] to physical space based on Kolmogorov’s theory and is valid in the inertial

range of turbulence. Previous results for velocity co-spectra are used to obtain estimates of the

model coe�cients. Structure functions measured from direct numerical simulations of channel flow

and from experimental measurements in turbulent boundary layers are compared with predicted

behaviour and reasonable agreement is found. We note that power-law scaling is more evident in

the co-spectra than for the mixed structure functions. New observations are made about counter-

gradient correlation between Fourier modes of wall normal and streamwise velocity components for

wavenumbers approaching the Kolmogorov scale.

I. INTRODUCTION

The second-order, two point structure function is one of the most fundamental statistical characterizations of a
turbulent velocity field. It is defined to be the covariance of the velocity di↵erence between two points x and x+ r:

Dij(r) = h[ui(x+ r)� ui(x)][uj(x+ r)� uj(x)]i, (1)

where h·i denotes averaging (e.g. over time, realizations, or a region in space). The statistics of the small scales of
turbulence (i.e. for r = |r| much smaller than the size of the large-scale eddies in a turbulent flow) are widely accepted
to approach isotropic behavior in the limit of very large Reynolds number [2, 3]. This is reflected in the simple
inertial range isotropic model of the structure function tensor [2]. Specifically, under the assumption of local isotropy
for a divergence-free turbulent velocity field and according to the 1941 version of the Kolmogorov theory neglecting
e↵ects of intermittency [2, 3], the structure function tensor can be expressed as
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where ✏ is the mean turbulent kinetic energy dissipation, and C0 is a constant. The special case of the inertial-range
scaling of the streamwise, longitudinal structure function D11(re1), where e1 is the streamwise unit vector, has been
studied extensively in a variety of turbulent flows [4–10].

Focusing on displacements covering both the so-called production and the inertial ranges, i.e. for both r > y as
well as ⌘ < r < y (where y is the distance to the wall, i.e. indicative of the local integral scale of motion, and
⌘ is the Kolmogorov scale), the longitudinal structure function in high Reynolds number turbulent wall-bounded
flow experiments, was studied in de Silva et al. [11]. The study also reported on scaling properties of higher order
longitudinal structure functions, identifying logarithmic scaling in the production range and power-law scaling in the
inertial range for all moment orders.

The structure and scaling of Dij(r) for other combinations of indices i and j has been examined recently [12] in
the context of the attached eddy hypothesis and the random additive process model, for wall-parallel displacements
r in the production range (r > y). For the wall parallel velocity components logarithmic behavior could again be
obtained, while the mixed structure function D12 in the production range (r > y) tends to a constant equal to twice
the turbulent shear stress (i.e. D12 ! �2hu0

1u
0
2i, where e1 and e2 denote the mean-flow streamwise and wall-normal

directions, respectively). At smaller scales r < y, the mixed structure function D(0)
12 (re1) with displacements in the

horizontal plane is, according to Eq. 2, exactly zero. The question thus arises: how does the mixed structure function,
or more generally the entire tensor object Dij(r), go from its constant value (or logarithmic trends) in the production
range to zero at small scales? Such considerations require a description of large-scale shear e↵ects on the structure of
turbulence.

In order to include e↵ects of shear, we propose a structure function model following the methodology applied
by Ishihara et al. (2002) [1] in the context of a spectral model. It is based on three assumptions [1]. (i) The
mean velocity field U is assumed to have a small spatial mean velocity gradient Smn = @Um/@xn. The coupling
between the fluctuating field u and the mean field U is associated with a time scale (⌧S) ⇠ O(1/|S|). Conversely,
according to Kolmogorov theory the nonlinear coupling within the fluctuating field is associated with a time scale
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(⌧r) ⇠ O(r2/3/✏1/3) for eddies of length scale r. This implies that for small enough r, as in the inertial range, the
latter interactions are faster and the e↵ect of the mean velocity, while not negligible, is small. (ii) Therefore, it is
reasonable to assume that the velocity structure function, with r in the inertial range at high Reynolds numbers, is
well approximated by

Dij(r) = D(0)
ij (r) +D(1)

ij (r), (3)

where the second term is smaller than the first by a ratio of the order of ⇠ O(⌧r/⌧S). The term D(1)
ij (r) accounts for

the mean velocity gradient and acts as an anisotropic perturbation or correction to the isotropic part. (iii) We also

assume that for small ⌧r/⌧S , D
(1)
ij (r) is linear in S. Taken together, and following the arguments in [1], it follows that

there exists a fourth-rank tensor Cijmn, such that,

D(1)
ij (r) = Cijmn(r)Smn, (4)

where Smn is the mean velocity gradient tensor and Cijmn(r) is an isotropic fourth-rank tensor function of the vector
r.

The main objective of this work is to extend the work of Ishihara et al.(2002) [1] to physical space and determine the
corresponding second-order structure function tensor Dij(r) by formulating the appropriate form of the fourth-rank
tensor Cijmn(r). A review of prior work is presented in §II, followed by the main derivations in §III. To compare
the model predictions with data, we use channel flow DNS turbulence data at two Reynolds numbers accessed from
the Johns Hopkins Turbulence Database (JHTDB) [13–15]. We compute the structure functions and spectra in the
log layer and compare their behaviour for the inertial subrange with the proposed model in §IV. Structure function
measurements for the atmospheric boundary layer from Kurien and Sreenivasan(2002) [16] are also included, as are
experimental results for a turbulent boundary layer from Jacob et al.(2008) [10] and structure function measurements
from Yang et al.(2017) [12] (based on analysis of the experimental data described in Talluru et al.(2014) [17]). We
confirm that the data trends towards predicted theoretical behaviour for the moderate Reynolds number channel
flow results while the experimental measurements at much higher Reynolds numbers show wider scaling ranges, as
expected. Conclusions are summarized in §V.

II. PRIOR WORK

Several approaches have previously been proposed for incorporating e↵ects of large scale shear and anisotropy [5, 9]
on structure functions. The pioneering work of Arad et al. (1999) [8] has brought about significant developments in
using group theory (SO3) and expansions into spherical harmonics (see Biferale and Procaccia (2005) [9] for a detailed
review). E↵ects of intermittency were also included there and are of particular relevance to structure functions of
higher order. Even though the general mathematical theory has been largely developed, a full determination of the
tensor that also includes the calculation of prefactors, and special cases such as the mixed structure function involving
two di↵erent velocity components, remains to be carried out. In the present work we focus on second-order structure
functions in the inertial range, where prior works, such as the experimental study of Kurien et al.(2000) [18], suggest
that the departure from Kolmogorov (K41) phenomenological theory [19, 20] behaviour is small. It is possible to
extend the present work while incorporating intermittency e↵ects, but at present, we operate under the purview of
the K41 theory [19, 20] neglecting intermittency in order to fully determine the structure function tensor in the inertial
range. For the finite Reynolds numbers considered, the theory will only be valid for a small range of length scales.
Further refinements on the present approach, left for future work, could include incorporation of intermittency and
finite Reynolds number corrections.

We follow especially the work of Ishihara et al.(2002) [1], which developed a model of the spectral tensor based on
a linear tensorial perturbation to the isotropic model for a given mean velocity gradient.

The velocity correlation tensor Bij(r) = hui(x)uj(x+ r)i and the structure function tensor are related by

Dij(r) = 2 [Bij(0)�Bij(r) ]. (5)

This relation enables calculation of the corresponding components of the structure function from the spectrum [6]
through a Fourier transform. Specifically, when applied in particular directions (e.g. streamwise for r = re1 or
spanwise r = re3) this relation will enable us to use results from previous theoretical and experimental studies [1, 2,
4, 5, 21, 22] for needed comparisons.

Consider the case of a simple shear flow with mean velocity U and where the mean velocity gradient tensor is given
by Sij = @Ui/@xj and is assumed to be constant in space (strictly speaking this condition is not met in wall bounded
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turbulence where the shear depends on wall distance). For a shear-rate �, i.e. for Sij = ��i1�j2, a well known ansatz,
due to Lumley[2, 5], states that the streamwise shear-stress spectrum Ẽ12(k1) is given by

Ẽ12(k1) = �C1�✏
1/3k�7/3

1 , for �3/2✏�1/2
⌧ k1 ⌧ ⌘�1, (6)

where ⌘ is the Kolmorogov length scale. For wall-bounded turbulence in the logarithmic (constant stress) region
(where � = u⌧/(y) with u⌧ the friction velocity and  the von Karman coe�cient and where under the assumption
of equality of production and dissipation one has ✏ = u3

⌧/(y)), we note that the lower wavenumber limit also
corresponds to (y)�1). Lumley’s result (Eq. 6) for wavenumbers in the inertial range of scales can be used to derive
the well-established corresponding result for the inertial range structure function:

D12(re1) = �2

Z 1

0
C1�✏

1/3k�7/3
1 (1� cos (k1r)) dk1

= �2C1 � ✏
1/3 r4/3

Z 1

0
z�7/3 (1� cos z) dz = ��
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1/3 r4/3 ⇡ �3.047 C1�✏
1/3r4/3, (7)

where �(z) is the standard gamma function. In this way, knowing the value of the coe�cient C1 for the spectrum one
may calculate the mixed structure function in the inertial range as well. An analogous result can also be obtained for
the spanwise shear spectrum Ẽ12(k3) and the corresponding spanwise structure function. More in general, however,
to connect spectra and structure functions for all of the structure function tensor’s elements in arbitrary directions in
the inertial range, we require a description of the full spectral tensor.

For this purpose we recall an important development by Ishihara et al.(2002) [1] who developed a model for the full
spectral tensor in turbulence under the presence of shear. The velocity spectral tensor (Qij) is defined as the Fourier
transform of the velocity correlation tensor: Qij(k) = (2⇡)�3

R
Bij(r)e�ik·rd3r. They observe that the equations

for the fluctuating velocity field are governed by terms which represent (i) the bilinear coupling between the mean
velocity field and the mean and fluctuating fields and (ii) the nonlinear couping within the fluctuating field. In the
inertial subrange, Kolmogorov’s phenomenological theory is used to show that the latter nonlinear term dominates.
Therefore, the e↵ect of mean shear is incorporated as a linear perturbation to the isotropic spectrum, as follows:

Qij(k) =Q(0)
ij (k) +Q(1)

ij (k). (8)

Here, Q(0)
ij is the isotropic Kolmogorov spectrum and Q(1)

ij represents the mean shear e↵ect, for wavenumbers in the
inertial range. The two terms are modelled as follows:

Q(0)
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Q(1)
ij (k) =Gij↵�(k)S↵� , (10)

where Pij(k) is the projection tensor. The fourth rank tensor tensor Gij↵� is determined by applying the divergence
free condition and utilizing symmetry properties. Without loss of generality one may then write [1],

Gij↵�(k) = a(k)[Pi↵(k)Pj�(k) + Pi�(k)Pj↵(k)] + b(k)Pij(k)
k↵k�
k2

, (11)

for any traceless tensor S↵� . According to the Kolmogorov theory in the inertial range, the tensor Gij↵� can only
dependend on ✏ and k. Dimensional analysis is applied to obtain the functions, a(k) = A✏1/3k�13/3 and b(k) =
B✏1/3k�13/3, where A and B are taken to be universal constants. Based on direct numerical simulations (DNS) of
homogeneous shear flow, Ishihara et al. [1] determined the numerical values of these parameters as A = �0.16± 0.03
and B = �0.40± 0.06.

III. CONSTRUCTION OF THE TENSOR Cijmn

The fourth order tensor Cijmn is constructed as a function of the vector r and the dissipation ✏, independent of
the mean velocity gradient Smn because r is assumed to be in the inertial range and (see above) the perturbation
is assumed to scale linearly with the mean velocity gradient. Since it is invariant under rotation of the coordinate
system and should be symmetric in the indices (i, j), without loss of generality Cijmn can be written as,

Cijmn(r) =[�im�jn + �in�jm]A1(r) +
rmrn
r2

�ijA2(r) +
rirjrmrn

r4
A3(r)+


rirm
r2

�jn +
rjrm
r2

�in

�
A4(r) +


rirn
r2

�jm +
rjrn
r2

�im

�
A5(r). (12)
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Here, {A1(r)...A5(r)} are scalar functions of r = |r| and for r in the inertial range, these scalar functions can also
depend on ✏. Note that a �ij�mn term is not needed since it would lead to a term proportional to Smm which is

zero for divergence-free mean velocity. We know that Dij and D(0)
ij are divergence free, hence D(1)

ij must satisfy these
properties as well. The application of these conditions to the aforementioned expression results in the following set
of equations:

@

@r
(A2 +A3 +A4 +A5) +

2

r
(A3 �A2 �A4 �A5) = 0 (13)

@

@r
(A1 +A4) +

1

r
(A2 + 3A4) = 0 (14)

@

@r
(A1 +A5) +

1

r
(A2 + 3A5) = 0. (15)

Since the number of unknowns is greater than the number of equations, we need to specify two of the functions.We
take recourse to K41 theory and state that since r is in the inertial range, the functions A1(r) and A2(r) are dependent
only on inertial range variables, ✏ and r, as the anisotropy e↵ect has been incorporated already. Note that since we
assume that the e↵ect of the applied shear enters linearly in the shear, dimensional analysis and symmetries leave us
no choice but to express the A’s in terms of dissipation ✏ and displacement magnitude r only. There are no further
variables to be employed. Mirroring Ishihara et al. [1], we thus employ dimensional analysis to write,

A1(r) = ↵✏1/3r4/3, and A2(r) = �✏1/3r4/3. (16)

The dimensionless constants ↵ and � are determined in the following section. Utilising the property that Dij(0) = 0,
in conjunction with the expressions for A1 and A2 and replacing into Eqs. 13, we obtain

A3(r) = �
8↵� 7�

65
✏1/3r4/3, and A4(r) = A5(r) = �

4↵+ 3�

13
✏1/3r4/3. (17)

Observe, that A3, A4 and A5 have the same functional form as A1 and A2, di↵ering only in the dimensionless
constants. Finally, the full anisotropic correction is calculated using these functions as,

D(1)
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This form derived from the assumptions (i)-(iii) results in dependence of D(1)
ij (r) on r4/3, which is in agreement with

known previous analytical and experimental results, including that of Lumley [5] (eq. 7). Since we are operating under
the aegis of the Kolmogorov 41 theory, we are explicitly able to obtain the power of r but the associated constants
must be determined empirically (in the following section). More general approaches which incorporate the e↵ects of
intermittency find that the power of r will be a function of the moment order in a non-trivial fashion [9], but we
do not explore the issue of intermittency here and focus only on second-order moments. Next, the relation between
structure functions and spectra allows us to use known results for the spectral tensor to complete our calculation of
the prefactors.

Determining the prefactors

Ishihara et al. (2002) [1] calculated the full velocity spectral tensor for a uniform shear flow using direct numerical
simulations. This case, with a constant velocity gradient, can be considered a canonical example of the type of
anisotropy we aim to model. We extend their calculations for uniform shear to obtain the constants ↵ and �, and
hope that these values o↵er a degree of universality that extends the validity of the Kolmogorov and Lumley theories
to more general settings. Consider again the specialized case of shear flow with Smn = ��m1�n2.

It is useful to calculate D(1)
12 for two cases, with the displacement (r) in the streamwise (r = re1) and spanwise

(r = re3) directions resulting in,

D12(re1) =
9↵� 3�

13
�✏1/3r4/3 and, D12(re3) = ↵�✏1/3r4/3. (19)
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The relation between the streamwise shear spectrum (Ẽ12(k1) involving a coe�cient C1) and corresponding structure
function (D12(re1)) has already been stated in the previous section (Eq. 7). A very similar relation can be derived
between the corresponding spanwise quantities, the structure function D12(re3) and the spanwise shear spectrum

Ẽ12(k3) = �C2�✏
1/3k�7/3

3 , �3/2✏�1/2
⌧ k3 ⌧ ⌘�1. (20)

The constants C1 and C2 featuring in the spectra can be determined in terms of the model constants A and B from
Ishihara et al.(2002) [1]. [23],

C1 =
36⇡

1729
(�33A+ 7B), and C2 =

6⇡

1729
(�398A+ 9B). (21)

Given the numerical values of the model constants A and B, we obtain C1 = 0.16± 0.07 and C2 = 0.65± 0.13. These
constants can then be used to calculate the corresponding structure functions, (as in Eq. 7) yielding,

D12(re1) = (�0.49± 0.21) � ✏1/3 r4/3 and D12(re3) = (�2.0± 0.40) � ✏1/3 r4/3. (22)

Comparing Eq. 22 with the expressions from Eq. 19 (the same expression also holds for the spanwise direction) we
complete our model by calculating the structure function constants,

↵ = �

✓
�
4

3

◆
6⇡

1729
(398A� 9B) ⇡ �2.00± 0.40 and � = �

✓
�
4

3

◆
6⇡

1729
(336A+ 155B) ⇡ �3.85± 0.46. (23)

Armed with expressions and constants, we test the behavior of structure functions and spectra on data from DNS
and experiments to assess the degree of agreement between measurements and predictions.

IV. SPECTRA AND ANISOTROPIC STRUCTURE FUNCTIONS FROM DNS AND EXPERIMENTS

In the inertial range, the behavior of the diagonal elements of the structure function tensor, i.e., D11(r), D22(r)
and D33(r), is dominated by the isotropic contribution (⇠ r2/3) whereas the anisotropic contribution (⇠ r4/3) is
sub-dominant. Conversely, the only non-zero contributions to the o↵-diagonal components D12(r), D13(r) and D23(r)
are from the anisotropic term, hence, for investigating the validity of the anisotropic model we choose D12(r) as
the subject of our study. The values obtained for the constants in the structure function model in the previous
section have assumed a constant uniform shear flow, but we test them on the pressure driven channel, an oft-studied
shear flow ubiquitous in nature and engineering. Channel flow data at Re⌧ = 1000 and Re⌧ = 5200, available
from the Johns Hopkins Turbulence Database (JHTDB) [13, 14], is used to compute the streamwise-wall normal
structure function (D12) with displacement (r) in the streamwise (D12(re1)) and spanwise (D12(re3)) directions and
the corresponding cospectra (�12(k1) and �12(k3)), with e1, e2 and e3 representing the streamwise, wall normal and
spanwise directions, respectively. We compute the structure functions and spectra at di↵erent wall normal distances
(y) within the log layer by averaging in time and in the homogeneous direction. In the log layer, it is reasonable to
assume that dissipation balances production [15], and the mean velocity gradient Smn = � �m1�n2 = u⌧/(y)�m1�n2.
The length scale associated with the shear rate equals the wall normal distance (y), which is also the length scale of
energy containing eddies in the log layer and hence, the length scale for our measurements.

Structure function measurements for the atmospheric boundary layer from Kurien and Sreenivasan(2000) [16] and
for turbulent boundary layers from Jacob et al.(2008) [10] and Yang et al.(2017) [12, 17] are compared as well. In all
of the comparisons, we use the quoted values of the shear rate (assuming � = u⌧/y), Reynolds stresses (assuming
hu1u2i = �u2

⌧ ) and ✏ = ��hu1u2i = u3
⌧/(y), balance between production and dissipation) at the corresponding

y locations.Specifically, for the DNS at Re⌧ = 1000, employing the numerical values from the simulation results in
�h/Ub = 121.87/y+ and ✏h/U3

b = 0.30/y+, while at Re⌧ = 5200, we obtain � = 524.75/y+ and ✏ = 0.90/y+. Here Ub

represents bulk velocity and h is the channel half-height (see [14, 15]). For the atmospheric data, the dissipation is
given to be ✏ = 1.5⇥10�2 m2s�3 and assuming ✏ = ��hu1u2i, we have � = 25.19 s�1. We use the same assumptions for
the Melbourne dataset [12, 17] as the DNS data, resulting in � = 6.1471⇥104/y+ s�1 and ✏ = 2.3630⇥104/y+ m2s�3.

Note that our assumptions, on the Reynolds stress and production-dissipation balance, represent inertial range
behaviour and will be accurate for only a small range of y at finite Re. However, since the structure function model
itself assumes similar limiting behaviour also, consistency is maintained.

The streamwise and spanwise structure functions normalized by the local Reynolds’ shear stress are plotted in
Fig. 1. Firstly, and as expected, the plots show that structure functions tend to twice the Reynolds shear stress,
as streamwise and spanwise displacements become very large (the results converge for r > 10y). The streamwise
structure functions monotonically approach the limit, but the spanwise structure functions surpass the limit, reach
maxima in magnitude around r ⇠ y, and then decay to the limit. This implies a positive correlation between the two
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velocity increments, consistent with negative lobes in the spanwise correlation functions and indicating the presence
of flow structures having length scales of the order of the wall normal distance (⇠ y) for the channel flow as well as the
turbulent boundary layer. In the channel flow case, the largest measurable displacement is equal to half the domain
size in the corresponding direction, due to periodicity. The smallest separation, on the other hand, is equal to the
grid size employed for the simulations. Details of the domain and grid size can be found on the JHTDB website [24]
and in references [14, 15]. We also plot lines representing the expected 4/3 power-law in Fig. 1 and observe that
the DNS data at more moderate Reynolds numbers show agreement with such power-law scaling over only a short
range of scales (with 0.12 . r/y . 0.26 at Re⌧ = 5200 and y+ = 1200 for the streamwise structure function and
0.08 . r/y . 0.2 at Re⌧ = 5200 and y+ = 700 for the spanwise structure function being the most extensive ranges
of agreement. The range is defined as the scales over which the compensated structure function lies within 5% of the
plateau ordinate, see the following paragraph). The experimental data display longer power-law scaling.

Next, the predictions for the structure function from the anisotropic model are compared with the data by

FIG. 1. Structure functions of the streamwise-wall normal velocity in channel flow at Re⌧ = 1000 and Re⌧ = 5200 from the

Johns Hopkins Turbulence Database (JHTDB) [13–15] at di↵erent wall normal distances y+
= yu⌧/⌫, within the log layer with

separation along the (a)streamwise (e1) and (b) spanwise (e3) directions. The curves in both plots are described by the legend

in plot (b). Also included here, (a) (⇤)atmospheric boundary layer measurements of Kurien and Sreenivasan (2000) [16], (4
and ⇤) turbulent boundary layer measurements from Yang et al. (2017) [12, 17] for streamwise separation and (b) (�)turbulent
boundary layer measurements of Jacob et al. (2008) [10] for spanwise separation. The black dot-dashed line in both cases has

a slope of 4/3, representing the predicted inertial range behaviour.

plotting compensated streamwise structure functions (�D12(re1)/(�✏1/3r4/3)) and compensated spanwise structure
function(�D12(re3)/(�✏1/3r4/3)), in Fig 2(a) and 2(b), respectively. Inertial range behavior would imply a plateau
in the curve and the ordinate at which it is predicted is marked by a black dashed line, the error bars representing
the computed uncertainty. As the Reynolds number and the distance from the wall increase, so does the separation
of scales and the implied extent of the inertial range. As can be seen, the curves from the DNS exhibit a weak
trend towards the predicted inertial range behaviour and indications of a plateau can be discerned. For streamwise
structure functions (Fig 2(a)), the smallest separation of scales is for the curve at y+ = 200 and Re⌧ = 1000, where
the inertial range (⇠ r4/3) behavior is suggested to occur over a small range of scales, producing mostly a crest. As the
separation of scales increases, the crest broadens and flattens and also approaches the constant line. This is evident
when comparing the curve for y+ = 200 with the curve at y+ = 1500 and Re⌧ = 5200. This trend is clearly evident
when comparing these curves with the atmospheric boundary layer data from Kurien and Sreenivasan(2000) [16],
which has significant scale separation with the large scale y = 0.54m and the small scale at ⌘ = 0.7mm, allowing
for a longer inertial range and consequently a more clearly visible plateau.Since ⌘/y = 0.0013, the abscissa of the
plateau occurs for r/y in the inertial range, at r/y ⇠ 0.03, at a smaller r/y than DNS data. As Re increases, ⌘/y
gets smaller and the plateau shifts to smaller values of r/y. The ordinate of the plateau is close to the predicted
constant and the atmospheric results of Kurien and Sreenivasan (2000) [16] lie within the error bars for close to one
decade of displacements (r). Turbulent boundary layer data analyzed by Yang et al.(2017) [12, 17] at y+ = 890 shows
a plateau also over approximately one decade, whereas similar measurements at y+ = 330 show only a crest instead
of a plateau.
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FIG. 2. (a)Compensated streamwise structure functions and (b) Compensated spanwise structure function. Lines and symbols

are the same as in Fig 1. The predicted inertial range behaviour is marked by the dashed horizontal lines, error bars a result

of the uncertainly in the prefactor.

Similar trends are also observed for spanwise structure functions from DNS (Fig 2(b)), with results from the
turbulent boundary layer experiments of Jacob et al.(2008) [10] trending towards a plateau. Nevertheless, the prefactor
is notably lower than the predicted value suggesting that in boundary layer flow, the approach to universal behavior
requires even higher Reynolds numbers than those examined here. For completeness, we also compute streamwise
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FIG. 3. (a)Compensated streamwise spectra and (b) compensated spanwise spectra for channel flow from JHTDB. Lines have

the same meaning as in Fig. 1.

and spanwise co-spectra for the channel flow data and compare them with predictions obtained from the model of
Ishihara et al.(2002) [1]. We normalize the co-spectra by the corresponding inertial range functions defined in the

previous section (Eq 6 and Eq 20) and thus plot the compensated streamwise co-spectrum (��uv(k1)/(�✏1/3k
�7/3
1 ))
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and the compensated spanwise co-spectrum (��uv(k3)/(�✏1/3k
�7/3
3 )). We compare plateaus with the predicted inertial

range behaviour marked by constant ordinate lines. The spectra at the smallest wall normal distance y+ = 200 with
Re⌧ = 1000 possesses the smallest scale separation and therefore produces a crest around the inertial range scale.
This crest broadens to a more clearly defined plateau with increasing distance from the wall, evident when compared
with co-spectra at y+ = 1500 and Re⌧ = 5200. The extent of the plateau keeps increasing as the separation of scales
grows with wall distance, as observed for compensated structure functions also. Comparing the scaling ranges in the
co-spectra to those of the mixed structure functions, it appears that power-law scaling is better for the co-spectra
than for structure functions.
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-10
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-10
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10
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10
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10
-1

FIG. 4. Streamwise co-spectra for chanel flow data from JHTDB shows zero crossing at wave number k1 ⇠ 0.1/⌘ for all cases.

Lines have the same meaning as in Fig. 1.

A further observation can be made when focusing on the high-wavenumber region approaching the viscous dissipa-
tion range. In figure 4 we show compensated streamwise co-spectrum plotted against wavenumbers normalized now
with the Kolmogorov length scale (⌘), including the signed values of the spectra (i.e. skipping some low magnitude
values near zero in the log-log plot). We observe a zero crossing in the co-spectra at the start of the dissipation range
at a wavenumber k1 ⇠ 0.1/⌘ for all cases. Since the co-spectra are normalized by a positive decreasing function,
high wavenumber contributions are amplified and we are able to clearly see a zero crossing, which would usually be
obscured by the small magnitudes of the spectra there. This result indicates that the anti-correlation between the
streamwise and wall normal components of velocity that dominates across the energy containing length scales and the
inertial range scales, does not extend to motions close to the scale of the crossing. The coherent motions which cause
the anti-correlation have length scales larger than ⇠ 10⌘ and at smaller scales, small flow structures which result in
a positive correlation occur.

V. CONCLUSIONS

Amodel for the inertial-range second-order structure function tensor is developed under the purview of Kolmogorov’s
1941 theory, incorporating the e↵ects of anisotropy as a linear perturbation along the lines of a spectral model de-
veloped by Ishihara et al.(2002) [1] and using model constants calculated for constant shear flows. This approach
allows us to fully determine the structure function tensor, against which measurements from simulations and experi-
ments can be compared. We compare two components of the structure function with the strongest dependence on the
anisotropy with data from channel-flow simulations and experimental measurements. The comparisons are carried out
by plotting the so-called compensated streamwise and spanwise structure functions. A good agreement is observed for
the streamwise structure function. For the spanwise structure function, the magnitude from data is lower than that
predicted by the model. The di↵erence may be associated with the fact that we consider a wall-bounded flow that
di↵ers from homogeneous free shear flow by the blocking e↵ects of the wall. Since the dominant streamwise-aligned
vortical flow structures have similar scales in the vertical and spanwise directions, we speculate that the spanwise
two-point statistics are also a↵ected by the presence of the wall while the streamwise direction remains less a↵ected.
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Additionally, spanwise and streamwise co-spectra are also compared with modelled behaviour finding good agreement.
We also report a zero crossing in the streamwise co-spectra, occurring at a lengthscale close to the dissipation scale.
This result suggests that small scale motions behave opposite to the behavior of large-scale motions since they cause
positive correlation of streamwise and wall normal components of velocity dominate at the very small scales.
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