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Abstract—Facing stochastic variations of the loads due to an
increasing penetration of renewable energy generation, online
decision making under uncertainty in modern power systems
is capturing power researchers’ attention in recent years. To
address this issue while achieving a good balance between
system security and economic objectives, we propose a surrogate-
enhanced scheme under a joint chance-constrained (JCC) opti-
mal power-flow (OPF) framework. Starting from a stochastic-
sampling procedure, we first utilize the copula theory to simulate
the dependence among multivariate uncertain inputs. Then,
to reduce the prohibitive computational time required in the
traditional Monte-Carlo (MC) method, we propose to use a
polynomial-chaos-based surrogate that allows us to efficiently
evaluate the power-system model at non-Gaussian distributed
sampled values with a negligible computing cost. Learning
from the MC simulated samples, we further proposed a hybrid
adaptive approach to overcome the conservativeness of the JCC-
OPF by utilizing correlation of the system states, which is ignored
in the traditional Boole’s inequality. The simulations conducted
on the modified Illinois test system demonstrate the excellent
performance of the proposed method.

Index Terms—Decision making under uncertainty, surrogate
model, uncertainty quantification.

I. INTRODUCTION

DECISION making under uncertainty in modern power
systems is attracting increasing attention from power

researchers due to the stochastic load variations and the inter-
mittency of the renewable generations [1]. These uncertainties
can lead to dramatic fluctuations in the system states, a
problem that brings challenges for a secure operation, protec-
tion, control and planning of power systems [2]–[5]. Facing
these challenges, the traditional deterministic OPF approach
has limited capability in providing security-ensured decisions
while its robust approaches typically provide overconservative
decisions at the cost of the economic benefits. Therefore,
an alternative CC-OPF approach is recently advocated in
the literature for its flexibility in utilizing the predefined
probability to adjust the feasible region for a better balance
between the security and cost of power system operation.

In general, the CC-AC-OPF is considered to be difficult
to solve. Although a direct MC method is straightforward,
its computational burden is prohibitively heavy for online
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applications. Therefore, some researchers propose the scenario
approach or adopt a predefined robust sample set to reduce the
computational burden at the expense of decreased accuracy
of the results [6]. Besides these sampling-based methods,
many researchers rely on analytical approaches due to their
capability of providing a closed-form solution that can greatly
accelerate its computing speed [6], [7]. However, due to the
nonlinearty of the power-system model and the non-Gaussian
distribution of the uncertainty, it is extremely difficult to derive
an explicit closed-form solution. This is especially true when
the dependence among the uncertainties exists. To reduce
its derivation complexity, a simplified DC power-flow model
[6]–[8] or its improved linearized AC model [9], [10] is
adopted. These also typically lead to the assumption of a stable
distribution, e.g., a Gaussian distribution [7], [10].

Furthermore, the CC-OPF is typically classified as the
individual chance-constrained (ICC) one and the JCC one. The
former assigns the violation probabilities to each constraint
individually while the latter ensures that all the constraints as
a whole are satisfied simultaneously to a predefined confidence
level, which gives a better characterize of the overall system
performance [9]. Therefore, we choose the JCC-OPF as the
focus of this paper. Typically, the JCC problem is thought to
be harder to solve than the ICC one and only limited attempts
have been tried [1], [8], [9]. Even the scenario approximation
method is thought to be straightforward, its performance is
heavily restricted by its scalability and overconservativeness
[11]. Although Peña-Ordieres et al. [8] propose a computation-
ally scalable method, it is not very accurate since it relies on a
DC OPF model. Several papers also attempt to transform the
JCCs into ICCs to solve [1], [9], [12]. However, the solutions
tend to be conservative since the traditional Boole’s inequality
is based on the statistical independence assumption, which
cannot hold in power systems.

To address the above challenges, this paper proposes a
novel surrogate-enhanced scheme, for the first time, in solving
the JCC-AC-OPF problem considering the dependent, non-
Gaussian uncertainties. More specifically, to improve the com-
puting efficiency of the MC framework, the response surfaces
of the nonlinear AC power-flow model are simulated with a
polynomial-chaos-expansion (PCE)-based surrogate [13] that
enables us to evaluate the sampled values at almost no compu-
tational cost. The copula theory is further merged into the PCE
to account for the dependence among high-dimensional uncer-
tain inputs [14]. In addition, to overcome the conservativeness
of the Boole’s inequality, we further propose a hybrid adaptive
procedure to decompose the JCC into ICCs by first properly
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detecting the statistical active constraints and then improving
the allocation of the joint chance into individual ones. Here, we
use the correlation information learned from the MC samples,
which also assists us to better design the tightened bounds with
a quantile estimator that has no Gaussian assumption for the
system states. Some simulations conducted on the modified
Illinois test system demonstrate the excellent performances of
the proposed method.

II. PROBLEM FORMULATION
This section will briefly summarize the AC-OPF model

associated with its extended ICC-AC-OPF and JCC-AC-OPF.
1) AC-OPF: Traditionally, AC-OPF is formulated as

min
uc

f(x,uc) (1a)

s.t. g(x,uc) = 0, (1b)
hmin ≤ h(x,uc) ≤ hmax, (1c)

where x ∈ RN are vectors of state variables, e.g., the voltage
magnitude and angle at a PQ bus, the voltage angle and
reactive power at a PV bus, the active and reactive power
at the swing bus, and the power flow along the transmission
lines; uc ∈ RD are the vectors of the control variables,
such as the generator power output and its voltage; f is a
scalar objective function; and g and h are the vector-valued
functions of equality and inequality constraints, respectively.
Typically, f is modeled as a quadratic cost function expressed
as f(x,uc) =

∑
i∈G(c2,iP

2
g,i + c1,iPg,i + c0,i), where c2, c1,

and c0 denote the cost coefficients and Pg,i denotes the power
output of the ith conventional generator, which belongs to
a set of G. The equality constraints are described by a set
of nonlinear ac power-flow equations for an Nb-bus system.
More details can be found in [10]. The inequality constraints,
h, need to satisfy the vector-valued lower bound, hmin, and
the vector-valued upper bound, hmax. Typically, they include
some hard constraints due to the physical limits such as the
generator active and reactive power limits as well as some
soft constraints such as the apparent power limits in the
transmission lines and bus-voltage magnitudes. Till now, we
have briefly summarized the AC-OPF model.

2) CC-AC-OPF: By incorporating the randomness of the
loads and the renewable energy generation in the aforemen-
tioned equality and inequality constraints, g and h, we have
g(x,uc, ξ) and h(x,uc, ξ), where ξ ∈ RS denotes a vector of
random variables. These statistical constraints further enable
us to manage the violation rate for the optimized solution
under the framework of the CC-AC-OPF model.

Here, for the ICC-AC-OPF that assigns the violation prob-
ability to its individual operation set, (1c) is transformed as

P(hi(x,uc, ξ) ∈ Hi) ≥ 1− εi. (2)

whereHi denotes the prescribed ith operational set determined
by hmin and hmax and εi denotes its corresponding predefined
violation rate, which is typically set to a small number, e.g.,
1%− 5%, to ensure a secure operation of the power systems.

By contrast, for all the individual operation sets, {hi}nie
i=1,

that must be satisfied simultaneously for one overall violation
probability, ε, (1c) is transformed as

P(∩nie
i=1{hi(x,uc, ξ) ∈ Hi}) ≥ 1− ε, (3)

which represents the JCC-AC-OPF [9].
Here, the JCC given by (3) can be further transformed into

the ICC given by (2). The most popular way is to use the
Boole’s inequality that transforms one joint probability, ε into
nie individual chance constraints as (2) indicated by satisfying
a rough approximation of

∑nie

i=1 εi = ε. Typically, due to
the lack of information, every individual violation rate, εi, is
simply approximated by

εi =
ε

nie
. (4)

Although simple, this strategy will yield an overconservative
solution when the correlation in the system states cannot be
simplified or ignored [9], [12]. This is also one of the problems
addressed in this paper.

III. RESPONSE-SURFACE METHOD IN CC-AC-OPF

In this section, we incorporate the PCE-based surrogate into
the CC-AC-OPF framework.

A. Motivation for using the Response Surface
Apparently, the most straightforward way to obtain the

violation probability at its operation solution, uc, is the MC-
based method, where a set of Nξ samples are drawn from the
multivariate probability distribution of ξ, yielding {ξ(j)}Nξ

j=1.
Then, for each ξ(j), j = 1, . . . , Nξ, the equality constraint,
g, is evaluated at the sampled values, ξ(j), to obtain the
corresponding system states x(j). This further enables us to
statistically assess each individual inequality constraints as

P(hi(x,uc, ξ) ∈ Hi) =
Nξ∑
j=1

1
Nξ
χ{Hi}(hi(x

(j),uc, ξ
(j))), (5)

where χ is the characteristic function satisfying

χ{Hi}(hi(x,uc, ξ)) =

{
1 if hi(x,uc, ξ) ∈ Hi,
0 if hi(x,uc, ξ) 6∈ Hi.

Similarly,

(5) can be easily extended to the joint probability distribution
for the JCC-OPF problem via

P(∩nie
i=1{hi(x,uc, ξ) ∈ Hi}) =

Nξ∑
j=1

1
Nξ
χ{H}(h(x(j),uc, ξ

(j))), (6)

where its characteristic function χ is given by

χ{H}(h(x,uc, ξ)) =

{
1 if ∩nie

i=1{hi(x,uc, ξ) ∈ Hi},
0 if ∀{hi(x,uc, ξ) 6∈ Hi}.

Obviously, this sampling-based method will be
computationally prohibitive for a large-scale power-system
model. To reduce its computational burden, we propose
to use the response-surface method. First, let us define
a vector-valued nonlinear function y that combines the
functions of g and h for simplicity. Then, we can use y to
build a mapping between the uncertain random variables,
ξ, with the power system state variables, x, at the fixed
control variable, uc, expressed as x = y(ξ,uc). Here, if we
replace this complicated function y : RS × RD −→ RN with
a simple functional form ỹ(·) that captures the behavior of
the complicated, high-fidelity simulation model of a power
system while being computationally inexpensive to evaluate,
then we call ỹ(·) the response surface of the y(·) [2], [4],
[13]. It holds a relationship as ỹ(ξ,uc) ≈ y(ξ,uc). Using
the response-surface method, the computing efficiency of the
sampling-based approach can be greatly enhanced without
sacrificing accuracy.
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B. Generalized Polynomial Chaos as the Surrogate
Introduced by Wiener and further developed by Xiu and

Karniadakis, the generalized polynomial chaos expansion has
been shown to be a cost-effective tool in modeling power-
system surrogate [2], [4]. In this method, the stochastic outputs
are represented as a weighted sum of a given set of orthogonal
polynomial chaos basis functions constructed from the proba-
bility distribution of the input random variables. For the vector
of independent, identically distributed (i.i.d.) random variables,
ξ = [ξ1, ξ2, . . . , ξS ], following a standard probability distri-
bution (e.g., the Gaussian or the beta distribution), to which
a unique orthogonal polynomial, such as the Hermite or the
Jacobi polynomial, is associated [13]. Let Φi(ξ1, ξ2, . . . , ξS)
denote this procedure’s corresponding polynomial chaos basis
and let ai denote the ith polynomial chaos coefficient. For a
stochastic system state, x, we have a truncated PCE as

x =

SP∑
i=0

aiΦi(ξ), (7)

where SP = (S+P )!/(S!P !)−1; S is the total number of the
random variables involved in the PCE; and P is the maximum
order of the polynomial chaos basis functions. It is found that
a relatively low maximum polynomial chaos order (typically
2) provides output results with enough accuracy [2], [4], [15].
From the polynomial chaos coefficients, the mean, µ, and the
variance, σ2, of the output x can be estimated as follows: µ =

a0, σ
2 =

NS∑
i=1

a2iE[φ2i ]. However, this property only holds true

only under the i.i.d. assumption [4], [16]. Even if it has been
adopted in [15] to solve an ICC-OPF, it is not applicable to
our JCC approach, where the dependent inputs are considered.
Here, we only use the response-surface property of the PCE
as described by (7).

1) The Orthogonal Polynomial Chaos Basis: A set of one-
dimensional polynomial chaos basis functions {Φi(ξ), i =
0, 1, 2, 3, . . . } with respect to some real positive measure

satisfy
∫

Φi(ξ)Φj(ξ)dλ

{
= 0 if i 6= j,

> 0 if i = j,
where λ denotes a

probability measure defined as the Cumulative Probability
Distribution Function (CPDF) of ξ. For every CPDF, the
associated orthogonal polynomials are unique. Then, a set of
multi-dimensional polynomial chaos basis functions can be
constructed as the tensor product of the one-dimensional poly-
nomial chaos basis associated with each input random variable.
Formally, we have Φ(ξ) = Φ(ξ1)⊗Φ(ξ2)⊗· · ·⊗Φ(ξS), where
Φ(ξi) denotes the one-dimensional polynomial chaos basis for
the ith random variable.

2) Collocation Points: Collocation points (CPs) are a fi-
nite sample set of ξ = [ξ1, ξ2, . . . , ξS ] that are chosen to
approximate the polynomial chaos coefficients. The elements
of the CPs are generated by using the union of the zeros and
the roots of one higher-order, one-dimensional polynomial for
every random variable [2], [17]. Then, using a tensor product
or sparse tensor rule, we can generate multidimensional CPs
as described in [13].

3) Handling Dependence in the Response-Surface Method:
The prerequisite of an uncertainty quantification relies on
a precise uncertainty modeling, in which the dependence
modeling is vital. Here, we adopt the copula technique since
it can be perfectly merged into the framework of the response-
surface method. According to Sklar’s theorem, any joint

multivariate cumulative distribution function Fξ of an S-
dimensional random vector can be expressed in terms of
its marginal distributions and a copula to represent their
dependence. Formally, we have

Fξ(ξ) = C(Fξ1(ξ1), Fξ2(ξ2), . . . , FξS (ξS)), (8)

where Fξi(ξi) is the ith input marginal and C(·) is a cop-
ula that describes the dependence structure between the S-
dimensional input variables [14]. Accordingly, its joint multi-
variate density function, fξ(ξ), can be obtained via fξ(ξ) =

c(Fξ1(ξ1), . . . , FξS (ξS))
∏S
i=1 fi(ξi), where c is the S-variate

copula density and fi(ξi) is the marginal density for the
ith variable. Here, we advocate the Gaussian copula for its
simplicity and scalability for high-dimensional cases. More
details are provided in [4].

With this PCE surrogate, we can efficiently evaluate the
non-Gaussian dependent MC samples with almost no compu-
tational cost. Due to the limited space, the detailed step-by-
step implementations of the PCE with a Gaussian copula in a
power system can be found in [4].

IV. DECISION-MAKING UNDER UNCERTAINTY
Here, we will first elaborate how the ICC-OPF is reformu-

lated. After that, we present an adaptive procedure to transform
the joint chance into individual chances. Finally, we further
improve this scheme by incorporating a hybrid procedure.

A. Reformulation of the Individual Chance Constraints

Now, with the above stochastic testing results obtained in
(6) with the PCE-surrogate, we reformulate the ICC in (2) by
tightening the bounds of (1c) via

hmin + ∆hmin ≤ h(x,uc) ≤ hmax −∆hmax. (9)

Here, ∆hmin and ∆hmax denote the non-negative, adjusted
lower and upper margins, respectively. Then, we can directly
solve (1) with the updated bounds as a deterministic OPF
problem to obtain more conservative operation solution uc.

Obviously, to achieve the designed violation probability, εi,
the way to update the margins is vital. To design the procedure,
let us first detect the active constraints. As addressed by
Baker and Bernstein [9], in the optimization problem, the
inactive constraints are those constraints, when removed, the
optimal solution will not change while the active constraints
are essential in determining the optimal solution. Besides,
we further propose to incorporate the violation probability in
classifying the active constraints. We define these statistical
active constraints as constraints whose violation probabilities
exceed the predefined violation rate. Let us consider the bus
voltage magnitude Vi, bounded by [0.9, 1.1] pu. Suppose an
ε = 5% is predefined for its individual constraint, if the
P(Vi ≤ 1.1) ≤ 95%, then we call it a “statistical active con-
straint” and vice versa. We only need to update these statistical
active constraints and keep the statistical inactive constraint
unchanged. For those classified as statistical active constraint,
we calculate its updated margins through the quantile of its
distributions via

∆himin = Q(hi,P(hi ∈ Hi))−Q(hi, (1− εi)), (10a)

∆himax = Q(hi, (1− εi))−Q(hi,P(hi ∈ Hi)), (10b)

where Q(hi,P) denotes the quantile value for the distribution
of hi at a probability value of P. Obviously, for the inactive
constraint, we have its ∆himin = 0 and ∆himax = 0. This
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quantile-based updating rule is chosen since it is based on an
actual stochastic testing within the MC simulation framework
[10] that can avoid the Gaussian or symmetric assumption of
the system responses [7], [9], [15].

B. Transforming the JCC into an ICC

Since in this paper our focus is on joint chance constraints,
we need to transform the JCC problem into an ICC prob-
lem. In this transformation, we mainly propose three ma-
jor steps: active constraints detection, significant/insignificant
active-constraint classification, and a fine-tuning procedure.
We present them in detail in the sequel.

1) Detection of the Active Constraints: Given the prede-
fined joint chance, ε, as we briefly mentioned above, the
Boole’s inequality is widely used to transform ε into nie
individual chances via εi = ε

nie
. Obviously, in a large-

scale optimization problem such as the OPF problem, the
number of nie can be extremely large if we do not have
any prior information since the number of the inequality in
a power system model can go very high. For example, in a
200-bus power system, by only considering the constraints
for the maximum voltages with the ε set as 2%, we have
εi = 2

200 = 0.01%. Statistically speaking, a probability as
small as 0.01% cannot be easily quantified in practice.

Fortunately, since we can efficiently evaluate MC samples
using the PCE surrogate, we propose to conduct an online MC
testing first. By using it, we can not only detect the joint and
individual probabilities as indicated in (6) and (5), but also
detect the number of active constraints, which is denoted by
nac. Then, an improved version of Boole’s inequality using
active constraints is obtained as

εi =
ε

nac
. (11)

This step will greatly relieve the conservativeness of the
Boole’s inequality.

2) Significant/Insignificant Active Constraints Classifica-
tion: Here, using (11), another issue will appear when we
distribute the joint probability to each individual probability.
Suppose for every active constraint, the detected violation
probability is calculated as set of {εaci }

nac
i=1. If εaci ≥ εi,

then we can use (10) to tighten its corresponding bound.
However, if εaci ≤ εi, then this active constraint does not
have enough capability to adjust the assigned probability, εi.
Therefore, we further propose to adopt another step to screen
out the insignificant active constraints that do not have enough
capability for this adjustment. Motivated by Holm who used
a sequential multiple testing in hypothesis rejection [18], we
propose a simple sequential testing for detecting significant
and insignificant active constraints and assign joint probability
as illustrated in Algorithm 1. Here, εad represents a joint
probability distribution that does not include the probability
for the insignificant active constraints. Till now, after the
sequential testing and adjustment of the joint probability, we
can directly transform this joint probability into an individual
probability for a significant active constraint via

εi =
εad
nsac

, i = 1, . . . , nsac. (12)

3) Fine-tuning Procedure: Now, let us further improve (12)
by using the correlation information of all the significant active
constraints, nsac. It is proved by induction in [12] that, based
on Fréchet’s inequality, a less conservative way to distribute
the joint probability to individual ones can be obtained via

Algorithm 1 Sequential Testing Algorithm
1: All {εaci }

nac
i=1 are sorted in order of smallest to largest;

2: Define the number of significant active constraints as nsac
and the number of insignificant active constraints as nisac;

3: Initiate nsac = nac , nisac = 0 and i = 1;
4: while i ≤ nac do
5: if εaci < ε

nsac
then

6: Mark as insignificant constraint;
7: εad = ε− εaci ;
8: nsac = nsac − 1 and nisac = nisac + 1;
9: else

10: Mark as significant constraint;
11: end if
12: end while

considering the correlation for the intersection. Following this
rule, (12) can be further improved via

εi =
εad+(n−1)P(∩nsac

i=1 {hi 6∈Hi})
nsac

, i = 1, . . . , nsac. (13)

Here, (n−1)P(∩nsac
i=1 {hi 6∈ Hi}) can be easily approximated in

the MC samples obtained via the surrogate method. Till now,
the proposed method will yield a less conservative decision
than the one obtained via the traditional Boole’s inequality.

4) Further Discussion on a Hybrid Procedure: It can
be seen from the above section that the proposed method
can not only be applied to the ICC-OPF but also to the
JCC-OPF. We also need to mention that if we set each
individual probability, εi, to the joint probability, ε, instead
of using the aforementioned strategy. The solution obtained
by the ICC will be less conservative than that obtained by
the JCC method, but more conservative than the traditional
deterministic method [10]. This means that, using the control
decision obtained in the ICC method, we can reduce the
number of the detected active constraints compared with that
obtained from the deterministic method. Therefore, we would
like to suggest that, before we transform the JCC problem
into an ICC problem, we solve an ICC problem with each εi
being equal to ε first. This procedure brings a better initial
decision for the JCC-AC-OPF while reducing the number of
active constraints. As for the initial decision in the ICC-OPF,
we can follow the tradition by solving a deterministic OPF
that directly takes the means of the uncertainties, ξ̄, in the
solver [10].

V. CASE STUDIES
Using the proposed method, various case studies are con-

ducted on a modified 200-bus Illinois power system, geograph-
ically situated in the central part of the U.S. state of Illinois.
Its detailed data is provided in MATPOWER 7.1. Here, it is
assumed that the loads follow a Gaussian distribution with
mean equal to the original bus loads and standard deviation
equal to 5% of their mean. 4 wind farms, each with a rated
power of 50 MW, are added at Buses 5, 15, 100, and 140,
respectively, to introduce the randomness in the OPF model.
They are modeled as Weibull distributions with their shape
and scale parameters are set to {7.41, 2.06} [2]. The Gaussian
copula is used to model the dependent samples. The capacity
of transmission line between Buses 29 and 30 is increased
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from 100 MVA to 102 MVA, and unit commitment is not
considered. Besides, we further utilize parallel computing with
the proposed method.

First, we test the performance of the proposed method under
different acceptable violation probabilities, ε, using 10, 000 as
the sample size. The simulation results of the proposed method
are validated with the MC method with 10, 000 samples of
power-flow cases to measure its joint violation probability. The
simulation results are provided in Table I. It can be seen that
the proposed method can provide a quite accurate solution,
which are also less conservative compared with that obtained
from the traditional Boole’s inequality.

Therefore, as shown in Table II, the proposed method can
also obtain a less costly solution compared with that obtained
through the Boole’s method. By increasing ε, the cost can
be further reduced even though the proposed method is more
costly than the traditional deterministic approach. Figure 1
demonstrates the boxplots for the voltage magnitude at Buses
11 through 20 with an upper limit of 1.1 pu as an example
(note that all these buses are PQ buses). We can see that the
JCC-AC-OPF can provide a more secure operation solution
that leads to a few violations while the traditional deterministic
method will place the system under an insecure operating
condition.

Finally, we would like to mention that the surrogate tech-
nique brings significant improvement in the computing time
since the proposed method can finish the simulation in ap-
proximately 12 s while the traditional MC method will spend
around 1 h. The two-order-of-magnitude speedup factor shows
its capability for online applications.

TABLE I
VALIDATION ON THE MODIFIED 200-BUS SYSTEM

Boole’s Proposed method
ε = 2% 1.44% 1.80%
ε = 3% 1.64% 2.57%

TABLE II
COST COMPARISON FOR THE PROPOSED METHOD

Deterministic Boole’s Proposed method
f(ε = 2%) 3.574× 104 3.864× 104 3.8335× 104

f(ε = 3%) 3.574× 104 3.8535× 104 3.8259× 104

VI. CONCLUSIONS

In this paper, we propose a surrogate-enhanced approach
in solving the JCC-AC-OPF problem. This approach can
efficiently achieve the operation decision that balances the
security and economy in the grid operations while being
computational cheap to evaluate. The simulation results reveal
the excellent performance of the proposed method.
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