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Abstract—Serving as a prerequisite to power system dynamic
state estimation, the observability analysis of a power system dy-
namic model has recently attracted the attention of many power
engineers. However, because this model is typically nonlinear
and large-scale, the analysis of its observability is a challenge
to the traditional derivative-based methods. Indeed, the linear-
approximation-based approach may provide unreliable results
while the nonlinear-technique-based approach inevitably faces
extremely complicated derivations. Furthermore, because power
systems are intrinsically stochastic, the traditional deterministic
approaches may lead to inaccurate observability analyses. Fac-
ing these challenges, we propose a novel polynomial-chaos-based
derivative-free observability analysis approach that not only is free
of any linear approximations, but also accounts for the stochas-
ticity of the dynamic model while bringing a low implementation
complexity. Furthermore, this approach enables us to quantify
the degree of observability of a stochastic model, what conven-
tional deterministic methods cannot do. The excellent performance
of the proposed method has been demonstrated by performing
extensive simulations using a synchronous generator model with
IEEE-DCI1A exciter and the TGOV1 turbine governor.

Index Terms—Dynamic state estimation, observability analysis,
derivative-free, polynomial chaos, degree of observability.

I. INTRODUCTION

YNAMIC state estimation (DSE) has attracted an in-
D creasing attention of power engineers due to its ability
to enhance the monitoring, stability, and control of power sys-
tems. Several applications of DSE in power systems have been
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proposed in the literature [1]-[8]. A prerequisite to the power
system state estimation is the observability of that system by
a collection of measurements. Observability analysis aims at
evaluating the existence of a solution for the state estimation
problem, and thereby at providing guidelines to sensor deploy-
ment, measurement selection, and so on, for achieving reliable
state estimation results. Since an actual power system is non-
linear, large-scale, and time-varying, its observability analysis
becomes quite challenging.

To achieve this task, methods based on linear approximations
have been initially proposed. Albeit simple, they may suffer
from inaccurate or even incorrect results when the system non-
linearities are strong. Therefore, some alternative approaches
have been proposed recently in the literature. For instance,
Qi et al. [9] apply the empirical observability Gramian for
phasor measurement unit (PMU) placement. Although being
a computable tool, the approximated constant-impedance load
models for a reduced-order system can reduce the accuracy of
the analysis result. Wang et al. [10] advocate the application of
a Lie-derivative-based observability analysis method to power
systems where the synchronous generators are represented by
the classical model. This work has been improved by Rouhani
and Abur [11] with the use of a more realistic synchronous
generator model provided with the IEEE-Type 1 exciter. Albeit
accurate under nonlinear conditions, this approach is known to
be complicated due to derivatives and very time-consuming even
for small-scale power systems. Here, we would like to point out
that all the above observability analysis methods are formulated
within a deterministic dynamical system model framework with-
out considering the inherent stochasticity of any actual power
system.

To address the aforementioned challenges, we propose in this
paper a novel method that relies on the generalized-polynomial-
chaos (gPC) theory, which enables reliable observability analy-
sis of a power system stochastic dynamic model. This yields the
following contributions:

1) Unlike the traditional linear-approximation-based meth-
ods, the proposed method applies to nonlinear power system
model.

2) In contrast to the derivative-involved Lie derivative method,
the proposed gPC-based method is fully derivative-free, which
greatly reduces the derivative complexity and computational
burden.

3) Unlike the deterministic observability analysis methods
proposed in the literature, the proposed method accounts for the
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stochasticities of the power system. Furthermore, the degree of
the system observability is assessed via the index of the puny
and brawny observability by which the proposed approach can
not only analyze the observability of each system state, but can
also assess the effect of the observation noise on the system
observability.

4) Finally, to ensure a better practical observability analysis,
our proposed method is applied to the decentralized and central-
ized DSE frameworks. Its exceptional performance is demon-
strated in various simulations using a ninth-order synchronous
generator model with the IEEE-DC1A exciter and the TGOV 1
turbine-governor [12].

II. PROBLEM FORMULATION

Here, let us first review the conventional deterministic observ-
ability analysis framework of a time-varying dynamical system.
Then, we extend this framework to the power system dynamic
model. Finally, we discuss its limitation and we propose our
new gPC-based observability analysis method for a stochastic
dynamic model.

A. Review of Observability

Consider a general discrete-time dynamical system formu-
lated as

(1a)
(1b)

L+l = f(wk)v
Yy, = h(zy),

where x;, € R™*! and y, € R™*! are the state and the mea-
surement vectors at time k, respectively; and f and h are
vector-valued functions.

Definition 1: The system is (locally) observable in the time
interval [0, K] if the initial state &y can be uniquely determined
from y,,, k € [0, K.

Defining the cumulative measurement vector Y =
(YrsYrits- > Ypin_1)7, the relation between the arbitrary
initial state ¢, and its corresponding measurements Y, is given
by

Y, =g(xy). 2

According to the implicit function theorem [13], the initial
state xj can be uniquely determined from the measurements
Y ;. if and only if the Jacobian matrix

Y,
B 8£Ck

Oy, 3)
is nonsingular. Consequently, the observability rank condition
is described as follows:

Theorem 1 [14]: The system (1) is (locally) observable if and
only if the Jacobian matrix (also called the observability matrix)
has full rank, i.e., rank(Oy) = n.

Its state-measurement relation (2) can be represented by

Y. = [h(zr), h(f(zk)), h(F(f (1)), TT, @)
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and the corresponding observability is computed through

_ [oh(zr) Oh(f(xr) OR(F(f(xk) |7

Ok ﬁa:k a.’I}k Gmk T ’ (5)

Obviously, the derivation procedure within (5) can be compli-
cated for nonlinear and high-dimensional dynamical systems.
B. Power System Dynamics

The discrete-time state-space model of the power system is
given by

(6a)
(6b)

T = f(xr) + wy,
Y = h(mk) +vk7

where wj, and vy are the process and measurement noise,
respectively. In this paper, following Sauer and Pai [12], the
synchronous generator with the IEEE-DCIA exciter and the
TGOV1 turbine-governor is modeled by the following differ-
ential and algebraic equations:

Differential equations:

! dE(lI / !
dogF — —E, — (Xa — Xg)Ia+ Eja, @)
dE’
‘;0 dtd = _Eéi - (Xq - X;)Im ®)
dé
T w — Wy, ©)]
2H dw
& Ty —P — D(w—
Ws dt M e D(W Ws)> (10)
dFE
Tp—7* = ~(Kp + Sp(Efa) Efa + Vi, (1n
dVe Kg Kg
Tp—— = -V, —Vr — —(K Se(E E
g F+TE R TE( e+ Se(Efa))Eya,
(12)
dv;
Ad_tR = Ve + Ka(Vier = Vr = V), (13)
dT),
Ten— = ~Tu + Psv, (14)
dPgsy 1 w
T = Psy+Po—— (21 15
SV T4 sv + Po RD(MS ), (15)
Algebraic equations:
Va="Vsin(d —0) and V, = Vcos(d —0), (16)
E/ - Vq Vd - E;i
Id = qAX—/ and ]q = T(/], (17)
P, =Vyl;+ %Iq and Qe = 7Vd_[q + Vqu, (18)

where ¢ and w are generator rotor angle and speed, respectively;
wj is the rotor speed base value; T(QO, Téo, T, Ty, Ta, Tcw, and
Tsy are the time constants; K g, K and K 4 are the controller
gains; E, E:I, Etq, Ve, Vr, T, and Pgy are the d- and g-axis
transient voltages, field voltage, scaled output of the stabilizing
transformer and scaled output of the amplifier, synchronous ma-

chine mechanical torque and steam valve position, respectively;
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X4, X}, Xy, and thz are the generator parameters; H, D, and Rp
are the inertia constant (in seconds), damping ratio and droop,
respectively; Vi and Po are the known references for exciter
and speed governor, respectively. V' and 6 are the terminal bus
voltage magnitude and phase angle, respectively; I, and I, are
the d- and g-axis currents; Vg and V, are the d- and g-axis
voltage magnitude; P, and Q. are the generator terminal real
and reactive power, respectively. The reader is referred to [15]
for further details.

By using a time discretization via the fourth-order Runge-
Kutta method, the continuous-time state-space model (7)—(18)
is written in a discrete-time form given by (6). The relationships
given by (7)—(15) and (16)—(18) are represented in compact
forms by the vector-valued functions f and h, respectively.

C. Limitations of the Traditional Observability Analysis

Here, let us discuss the limitations of the aforementioned
observability analysis. First, since multiple derivatives are in-
volved in the observability analysis, the current approach is very
time-consuming even for small-scale power systems. Second,
although the current approach assesses the observability of a
system as a whole, it does not precisely assess the observability
for each system state individually. In some practical applications,
ensuring the observability for all the system states may not be
necessary since only some key system states really do matter.
Finally, the current observability analysis is formulated within a
deterministic framework that fully ignores the stochastic nature
of a dynamical system such as a power system. Therefore, it
comes as no surprise that this deterministic framework lacks
relevance in power system applications, where the observation
noise cannot be ignored.

Motivated by the above shortcomings, we propose a new ob-
servability framework that not only accounts for the stochasticity
of the model, but also assesses the observability for each system
state and quantifies the degree of observability of the model.

III. REVIEW OF THE POLYNOMIAL CHAOS

Before we present our gPC-based observability analysis, let
us have a brief review of the gPC theory first.

A. gPC Surrogate

The gPC theory, which is first introduced by Wiener and
further developed by Xiu and Karniadakis [16], has been demon-
strated to lead to cost-effective tools in uncertainty propaga-
tion of a nonlinear system model [16], e.g., the power system
dynamic model [17]. In this theory, the stochastic outputs are
expressed as a weighted sum of orthogonal polynomial chaos
basis functions constructed from the probability distribution of
the random variables, i.e.,

p
y=> aig:i(€), (19)
i=0
where y is the system output, & = [£1,&a, . .., &,] is a vector of
random variables following a standard probability distribution,
and its corresponding polynomial chaos basis is ¢;(£); a; is
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the ith polynomial chaos coefficient; n, = (n + p)!/(n!p!) —
1; and p is the maximum order of the polynomial chaos basis
functions. From the polynomial chaos coefficients, the mean and
the variance of the output y can be directly obtained as

K= ao, (20a)
i=1

In practice, to maintain the computational efficiency of the
surrogate model, (19), a truncated gPC expansion is typically
adopted. Although different truncation strategies exist, consid-
ering the scalability and accuracy of the power system model,
we propose to select the strategy proposed in [18] to truncate
the gPC surrogate as

y=aodo+ Y aidi(&)+ D aiiba(&D), 2n
i=1 i=1

where ¢g, ¢1(&;), and ¢o(E?) represent the zeroth-, first-,
and second-order polynomial chaos bases, respectively; and
ap, a;i, a;; stand for the corresponding polynomial chaos co-
efficients.

B. Collocation Points

Collocation points (CPs) are a finite sample set of & =
[€1,&2,...,&,] that are chosen to approximate the polynomial
chaos coefficients. The elements of the CPs are generated by
using the union of the zeros and the roots of one higher-order,
one-dimensional polynomial for every random variable. Then,
using a tensor product or sparse tensor rule, we can generate
multidimensional CPs as described in [16], [18]. Here, for
Gaussian random variables, we select Hermite polynomials.

C. Approximation of gPC Coefficients

Here, let us present the way to approximate the gPC coeffi-
cients for a general function,
y=g(x), (22)
where the input variable is & € R™*!, and the output variable
isy € RL*1 To achieve the surrogate model, the coefficients
of gPC are estimated at selected combinations of the aforemen-
tioned collocation points, &. Taking into consideration S  inde-
pendent combinations of the collocation points, the polynomial
chaos basis can be obtained directly, and the output variable can
be calculated through the considered function (22). Formally,
the surrogate model is given by
Y =HA, (23)
where Y € R%*Z is the output matrix consisting of the outputs
from S samples; H € R5*(27+1) is the basis matrix composed
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of the polynomial chaos bases expressed as

do P1(&11) -+ D1(€im) B2(634) -+ ¢2(€7,)

%o $1(82,1) -+ D1(Ean) P2(E31) -+ 92(£3,,)

¢.0 ¢1(és,1) ¢1(€.S,n) ¢2(é§,1) ¢2(§2qn)
(24)

and &, ; is the ith element of the sth sample; A € R(n+D*L jg
the coefficient matrix

o 0@ L o]
RURROIIN D
A= aq(;l) ag.?) ag;L) ) (25)
1 2 L
at'] af) - alf)
i alth - )]

and a((]l), az(»l), and aglt) stand for the polynomial chaos coeffi-
cients with respect to the ith input and /th output.
Based on the obtained basis and output matrices, the coeffi-

cient matrix is calculated through

A=H"'Y. (26)

According to (20), the mean of the output variable is § =
A= [aél), aéQ), ce a(()L)]T7 and the covariance matrix of the
output variable is given by P, = AJA,, where A, is the
remaining 2n X L block of A, reflecting the second-moment
information.

The detailed gPC procedure is described in Algorithm 1.

Algorithm 1: gPC Procedure.

1:  Map the ith random variable x; to a given random
variable &; via

T; = Fl_l(Tl(El)), 1= 172, e, Ny

where F; ! is the inverse cumulative distribution
function of x;, and 7T} is the cumulative distribution
function of &;;

2:  Construct the polynomial chaos basis, then express the
output y in the gPC expansion form of (21);

3:  Choose combinations of collocation points and put
them into the polynomial chaos basis matrix (24);

4: Compute the model output for the selected collocation
points to obtain the output matrix Y;

5:  Estimate the unknown coefficients A based on the
collocation points selected and the model output
calculated by (26).

IV. THE PROPOSED GPC-BASED OBSERVABILITY
ANALYSIS APPROACH

In this section, using the aforementioned polynomial-chaos
technique, we present the proposed derivative-free observability
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analysis approach. Since we consider a more general stochastic
dynamical system (6) instead of the traditional deterministic
system (1), let us first extend the concept of observability to a
stochastic one as shown in the following.

Definition 2: A stochastic system is (locally) observable in the
time interval [0, K] if the initial state & can be inferred from the
measurements y,,, k € [0, K| and its solution satisfies a certain
confidence interval level.

Now, within this stochastic framework, let us illustrate the
proposed gPC-based observability analysis method.

A. Observability Condition

For the power system model described in (7)—(18), let us use
a surrogate model to represent the relation between the arbitrary
initial state xj, and its corresponding measurements Y j, by

Y, =HA,. (27)

In the surrogate model, since the means of the first-order
and second-order polynomial chaos bases are zeros due to the
orthogonal property [16], the zeroth-order polynomial chaos ba-
sis and its corresponding polynomial chaos coefficient (ag)qﬁo)
denote the mean of the /th measurement, and the first- and the
second-order polynomial chaos bases and their corresponding
polynomial chaos coefficients (agl)d)l({s,i) and aglz) $2(€2,))
represent the uncertainty of the /th measurement with respect
to the uncertainty of the ith state, where ¢1 (&) and ¢o(€2,)
denote the first- and second-order polynomial chaos bases as-
sociated with the ith state, respectively. Further, the polynomial
chaos coefficients, ay) and aglz) , stand for the contribution of the
ith state to the uncertainty of the /th measurement.

When the contribution of the ith state to the uncertainty of
the [th measurement is zero, it means that the value of the [th
measurement remains unchanged with respect to the variations
in this state, i.e., the 7th state cannot be inferred from the [th
measurement. To infer the n states from the given measurements
uniquely, n effective measurements, for which the contributions
of the states to the uncertainties of the measurements are linearly
independent, are needed. That is, the observability-coefficient
matrix, ®;, € R2"*mn,

'agl) agQ) agmn)'
M (2 (mn)
e T A (28)
ayq @pq - Gy,
Lal alh - el ]

which is the submatrix of the coefficient matrix, has n linearly
independent columns, and the ith and (n + 4)th rows cannot be
ZEeros.

Theorem 2: The system (1) is (locally) observable if and
only if the observability-coefficient matrix ®;, has n linearly
independent columns and the ith and (n + 7)th rows cannot be
all zeros.
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B. Degree of Observability

Since the extended definition of the observability of a stochas-
tic dynamical system introduced in Definition 2 also focuses on
the confidence of the solution, we would like to further propose
two new quantitative observability indices to measure the degree
of observability from three aspects.

1) Contribution Rate: According to the surrogate model, the
variance of the /th measurement can be determined via

20 =3 20 4 20, 29)
i=1

where {a?(l) + a?’(il)} denotes the contribution of the ith state to

the variance of the [th measurement.
Define the proportion of the contribution of the ith state to the
variance of the [th measurement as the contribution rate, as

200) | 20

a; N

Q=g (30)
20

Y

It follows that 0 < Qy) < 1. The contribution rate denotes the
influence of the state on the measurement. A larger contribution
rate implies a larger influence of the state on the measurement,
and vice versa.

Definition ~ 3: if all the  contribution  rates

(le), Ql@), o ngn)) of the ith state are less than a
small positive value (e.g., 0.1%), that state is puny observable.
Otherwise, it is brawny observable. If all the states are brawny
observable, the system is brawny observable. Otherwise, the
system is puny observable. |

2) Numerical Stability: To guarantee the numerical stability
of the estimated state, the observability-coefficient matrix must
be well-conditioned. The condition number, which is the ratio
of the largest singular value to the smallest one, i.e.,

Omax ((I))

C(Q) B Urnin(@)

(€29)
is used to evaluate the matrix.

Definition 4: If the condition number is very large or becomes
infinity, the system is puny observable. If the condition number
is close to one, the system is brawny observable. ]

3) Interference Rate: Our approach can also assess the effect
of observation noise on system observability.

If the contribution of the :th state (given by a?(l) +a2!

"o
the variance of the /th measurement is close to or smaller than
the measurement noise variance, ag (l), its influence is difficult
to distinguish from that of the noise variance.
Define the proportion of the noise variance to the variance of
the /th measurement as the interference rate, i.e.,
2(1
v = "gi l; .
Oz

(32)

Definition 5: For a noisy measurement environment, the
ith state is puny observable when all the contribution rates
(le), Qz@), ce ng")) are less than the corresponding inter-
ference rates (V (1) V(2 y(mn)) [ ]
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Fig. 1. Lie-derivative-based approach: condition number of the observability
matrix.

Till now, we have presented the proposed gPC-based observ-
ability analysis method. Next, its performance will be assessed
using some simulation results.

V. SIMULATION RESULTS

Here, let us first show a simple demonstration using the Lorenz
system. Then, we will further validate the proposed method in a
more complicated synchronous generator model with the IEEE-
DCI1A exciter and the TGOV turbine-governor.

A. Demonstration With a Lorenz System

Here, let us conduct a demonstration of the proposed method
on the well-known Lorenz system, which is a typical nonlinear,
chaotic system. Its system model is described by

1 = —10x1 + 1029

Lig - 281‘1 — X1T3 — X9

(33)

3 8
T3 = 1T — 5563

with the initial states &1 = > = 3 = 1.Its measurement model

is set to
Y1 =171
Y2 = T2

1) Lie-Derivative-Based Observability Analysis Approach:
The observability analysis is first performed by using the Lie-
derivative-based approach. The observability matrix is calcu-
lated and it has full rank at all times, which means that the system
is observable. To measure the degree of the observability, the
condition number is considered, as shown in Fig. 1. It shows that
its value changes drastically and reaches large values at intervals,
which reveals that the system is weakly observable. Note that the
Lie-derivative-based approach can neither quantify the degree
of observability for each state nor account for the effect of the
observation noise, thereby reducing its reliability in practice.

2) Empirical Observability Gramian Approach: Observabil-
ity analysis is then performed via the empirical observability
Gramian approach. It consists of checking if the calculated
observability matrix has full rank at all times, and deciding
whether that is the case, i.e., that the system is observable. To

(34)
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Fig. 2. Empirical observability Gramian approach: condition number of the
observability matrix.
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Fig. 3. gPC-based approach—rank of the matrices: (a) the observability-
coefficient matrix and (b) the first-order coefficient matrix.

measure the degree of the observability, the condition number is
calculated as shown in Fig. 2. It is observed that its value changes
drastically and reaches large values at intervals, which reveals
that the system is weakly observable. Hence, similar to the Lie-
derivative-based approach, the empirical observability Gramian
approach can neither quantify the degree of observability for
each state nor account for the effect of the observation noise,
thereby having some limitations in practice.

3) gPC-Based Approach: Here, we perform the observabil-
ity analysis by using our gPC-based approach, in which the
observability-coefficient matrix is computed through (28). In
the observability-coefficient matrix, the first-order polynomial
chaos coefficients are much larger than the second-order polyno-
mial chaos coefficients. For the convenience of illustration, we
define a matrix composed of the first-order polynomial chaos
coefficients (i.e., the first n rows of the observability-coefficient
matrix) and name it the first-order coefficient matrix.

First, let us test the observability condition using the rank of
the observability-coefficient matrix as shown in Fig. 3(a). It is
shown that the observability-coefficient matrix cannot be full
rank at all times. However, as shown in Fig. 3(b), the first-order
coefficient matrix has full rank all the time, which satisfies the
observability condition. Hence, the system is observable.

—State | - - State 2 —-—-State 3

0
9 10
<
& . R .
5 oA i LoaA o R
g [ R O R VA V74 N7 U A SR N SR L A W A W
5 A RO I L V25 0 N R 0 RO B Y SV 20 B
D2l Ty Ay ragy e v V]
=107 Y oy o e b Vol
= i L I Vo b v oy LR
= i Vi LI N T A !
S i i Vi b i
9 i ¥ biog obid !
g !'j HAE Y i 1
= H | ¥ I fl
E 4L i (I ]
= 10 | i
2 |
10 ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time [s]
Fig. 4. gPC-based approach: maximum contribution rate.
10° © ! @)
i - ®
i
1
2 oty n todon i
E107} i b i
=} | [} i {
0 i R | i
Z i s [ S R R i
' o [ R 1
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S ophaioqi Ay L Al
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Siot kil Vi R Y | T U 11 A VR
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Fig. 5. gPC-based approach—condition number of the matrices: (a) the first-

order coefficient matrix and (b) the active coefficient matrix.

Next, let us discuss the degree of observability. The contri-
bution rate is considered first with its maximum contribution
rate shown in Fig. 4, where the maximum contribution rate
Q@ (t) of the ith state at time ¢ is the maximum value of the
contribution rates to the measurements. As can be seen, unlike
the first two states with larger contribution rates (equal to one),
the contribution rate of the third state varies with the time. For
some time periods, it even reaches a very small value, rendering
it hard to be inferred. Therefore, the first two states are brawny
observable while the third state is puny observable.

Let us now show that the condition number of the
observability-coefficient matrix can sometimes be very large.
The condition number of the first-order coefficient matrix is
displayed in Fig. 5(a). We observe that it varies with time
while taking large values, indicating ill-conditioned conditions.
Consequently, the state estimate is not numerically stable, which
is also indicated in the contribution rate. For the sake of conve-
nience, we define a matrix composed of the first-order polyno-
mial chaos coefficients of the states with brawny observability,
and call it the active coefficient matrix. The condition number
of the active coefficient matrix is demonstrated in Fig. 5(b).
It shows that the condition number of the active coefficient
matrix is small enough to ensure that the active coefficient matrix
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Fig. 6. gPC-based approach—interference rate: (a) maximum interference
rate when the variance of the observation noise is 1 x 10~%; and (b) median
interference rate when the variance of the observation noise is 1 x 1072,

is well-conditioned, which means the first two states can be
well-estimated.

Now, let us investigate the effect of the observation noise on
the observability of the dynamical system. The noise variance
is 1 x 10~*. Define the maximum interference rate, V.V (t), at
time ¢ as the maximum value of the interference rates to the
measurements, as shown in Fig. 6(a). It is noticeable that the
maximum interference rate is too small to have an impact on
the measurement. Hence, the effect of the observation noise on
the state estimation is negligible. Moreover, we consider a noisy
environment, where the noise variance is 1 x 10~2. Define the
median interference rate, 1740 (t), attime ¢ as the median value of
the interference rates to the measurements, as shown in Fig. 6(b).
As can be seen, the median interference rate is very large, which
indicates that most of the variances of the estimated values for the
measurements are smaller than the variance of the observation
noise. The states are hard to be inferred from the measurements
since their influence is difficult to be distinguished from that of
the noise variance. Therefore, the estimated results are heavily
impacted by the observation noise, implying that the system is
puny observable.

Finally, the effectiveness of the observability analysis result
is verified through a DSE by using the unscented Kalman filter
(UKF) [2]. The performance of the dynamic state estimator is
evaluated by the root-mean-square error (RMSE). Four types
of the implementations are considered. The first one performs
the state estimation with the complete state prediction and the
state-correction procedures, as shown in Fig. 7(a). In the second
implementation, the state correction of the third state with puny
observability is canceled, as shown in Fig. 7(b). In the third
implementation, the state corrections of both the second and
third states are canceled, as shown in Fig. 7(c). In the last
implementation, the state estimation is performed under a noisy
environment, as shown in Fig. 7(d). Obviously, the dynamic state
estimation results obtained from the first two implementations
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Fig. 7. RMSE: (a) the state estimation is performed with the complete state
propagation and the state correction (the variance of the observation noise is
1 x 10~%); (b) the state correction of the third state is canceled (the variance of
the observation noise is 1 x 10~4); (c) the state corrections of both the second
and third states are canceled (the variance of the observation noise is 1 x 10~%);
and (d) the state estimation is performed with the complete state propagation
and the state correction (the variance of the observation noise is 1 x 1072).

TABLE I
COMPUTATION TIME OF APPROACHES

Approach Computation Time [s]
Lie-derivative-based approach 13.2+0.5
Empirical observability Gramian approach 0.86 £ 0.08

gPC-based approach 0.058 + 0.0.005

are the same, and they match the true states very well. In the sec-
ond implementation, although the third state is puny observable
(i.e., they are hard to be inferred from the measurements), they
can be estimated through the state propagation with good state
initialization. As demonstrated in the third implementation, the
state estimation becomes worse when the state correction of the
second state is also canceled. In the last implementation, due to
the effect of the observation noise, the state estimates fluctuate
around the true states, which result in a larger estimation error.

In this demonstration, we have clearly demonstrated that
the proposed method is much more informative regarding the
observability analysis than the traditional deterministic one.

4) Computation Time: The computational complexity is
evaluated through computation time in Table I. The computation
time is measured by using MATLAB R2017a on a 3.20-GHz
Intel Core™ i7 processor with a 8 GB of main memory. It is
evident that our gPC-based approach takes much less computa-
tion time than the Lie-derivative-based method (i.e., a speedup
of two orders of magnitude) in this nonlinear, chaotic system.

B. Decentralized DSE Case

In this section, an observability analysis for decentralized
DSE is performed by using our approach. As a benchmark
system, the IEEE 10-machine, 39-bus system is considered,
and the synchronous generator is modeled by a ninth-order
two-axis model with the IEEE-DC1A exciter and the TGOV 1
turbine-governor. The sampling rate of the PMU is assumed to
be 60 samples/s. A disturbance is applied at¢ = 0.5 s by opening
the transmission line between Buses 15 and 16.
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Decentralized framework: maximum contribution rate for the general

1) General Test Case: Let us first consider a general case, in
which both the real and reactive power are used as measurements
for state estimation.

First, let us test the observability condition, for which the
rank of the observability-coefficient matrix of the generator 5 is
shown in Fig. 8(a). It is shown that the observability-coefficient
matrix cannot have full rank all the time. However, as shown
in Fig. 8(b), the first-order coefficient matrix has full rank all
the time, which satisfies the observability condition. Hence, the
system is observable.

Now, let us discuss the degree of observability, for which the
maximum contribution rate is shown in Fig. 9. As can be seen,
the first four states, i.e., J, w, E/;, and E{I, have the larger con-
tribution rates, which means they can be more easily estimated
with the given measurements while the other five states, i.e.,
Etq, Vi, Vi, Ty, and Pgy, have negligible contribution rates,
which implies that it is hard for them to be inferred from the
given measurements. Therefore, the first four states are brawny
observable while the other five states are puny observable.

Since the rank of the observability-coefficient matrix can-
not have full rank all the time, the condition number of the
observability-coefficient matrix can sometimes be very large.
The condition number of the first-order coefficient matrix is
demonstrated in Fig. 10(a). The condition number of the first-
order coefficient matrix varies with time while taking large
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values that result in an ill-conditioned observability matrix.
Consequently, the state estimate is not numerically stable, which
is in agreement with the result obtained from the contribution
rate. The condition number of the active coefficient matrix is
demonstrated in Fig. 10(b). It shows that the condition number
of the active coefficient matrix is small enough to ensure that the
active coefficient matrix is well-conditioned, which means that
the first four states can be well-estimated.

Finally, let us discuss the effect of the observation noise on the
observability of this dynamical system. While considering the
interference rate, the maximum interference rate is calculated
and displayed in Fig. 11. Evidently, it is very small, which has
only a negligible effect on the measurements. Hence, the effect
of the observation noise on the state estimation is negligible.

The effectiveness of the observability analysis result is ver-
ified through a DSE. Due to space limitation, let us choose
four brawny observable states (i.e., d, w, E/;, and E;) and two
puny observable states (i.e., V7 and 7)) to demonstrate the
effectiveness of the proposed approach.

The state estimation results are provided in Fig. 12. Three
types of implementation are considered. The first one performs
a state estimation with the complete state prediction and the
state-correction procedures. The simulation results are displayed
in Fig. 12(a), and its performance is indexed by the RMSE in
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Fig. 13.  Decentralized framework—RMSE for the general case: (a) the state
estimation is performed with the complete state propagation and the state
correction, and (b) the state corrections of the first four states are canceled.

Fig. 13(a). In the second implementation, the state corrections of
the last five states with puny observability are canceled, as shown
in Fig. 12(b). In the third implementation, the state corrections
of the first four states are canceled, and it performance is indexed
in Fig. 13(b).

As can be seen, the state estimation results obtained from the
first two implementations are the same, and they match the true
states very well. In the second implementation, although the last
five states are puny observable (i.e., they are hard to be inferred
from the measurements), they can be estimated through the state
propagation with good state initialization. As demonstrated in
the third implementation, the state estimation becomes worse
when the state corrections of the first four states are canceled.

The state estimation under different initial state conditions
is also studied in the simulations. A brawny observable state
and a puny observable state are estimated and their trajectories
are plotted in Fig. 14. Thanks to the effective state-correction
process, the estimated state with brawny observability closely
tracks the true state in the initial stage. However, since the state-
correction process rarely works for the puny observable state,
the estimated value converges to the true value very slowly.

2) Special Test Case: Now, let us further consider a special
case to demonstrate the effectiveness of the proposed method. In
this case, only the real power is used as the measurement while
the reactive power is ignored. In this case, the observability-
coefficient matrix is of full rank at all time steps, which means
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Fig. 15. Decentralized framework—condition number of the matrices for the
special case: (a) the first-order coefficient matrix and (b) the active coefficient
matrix.

that the system is observable. The maximum contribution rate is
similar to that in Fig. 9, which indicates that the last five states
are puny observable.

Since the rank of the observability-coefficient matrix can-
not have full rank all the time, the condition number of the
observability-coefficient matrix can sometimes be very large.
The condition number of the first-order coefficient matrix is
demonstrated in Fig. 15(a). The condition number of the first-
order coefficient matrix varies with time while taking large
values that result in ill-conditioned observability matrix. Con-
sequently, the state estimate is not numerically stable, which
is in agreement with the result obtained from the contribution
rate. The condition number of the active coefficient matrix is
displayed in Fig. 15(b). It shows that the condition number of
the active coefficient matrix takes large values, resulting in an
ill-conditioned matrix. Hence, the first four states still suffer
from numerical instability, which agrees with the result obtained
by using the Lie-derivative-based observability analysis ap-
proach [11]. The estimation result of the decentralized DSE that
only takes P, as the measurement plotted in Fig. 16, which shows
that the state estimates do not fully match the true values because
they are not numerically stable. This further demonstrates the
effectiveness of the proposed gPC-based observability analysis
approach.
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3) Computing Time: Finally, we should highlight that the
entire observability analysis only takes around 0.21 s for the
general case study and 0.17 s for the special case, which is
compatible with online applications.

C. Centralized DSE Case

In this section, we consider a very challenging task to our
approach by performing an observability analysis of a cen-
tralized DSE applied to the IEEE 10-machine, 39-bus system.
Here, the synchronous generator is modeled by a ninth-order
two-axis model with the IEEE-DCI1A exciter and the TGOV 1
turbine-governor. The other scenarios are the same as those of
the decentralized case.

First, let us test the observability condition for which the rank
of the observability-coefficient matrix is shown in Fig. 17(a). Itis
shown that the observability-coefficient matrix cannot have full
rank all the time. However, as shown in Fig. 17(b), the first-order
coefficient matrix has full rank all the time, which satisfies the
observability condition. Hence, the system is observable.

Now, let us discuss the degree of observability, for which the
maximum contribution rate is shown in Fig. 18. As can be seen,
the first forty states, i.e., 0, w, F’;, and El/; of each generator,
have the larger contribution rates, which means they can be more
easily estimated with the given measurements while the other
fifty states, i.e., Erq, Vr, Vg, T, and Psy, of each generator,
have negligible contribution rates, which implies that it is hard
for them to be inferred from the given measurements. Therefore,
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the first forty states are brawny observable while the other fifty
states are puny observable.

Since the rank of the observability-coefficient matrix can-
not have full rank all the time, the condition number of the
observability-coefficient matrix can sometimes be very large.
The condition number of the first-order coefficient matrix is
shown in Fig. 19(a). It is observed that it varies with time while
taking large values that result in an ill-conditioned observabil-
ity matrix. Consequently, the state estimate is not numerically
stable, which is in agreement with the result obtained from the
contribution rate. The condition number of the active coeffi-
cient matrix is displayed in Fig. 19(b). It is observed that it
is small enough to ensure that the active coefficient matrix is
well-conditioned, which means that the first forty states can be
well-estimated.

Now, let us investigate the effect of the observation noise on
the observability of this dynamical system. The noise variance
is1 x 107°. While considering the interference rate, the median
interference rate is calculated and displayed in Fig. 20(a). It is
observed that the median interference rate is too small to impact
the measurement. Hence, the effect of the observation noise on
the state estimation is negligible. Now, let us consider a noisy
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environment where the noise variance is 1 x 10~2. The median
interference rate is displayed in Fig. 20(b). As can be seen, the
median interference rate is very large, which indicates that most
of the variances of the estimated values for the measurements are
smaller than the variance of the observation noise. The states are
hard to be inferred from the measurements since their influence
cannot be easily distinguished from that of the noise variance.
Therefore, the estimated results are heavily impacted by the
observation noise, implying that the system is puny observable.

The effectiveness of the observability analysis result is
demonstrated via a DSE. Here, two types of implementation
are considered. The first one performs a state estimation in the
normal environment, and the simulation results are displayed in
Fig. 21. In the second implementation, the state estimation is
performed under a noisy environment, as shown in Fig. 22. As
can be seen, the state estimation results match the true states
very closely in the first implementation. As demonstrated in
the second implementation, due to the effect of the observation
noise, the state estimates fluctuate around the true states, which
results in a larger estimation error.

Finally, we need to highlight that the entire observability anal-
ysis only takes around 182.5 s, which is highly computationally
efficient for such a large-scale dynamical power system with
detailed generator model.
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VI. CONCLUSION

In this paper, we propose a novel gPC-based derivative-free
observability analysis approach for power system stochastic
dynamic models. This method not only has a low complexity
and an easy implementation, but also enables us to quantify
the degree of observability. The excellent performances of the
proposed method have been assessed in a number of simulations
of power system DSE.

Our future work will involve using the gPC-based observ-
ability analysis tool to better design a DSE as well as sensor
placement algorithms.
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