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Abstract—The observability analysis of a time-varying nonlin-
ear dynamic model has recently attracted the attention of power
engineers due to its vital role in power system dynamic state
estimation. Generally speaking, due to the nonlinearity of the
power system dynamic model, the traditional derivative-based ob-
servability analysis approaches either rely on the linear approxi-
mation to simplify the problem or require a complicated deriva-
tion procedure that ignores the uncertainties of the dynamic
system model and of the observations represented by stochastic
noises. Facing this challenge, we propose a novel polynomial-
chaos-based derivative-free observability analysis approach that
not only brings a low complexity, but also enables us to quantify
the degree of observability by considering the stochastic nature of
the dynamic systems. The excellent performances of the proposed
method is demonstrated using simulations of a decentralized
dynamic state estimation performed on a power system using
a synchronous generator model with IEEE-DCI1A exciter and a
TGOV1 turbine-governor.

Index Terms—Dynamic state estimation, observability analysis,
derivative-free analysis, polynomial chaos.

I. INTRODUCTION

Dynamic state estimation (DSE) is an important technique
in modern power systems, and it is used for obtaining the
dynamic state variables in a timely and an accurate manner.
The real-time information of the dynamic states is crucial for
various devices to enhance system security and stability [1].

To properly design and implement such a dynamic state
estimator of a system, observability analysis is a prerequi-
site. Traditionally, the convential observability analysis of a
nonlinear power system dynamic model relies on the small-
signal approximation of the system model. Although this
method is simple, an inaccurate or even incorrect result can be
obtained under a highly nonlinear condition. Therefore, some
alternative approaches are proposed to address this issues. Qi
et al. [2] adopt the empirical observability Gramian to enhance
the Phasor Measurement Unit (PMU) placement to achieve
system observability. Although being a computable tool, the
approximated constant impedance load models can reduce the
accuracy of the analysis result. Recently, the Lie derivatives
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are advocated for the observability analysis of power system
dynamic states. For instance, in [3], the Lie-derivative-based
observability analysis approach is utilized to evaluate the
observability of several test systems where the synchronous
generators are represented by the classical model. This work
is further extended in [4]. Albeit accurate under a nonlinear
condition, this approach is known to be derivative-complicated
and very time-consuming even for small-scale power systems.
Finally, we would like to emphasize that none of the above
observability methods accounts for the intrinsic stochasticity
of the dynamic model of the system.

To address the above issues, we propose a novel polynomial-
chaos-based approach that enables the observability analysis
for the decentralized power system dynamical state estimation,
yielding the following contributions: (1) Unlike the traditional
linear-approximation-based method, the proposed method is
based on the polynomial-chaos theory that has no linear as-
sumption. In contrast to the derivative-complicated Lie deriva-
tive method, the proposed approach is fully derivative-free,
which greatly reduces the derivative complexity and compu-
tational burden. (2) Power systems are intrinsically stochastic
while the traditional observability analysis methods are within
a deterministic scope. To account for the system randomness
in the observability analysis and to better describe the degree
of the system observability, we further develop the index of
the puny and brawny observability by which the proposed
approach can not only analyze the observability of each system
state, but can also assess the effect of the dynamic system
model and observation noise on the system observability. (3)
Finally, since the decentralized DSE is advocated more often
than the centralized DSE in the literature for its capability
of eliminating the uncertainties of the line and transformer
models and the loads within a centralized system model [1],
[5], [6], we merge the proposed method into the decentralized
DSE framework to ensure a better practical observability
analysis. Using the above strategies, the simulations conducted
on a decentralized power system dynamic state estimator
reveal the excellent performances of the proposed method.

II. OBSERVABILITY ANALYSIS IN POWER SYSTEM
DYNAMIC MODEL

Here, let us first review of the observability analysis for a
time-varying dynamic system. Then, we will extend it to the
case of a decentralized power system dynamic model.

1) Review of Observability: Consider a general discrete-
time dynamical system formulated as

T = F(xr), yr = h(xy), (D
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where x;, € R™™! and y, € R™*! are the state and the
measurement vectors at time k, respectively; and f and h are
vector-valued functions.

Definition 1: The system is (locally) observable in the time
interval [0, K] if the initial state o can be uniquely determined

from yy, k € [0, K.

Defining the cumulative measurement vector )Y, =
(Y, Yyt - - ,yk+n_1]T, the relation between the arbitrary
mitial state xp and its corresponding measurements ) is
given by

Vi = g(@k)- @

According to the implicit function theorem, the initial state
x) can be uniquely determined from the measurements ) if
and only if the Jacobian matrix

0, —

= xy 3

is nonsingular. Consequently, the observability rank condition
is described as follows:

Theorem 1: The system (1) is (locally) observable if and
only if the Jacobian matrix (also called observability matrix)

has full rank, i.e., rank(Oy) = n.
Its state-measurement relation (2) can be represented by

Vi = [h(zy), h(f(zr), h(f(f (1)), 1", “
and the corresponding observability is computed through

Oh(wy) Oh(f(wy) Oh(S(F@r) 17

O =

)

As (5) has shown, the derivation procedure for the observ-
ability matrix can be complicated for nonlinear and high-
dimensional dynamic systems. This is especially true for
power systems as shown in [4]. This motivates us to propose
a derivative-free approach to simplify this procedure.

2) Power System Dynamics: Here, to represent the power
system dynamic model, xx,; = f(xx), the synchronous
generator with a IEEE-DC1A exciter and a TGOV1 turbine-
governor is selected and modeled as

/ dE(IZ ! i
do gz = —Ey — (Xq—Xy)lq+ Eyq, (6)
dE’
g = ~Fa— (Xo = X)), @
dé
W T W (8)
2H dw
—_— :TA[—Pe—D(w—UJs), (9)
ws dt
dE ;g
Tk dZ = —(Kg+ Sg(Efq))Esq + VR, 10)
dV; K K
Tp—— = —Vp+ —~Vp — —(Kg + Sp(Efa)Efa, (1)
dt T Ts
dV;
Ty =2 = Vi + Ka(Viet — Vp — V), (12)
Ten X - —Tn + Psy, (13)
dPgsy 1  w
T = —Psy +Po— — (= —1), 14
sV, sv + Pc RD(ws ) (14)

where § and w are generator rotor angle and speed, respec-
tively; ws is the rotor speed base value; Tc’iu, T(;U, Tg, Tr,
Ta, Toy, and Tsy are the time constants; Kg, Kp, and
K 4 are the controller gains; Ej, Ey, Etq, Vp, Vg, Ta, and
Pgy are the d- and g-axis transient voltages, field voltage,

scaled output of the stabilizing transformer and scaled output

of the amplifier, synchronous machine mechanical torque and
steam valve position, respectively; X4, X (’i, X4, and X, [1 are the
generator parameters; H, D, and Rp are the inertia constant
(in seconds), damping ratio and droop, respectively; Vs and
Pc are the known references for exciter and speed governor,
respectively; V' and 6 are the terminal bus voltage magnitude

and phase angle, respectively.

3) Decentralized Generator Model: The decentralized syn-
chronous generator model along with the associated measure-
ment model and the notations are following Zhao and Mili
[7]. Here, when a disturbance occurs in the system, the local
PMU of the ¢th generator records the output voltage phasor,
V;Z8;, and the output current phasor, I;Z¢;, yielding Vg =
stm(& — 91), V;” = V;COS((SZ' — 92), Idi = (E[/ﬂ — V;”>/X(;Z
and Iy; = (Vai — Eg;)/ Xy, This enables us to calculate the
active power and reactive power for the ith generator as model
outputs, which are expressed as

Pei = Vailai + Vgilgi + eps,
Qei = —Vailyi + Vyilai + eqs,

(15)
(16)

where ep; and eg; are the measurement noise. By this way,
once we capture the local voltage phasor V;/6; as the play-
in function, which is proposed in [5], the play-out function,
namely P.; and ).;, can be simulated through its correspond-
ing system and measurement model as described by (6)-(16).
This is the decentralized generator model used in this paper.
More details can be referred to [7].

III. POLYNOMIAL-CHAOS-BASED OBSERVABILITY
ANALYSIS APPROACH

Before we present the generalized-polynomial-chaos(gPC)-
based observability analysis, let us have a brief review of the
gPC theory first.

A. Review of the Generalized Polynomial Chaos

1) gPC surrogate: The gPC, which is first introduced by
Wiener and further developed by Xiu and Karniadakis [8], has
been demonstrated to be a cost-effective tool in uncertainty
propagation of a linear or nonlinear system model [8], [9].
In this theory, the stochastic outputs are expressed as a
weighted sum of orthogonal polynomial chaos basis functions
constructed from the probability distribution of the random
variables, i.e.,

y=_ aii(é), (17
=0

where y is the system out, £ = [{1,&2,...,&,] is a vector of
random variables following a standard probability distribution,
and its corresponding polynomial chaos basis is ¢; (), a; is the
ith polynomial chaos coefficient, n, = (n + p)!/(nlp!) — 1,
and p is the maximum order of the polynomial chaos basis
functions. From the polynomial chaos coefficients, the mean
and the variance of the output y can be directly obtained as

Tp
2 2
= ag,0° = a; .
) 7
=1

In practice, to maintain the computational efficiency of the
surrogate model, (17), a truncated PCE is typically adopted.
Although different truncation strategies exist, considering the
scalability and accuracy of the power system model, we
propose to select the strategy proposed in [10] to truncate the
gPC surrogate as

(18)

y=aodo + Y aid(&) + ) aiida(ED), (19)
i=1 i=1
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where ¢q, $1(&;), p2(€?) represent the zero-, first-, second-
order polynomial chaos bases; and ao, a;,a;; stand for the
corresponding polynomial chaos coefficients.

2) Collocation Points: Collocation points (CPs) are a fi-
nite sample set of & = [&1,&a,...,&,] that are chosen to
approximate the polynomial chaos coefficients. The elements
of the CPs are generated by using the union of the zeros
and the roots of one higher-order, one-dimensional polynomial
for every random variable. Then, using a tensor product or
sparse tensor rule, we can generate multidimensional CPs as
described in [8], [10]. Here, for Gaussian random variables,
Hermite polynomials are selected.

3) Approximation of gPC Coefficients: Here, let us present
the way to approximate the gPC coefficients for a general
function

y=g(x) (20)
where the input variable is & € R™*!, and the output variable
isy € RLXL To achieve the surrogate model, the coefficients
of gPC are estimated at selected combinations of the afore-
mentioned collocation points, &. Takin% into consideration
S independent combinations of the collocation points, the
polynomial chaos basis can be obtained directly, and the output
variable can be calculated through the considered function
(20). Formally, the surrogate model is given by

Y =HA, 21

where Y € R5*L is the output matrix consisting of the

outputs from S samples; H € R¥*(2n+1) is the basis matrix
composed of the polynomial chaos bases expressed as

b0 $1(61,1) o1(€1n)  02(67 1) $2(€7,,)
b0 P1(&2,1) b1(€2,n)  92(63,1) $2(£5 )
o d1(Es,) 1(€sn)  D2(62,) $2(62.,)

(22)

and &, ; is the ith element of the sth sample; A € RGn+UxL
is the coefficient matrix

S CORNC R 0 A

1) a?z) ?L)
a ay t ay
A= |a® @& . L@, 23)
&) () ()
1,1 aj t a1
Ll ald, alfo )

and aél), af.l), aglz stand for the polynomial chaos coefficients with respect to the ith

input and Ith output.
Based on the obtained basis and output matrices, the coefficient matrix can be
calculated through

A=Hly. 24)

According to (18), the mean of the output variable is § =
A= [aél), aéz), e ,a(()L)]T7 and the covariance matrix of the
output variable is given by P, = AJ Ay, where A, is the rest
2nx L matrix of A, reflecting the second-moment information.

B. The Proposed gPC-based Observability Analysis Approach

In the traditional approach, multiple derivatives are involved
in the calculation of the observability matrix, which leads to a
heavy computational burden. To achieve a lower computational
burden and account for the stochasticity of the system, a
derivative-free approach based on the gPC is proposed.

Since we are considering a more general stochastic dynamic
system instead of the traditional deterministic system in (1),
let us extend the concept for the observability to a stochastic
dynamic system as follows:

Definition 2: A stochastic system is (locally) observable in
the time interval [0, K] if the initial state &, can be inferred
from the measurements yy, & € [0, K] and its solution satisfies
a certain confidence interval level.

Consider the discrete-time dynamical system (1). Instead of
the original response function (2), we use a surrogate model

to represent the relation between the arbitrary initial state xy
and its corresponding measurements ) as

Y, = HA,. (25)

aIII% glégo%l:r&%aetre odel, sinc thebmeans of the first-order

polynomial chaos bases are zeros due to the
orthogonal property [8], the zero-order polynomial chaos basis
and its corresponding polynomial chaos coefficient (a(()l)qﬁo)
denotes the mean of the [th measurement, and the first-
order and the second-order polynomial chaos bases and their
corresponding polynomial chaos coefficients (agl)d)l(fsyi) and

afll) oo 31)) represent the uncertainty of the /th measurement

with respect to the uncertainty of the ith state, where ¢1 (s ;)
and ¢ fz) denotes the first-order and second-order poly-
nomial chaos bases associated with the ith state. Further,

the polynomial chaos coefficients, agl) and az(-fg, stand for

the contribution of the ith state to the uncertainty of the Ith

measurement.

When the contribution of the ith state to the uncertainty
of the /th measurement is zero, it means the value of the Ith
measurement remains unchanged with respect to the variations
in this state, that is, the ¢th state can not be inferred from
the [th measurement. To infer the n states from the given
measurements uniquely, n effective measurements are needed,
for which the contributions of the states to the uncertainties
of the measurements are linearly independent. That is, the

observability-coefficient matrix ®; € R="*™m"
(oD o a{mm]
m O (mn)
a. a. R a
Pp=| 1) (mn) | » (26)
ol o o e
lall el ai |

which is the submatrix of the coefficient matrix, has n linearly
independent columns, and the ith and (n + 4)th rows cannot
be zeros.

Theorem 2: The system (1) is (locally) observable if and
only if the observability-coefficient matrix ®;, has n linearly
independent columns and the ith and (n + i)th rows cannot
be all zeros.

C. Degree of Observability

Since the extended definition of the observability of a
stochastic dynamic system introduced in Definition 2 also
focuses on the confidence of the solution, we would like to
further propose two new quantitative observability indices to
measure the degree of observability from three aspects.
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1) Contribution Rate: According to the surrogate model,
the variance of the [th measurement can be determined via

o0 = 37020 4+ 20,

=1

27

where {a?(l) + a?(il)} denotes the contribution of the ith state

to the variance of the /th measurement.

Define the proportion of the contribution of the ith state to
the variance of the [th measurement as the contribution rate,
ie.,

a _ a; ¥ + a?,(il)
Qi - 0'2(l> (28)
Yy
It follows that 0 < le) < 1. The contribution rate denotes
the influence of the state on the measurement. A larger
contribution rate means a larger influence of the state on the

measurement, and vice versa.

Definition ~ 3: if all the contribution rates
(QZ(.I), QZ(.Q), . ,ngn)) of the ith state are less than a small
positive value (e.g., 0.1%), that state is puny observable.
Otherwise, it is brawny observable. If all the states are brawny
observable, the system is brawny observable. Otherwise, the

system is puny observable.

2) Numerical Stability: To guarantee the numerical stability
of the estimated state, the observability-coefficient matrix must
be well-conditioned. The condition number, which is the ratio
of the largest singular value to the smallest one

max @
o(®) = Omax(®)
g min(‘t)
is used to evaluate the matrix.
Definition 4: If the condition number is very large or be-
comes infinity, the system is puny observable. If the condition
number is close to one, the system is brawny observable. Wl
3) Interference Rate: Our approach can also assess the
effect of observation noise on system observability.
If the contribution of the ith state given by a?(l) + a?‘(il) to
the variance of the /th measurement is close or smaller than
. . 2(1) ., - .
the measurement noise variance oy, ', its influence is difficult

to distinguish from that of the noise variance. )
Define the proportion of the noise variance to the variance
of the /th measurement as the interference rate, i.e.,

520

JEION

(29)

v =

(30)

Definition 5: For a noisy measurement environment, the
ith state is puny observable when all the contribution rates
QM. QP ..., Q"™ are less than the corresponding inter-
ference rates (V (1), V(@) v (mn), [ ]

IV. SIMULATION RESULTS

In this section, the observability analysis for power system
dynamic state estimation is performed by using our approach.
As a benchmark system, the IEEE 10-machine, 39-bus system
is considered, and the synchronous generator is modeled by
a ninth-order two-axis model with a IEEE-DC1A exciter and
a TGOV1 turbine-governor. The decentralized dynamic state
estimation is implemented, in which the real and reactive
power injections and the bus voltage phasors are assumed to be
metered using PMUs. The PMU measurements are assumed to

be received at a rate of 60 samples per second. A disturbance is
applied at ¢ = 0.5 s by opening the transmission line between
Buses 19 and 33.

Consider a general case, in which both the real and reactive
power are used as measurements for state estimation. In
the observability-coefficient matrix, the first-order polynomial
chaos coefficients are much larger than the second-order poly-
nomial chaos coefficients. For the convenience of illustration,
we define a matrix composed of the first-order polynomial
chaos coefficients (i.e., the first n rows of the observability-
coefficient matrix) and call it the first-order coefficient matrix.

The observability condition is tested first, and the rank of
the observability-coefficient matrix is shown in Fig. 1(a). It
is shown that the observability-coefficient matrix cannot be
full rank at all the time. However, as shown in Fig. 1(b),
the first-order coefficient matrix has full rank at all the time,
which satisfies the observability condition. Hence, the system
is obse "

I8[| |||N|||I|WI Il’l I ’I “I III\"I" m[
16+ ]
—®

0 5 10 15 20

Time [s]
Fig. 1. Rank of the matrices. (a) the observability-coefficient matrix, (b) the
first-order coefficient matrix.

Next, the degree of observability is discussed. The contribu-
tion rate is considered first, and the maximum contribution rate
is shown in Fig. 2. As can be seen, the first four states have
the larger contribution rates, which means they can estimated
with the given measurements. Note that the other five states
have negligible contribution rates, which means it is hard for
them to be inferred from the given measurements. That is to
say, the first four states are brawny observable while the other
five states are puny observable.

1

=3 =3
=) =)
f 1
I
& €

<

<

=3
=
5
=

Maximum contribution rate
1
1
S

<
S}
T

0

0 5 10 15 20
Time [s]

Fig. 2. Maximum contribution rate.

Since the rank of the observability-coefficient matrix can-
not be full rank all the time, the condition number of the
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observability-coefficient matrix can sometimes be very large.
The condition number of the first-order coefficient matrix
is demonstrated in Fig. 3(a). The condition number of the
first-order coefficient matrix varies with time while taking
large values that result in ill-conditioned observability matrix.
Consequently, the state estimate is not numerically stable,
which is in agreement with the result obtained from the
contribution rate. For the convenience of illustration, we define
a matrix composed of the first four rows of the first-order
coefficient matrix, which correspond to the first four states
with brawny observability, and call it the first-four coefficient
matrix. The condition number of the first-four coefficient
matrix is demonstrated in Fig. 3(b). It shows that the condition
number of the first-four coefficient matrix is small enough to
ensure that the first-four coefficient matrix is well-conditioned,

which means the first-four states can be well estimated.
%10’

w

=

Condition number
W

30004, { ®

Condition number

0 5 10 15 20
Time [s]
Fig. 3. Condition number of the matrices: (a) the first-order coefficient matrix
and (b) the first-four coefficient matrix.

Finally, the effect of the observation noise on the observabil-
ity of the dynamical system is discussed. The interference rate
is considered, and the maximum interference rate is shown in
Fig. 4. As can be seen, the maximum interference rate is very
small, which has negligible effect on the measurement. Hence,
the effect of the observation noise on the state estimation is
negligible.

Maximum interference rate

0 5 10 15 20
Time [s]
Fig. 4. Maximum interference rate.

The effectiveness of the observability analysis result is
verified through power system dynamic state estimation by
using the polynomial-chaos-based Kalman filter (PCKF) [10].
As examples, four states are demonstrated in Fig. 5. Two
types of implementation are considered. One performs the state
estimation with the complete state propagation and the state
correction, as shown in Fig. 5(a). In the other implementation,

the state correction of the last five states with puny observ-
ability is canceled, as shown in Fig. 5(b). As can be seen, the
state estimation results obtained from both implementations
are the same, and they match very well the true states. In this
case, although the last five states are puny observable (i.e.,
they are hard to be inferred from the measurements), they can
be estimated through the state propagation with good state
initiation.

‘7true value —-=-(a) - = (b) ‘
30
1
25
E —=0.999
< 20 B
215 3 0.998
10 0.997
510 15 20 0 10 20
0.01
54
— 0 = 53
= =
< 52
20,01 &
5.1
-0.02 5
0 5 10 15 20 0 510 15 20

Time [s] Time [s]
Fig. 5. Case 1: State estimation results. (a) the state estimation is performed
with the complete state propagation and the state correction, (b) the state

correction of the last five states is canceled.
V. CONCLUSIONS

In this paper, we propose a novel polynomial-chaos-based
derivative-free observability analysis approach for power sys-
tem dynamic model. This method not only has a low complex-
ity and an easy implementation, but also enables us to quantify
the degree of observability. The excellent performances of the
proposed method have been revealed in the simulations for the
power system decentralized DSE.
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