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ABSTRACT (ENGLISH)

Neuromorphology is crucial to identifying neuronal subtypes and understanding learning. It is also implicated in
neurological disease. However, standard morphological analysis focuses on macroscopic features such as
branching frequency and connectivity between regions, and often neglects the internal geometry of neurons. In
this work, we treat neuron trace points as a sampling of differentiable curves and fit them with a set of branching
B-splines. We designed our representation with the Frenet-Serret formulas from differential gemoetry in mind. The
Frenet-Serret formulas completely characterize smooth curves, and involve two parameters, curvature and torsion.
Our representation makes it possible to compute these parameters from neuron traces in closed form. These
parameters are defined continuously along the curve, in contrast to other parameters like tortuosity which depend
on start and end points. We applied our method to a dataset of cortical projection neurons traced in two mouse
brains, and found that the parameters are distributed differently between primary, collateral, and terminal axon
branches, thus quantifying geometric differences between different components of an axonal arbor. The results
agreed in both brains, further validating our representation. The code used in this work can be readily applied to
neuron traces in SWC format and is available in our open-source Python package brainlit:
http://brainlit.neurodata.io/.

FULL TEXT

1. Introduction

Not long after scientists like Ramon y Cajal started studying the nervous system with staining and microscopy,
neuron morphology became a central topic in neuroscience (Parekh and Ascoli, 2013). Morphology became the
obvious way to organize neurons into categories such as pyramidal cells, Purkinje cells, and stellate cells.
However, morphology is important not only for neuron subtyping, but in understanding learning and disease. For
example, a now classic neuroscience experiment found altered morphology in geniculocortical axonal arbors in
kittens whose eyes had been stitched shut upon birth (Antonini and Stryker, 1993). Also, morphological changes
have been associated with the gene underlying an inherited form of Parkinson’s disease (MacLeod et al., 2006).
Neuron morphology has been an important part of neuroscience for over a century, and remains so —one of the
BRAIN Initiative Cell Census Network's primary goals is to systematically characterize neuron morphology in the
mammalian brain.

Currently, studying neuron morphology typically involves imaging one or more neurons, then tracing the cells and
storing the traces in a digital format. Several recent initiatives have accumulated large datasets of neuron traces
to facilitate morphology research. NeuroMorpho.Org, for example, hosts a total of over 140,000 neuron traces from
a variety of animal species (Ascoli et al., 2007). These traces are typically stored as a list of vertices, each with
some associated attributes including connections to other vertices.

Many scientists analyze neuron morphology by computing various summary features such as number of branch
points, total length, and total encompassed volume. Neurolucida, a popular neuromorphology software, employs

ProQuest


http://ezproxy.lib.utexas.edu/login?url=https://www.proquest.com/scholarly-journals/fitting-splines-axonal-arbors-quantifies/docview/2560155078/se-2
http://ezproxy.lib.utexas.edu/login?url=https://www.proquest.com/scholarly-journals/fitting-splines-axonal-arbors-quantifies/docview/2560155078/se-2

this technique. Another approach focuses on neuron topology, and uses metrics such as tree edit distance
(Heumann and Wittum, 2009). However, both of these approaches neglect kinematic geometry, or how the neuron
travels through space. Tortuosity index is a summary feature that captures internal axon geometry, but this feature
depends on the definition of start and end points, and cannot capture an axon's curvature at a single point.

In this work, we look at neuron traces through the lens of differential geometry. In particular, we establish a system
of fitting interpolating splines to the neuron traces, and computing their curvature and torsion properties. To our
knowledge, curvature and torsion have never been measured in neuron traces. We applied this method to cortical
projection neuron traces from two mouse brains in the MouseLight dataset from HHMI Janelia (Winnubst et al.,
2019). In both brains, we found different distributions of these properties between primary, collateral, and terminal
axon segments. The code used in this work is available in our open-source Python package brainlit:
http://brainlit.neurodata.io/.

2. Methods

2.1. Spline Fitting

First, the neuron traces were split into segments by recursively identifying the longest root to leaf path (Figure 1A).
The first axon segment to be isolated in this way was defined to be the “primary” segment. Subsequent segments
that branched were defined as “collateral” segments, and those that did not branch were defined to be “terminal”
segments (Figure 1B). This classification approximates the standard morphological definitions of primary,
collateral and terminal axon branches.

FIGURE 1
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Next, a B-spline was fit to each point sequence using scipy's function splprep (Virtanen et al., 2020). Kunoth et al.
(2018) provide an in depth description of B-splines and their applications. Briefly, B-splines are linear combinations
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of piecewise polynomials, sometimes called basis functions. The basis functions are defined by a set of knots,
which determine where the polynomial pieces meet, and degree, which determines the degree of the polynomial
pieces. The jth basis function for a set of knots and degree p is recursively defined by Equation (1.1) in Kunoth et
al. (2018):

Bj,p,:=xjj+pjBj,p1,(X)+j+p+1xj+p+1j+1Bj+1,p1,(x) withBi,0,:=(1,0,if x[i,i+1),otherwise.
Bj,p,:=xjj+pjBj,p1,(x)+j+p+1xj+p+1j+1Bj+1,p1,(x) withBi,0,:=(1,if x[i,i+1),0,0therwise.

Splines are fit to data by solving a constrained optimization problem, where a smoothing term is minimized while
keeping the residual error under a specified value (Dierckx, 1982). Here, we constrain the splines to pass exactly
through all points in the original trace, which corresponds to a smoothing condition of s =0 in splprep. For a
sequence of n >5 points, we fit a spline of degree 5, which is the minimal degree that ensures that the splines are
thrice continuously differentiable. Differentiability is important because it allows for estimation of curvature and
torsion, explained in the next section.

Sequences of fewer than 5 points, however, required lower degree splines to fully constrain the fitting procedure.
For a sequence of 3 <n 5 points we used degree 3, for a sequence of n = 3 points we used degree 2, and for a
sequence of n = 2 points we used degree 1. By selecting the degree in this way, we avoided splines of large even
degree, such as fourth order splines, which are not recommended in our interpolation setting (Virtanen et al.,
2020). Also, these degree choices are low enough to allow for a fully constrained fitting procedure, but high enough
to make curvature/torsion nonvanishing when possible.

We recall that B-splines are not required to be parameterized by the arclength of the curve. Here, we set ={0, ..., L},
where L is the cumulative length of the segments connecting the vertices of the trace, in m. All other spline fitting
options were set to the defaults in splprep. This spline fitting method can be applied to any set of points organized
in a tree structure, such as a SWC file. Figure 1C shows examples of splines that were fit to neuron traces.

2.2. Frenet-Serret Parameters

An important advantage of B-splines is that their derivatives can be computed in closed form. In fact, their
derivatives are defined in terms of B-splines as shown below in Theorem 3 from Kunoth et al. (2018):

Theorem For a continuously differentiable b-spline Bj,p,(.) defined by index j, degree p 1, and knot sequence, we
have:

ddsBj,p,(s)=p(Bj.p1.(s)i+piBj+1,p1,(s)j+p+1j+1) ddsBj,p,(s)=p(Bj.p1.(s)j+pjBj+1,p1,(s)j+p+1j+1)

where we assume by convention that fractions with zero denominator have value zero.

Curvature and torsion can be easily computed because of this property. For a thrice differentiable curve x(s) ° that
is parameterized by arclength (i.e., [|(s)Il = 1 s), one can compute the curvature () and torsion () with the following

formulas:
(s)=1Ix(s)xx"(s)lI(s)=(x(5)*x"(5)).X...(5)X(5) %X (5) 2 (8)=IIx(5)*X " (8)I(5)=(x(8)*x"'(5)). X($)lIX(5) XX (8)II2
defined with the standard Euclidean norm || -||, inner product -, and cross product x. When curvature vanishes, we

define torsion to be zero as well, since the torsion equation becomes undefined. The units of curvature and torsion
are both inverse length. In this work, neuron traces have units of microns, so curvature and torsion both have units
of (m)".

Curvature measures how much a curve deviates from being straight, and torsion measures how much a curve
deviates from being planar. Together, these quantities parametrize the Frenet-Serret formulas of differential
geometry. These formulas completely characterize continuously differentiable curves in three-dimensional
Euclidean space, up to rigid motion (Grenander et al., 2007). Curvature takes non-negative values, but torsion can
be positive or negative where the sign denotes the direction of the torsion in the right-handed coordinate system.
In this work, we are not interested in the direction of the torsion, so we focused on the torsion magnitude (absolute
value).

2.3. Data

We applied our methods to a collection of cortical projection neuron axon traces from two mouse brains in the
HHMI Janelia MouseLight dataset. The precision of the reconstructions is limited by the resolution of the original
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two-photon block-face images, which was 0.3m x0.3m x1m (Winnubst et al., 2019). Each reconstruction is the
consensus of traces by two independent annotators. Winnubst et al. (2019) showed that using two annotators per
neuron produced reconstructions that are about 93.7% accurate (in terms of total axonal length). There were 180
traces from brain 1 and 50 traces from brain 2.

After fitting splines to these traces, curvature and torsion magnitude were sampled every 1m along the axon
segments. Sampling every 1m is the highest sampling frequency that does not exceed the image resolution, so it
is an appropriate balance of precision and computational efficiency. We studied curvature and torsion magnitude
in two ways, described below in sections 2.4, 2.5.

2.4. Computing Autocorrelation of Curvature and Torsion

Our first goal was to identify the length scale at which straight axon segments remain straight and curved axon
segments remain curved, so we studied the autocorrelation of curvature and torsion magnitude along the axon
segments. For each axon segment, the autocorrelation functions of curvature and torsion were computed along
the length of the segment, yielding a collection of autocorrelation functions for each brain. Then, we evaluated
whether autocorrelation at a particular lag was significantly higher than 0.3 using a one-sided t-test with a
significance threshold of = 0.05. We identified 0.3 as our effect size because correlations higher than 0.3 are
generally regarded as “moderate” correlations.

It is worth noting that, by the nature of the spline fitting procedure in Virtanen et al. (2020), “lag” in our
autocorrelation functions refers to straight line distances between the trace points, not by the arclength of the
resulting curves.

2.5. Comparing Axon Segment Classes

Our second goal in the analysis was to compare curvature/torsion between segment classes. First, we estimated
each segment's average curvature/torsion magnitude by taking the mean from all points that were sampled on
that segment.

In order to compare different segment classes, we developed a paired sample method for testing for differences in
average curvature/torsion. Different neurons represented different samples, and the average curvature/torsion of
two segment classes (primary vs. collateral, collateral vs. terminal, primary vs. terminal) represented the paired
measurements.

Define the random variable X as the average curvature/torsion of one segment class and Y as the average
curvature/torsion of another segment class. Further, say Xand Y are both real valued. Our null and alternative
hypotheses are as follows:

HO:Pr[X>Y]=0.5H1:Pr[X>Y]0.5 HO:Pr[X>Y]=0.5H1:Pr[X>Y]0.5

We tested these hypotheses using the sign test (Neuhauser, 2011). The test statistic is the number of times that
the data point from one sample is greater than its pair from the other sample. A key advantage of the sign test is
that it does not require parametric distribution assumptions, such as normality of the data. Also, its null
distribution can be computed exactly via the binomial distribution. The two different parameters (curvature and
torsion), and the three different segment class pairs constitute six total tests, so we applied the Bonferroni
correction to = 0.05 to obtain the significance threshold 0.0083, which controls the family-wise error rate to 0.05.
We conducted one-sided sign tests in all cases.

We also wanted to study whether these results would hold if the traces were perturbed. In particular, since the
annotators vary the distance between points in their trace, we decided to randomly remove trace points and repeat
the curvature/torsion measurements. Since the traces are tree structures, a trace point can be removed after
connecting its child node(s) to its parent node. We produced 20 copies of the original dataset and, in each case,
removed every trace point with 10% probability.

3. Results

3.1. Autocorrelation of Curvature and Torsion

The autocorrelation functions for all segments of a brain were averaged, and they are shown in Figure 2. Also
shown is a shaded region that represents one standard deviation of these autocorrelation functions. The t-tests
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described in section 2.4 were significant at lags of 1, 2, 3, 4m for curvature in brain 1, 1, 2, 3m for curvature in brain
2,1, 2m for torsion in brain 1, and 1, 2m for torsion in brain 2.
FIGURE 2
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3.2. Axon Segment Class Differences
The distributions of mean curvature and torsion are shown in Figure 3. Our statistical testing procedure, described
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in section 2.5, rejected the null hypothesis in all cases, with all p <5 x10". The directions of the one-sided tests were
identical in both brains with:

Curvature: Collateral>Terminal>Primary Torsion: Collateral>Primary>Terminal Curvature:
Collateral>Terminal>Primary Torsion: Collateral>Primary>Terminal

When we applied the same testing procedure to the 20 datasets with trace points randomly removed, the null
hypotheses were also all rejected, in the same directions, in all cases.

FIGURE 3
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Neuron counts for all 36 possible curvature/torsion orderings across classes are shown in Figure 4. The most

common ordering of curvature/torsion is exactly the same as the results of the sign test (106/180 neurons
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, 38/50 in brain 2).

followed this ordering in brain 1

A D ATy = A EE s ATy




Enlarge this image.

In the Supplementary Figure 1, we plot the curvature/torsion vs. segment length. There appear to be modest
correlations between segment length and curvature/torsion values in log-log plots.

4. Discussion

Our work proposes a model of neuron morphology using continuously differentiable B-splines. From these curves,
it is possible to measure kinematic properties of neuronal processes, including curvature and torsion. These
techniques are freely available in our open source Python package brainlit: http://brainlit.neurodata.io/, and more
information about how to reproduce the specific results here can be found in the data availability statement.

In most contemporary neuromorphological analysis, neuron traces are regarded as piecewise linear structures,
which precludes any analysis of higher order derivatives. Our spline representation makes it possible to estimate
higher order derivatives and study parameters like curvature and torsion of neuron branches. In the popular
piecewise linear representation, curvature and torsion would be zero along the line segments, and undefined where
the line segments meet. We simulated a piecewise linear representation by modifying our spline fitting procedure
to only produce splines of degree one. Indeed, with this less sophisticated representation, curvature and torsion
vanished everywhere, making them not meaningful.

Tortuosity index captures similar information to our curvature/torsion measurements and is popular in
neuromorphological analysis (Stepanyants et al., 2004). However, tortuosity requires the user to define start and
end points whereas our method does not. Further, the piecewise linear representation of neuron traces limits the
sampling frequency of tortuosity. Since tortuosity of a straight line is identically 1, placing the start and endpoints
on the same linear segment will always produce a tortuosity value of 1. Our method, on the other hand, can
produce more meaningful instantaneous curvature/torsion values.

Our methods for fitting splines and measuring curvature and torsion can be applied in neuromorphological
analysis in a variety of ways, but we highlight two applications here, on a dataset of 230 projection neuron traces
from two different mouse brains. We found that the autocorrelation functions of both curvature and torsion
showed statistically significant correlations above 0.3 within lags of approximately 2 microns (specific lag values

nu

given in section 3.1). Next, we defined segments as either “primary,” “collateral,” or “terminal,” and found
significant differences in the distributions of curvature and torsion between these classes.

The statistical analysis approach described in section 2.5 satisfies two desirable properties. First, by averaging
measurements across segment classes, and pairing the data, we did not have to assume independence between
segments of the same neuron. Assuming independence seemed inappropriate because, for example, segments
that are connected to each other may have correlated geometry. Second, it avoided any parametric assumptions of
the data, such as assuming normality of curvature/torsion measurements. A normality assumption seemed
inappropriate for several reasons, including the fact that curvature is nonnegative, and that curvature/torsion was
identically 0 for short segments with only 2 trace points.

Figure 4 shows that most individual neurons agree with the overall trend that collateral segments have the highest
curvature and torsion. This suggests that the finding here is a consistent phenomenon among projection neurons
in mice. In order to explore curvature/torsion distributions one level deeper, we looked into the relationship
between curvature/torsion and segment length (see Supplementary Figure 1). In all segment classes, longer
segments tend to have less curvature. The relationship between segment length and torsion is weaker, but there
does appear to be a positive correlation.

Together, these findings suggest that the geometry of primary axon branches is different than that of higher order
branches, such as the segments in terminal arborizations. In particular, higher order branches (collaterals and
terminals) had higher curvature than primary branches. Collateral branches also had the highest torsion, but
primary branches had higher torsion than terminal segments.

The primary limitation of our work is that our process of splitting a neuron trace into segments may not partition
an axonal arbor into the most meaningful segment classes. This is because we needed an unambiguous
classification system, while most definitions used in neuroscience literature are subjective and qualitative. For
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example, collaterals are broadly defined as branches that split off their parent branch at sharp angles, and arborize
in a different location from other branches (Rockland, 2013). However, there is no strict cutoff for how far away a
branch has to travel for it to be considered a collateral. Further, a branch may be simultaneously considered a
collateral and a terminal. We designed a set of segment classes which are mutually exclusive, collectively
exhaustive, and agree with common usage of the terms ‘primary,’ ‘collateral,” and ‘terminal’ by neuroscientists.
Future work could include changing our definitions of these classes to incorporate other morphological properties
such as branch angle, or axon radius. Also, extending these experiments to neuron trace repositories such as
NeuroMorpho.Org would help verify if the results using our classification system generalize.

Previous research has already indicated differences in axon geometry across neuronal cell types. For example,
Stepanyants et al. (2004) found higher tortuosity in the axons of GABAergic interneurons vs. those of pyramidal
cells. Similarly, Portera-Cailliau et al. (2005) found Cajal-Retzius cells to be significantly more tortuous than
Thalamocortical (TC) cells, which is a type of projection neuron. Portera-Cailliau et al. (2005) also offers evidence
that, while the primary axon in TC cells travel via a growth cone, most branching occurs via an interstitial, growth
cone independent process. Our work elaborates on this distinction, suggesting that higher order axon branches
have different geometry as well. While earlier research studied the differences of axonal geometry between
neurons, we studied the variation of axonal geometry within neurons.

It is also worth noting that this is not the first work to model neuron traces as continuous curves in >. For example,
Duncan et al. (2018) construct a sophisticated and elegant representation of neurons that offers several useful
properties. First, their representation is invariant to rigid motion and reparameterization. Second, their
representation offers a vector space with a shape metric amenable to clustering and classification. However, their
representation is limited to neuron topologies consisting of a main branch and only first order collaterals. Our B-
splines approach does not immediately yield vector space properties, but can be applied to neurons with higher
order branching, and allows for closed form computation of curvature and torsion. In short, the representation in
Duncan et al. (2018) is designed for analysis between neurons, and our representation is designed for analysis
within neurons. In the future, we are interested in bringing the advantages of their work to the open source
software community, and combining it with the advantages of ours.

This method could also be applied to measure curvature and torsion of dendrites, since dendrites also have a tree
structure and are commonly stored in SWC format. However, the segment classes that we define (primary,
collateral and terminal) would be inappropriate for dendrites. A segmentation classification system for dendrites
would likely depend on the neuron type being studied. For example, a natural classification system of dendrites in
pyramidal cells may separate apical dendrites from basal ones while dendrites in Purkinje cells would not have
such a division. The researcher would have to define the dendrite segment classes according to the dataset, and
the goals of the research.

It is well known that axons are pruned and modified over time (Portera-Cailliau et al., 2005). It is possible that this
process contributes to the different geometry of proximal vs. distal axonal segments. Indeed, Portera-Cailliau et al.
(2005) mentions the growth of short twisted branches toward the end of axon development. Future animal
experiments could follow-up on this idea, and similar experiments to this one could be applied to other neuron
types and other species to see if this is a widespread phenomenon in neuron morphology.

Data Availability Statement

The datasets analyzed for this study can be found in the Open Neurodata AWS account
(https://registry.opendata.aws/open-neurodata/). Our package, brainlit provides examples of accessing this data.
Specifically, instructions on how to reproduce the figures found here can be found at
http://brainlit.neurodata.io/link_stubs/axon_geometry_readme_link.html.
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Supplementary Figure 1. The above plots show the relationship between segment length, and mean curvature or
torsion in each segment class and brain. Each data point represents a single axon segment, and average curvature
and torsion was computed by sampling the segments at a uniform spacing of T m. We removed segments with
zero average curvature/torsion in order to plot the data on a log scale. In this data, there appear to be weak
negative correlations between segment length and curvature, and a weak positive correlations between segment
length torsion.
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