

1
2 1 **Reaffirming the phyllocladoid affinities of *Huncocladus laubenfelsii* (Podocarpaceae) from the early**
3 2 **Eocene of Patagonia – a comment on Dörken et al. (2021)**

4 3
5
6 4 Andruchow-Colombo, Ana^{1,2,3}; Peter Wilf⁴; Ignacio H. Escapa^{2,3}

7 5
8 6 ¹ LH Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, NY
9 7 14853, USA.

10 8 ² Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, Trelew 9100, Chubut, Argentina.

11 9 ³ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290,
12 10 C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina.

13 11 ⁴ Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.

14 12 * Corresponding author. E-mail: aandruchow@mef.org.ar ; aa848@cornell.edu

15 14 Running title: On the affinities of *Huncocladus*

16 **Abstract**

17 We discuss a recent assessment by Dörken et al. (2021) regarding the affinities of the Eocene
18 fossil species *Huncocladus laubenfelsii* from Laguna del Hunco (Patagonia, Argentina). We originally
19 (Andruchow-Colombo et al., 2019) assigned this species to the conifer family Podocarpaceae as the first
20 certain South American macrofossil record of the phyllocladoid lineage (*Huncocladus* + *Phyllocladus*),
21 based on a combination of numerous macro- and micromorphological vegetative characters. However,
22 Dörken et al. (2021) rejected the podocarpaceous affinity of *H. laubenfelsii* and considered it to be more
23 closely related to the cycad genera *Bowenia* or *Eobowenia*. Their assessment was based almost entirely on
24 two cuticular characters, with only superficial consideration of the abundant additional evidence available
25 that included several diagnostic macromorphological features. We review the two characters mentioned
26 by these authors and other features and find that their suggestion is strongly contradicted by the available
27 evidence, maintaining our original assignment. Critical characters include presence/absence of a midvein,
28 secondary venation pattern, arrangement and general morphology of the photosynthetic structures, and
29 morphology and disposition of epidermal cells.

30

31 In a recent publication in this journal, Dörken, Hill, Jordan & Parsons (2021) described the
32 photosynthetic-structure morphology of juvenile and adult plants of *Phyllocladus asplenifolius* (Labill.)
33 Hook. f. and adult plants of *P. trichomanoides* D. Don. Dörken et al. interpreted these data and provided a
34 valuable hypothesis of phylloclade evolution in the Podocarpaceae. Towards the end of their discussion,
35 Dörken et al. briefly reviewed the fossil record of *Phyllocladus* Rich. ex Mirb. and morphologically
36 associated genera, and they provided lists of “accepted” and “invalid” fossil taxa related to the
37 phyllocladoid lineage (Dörken et al., 2021, tables 1, 2), neither of which was discussed in depth. Among
38 the so-called “invalid” records, Dörken et al. included the recently described fossil species *Huncocladus*
39 *laubenfelsii* A. Andruchow-Colombo, Wilf, I. Escapa (2019) from the early Eocene of Laguna del Hunco
40 (Patagonia, Argentina). *Huncocladus laubenfelsii* is significant as the only phyllocladoid macrofossil

1
2
3 41 known from South America, other than wood records of possible phyllocladoid affinity that include
4 42 occurrences at Laguna del Hunco (e.g., Pujana et al., 2020). As a side note, the fossil record of the
5 43 phyllocladoids is also represented in Argentina by palynological remains included in *Microalatidites*, an
6 44 organ genus associated with the genus *Phyllocladus* (Heredia et al., 2012; Macphail & Cantrill, 2006).
7 45 This combination of macro- and microfossil remains constitute rather strong evidence of the presence of
8 46 this lineage in the fossil record of southern South America.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Dörken et al. argued that *H. laubefelsii* was probably not related to the extant Podocarpaceae genus *Phyllocladus*, as we had proposed, but to the cycad genus *Bowenia* Hook. ex Hook. f. or its extinct relative *Eobowenia* M.Ciro et C.Pott (2017). Even though the lone specimen of *Huncocladus* A.Andruchow-Colombo, Wilf, I. Escapa is a well-preserved branch bearing several attached phylloclades and shows a large number of morphological characters, this conclusion was based almost entirely on two micromorphological characters: (1) the morphology of alleged trichome bases and (2) the “general arrangement” of epidermal cells.

Here, we argue in defense of the podocarpaceous and phyllocladoid affinities of *Huncocladus* by first discussing the two features just listed. We also suggest that the second character actually shows a closer relationship with *Phyllocladus* than with *Bowenia* and *Eobowenia* species. We then refer to the much larger number of macromorphological characters already included in the original publication of *H. laubefelsii* that Dörken et al. overlooked, all of which support podocarp affinity and clearly contradict their asserted affinity to cycads, to which *Huncocladus* bears no resemblance whatsoever.

Trichomes and stomatal apparatuses. Dörken et al. interpreted as trichomes the structures that we described as stomatal apparatuses (Andruchow-Colombo et al., 2019 fig. 6 G-I). However, those structures clearly and repeatedly show the subsidiary cells and, in some cases, also guard cells, which are all features of stomata and not trichomes. Moreover, in our original publication, trichome bases were

1
2
3 65 found, although scarce and poorly preserved (Andruchow-Colombo et al., 2019, fig. 6 J), and they
4
5 66 markedly differ in morphology from the stomatal apparatuses on the same specimen. Because of the poor
6
7 67 preservation of these structures there is not much additional information that can be extracted from them.
8
9 68 Nonetheless, the disposition of the cells around the trichome bases of *Huncocladus* strongly contrasts
10
11 69 with those observed in species of *Bowenia* (Hill et al., 2019), being markedly chaotic in *Huncocladus*
12
13 70 (Andruchow-Colombo et al., 2019 fig. 6 G-I), whereas in *Bowenia* the epidermal cells surrounding the
14
15 71 trichome show slight to no deviations from their arrangement in rows (see Hill et al., 2019 fig. 3). The
16
17 72 chaotic configuration of the cells surrounding the *Huncocladus* trichomes is also completely different
18
19 73 from the well-organized stomatal complexes.
20
21
22
23 74

24
25
26 75 **Epidermal cell morphology and disposition.** Dörken et al. stated that *Huncocladus laubefelsii*
27
28 76 resembled *Bowenia* and *Eobowenia* in the “general arrangement” of epidermal cells. However, epidermal
29
30 77 cells in those two cycadalean genera are mostly spindle-shaped and elongated (Greguss, 1968; Pant &
31
32 78 Nautiyal, 1981; Coiro & Pott, 2017; Hill et al., 2019), whereas epidermal cells in *H. laubefelsii* are
33
34 79 mostly rectangular and elongated. Moreover, epidermal cells in *Bowenia eocenica* R.S. Hill, the
35
36 80 Australian fossil species that Dörken et al. compared with *H. laubefelsii*, show a V-shaped pattern of
37
38 81 arrangement in the stomatal zones (Hill et al., 2019, fig. 3) that strongly contrasts with the organization in
39
40 82 rows shown by *Huncocladus* (Andruchow-Colombo et al., 2019, fig. 6). Furthermore, darker epidermal
41
42 83 cells (due to the thicker cuticle), which typically occur together with ordinary epidermal cells in *Bowenia*
43
44 84 and *Eobowenia* (Pant & Nautiyal, 1981; Coiro & Pott, 2017; Hill et al., 2019), were not detected in the
45
46 85 *Huncocladus* cuticle. As we originally stated, the shape and arrangement of epidermal cells in
47
48 86 *Huncocladus laubefelsii* are consistent with extant *Phyllocladus* species and do not resemble cycads (see
49
50 87 images of epidermal morphology of *P. aspleniiifolius*, courtesy of Dörken et al. coauthor G. Jordan, that
51
52 88 we included as supplementary information S1 of Andruchow-Colombo et al., 2019).

53
54 89

1
2
3 90 **Arrangement of photosynthetic structures.** Dörken et al. interpreted the single specimen of *H.*
4
5 91 *laubenfelsii* as a frond similar to that of the Early Cretaceous *Eobowenia*. However, *Eobowenia* shows
6
7 92 subopposite leaflets (Archangelsky, 1966; Artabe & Stevenson, 1999; Coiro & Pott, 2017), whereas *H.*
8
9 93 *laubenfelsii* has its photosynthetic structures (interpreted as pinnae by Dörken et al. and as phylloclades
10
11 94 by us) spirally arranged over the branch (interpreted as the rachis of the frond by Dörken et al.). The
12
13 95 spiral arrangement of the photosynthetic units (Andruchow-Colombo et al., 2019 fig. 3, 4) strongly
14
15 96 contradicts the hypothesis of the whole structure being a frond rather than a branch bearing phylloclades.
16
17 97 No cycad known, living or fossil, has its leaflets spirally arranged on a rachis (Greguss, 1968).
18
19
20 98
21
22
23 99 **Presence of a prominent midvein.** *Huncocladus laubenfelsii* phylloclades — like those of *Phyllocladus*
24
25 100 — show a prominent midvein, from which the secondary venation emerges (Andruchow-Colombo et al.,
26
27 101 2019 figs. 3-5). In contrast, *Eobowenia* only has a delicate midrib, and *Bowenia* frond segments either
28
29 102 lack a midvein or show a rudimentary one that is only present at the base of the pinnule (Greguss, 1968;
30
31 103 Stevenson et al., 1996; Coiro & Pott, 2017; Hill et al., 2019).
32
33
34 104
35
36
37 105 **Secondary venation pattern of the photosynthetic units.** *Huncocladus laubenfelsii* shows the
38
39 106 characteristic secondary venation pattern of *Phyllocladus*, precisely as schematized by Dörken et al.
40
41 107 (compare figure 5A-C in Andruchow-Colombo et al., 2019 and figure 3D, F in Dörken et al., 2021). Both
42
43 108 those genera have a basal unbranched vein (marked with white arrowheads in figure 5B, C of
44
45 109 Andruchow-Colombo et al., 2019 and in light blue in figure 3F of Dörken et al., 2021) and a distal,
46
47 110 pinnately-branched vein (marked with black arrowheads in figure 5B, C Andruchow-Colombo et al., 2019
48
49 111 and in red in figure 3F of Dörken et al., 2021) entering each phylloclade lobe.
50
51
52 112 The venation pattern shown by *Phyllocladus* and *Huncocladus* strongly contrasts with that of
53
54 113 *Bowenia* (see Plate XCV fig. 1 in Greguss, 1968 and fig. 2 in Hill et al., 2018) and *Eobowenia*
55
56
57
58
59
60

1
2
3 114 (Archangelsky, 1966; Coiro & Pott, 2017), or any cycad. In those two cycadalean genera, multiple veins
4
5 115 arise from the pinnule base, dichotomize and become mostly parallel towards the mid-portion of the
6
7 116 leaflet (Greguss, 1968; Coiro & Pott, 2017; Hill et al., 2018).
8
9
10 117
11
12
13 118 **Photosynthetic unit morphology.** The general morphology of *Huncocladus* phylloclades includes a
14
15 119 symmetrical, lanceolate general outline, delicately lobed near the apex, the lobes becoming more incised
16
17 120 towards the middle portion and pinnatifid towards the base (Andruchow-Colombo et al., 2019 figs. 3, 4).
18
19 121 Both the general outline and the lobing pattern closely resemble those of *Phyllocladus*, as we described
20
21 122 extensively (see Andruchow-Colombo et al., 2019 figs. 1, 2; also Dörken et al. fig. 4A). These features
22
23 123 strongly contrast with the asymmetrical, oblong to rhomboidal outline with dentate or serrate margins of
24
25 124 *Bowenia* and *Eobowenia* frond segments (Greguss, 1968; Coiro & Pott, 2017; Hill et al., 2019).
26
27
28 125 There is an additional factor to consider in Dorken et al.'s comparison of the morphology of
29
30 126 photosynthetic structures in *Huncocladus* and *Eobowenia*. This is an apparent misinterpretation of the
31
32 127 holotype material of *Eobowenia incrassata* (S.Archang.) M.Ciro et C.Pott made by Hill et al. (2019, see
33
34 128 their fig. 5A) and consequently, possibly, by Dörken et al. Next to the holotype frond portion of *E.*
35
36 129 *incrassata*, and aligned with it but at a different microstratigraphic level, are the remains of another,
37
38 130 unidentified plant that shows a general outline similar to that of *Huncocladus* phylloclades and is
39
40 131 markedly different from *Eobowenia* (M. Coiro pers. comm.). Hill et al. (2019), apparently, considered the
41
42 132 separate, unidentified plant as part of *E. incrassata* because they referred to it as a "terminal pinna" of the
43
44 133 *Eobowenia* specimen. This idea could have contributed to Dorken et al.'s interpretation of *Eobowenia* as
45
46 134 somehow related to *Huncocladus laubefelsii*. However, as stated in the preceding paragraph, the
47
48 135 macromorphology of *Huncocladus* strongly differs from that of *Bowenia* and *Eobowenia*. The
49
50 136 interpretation outlined here for the holotype of *Eobowenia incrassata* (or *Almargenia incrassata* prior to
51
52 137 the taxonomic treatment by Coiro & Pott, 2017) is supported by several independent interpretations of the
53
54 138 material made by different authors in the past, none of whom included the purported "terminal pinna" in
55
56
57
58
59
60

1
2
3 139 descriptions or interpretations of the cycad specimen (see diagnosis and description of the material in
4
5 140 Archangelsky, 1966; fig. 2C in Artabe & Stevenson, 1999; diagnosis and description in Coiro & Pott,
6
7 141 2017; Coiro pers. comm.).
8
9
10 142
11
12 143 **Concluding remarks.**
13
14
15 144 One of the advantages of having macrofossil and cuticle remains connected is that it generally provides a
16
17 145 means of testing the consistency of hypotheses of affinity. If the general morphology of *Huncocladus*
18
19 146 *laubefelsii* is considered alone, the *Bowenia* or *Eobowenia* affinities proposed by Dörken et al. cannot be
20
21 147 supported due to a long list of phyllocladoid characters and a total absence of cycad characters, as detailed
22
23 148 above. These include venation pattern (presence/absence of a midvein, and secondary venation pattern)
24
25 149 and the arrangement and general morphology of the photosynthetic structures, all of which support
26
27 150 phyllocladoid affinity. Likewise, the cuticle characters in the same specimen of *Huncocladus* also
28
29 151 contradict the Dörken et al. hypothesis and support the original phyllocladoid affinity, including the
30
31 152 morphology and disposition of epidermal cells. Furthermore, as shown here, their idea that the stomata of
32
33 153 *Huncocladus* are actually trichome bases is not supportable.
34
35
36
37 154 In sum, the cycadalean affinities proposed for *Huncocladus* by Dörken et al. (2021) do not make
38
39 155 sense in light of all the information available for this significant Patagonian species. Their critique of the
40
41 156 genus is based on superficial and selective use of the evidence, and we find it incorrect. The phyllocladoid
42
43 157 affinities of *Huncocladus* remain supported by the scientific evidence from numerous macro- and micro-
44
45 158 morphological characters, as originally detailed, and from the resulting phylogenetic position as published
46
47 159 (Andruchow-Colombo et al. 2019). Thus we maintain the taxonomic and phylogenetic position of
48
49 160 *Huncocladus laubefelsii* as originally described.
50
51
52
53 161 Fossils species have a central role in macroevolutionary and biogeographical studies (e.g., Leslie
54
55 162 et al., 2012, 2018; Klaus & Matzke, 2019). It is then highly important to provide an alpha taxonomy
56
57
58
59
60

1
2
3 163 supported in the largest possible number of characters, because the affinity is the primary hypothesis on
4 which lie calibrations, and therefore all additional inferences. This is why we took seriously to discuss in
5 depth the characters for and against each considered affinity. This been said, we continue collecting at the
6
7 166 Laguna del Hunco locality, from which the Museo Paleontológico Egidio Feruglio has more than 8000
8 specimens to date, only one of which is *Huncocladus*, and we hope we will be able to find in the future
9 167 more specimens and organs that help us further investigate all the hypotheses about this fossil plant.
10
11 168
12
13
14
15
16 169
17
18
19 170 **Acknowledgements**
20
21
22 171 We thank M. Coiro and N.R. Cúneo for insightful discussions on cycadalean morphology; L. Martínez for
23
24 172 providing images of the holotype of *Eobowenia* incrassata; three anonymous reviewers for their insights
25
26 173 that improved the manuscript; and NSF grants DEB-1556666 and EAR-1925755 for financial support.
27
28
29 174
30
31
32 175 **Literature cited**
33
34
35 176 **Andruchow-Colombo A, Wilf P, Escapa IH. 2019.** A South American fossil relative of *Phyllocladus*:
36
37 177 *Huncocladus laubefelsii* gen. et sp. nov. (Podocarpaceae), from the early Eocene of Laguna del
38
39 178 Hunco, Patagonia, Argentina. *Australian Systematic Botany* **32**: 290–309.
40
41
42 179 **Archangelsky S. 1966.** New gymnosperms from the Ticó Flora, Santa Cruz Province, Argentina. *Bulletin
43
44 of the British Museum (Natural History), Geology* **13**: 262–295.
45
46
47 181 **Artabe A.E., Stevenson D.Wm. 1999.** Fossil Cycadales of Argentina. *Botanical Review* **65**: 219–238.
48
49
50 182 **Coiro M, Pott C. 2017.** *Eobowenia* gen. nov. from the Early Cretaceous of Patagonia: indication for an
51
52 183 early divergence of *Bowenia*? *BMC Evolutionary Biology* **17**: 97.
53
54
55
56
57
58
59
60

1
2
3 184 **Dörken VM, Hill RS, Jordan GJ, Parsons RF.** 2021. Evolutionary and ecological significance of
4 photosynthetic organs in *Phyllocladus* (Podocarpaceae). *Botanical Journal of the Linnean Society*,
5
6 185
7 186 <https://doi.org/10.1093/botlinnean/boa106>.
8
9
10 187 **Greguss P.** 1968. Xylotomy of the living cycads with a description of their leaves and epidermis.
11
12 188 Budapest, Hungary: Akadémiai Kiadó.
13
14
15 189 **Heredia ME, Paez MM, Guerstein GR, Parras A.** 2012. Palinología del Miembro Gran Bajo de la
16
17 190 Formación Bajo San Julián (Oligoceno tardío) en su localidad tipo, Santa Cruz, Argentina:
18
19 191 consideraciones paleoambientales. *Ameghiniana* **49**: 473–496.
20
21
22 192 **Hill RS, Hill KE, Carpenter RJ, Jordan GJ.** 2019. New macrofossils from the Australian cycad
23
24 193 *Bowenia* and their significance in reconstructing the past morphological range of the genus.
25
26 194 *International Journal of Plant Sciences* **180**: 128–140
27
28
29 195 **Klaus KV, Matzke N.** 2019. Statistical comparison of trait-dependent biogeographical models indicates
30
31 196 that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance.
32
33 197 *Systematic Biology* **69**: 61–75.
34
35
36 198 **Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S.** 2012. Hemisphere scale
37
38 199 differences in conifer evolutionary dynamics. *Proceedings of the National Academy of Sciences*
39
40 200 **109**: 16217–16221.
41
42
43 201 **Leslie AB, Beaulieu JM, Holman G, Campbell CS, Mei W, Raubeson LR, Mathews S.** 2018. An
44
45 202 overview of extant conifer evolution from the perspective of the fossil record. *American Journal of*
46
47 203 *Botany* **105**: 1531–1544.
48
49
50 204 **Macphail MK, Cantrill DJ.** 2006. Age and implications of the Forest Bed, Falkland Islands, southwest
51
52 205 Atlantic Ocean: evidence from fossil pollen and spores. *Palaeogeography, Palaeoclimatology,*
53
54 206 *Palaeoecology* **240**: 602–629.
55
56
57
58
59
60

1
2
3 207 **Pant DD, Nautiyal DD. 1963.** Cuticle and epidermis of recent Cycadales. Leaves, sporangia and seeds.
4
5 208 *Senckenbergiana Biologica* **44:** 257–347.
6
7
8 209 **Pole M, Moore PR. 2011.** A late Miocene leaf assemblage from Coromandel Peninsula, New Zealand,
9
10 210 and its climatic implications. *Alcheringa* **35:** 103–121.
11
12
13 211 **Pujana R, Wilf P, Gandolfo MA. 2020.** Conifer wood assemblage dominated by Podocarpaceae, early
14
15 212 Eocene of Laguna del Hunco, central Argentinean Patagonia. *PhytoKeys* **156:** 81–102.
16
17
18 213 **Stevenson DWm, Norstog KJ, Molsen DV. 1996.** Midribs of cycad pinnae. *Brittonia* **48:** 67–74.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

