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Abstract
In the last two decades, advances in network science have
facilitated the discovery of important systems’ entities in
diverse biological networks. This graph-based technique has
revealed numerous emergent properties of a system that
enable us to understand several complex biological processes
including plant immune systems. With the accumulation of
multiomics data sets, the comprehensive understanding of
plant–pathogen interactions can be achieved through the an-
alyses and efficacious integration of multidimensional qualita-
tive and quantitative relationships among the components of
hosts and their microbes. This review highlights comparative
network topology analyses in plant–pathogen co-expression
networks and interactomes, outlines dynamic network
modeling for cell-specific immune regulatory networks, and
discusses the new frontiers of single-cell sequencing as well
as multiomics data integration that are necessary for unravel-
ing the intricacies of plant immune systems.
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General introduction
The graphical representation is a convenient, abstract
description of nodes’ relationships (i.e. edges) in gen-
eral. Because it is an abstraction, the physical and/or
functional nature of the relationships could be funda-
mentally different in different types of networks despite
their similar appearances as graphs [1,2]. Such nodes in
a biological network including genes, RNAs, proteins,

and metabolites interact with each other and provide a
cumulative effect required for the desired functional
outcome [1,2]. These interactions include proteine
DNA, noncoding RNAeRNA, proteineprotein, and
metaboliteemetabolite interactions that are coordi-
nated through gene co-expression (Figure 1). [3]. These
networks can be undirected or directed based on the
network type, that is, if the network edges do not have a
direction of interaction in the context of biological
relation among nodes, then it is termed as an ‘undirected
network’ (e.g. gene co-expression network [GCN]),

whereas the network with directed edges representing
the direction of biological relation is termed as ‘directed
network’ (e.g. gene regulatory network (GRN),
signaling pathways, and metabolic networks). Similarly,
the proteineprotein interaction (PPI) networks are
‘undirected network’ that encompass the physical or
predicted interactions of different proteins to execute a
biological function.

The GCN is conceptually the same as conventional
gene clustering methods. That is to reduce (or sum-

marize) information in large transcriptome data to aid
human interpretations: classifying genes into groups of
the genes with similar expression patterns and learning
relationships among the gene groups. Advantages of the
GCN over conventional methods are gained by imposing
graphical representation of the genes, which
allows representation of higheredimensional relation-
ships among genes or gene groups, consistent combi-
nations of information from multiple conventional
methods, and local adjustments of parameter values.
Because the information content of GCN is often still

too high for efficient human interpretations, various
graph analytic techniques are used to further reduce the
information. Furthermore, the information about the
type of interaction within (positive/negative regulation)
the networks like GRNs and functional modules of
GCNs and PPIs are crucial to decipher the course of
activities under steady-state cellular conditions [4].
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Figure 1

MONI and network organization analyses for a comprehensive understanding of various plant pathosystems. Phytopathogens (virus, bacteria,
fungus, oomycetes, and others) infect numerous flowering plants thorough leaves and roots to manipulate the genetic and functional circuitry apparatus.
These alterations have a global effect on genomics, transcriptomics, regulomics, and proteomics levels on pathogen infection. These multiomics data sets
and their interactions can unravel the comprehensive understanding of the plant immune system. In addition, new developments in single-cell sequencing
have enabled us to integrate the multiomics single-cell sequencing (RNA-Seq and ATAC-Seq) in plants with the existing complexity of cellular hetero-
geneity in plant–pathogen interactions. Finally, the identification of potential plant immune and defense-related modules and genes, most vulnerable
pathogen targets, the rewiring of nutrient transport, and infection dynamics at different stages of plant immunity can be determined by several network
integration techniques and multiple centrality analyses.
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Properties of the plant immune system Mishra et al. 3
These functional modules can be influenced by diverse
internal and external stimuli, including biotic patho-
gens, to rewire the flow of information for appropriate
biological responses. This includes an immune system
capable of recognizing microbial-associated molecular
patterns as well as the activities of pathogenic effectors
and initiates microbial-associated molecular patterne
triggered immunity (MTI) and effector-triggered im-

munity (ETI), respectively [5,6]. However, the effec-
tors of pathogenic microorganisms (bacteria, viruses,
oomycetes, and fungi) can manipulate host cellular
networks for microbial propagation and ultimately
induce effector-triggered susceptibility (ETS)
(Figure 1). Therefore, network biologyebased analyses
are essential to comprehensively understand these
cross-species sophisticated and multifaceted in-
teractions encompassing several biomolecules (Figure 1)
[7]. In this short review, we will highlight the current
progress and new avenues of network biology techniques

and their applications to study the structural organiza-
tion and functional iteration of plant immune systems.
Network topology and structural centralities
in phytopathology
The network structure can be mined to identify struc-
turally special nodes, which make good candidates for
biologically special nodes [1]. Generally, there are
three groups of structural centralities based on the
network topology: (i) neighborhood-based centralities
(e.g. degree, coreness, and LocalRank) calculate the
influence of nodes based on their surrounding nodes, (ii)
path-based centralities (e.g. shortest path length,
betweenness, information, closeness, and Katz central-
ity) compute the influence of nodes based on the dis-
tance among them, and (iii) iterative refinement

centralities (e.g. eigenvector centrality, PageRank, and
LeaderRank) compute the influence of nodes based on
the mutual effect of node neighbors and their influence
in a network [8]. In plantepathogen interaction,
network-based centrality methods have been exten-
sively exploited to comprehend the most vulnerable
proteins in both global-scale co-expression networks and
PPIs or interactomes [9]. Given the size and complexity
of the PPI network, the application of network analytics
has proven highly effective for human understanding.
The strongly clustered modules and subnetworks not
only compress the network topological features but also

highlight the strongly clustered proteins interacting
and/or forming complexes to participate in the same
functional pathway [10]. Furthermore, hubs (local and/
or global) of the subnetwork or PPI network are pivotal
for the alteration in the performance of functional
pathways. These hubs can be computed by not all but
some of network analysis algorithms (shortest path
length, betweenness, eigenvector, information, Katz,
harmonic, and other frequently used centralities) which
consider the edge weight through the NetworkX python
www.sciencedirect.com
package [11]. Most of the biological interactomes
studied earlier follow scale-free network topology
revealing the structural power-law distribution,
suggesting only a few nodes are connected to almost the
entirety of the network [12]. Recently, a comprehensive
data-centric study by Broido and Clauset [13] demon-
strated that not all networks follow scale-free topology;
however, the study reported that most of the biological

and technological networks possess the strongest scale-
freeness as compared with social networks. These
abundantly connected proteins are termed as ‘hubs’, and
they are considered the most vulnerable nodes during
any biological stress, specifically pathogen infections
[14], whereas nodes with high betweenness centrality
are termed as ‘bottlenecks’ which are extremely
important because these nodes act as bridges between
two subnetworks while traversing the whole network
[15]. Both hubs and bottlenecks commonly represent
nodes of functional significance in biological networks

and are often targets of diverse plant pathogens
including bacteria, viruses, oomycetes, photobionts, and
other holobionts (Figure 1) [16e19]. Specifically, hubs
and bottlenecks have prioritized the proteins among
thousands that are targets of bacterial effector proteins
[9]. Based on the protein’s co-evolution among host and
pathogen, the genes encoding pathogens’ targets evolve
faster than nontargets. In addition, it has been reported
that immune function proteins are enriched in different
network centralities and possess conditional phenotypes
than nonimmune functions with morphological and

essential phenotypes. In addition, these centralities
have been used to identify emergent immune players
(genes) in several plant pathogeneinfected co-
expression networks (Figure 1) [20e22]. However, co-
expression network analysis in seven flowering plants
has revealed that nonimmune hub and bottleneck genes
are negatively correlated with the rate of evolution,
which supports the hypothesis that central nodes are
evolutionarily conserved [23]. These studies suggest
that the rule is quite different for immune and nonim-
mune functional genes; the latter is not under pathogen
pressure, thus might evolve slower than others. Beyond

hubs and bottlenecks, other measures of centrality have
also been used to uncover novel facets of immune
signaling networks. For example, the clustering coeffi-
cient has been used to discover shared and different
immune signaling in five crop and model plants [21].
Likewise, the shortest path length has been used for
integrated proteomics and transcriptomics to evaluate
that Arabidopsis-pathogen effector targets are closer to
differentially expressed genes (DEGs) than other genes
(non-DEGs) [10]. These centralities are a great source
to identify superspreaders (proteins responsible to

transmit the information most effectively) and signifi-
cantly affected modules in the interactome.

It is well described that network topological arrange-
ments are equivalent in social, human, or plant
Current Opinion in Plant Biology 2021, 62:102057
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4 Biotic interactions
networks, where scale-free topology exists, and hubs
are the most vulnerable nodes during any stress [1,24].
Given the significance of the aforementioned network
centralities, additional topological centrality indices
can also be insourced from social and eukaryotic
network studies to interpret the network topology
features in plantepathogen interactions and pathogen-
infected networks (Figure 1) [25,26]. The PageRank

algorithm, previously used by the Google Search tool to
rank websites, has been used to explore the impact of
receptor-like kinase extracellular domains in the cell
surface interactome [27]. Moreover, a new network
analysis method ‘weighted k-shell decomposition’ has
been used in social networks to prune the organized
structural layers (shells) and identify the core and most
influential portions of the network [28,29]. This
method has been modified and applied to biological
systems in two different hostepathogen interactomes
to identify the core nodes which are most vulnerable

during biotic stress [9,30]. The first study successfully
discovered 40% of pathogen effector targets in Arabi-
dopsis that were not predictable by hubs and bottle-
necks [9], whereas the second study highlighted the
proteins targeted by SARS-CoV and SARS-CoV-2
infection [30]. In addition, this study emphasized
the significance of emerging network centrality indices
to understand the pathogenies of other viruses and
bacteria in human and other biological systems.
Correspondingly, LocalRank, structural holes, core-
ness, network proximity, eccentricity, Katz centrality,

and closeness centrality have been used in several
human interactome studies to highlight significant
Figure 2

Comparative plant immune network analysis. Simulated gene co-expressi
species plant–pathogen interaction. The different colored modules demonstra
decomposition percentile. The Sankey plot of weighted k-shell decomposition
normalized to percentile and binned into 20 buckets represented as color blo
whereas the bottom percentile bucket in cyan represents 5–zero percentile s
percentile from zero to 100. The node in both networks is representing the b
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genes associated with several human diseases and
cancers that were not highlighted by conventional
network centralities such as degree and betweenness
[31,32]. These network features can be extremely
helpful in the identification of novel pathogen effector
targets, emerging immune players, and significant
proteins in several functional pathways and signaling
cascades (Figure 1) [33]. It is important to note that

diverse pathogens target strategic nodes within a
network that correspond to gene products involved in a
wide spectrum of biological processes including hor-
monal pathways, immune responses, energy meta-
bolism, photosynthesis, and translation. Henceforth,
exploiting this plethora of network structural and to-
pological architectures is imperative to identify
emerging players/clusters in plantepathogen
interactions.
Module detection and comparative immune
network analysis
The analysis of transcriptomic data sets such as RNA-
Seq and microarray has empowered us to have a very
close insight into the transcription regulatory mecha-
nism of a genome [34]. The ultimate aim in inter-

preting intricate biological processes is the discovery of
causal genes and governing mechanisms regulating
those biological processes [8,35]. Using these multi-
variate transcriptomic data sets, a GCN can be
constructed that enables system-level evaluation of
organisms that lack information such as interactomes
[36]. Furthermore, GCN analysis facilitates the char-
acterization of modules of co-expressed genes that may
on networks (network 1 and network 2) representing interspecies/intra-
te different clustered gene subnetworks based on weighted k-shell
percentile bin overlaps between both networks. Shell numbers were
cks in the Sankey plot. The first red block represents 100–95 percentile,
hell distribution. The arrow represents the increase in the bucket shell
in color from the Sankey plot.
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Properties of the plant immune system Mishra et al. 5
share biological functions [37]. The multivariate
approach can be influenced by parameters including
but not limited to distance matric, distance threshold
cutoff, statistical methods (correlation, Bayes, entropy,
and generalized linear model), and the tests (z-test,
modulation, and permutation) [38,39]. Furthermore,
the graphical representation of a network is often
enigmatic. Edges are typically assigned if measures of

expression correlation are above the certain predefined
cutoff, such as Pearson’s correlation coefficient. The
definition of correlation thresholds is a nontrivial
problem for which there is no standard approach [40].
To resolve this issue, the weighted node
connectivity score method has been proposed [41]. In
this method, the weight between one pair of the node
reflects the strength of the connection between them,
for example, the absolute value of Pearson’s correlation
coefficient between a gene pair. Based on the
permutation-based test, it is also possible to get the p-

value for statistical significance to help a researcher to
integrate the significance of connections between a
gene pair [39]. Some of the widely used GCN analysis
packages are weighted gene co-expression network
analysis (WGCNA), co-expression modules identifica-
tion tool (CEMiTool), and co-expression analysis of
sequencing data (coseq) [42e46]. Out of these three
packages, CEMiTool is most efficient in terms of
computation, whereas WGCNA is most widely exploi-
ted in biological systems including plantepathogen
interaction studies [43]. The CEMiTool is an unsu-

pervised gene filtering method and is able to give
reproducible results as compared with another method
such as the coseq. The automated parameter selection
is one of its advantages over widely accepted WGCNA
[47]. Moreover, the CEMiTool uses an algorithm
designed over the Cauchy sequences, to select the
optimal b parameter. WGCNA and CEMiTool use hi-
erarchical clustering, whereas the coseq is based on the
k-means clustering method [43]. Before k-means
clustering, the coseq uses log centered log
ratio transformation to transform RNA-seq expression
data. This combined approach ensures tights and

distinct clusters of genes [45]. Overall, CEMiTool is a
user-friendly method to automatically generate a gene-
reproducible co-expression network. However, the
coseq pipeline is also user-friendly and does not
require high computational power but its nonrep-
roducibility is its major disadvantage.

GCNanalysis is generally the preferredmethod to detect
similar network modules from (i) two related plant spe-
cies, (ii) two conditional samples from the same plant
model, and (iii) two developmental samples from the

same plant model (Figure 2). To perform these tasks,
several methods have been developed and used over the
years in several biological systems. Recently, a differen-
tially co-expressed module detection method named
DiffCoEx was built on WGCNA to analyze samples from
www.sciencedirect.com
multiple conditions [48]. The main logic behind this
method is to group two genes (i.e. differentially co-
expressed genes) together when they have different
correlation patterns with the same sets of genes in two
conditional samples. Unlike the traditional approach,
DiffCoEx can make unbiased comparisons of more than
two data sets in an unsupervised manner. In another
approach, s-core decomposition, a gene in the GCN of

two different species, was ranked to categorize conserved
or diverged groups of genes using indicators of central-
ities [49]. The s-core decompositionebased method
works perfectly even if the networks to be compared are
highly connected and complex. Moreover, the s-core
method is quite flexible toward a wide variety of net-
works. Similarly, the Eigen-decomposition method has
been used onGCNs obtained from two different samples
to identify modules [50]. This is a similar approach as
WGCNA is for module detection but less sensitive for
module comparisons. In addition, the PhytoNet database

contains expression profiles, interspecies GCN topology
comparison, and module detection of 19 phytoplankton
and land plants [51]. The GCNs available in PhytoNet
were used to identify gene clusters related functionally in
cyanobacteria, green algae, and land plants. Recently,
CoCoCoNet, a comparative co-expression analysis
method, was used for the identification of autism-related
conserved gene modules in 14 different animal and plant
species through comparative GCN analysis [52].
Furthermore, the ‘signedKME’ function from the
WGCNA package was used to calculate module mem-

bership (kME) scores for a wide variety of flowering
plants to study the development of floral form [53]. The
kME score reflects the correlation between gene
expression level and the module Eigen-gene values.
These comparative network analysis methods along with
our suggested approach in the following can be applied to
explore the conserved modules between two plante
microbe interaction transcriptomic co-expression
studies. Assuming comparable GCNs would have iden-
tical indicators of centralities (degree distribution,
closeness centrality, betweenness centrality, etc.), then
the functionally related genes would possess similar

ranks. Furthermore, ranks based on a particular centrality
can be binned to make centrality-based modules.

In addition, for more robustness, several centralities
could be combined to give genes a comprehensive rank
to create centrality-based hostemicrobe interaction
modules (Figure 2). In a recent attempt to compare two
GCNs of human tissue samples infected with SARS-
CoV vs. SARS-CoV-2 virus, the weighted k-shell
decomposition method was used by assigning the shell
numbers to each gene followed by the rescaling of shells

(layers) into percentiles and binning them into the
optimal number of buckets [30]. The aforementioned
approach can be applied to study the conserved and
distinct interspecies/intraspecies modules involved in
plantemicrobe interactions.
Current Opinion in Plant Biology 2021, 62:102057
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6 Biotic interactions
System-wide network modeling in
plant–microbe interactions
Biological networks represent the behavior of their
components in different functional processes in any
given condition. In the last five years, several
transcriptome-side studies have been performed to
model the transcriptional response and reprogramming
at different stages of plant immunity during plante
pathogen interactions. Lewis et al. [54] deciphered
that most plant defense genes were induced at the early
stage (before pathogen manipulation) of Pseudomonas
syringae pv tomato (Pto) DC3000 pathogen infection.
Furthermore, the role of phytohormones and their cross

talk have been extensively studied to define the alter-
ations in the signaling cascades through network rewir-
ing and pathway integration for robust cellular function
[55e57]. Another such study used a comprehensive
genetics approach using combinatorial mutants perti-
nent to jasmonate, ethylene, phytoalexin-deficient 4,
and salicylate signaling pathways and demonstrated the
transcriptional rewiring for the robust regulatory
response to pathogen stimulus [58]. These studies also
highlighted the dynamic regulatory landscape of path-
ogen infection and the strategies of plants to counter the

infection. To model these dynamic relationships and the
regulatory response of phytohormones, few attempts
have been successful [59,60]. Naseem et al. [59] un-
covered the role of auxin, salicylic acid, and cytokinin
and their regulatory cross talk in plant growth and de-
fense by the standardized qualitative dynamical systems
approach to simulate the dynamics of the static GRN.
However, in another study, the role of jasmonic acid on
the transcriptional reprogramming and dynamic regula-
tory behavior of several transcription factors (TFs) was
elaborated by using network-fueled integrative temporal

transcriptome and TF promoter motif analysis in plant
growth and defense signaling networks [60]. Nobori
et al. [56] provided the in-planta bacterial pathogen Pto
DC3000 temporal transcriptional profile of several
combinations of mutants for plant defense signaling
cascades to identify the conserved and distinct tran-
scriptome signatures influenced by plant immunity.

The undirected interactions, specifically GCNs, have
been used before to establish the emerging gene co-
regulation by the same transcriptional regulatory pro-

gram, as well as for the identification of novel proteins
and their interacting complexes altered during several
plantepathogen interactions (Figure 1) [22,34]. The
‘guilt by association’ concept provides a possibility for
exploration of expression-based clustered neighbors,
which are more expected to participate in the same
functional pathway or regulate the identical biological
processes [15]. Recently, several studies have exploited
the GCNs to unravel the novel players at different stages
of plant immunity through network rewiring during
pathogen attack in both model systems and cash crops
Current Opinion in Plant Biology 2021, 62:102057
[20,22]. One such study in wheat identified the powdery
mildew resistance regulated genes are highly correlated
with Blumeria graminis f. sp. tritici (Bgt) resistance genes as
hubs in wheat [22]. A similar study also highlighted the
enrichment of hubs in stress-specific functional path-
ways in fungal (Bgt)-infected wheat samples [20].

Subsequently, the proteineDNA interactions or GRNs,

which are directed interactions, modeled to control
(activation or inhibition) the gene transcription by TFs
when needed to regulate the cellular function
(Figure 1). With the advancement in molecular biology
techniques, several regulators (TFs, proteins, micro-
RNAs (miRs), or other small RNAs) have been identi-
fied responsible to regulate the candidate genes
[18,61,62]. Generally, the regulation dynamics is
determined by multilevel parameters including changes
in connections of a regulator, the strength of each
connection, target gene expression correlation, binding

affinity, and modeling approaches (Boolean, differential
equation, hidden Markov models) [63e66]. However,
hybrid modeling strategies along with several parame-
ters have been implemented for comprehensive dy-
namic GRN construction [63]. However, another GRN
inference algorithm uses Random Walk with Restart
with a focus on the local network topology rather than
global network topology [67]. Few of these hybrid
methods as well as multiomics strategies have been
successful to model the dynamics of stress/disease
response in both animal and plant model systems [65e
67]. In addition, some GRN modeling techniques
highlight the top regulators based on the parameter’s
combinatorial ranking [64]. During pathogen infection,
the GRN regulators (specifically TFs) are hijacked by
the pathogen effectors to express the genes encoding
several nutrients required for pathogen propagation
[54,65]. In addition, miRs fine-tune the rewired GRN
by the RNA silencing system for an additive pathogen
infection effect [68]. However, these small RNAs
including long-noncoding RNAs are crucial for a
comprehensive understanding of GRN cross talk and
rewiring in different hormone and stress response

pathways [61,69e71].

Subsequently, proteins organize themselves in
conjunction with other proteins through PPIs or inter-
actomes to accomplish functional pathways and
signaling cascades [12,72]. Numerous interactomes
have been generated over the years to study the plante
pathogen interactions as a whole or/and immune re-
ceptor networks or immune signaling networks
(Figure 1) [14,27,73e75]. These interactome studies
provide a systematic understanding of physical PPIs

between plantepathogen or in-planta interactions
structurally participating in the reconstruction of the
macromolecular complexes associated with the molec-
ular machinery of cells in the plant immune system [9].
www.sciencedirect.com

www.sciencedirect.com/science/journal/13695266


Properties of the plant immune system Mishra et al. 7
In addition, these large-scale interactome studies
advocate the notion that diverse pathogen (bacteria,
virus, fungi, and oomycetes) effector proteins target one
type of proteins that are highlighted by the hubs and
bottlenecks in the host protein network [74]. However,
there are other pathogen target proteins that possess low
centralities such as the pathogen-associated molecular
pattern interacting pattern recognition receptors

(PRRs). Moreover, a recent study mapped an extensive
interactome by identifying the mutant-specific in-
teractions through the yeast two-hybrid technique of 10
phytohormones [55]. The study established hundreds
of emergent interactions and communities previously
not reported in signaling pathway cross talk. Notably,
current PPI approaches pertain to identify static in-
teractions. Integration of transcriptome data pertaining
to the above-described phytohormones and pathogen
infection with interactome data sets will make a large
contribution toward comprehensive understanding of

functional pathway cross talk in plantepathogen in-
teractions and immunity [57]. One of such integrated
multiomics studies highlighted the power of network
biology to decipher the static and dynamics of disease-,
defense-, and susceptibility-related protein complexes
in plantepathogen interaction [10]. Interestingly, the
study reported that pathogenic effector targets are super
information spreaders and reside in close proximity to
DEGs. In addition, the study revealed that one percent
of DEGs are effector targets at any time of pathogenic
infection and pathogen alters the expression of approx-

imately 71% of effector targets and their interactors in
the Arabidopsis interactome. A similar approach can be
implied to elucidate the static nature of PPIs and GRNs
in plantepathogen interactions. The immune response
in a plant is achieved by the extensive transcriptional
reprogramming, which results in changes in the protein
interaction partners of a complex and regulated gene by
TFs. The changes in PPI partners are based on the
expressed proteins at an instant and their roles in bio-
logical processes. However, the GRN size varies based
on the expression of genes, TFs, and the changes in the
TF binding motifs to genes [54,56]. These result in the

rewiring of PPIs and GRNs during different stages of
plant immunity to perform specific functions.

In addition, new developments in next-generation
sequencing platforms, that is, single-cell RNA
sequencing (scRNA-Seq) and single-cell ATAC (assay
for transposase-accessible chromatin) sequencing
(scATAC-Seq) used for genome-wide chromatin
accessibility, have opened new avenues for cell-specific
gene expression, GRN construction, and analyses to
identify master regulators or TFs for cell fate transition

as well as protein complex dynamics at different stages
of plant development and pathogen infection
(Figure 1) [76e78]. Rich-Griffin et al. [77] used two
plant immune elicitors, flg22 and Pep1, to study the
GRNs in epidermis, cortex, and pericycle cells of
www.sciencedirect.com
Arabidopsis roots. They identified the differences in the
immunity GRN of each cell type and emphasized the
recruitment of cell-specific GRNs based on the func-
tional ability of each cell type. Similarly, Zhang et al.
[78] described 24 putative cell clusters along with cell-
specific marker genes in the Arabidopsis root at different
stages of plant development. They also highlighted
different levels of ion assimilation and hormonal re-

sponses in each cell cluster of roots. The cell-specific
GRN construction is a challenge in the emerging
field of plantemicrobe interaction. However, we need
this technology-intensive platform to decipher the cell-
specific immunity GRNs in different tissues (leaves,
roots, and shoots) infected by the phytopathogens to
understand the role of each cell in inducing immunity
[79]. Recent developments in fast and most efficient
GRN inference algorithms such as GRNBoost2,
GENIE3, and SENIC workflow have provided an
amazing resource for cell-specific GRN inference

(Figure 1) [80e82]. In addition, python-based imple-
mentation of the SENIC algorithm, pySENIC, is
lightning fast to be implemented in plantepathogen
interactions [83]. However, the cellular heterogeneity
provides immense challenges in single-cellederived
network interpretation and unbiased candidate gene
prioritization for perturbations in functional pathways
[84]. Therefore, a comprehensive network centralitye
based pipeline is needed for meaningfully augmenting
the root or shoot during plantepathogen interactions
[79].
Multiomics network integration for network
rewiring and pathway dynamics
The enormous collection of high-throughput data sets
from different experimental techniques has provided
an excellent opportunity to network systems biologists
for unbiased analyses and interpretation of data for a
comprehensive understanding of molecular activity
during a biological response. As such, the data sets
generated by genomics, transcriptomics, proteomics,

and metabolomics are massive, and multiomics network
integration (MONI) remains the bottleneck of big data
research in biology [85,86]. In the last couple of years,
several MONI strategies have been exploited in other
model systems including, humans, mice, and microbes
(Figure 1) [87e89]. These strategies use element-,
pathway-, and mathematical-based approaches to
highlight the most significant modules/components of
the biological system under study [90]. The element-
based approach is dependent on correlation, clus-
tering, and multivariate analysis. On the other hand,

the pathway-based approach is dependent on pathway
mapping and co-expression analysis, whereas the
mathematical-based approach is dependent on differ-
ential analysis and genome-scale analysis. However,
there is an existential challenge in the multiomics
study design to evaluate the scope and restrictions of
Current Opinion in Plant Biology 2021, 62:102057
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8 Biotic interactions
study, sample strength, and statistical power [91].
Several factors can influence the statistical power in
multiomics studies including but limited to the type of
study (randomized or observational), sample allocation
(balanced or unbalanced), high sample size, high effect
size, hypothesis testing (parametric or nonparametric),
significance level, number of hypothesis testing, sample
variation, and confounders that can introduce bias [92].

On a positive note, these comparative parameters can
be assessed at the one-stop shop ‘MultiPower’, which
recommends a suite of harmonized figures of merit as a
quality metric for different types of multiomics studies
[91]. These multimodel approaches can be used in
high-throughput MONI to unravel the emerging and
most relevant players in plantepathogen interactions
and different stages of plant immunity [85]. However,
MONI in plants is poorly studied and reviewed because
of the inadequate genome annotations, complex sym-
biont interactomes, and metabolic diversity [8,85,90].

Thus, integration becomes a challenge specifically in
crop plants and nonmodel plant systems. In addition,
new tools are being developed for MONI to identify
significant subnetworks, dynamics of gene regulation,
and master regulators in different functional pathways
and signaling cascades [93,94]. These master regulators
are the most vulnerable components of GRNs and
interactomes to spread the expression information
(regulation) with high connectivity and centrality. The
pathogen manipulates the host TFs to regulate the
target genes of functional pathways for plant immunity

as well as the nutrient synthesis/transport. The func-
tional networks are very scarce; thus, TFs with high
connectivity and centrality in the structural network
are a priori interactions for any hypothesized functional
hubs [33]. These approaches have also been applied in
plantepathogen interactions to explore the sub-
networks associated with both ETI/MTI and ETS [10].
In addition, dynamic gene regulatory event mining is a
resourceful tool to investigate the significant regulators
(TFs/miRs) at different stages of plant-pathogen
infection [64,95]. One such tool ‘iDREM’ (Interac-
tive Dynamic Regulatory Events Miner) reconstructs

the dynamic GRNs by integrating temporal tran-
scriptomics, epigenomics, and proteomics along with
static GRNs, PPIs, and miR-target gene networks
(Figure 1) [64]. The tool identifies the significant
regulators (TFs, miRs) responsible for the regulation of
the gene signature enriched in functional pathways
over time by an unsupervised hidden Markov model.
This provides a unique prospect to identify the tran-
scriptional output that is dissimilar at different stages
of plantepathogen interaction and plant immunity, that
is, from MTI and ETS and regulators (TFs/miRs) that

are the target of pathogen effectors. In addition, this
technique can infer the transcriptional amplitude dif-
ference in MTI, ETS, and ETI conditions of target
genes for specific regulators during plantepathogen
interaction. These analyses can pinpoint the specific
Current Opinion in Plant Biology 2021, 62:102057
components accurately to work with during the fight
against pathogens and manipulation using advanced
gene editing techniques for crop improvement and
disease resistance [33,95].

With recent advancements in computational tech-
niques, several tools have been developed and exploi-
ted for scRNA- and scATAC-Seq data and network

integration to unravel the new frontier of MONI [96].
However, these integration techniques have not been
used in plant science that often [79]. A recent study in
the Arabidopsis root is the first of its kind in scRNA- and
scATAC-Seq integration in plants [97]. The study
highlighted the significance of an integrated approach
to identifying the significant TFs associated with the
gene regulatory events underlying epidermis develop-
ment. A similar approach can be exploited to explore
the cell-specific plantepathogen interactions in the
root or leaf by MONI to comprehend the pathway

dynamic and network rewiring at different stages of
plant immunity [77].

Moving forward, the next frontier in system-wide
network analysis will be the identification of master
regulators in reconstructed cell-specific regulatory net-
works from scRNA-Seq and scATAC-Seq for cellular
development, pathogen infection, and hijacked nutrient
transport in plants (Figure 1) [84]. The upcoming
technical studies have reduced the challenges of single-
cellederived GRNs due to cellular heterogeneity for

comprehensive network centrality analyses. In summary,
conventional and new network centralities have an
enormous impact on discovering emergent modules and
players in multifaceted plantepathogen interactions
and plant immunity.

Conclusions
With the accumulation of high-throughput sequencing
data sets, the interpretation of biomolecular adaptation
and response in plantemicrobe interaction needs the
methodical multiomics data and multiomics network
integration (MONI) (MONI) techniques for a
comprehensive understanding of biological events.
These diverse system-wide studies and emerging
network centralities have been propagated widely in

several hostepathogen interactions and disease studies
along with plantepathosystem studies. Network biology
specifically, MONI, and centrality analyses can assist us
to decipher the unmapped regions in plantemicrobe
interactions. In addition, the prediction and prioritiza-
tion of significant genes and proteins involved in plant
immunity and defense, most vulnerable pathogen tar-
gets, nutrient transport, and infection dynamics can
accelerate the experiments from controlled to field en-
vironments. Furthermore, these techniques can be
transcribed from model plant systems to several crop

plants to counteract the pathogen- and other biotic- or
abiotic-stressed crop loss.
www.sciencedirect.com
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