
Random walks and forbidden minors III: poly(dε−1)-time partition oracles for
minor-free graph classes

Akash Kumar C. Seshadhri Andrew Stolman

Abstract—Consider the family of bounded degree
graphs in any minor-closed family (such as planar graphs).
Let d be the degree bound and n be the number of vertices
of such a graph. Graphs in these classes have hyperfinite
decompositions, where, one removes a small fraction of
edges of the graph controlled by a proximity parameter
to get connected components of size independent of n.
An important tool for sublinear algorithms and property
testing for such classes is the partition oracle, introduced
by the seminal work of Hassidim-Kelner-Nguyen-Onak
(FOCS 2009). A partition oracle is a local procedure
that gives consistent access to a hyperfinite decomposition,
without any preprocessing. Given a query vertex v, the
partition oracle outputs the component containing v in
time independent of n. All the answers are consistent with
a single hyperfinite decomposition.

The partition oracle of Hassidim et al. runs in time ex-
ponential in the proximity parameter per query. They pose
the open problem of whether partition oracles which run
in time polynomial in reciprocal of proximity parameter
can be built. Levi-Ron (ICALP 2013) give a refinement of
the previous approach, to get a partition oracle that runs
in quasipolynomial time per query.

In this paper, we resolve this open problem and give
polynomial time partition oracles (in reciprocal of prox-
imity parameter) for bounded degree graphs in any minor-
closed family. Unlike the previous line of work based
on combinatorial methods, we employ techniques from
spectral graph theory. We build on a recent spectral
graph theoretical toolkit for minor-closed graph families,
introduced by the authors to develop efficient property
testers. A consequence of our result is an efficient property
tester for any monotone and additive with running time
property of minor-closed families (such as bipartite planar
graphs). Our result also gives query efficient algorithms for
additive approximations for problems such as maximum
matching, minimum vertex cover, maximum independent
set, and minimum dominating set for these graph families.

I. INTRODUCTION

The algorithmic study of planar graphs is a fun-
damental direction in theoretical computer science
and graph theory. Classic results like the Kuratowski-
Wagner characterization [18], [29], linear time planarity
algorithms [14], and the Lipton-Tarjan separator theo-
rem underscore the significance of planar graphs [22].
The celebrated theory of Robertson-Seymour give a
grand generalization of planar graphs through minor-
closed families [24], [25], [26]. This has led to many
deep results in graph algorithms, and an important
toolkit is provided by separator theorems and associated
decompositions [2].

Over the past decade, there have been many advances
in sublinear algorithms for planar graphs and minor-
closed families. We focus on the model of random
access to bounded degree adjacency lists, introduced by
Goldreich-Ron [12]. Let G = (V,E) be a graph with
vertex set V = [n] and degree bound d. The graph
is accessed through neighbor queries: there is an oracle
that on input v ∈ V and i ∈ [d], returns the ith neighbor
of v. (If none exist, it returns ⊥.)

One of the key properties of bounded-degree graphs
in minor-closed families is that they exhibit hyperfinite
decompositions. A graph G is hyperfinite if ∀ 0 <
ε < 1, one can remove εdn edges from G and obtain
connected components of size independent of n (we
refer to these as pieces). For minor-closed families, one
can remove εdn edges and get pieces of size O(ε−2).

The seminal result of Hassidim-Kelner-Nguyen-Onak
(HKNO) [13] introduced the notion of partition oracles.
This is a local procedure that provides “constant-time”
access to a hyperfinite decomposition. The oracle takes
a query vertex v and outputs the piece containing
v. Each piece is of size independent of n, and at
most εdn edges go between pieces. Furthermore, all
the answers are consistent with a single hyperfinite
decomposition, despite there being no preprocessing or
explicit coordination. (All queries uses the same ran-
dom seed, to ensure consistency.) Partition oracles are
extremely powerful as they allow a constant time pro-
cedure to directly access a hyperfinite decomposition.

As observed in previous work, partition oracles lead
to a plethora of property testing results and sublinear
time approximation algorithms for minor-closed graph
families [13], [23]. In some sense, one can think of
partition oracles as a moral analogue of Szémeredi’s
regularity lemma for dense graph property testing: it is
a decomposition tool that immediately yields a litany of
constant time (or constant query) algorithms.

We give a formal definition of partition oracles. (We
deviate somewhat from the definition in Chap. 9.5 of
Goldreich’s book [10] by including the running time as
a parameter, instead of the set size.)

Definition I.1. Let P be a family of graphs with degree
bound d and T : (0, 1)→ N be a function. A procedure
A is an (ε, T (ε))-partition oracle for P if it satisfies the
following properties. The deterministic procedure takes
as input random access to G = (V,E) in P , random
access to a random seed r (of length polynomial in
graph size), a proximity parameter ε > 0, and a vertex
v of G. (We will think of fixing G, r, ε, so we use the
notation AG,r,ε. All probabilities are with respect to r.)
The procedure AG,r,ε(v) outputs a set of vertices and
satisfies the following properties.

1) (Consistency) The sets {AG,r,ε(v)}, over all v,
form a partition of V . Also, these sets AG,r,ε(v)
induce connected graphs for all v ∈ V .

2) (Cut bound) With probability (over r) at least 2/3,
the number of edges between the sets AG,r,ε(v) is
at most εdn.

3) (Running time) For every v, AG,r,ε(v) runs in time
T (ε).

We stress that there is no explicit “coordination”
or sharing of state between calls to AG,r,ε(v) and
AG,r,ε(v

′) (for v 6= v′). There is no global pre-
processing step once the random seed is fixed. The
consistency guarantee holds with probability 1. Note
that the running time T (ε) is clearly an upper bound on
the size of the sets AG,r,ε(v). For minor-closed families,
one can convert any partition oracle to one that output
sets of size O(ε−2) with a constant factor increase in
the cut bound. (refer to the end of Sec. 9.5 in [10]).

The challenge in partition oracles is to bound the
running time T (ε). HKNO gave a partition oracle with
running time (dε−1)poly(dε

−1). Levi-Ron [19] built on
the ideas from HKNO and dramatically improved the
bound to (dε−1)log(dε

−1). Yet, for all minor-closed
families, one can (in linear time) remove εdn edges to
get connected components of size O(ε−2). HKNO raise
the natural open question as to whether (ε, poly(dε−1))-
partition oracles exist.

In this paper, we resolve this open problem.

Theorem I.2. Let P be the set of d-bounded de-
gree graphs in a minor-closed family. There is an
(ε, poly(dε−1))-partition oracle for P .

A. Consequences

As observed by HKNO and Newman-Sohler [23],
partition oracles have many consequences for property
testing and sublinear algorithms.

Recall the definition of property testers. Let Q be a
property of graphs with degree bound d. The distance
of G to Q is the minimum number of edge addi-
tions/removals required to make G have Q, divided by
dn. A property tester for P is a randomized procedure
that takes query access to an input graph G and a
proximity parameter, ε > 0. If G ∈ P , the tester accepts
with probability at least 2/3. If the distance of G to Q
is at least ε, the tester rejects with probability at least
2/3. We often measure the query complexity as well as
time complexity of the tester.

A direct consequence of Theorem I.2 is an “efficient”
analogue (for monotone and additive properties) of a
theorem of Newman-Sohler stating that all properties of
hyperfinite graphs are testable. A graph property closed
under vertex/edge removals is called monotone. A graph
property closed under disjoint union of graphs is called
additive.

Theorem I.3. Let Q be any monotone and additive
property of bounded degree graphs of a minor-closed
family. There exists a poly(dε−1)-query tester for Q.

If membership in Q can be determined exactly in
polynomial (in input size) time, then Q has poly(dε−1)-
time testers.

An appealing consequence of Theorem I.3 is that
the property of bipartite planar graphs can be tested
in poly(dε−1) time. For any fixed subgraph H , the
property of H-free planar graphs can be tested in the
same time. And all of these bounds hold for any minor-
closed family.

As observed by Newman-Sohler, partition oracles
give sublinear query algorithms for any additive graph
parameter that is “robust” to edge changes. Again, The-
orem I.2 implies an efficient version for minor-closed
families.

Theorem I.4. Let f be a real-valued function on graphs
that changes by O(1) on edge addition/removals, and
has the property that f(G1∪G2) = f(G1)+f(G2) for
graphs G1, G2 that are not connected to each other.

For any minor-closed family P , there is a randomized
algorithm that, given ε > 0 and G ∈ P , outputs an ad-

2

ditive εn-approximation to f(G) and makes poly(dε−1)
queries. If f can be computed exactly in polynomial
time, then the above algorithm runs in poly(dε−1) time.

The functions captured by Theorem I.4 are quite
general. Functions such as maximum matching, min-
imum vertex cover, maximum independent set, min-
imum dominating set, maxcut, distances to additive
and monotone properties, etc. all have the robustness
property. As a compelling application of Theorem I.4,
we can get (1 + ε)-approximations1 for the maximum
matching in planar (or any minor-closed family) graphs
in poly(dε−1) time.

These theorems are easy consequences of Theo-
rem I.2. Using the partition oracle, an algorithm can
essentially assume that the input is a collection of
connected components of size poly(dε−1), and run an
exact algorithm on a collection of randomly sampled
components. We defer the proofs to the full version [17].

Since the publication of this work, Levi and
Shoshan applied the partition oracle of Theorem I.2 for
poly(dε−1)-query algorithms to test Hamiltonicity and
construct almost optimal spanning subgraphs in minor-
closed families [21].

B. Related work

The subject of property testing and sublinear algo-
rithms in bounded degree graphs is a vast topic. We
refer the reader to Chapters 9 and 10 of Goldreich’s
textbook [10]. We focus on the literature relevant to
sublinear algorithms for minor-closed families.

The first step towards a characterization of testable
properties in the bounded-degree model was given by
Czumaj-Sohler-Shapira, who showed hereditary proper-
ties in non-expanding graphs are testable [5]. This was
an indication that notions like hyperfiniteness are con-
nected to property testing. Benjamini-Schramm-Shapira
achieved a breakthrough by showing that all minor-
closed properties are testable, in time triply-exponential
in dε−1 [3]. Hassidim-Kelner-Nguyen-Onak introduced
partition oracles, and designed one running in time
exp(dε−1). Levi-Ron improved this bound to quasipoly-
nomial in dε−1, using a clever analysis inspired by
algorithms for minimum spanning trees [19]. Newman-
Sohler built on partition oracles for minor-close families
to show that all properties of hyperfinite graphs are
testable [23]. Fichtenberger-Peng-Sohler showed any
testable property contains a hyperfinite property [9].

There are two dominant combinatorial ideas in this
line of work. The first is using subgraph frequencies

1The maximum matching is Ω(n/d) for a connected bounded
degree graph. One simply sets ε � 1/d in Theorem I.4.

in neighborhood of radius poly(ε−1) to characterize
properties. This naturally leads to exponential depen-
dencies in poly(ε−1). The second idea is to use random
edge contractions to reduce the graph size. Recursive
applications lead to hyperfinite decompositions, and the
partition oracles of HKNO and Levi-Ron simulate this
recursive procedure. This is extremely non-trivial, and
leads to a recursive local procedure with a depth depen-
dent of ε. Levi-Ron do a careful simulation, ensuring
that the recursion depth is at most log(dε−1), but this
simulation requires looking at neighborhoods of radius
log(dε−1). Following this approach, there is little hope
of getting a recursion depth independent of ε, which is
required for a poly(dε−1)-time procedure.

Much of the driving force behind this work was
the quest for a poly(dε−1)-time tester for planarity.
This question was resolved recently using a different
approach from spectral graph theory, which was itself
developed for sublinear time algorithms for finding
minors [15], [16]. A major inspiration is the random
walk based one-sided bipartiteness tester of Goldreich-
Ron [11]. This paper is a continuation of that line of
work, and is a further demonstration of the power of
spectral techniques for sublinear algorithms. The tools
build on local graph partitioning techniques pioneered
by Spielman-Teng [28], which is itself based on classic
mixing time results of Lovász-Simonovits [20]. In this
paper, we develop new diffusion-based local partitioning
tools that form the core of partition oracles.

Levi and Shoshan recently introduced the weaker
notion of covering partition oracles [21]. The output sets
do not need to form a consistent partition, and are only
required to contain the sets of a hyperfinite partitioning.
They show that such oracles can be constructed from
previous results on testing minor-freeness [16]. These
oracles can be used to test additive and monotone
properties, assuming that the input comes from a minor-
closed family. (Theorem I.3 makes no such assumption.)
We also mention other key results in the context of
sublinear algorithms for minor-closed families, notably
the Czumaj et al [4] upper bound of O(

√
n) for testing

cycle minor-freeness, the Fichtenberger et al [8] up-
per bound of O(n2/3) for testing K2,r-minor-freeness,
and poly(dε−1) testers for outerplanarity and bounded
treewidth graphs [30], [7].

II. MAIN IDEAS

The starting point for this work are the spectral
methods used in [15], [16]. These methods discover cut
properties within a neighborhood of radius poly(dε−1),
without explicitly constructing the entire neighborhood.

3

One of the key tools used in these results in a
local partitioning algorithm, based on techniques of
Spielman-Teng [28]. The algorithm takes a seed vertex
s, performs a diffusion from s (equivalently, performs
many random walks) of length poly(dε−1), and tracks
the diffusion vector to detect a low conductance cut
around s in poly(dε−1) time. We will use the term
diffusions, instead of random walks, because we prefer
the deterministic picture of a unit of “ink” spreading
through the graph. A key lemma in previous results
states that, for graphs in minor-closed families, this pro-
cedure succeeds from more than (1−ε)n seed vertices.
This yields a global algorithm to construct a hyperfinite
decomposition with components of poly(dε−1) size.
Pick a vertex s at random, run the local partitioning
procedure to get a low conductance cut, remove and
recurse. Can there be a local implementation of this
algorithm?

Let us introduce some setup. We will think of a global
algorithm that processes seed vertices in some order.
Given each seed vertex s, a local partitioning algorithm
generates a low conductance set C(s) containing s (this
is called a cluster). The final output is the collection of
these clusters. For any vertex v, let the anchor of v be
the vertex s such that v ∈ C(s). A local implementation
boils down to finding the anchor of query vertex v.

Observe that at any point of the global procedure,
some vertices have been clustered, while the remaining
are still free. The global procedure described above
seems hopeless for a local implementation. The cluster
C(s) is generated by diffusion in some subgraph G′ of
G, which was the set of free vertices when seed s was
processed. Consider a local procedure trying to discover
the anchor of v. It would need to figure out the free
set corresponding to every potential anchor s, so that it
can faithfully simulate the diffusion used to cluster v.
From an implementation standpoint, it seems that the
natural local algorithm is to use diffusions from v in G
to discover the anchor. But diffusion in a subgraph G′

is markedly different from G and difficult to simulate
locally. Our first goal is to design a partitioning method
using diffusions directly in G.

Finding low conductance cuts in subsets, by dif-
fusion in supersets: Let us now modify the global
algorithm with this constraint in mind. At some stage
of the global algorithm, there is a set F of free vertices.
We need to find a low conductance cut contained in F ,
while running random walks in G. Note that we must
be able to deal with F as small as O(εn). Thus, random
walks (even starting from F) will leave F quite often;
so how can these walks/diffusions find cuts in F ?

One of our main insights is that these challenges can
be dealt with, even for diffusions of poly(dε−1) length.
We show that, for a uniform random vertex s ∈ F , a
spectral partitioning algorithm that performs diffusion
from s in G can detect low conductance cuts contained
in F . Diffusion in the superset (all of V) provides
information about the subset F . This is a technical
and non-trivial result, and crucially uses the spectral
properties of minor-closed families. Note that diffusions
from F can spread very rapidly in short random walks,
even in planar graphs. Consider a graph G, where F
is a path on εn vertices, and there is a tree of size
1/ε rooted at every vertex of F . Diffusions from any
vertex in F will initially be dominated by the trees,
and one has to diffuse for at least 1/ε timesteps before
structure within F can be detected. Thus, the proof of
our theorem has to look at average behavior over a
sufficiently large time horizon before low conductance
cuts in F are “visible”. Remarkably, it suffices to look
at poly(dε−1) timesteps to find structure in F , because
of the behavior of diffusions in minor-closed families.

The main technical tool used is the Lovász-
Simonovits curve technique [20], whose use was pio-
neered by Spielman-Teng [28]. We also use the trun-
cated probability vector technique from Spielman-Teng
to give cleaner implementations and proofs. A benefit of
using diffusion (instead of random walks) on truncated
vectors is that the clustering becomes deterministic.

The problem of ordering the seeds: With one
technical hurdle out of the way, we end up at another
gnarly problem. The above procedure only succeeds if
the seed is in F . Quite naturally, one does not expect to
get any cuts in F by diffusing from a random vertex
in G. From the perspective of the global algorithm,
this means that we need some careful ordering of the
seeds, so that low conductance cuts are discovered.
Unfortunately, we also need local implementations of
this ordering. The authors struggled with carrying out
this approach, but to no avail.

To rid ourselves of the ordering problem, let us
consider the following, almost naive global algorithm.
First, order the vertices according to a uniform random
permutation. At any stage, there is a free set F . We
process the next seed vertex s by running some spectral
partitioning procedure, to get a low conductance cut
C(s). Simply output C(s)∩F (instead of C(s)) as the
new cluster, and update F to F \ C(s). It is easy to
locally implement this procedure. To find the anchor
of v, perform a diffusion of poly(ε−1) timesteps from
v. For every vertex s with high enough value in the
diffusion vector, determine if C(s) 3 v. The vertex

4

s that is lowest according to the random ordering is
the anchor of v. Unfortunately, there is little hope of
bounding the number of edges cut by the clustering.
When s is processed, it may be that s /∈ F , and there is
no guarantee of C(s)∩F . Can we modify the procedure
to bound the number of cut edges, but still maintain its
ease of local implementability?

The amortization argument: Consider the scenario
when F = Θ(εn). Most of the subsequent seeds
processed are not in F and there is no guarantee on
the cluster conductance. But every Θ(1/ε) seeds (in
expectation), we will get a “good” seed s contained in
F , such that C(s)∩F is a low conductance set. (This is
promised by the diffusion algorithm that we develop in
this paper, as discussed earlier.) Our aim is to perform
some amortization, to argue that |C(s)∩F | is so large,
that we can “charge” away the edges cut by the previous
Θ(1/ε) seeds.

This amortization is possible because our spectral
tools give us much flexibility in the (low) conductances
obtained. Put differently, we essentially prove that exis-
tence of many cuts of extremely low conductance, and
show that it is “easy” for a diffusion-based algorithm to
find such cuts. (This is connected to the spectral behav-
ior of minor-closed families.) As a consequence, we can
actually pre-specify the size of the low conductance cuts
obtained. We show that as long as |F | = Ω(εn), we can
find a size threshold k = poly(ε−1) such that for at least
Ω(ε2n) vertices s ∈ F , a spectral partitioning procedure
seeded at s can find a cut of size Θ(k) and conductance
at most εc. Moreover, this cut is guaranteed to contain
at least εc

′
k vertices in F , despite the procedure being

oblivious to F . The parameter c can be easily tuned, so
we can increase c arbitrarily while keeping c′ fixed, at
the cost of polynomial increases in running time. This
tunability is crucial to our amortization argument. We
also show that given query access to F , a size threshold
k can be computed in poly(dε−1) time.

So when the global algorithm processes seed s, it runs
the above spectral procedure to try to obtain a set of size
Θ(k) with conductance at most εc. (If the procedure
fails, the global algorithm simply set C(s) = {s}.)
Thus, we cut O(εckd) edges for each seed processed.
But after every O(1/ε) seeds, we choose a “good”
seed such that |C(s) ∩ F | > εc

′
k. The total number

of edges cut is O(εckd × ε−1) = O(εc−1kd). The
total number of new vertices clustered is at least εc

′
k.

Because we can tune parameters with much flexibility,
we can set c � c′. So the total number of edges cut
is O(εc−c

′−1d) times the number of vertices clustered,
where c− c′−1 > 1. Overall, we will cut only O(εnd)

edges.

Making it work through phases: Unfortunately,
as the process described above continues, F shrinks.
Thus, the original choice of k might not work, and the
guarantees on |C(s)∩F | for good seeds no longer hold.
So we need to periodically recompute the value of k. In
a careful analysis, we show that this recomputation is
only required poly(ε−1) times. Formally, we implement
the recomputation through phases. Each vertex is inde-
pendently assigned to one of poly(ε−1) phases. (Tech-
nically, we choose the phase of a vertex by sampling an
independent geometric random variable. We heavily use
the memoryless property of the geometric distribution.)

For each phase, the value of k is fixed. The local
partition oracle will compute these size thresholds for
all phases, as a poly(dε−1) time preprocessing step.
The oracle (for v) runs a diffusion from v to get a
collection of candidate anchors. For each candidate
s, the oracle determines its phase, runs the spectral
partitioning algorithm with correct phase parameters,
and determines if the candidate’s low conductance cut
contains v. The anchor is simply such a candidate of
minimum phase, with ties broken by vertex id.

III. GLOBAL PARTITIONING AND ITS LOCAL
IMPLEMENTATION

There are a number of parameters that are used in
the algorithm. We list them out here for reference. It is
convenient to fix the value of ε in advance, so that all
the values of the following parameters are fixed. Note
that all these parameters are polynomial in d and ε. We
will express all running times as polynomials in these
parameters, ensuring all running time are poly(dε−1).
• ρ = d−60ε3000: Minimum probability for trunca-

tion.
• ` = d6ε−30: Maximum random walk length.
• β = ε/10: Unclustered fraction cutoff.
• δ = d−70ε3100: Phase probability.
• α = ε4/3

300,000 : Heavy bucket parameter.
• φ = ε10: Conductance parameter.

A. Truncated diffusion

The main process used to find sets of the partition is
a truncated diffusion. We assume that the input graph
G is connected, has n vertices, and degree bound d.
Define the lazy symmetric random walk matrix M as
follows. For every edge (u, v), Mu,v = Mv,u = 1/2d.
For every vertex v, Mv,v = 1 − d(v)/2d, where d(v)
is the degree of v. The matrix M is doubly stochastic,
symmetric, and the (unique) stationary distribution is
the uniform distribution.

5

Given a vector ~x ∈ (R+)n, diffusion is the evolution
M t~x. We define a truncated version, where after every
step, small values are removed. For any vector ~x, let
supp(~x) denote the support of the vector.

Definition III.1. Define the operator M̂ : (R+)n →
(R+)n as follows. For ~x ∈ (R+)n, the vector M̂~x is
obtained by zeroing out all coordinates in M~x whose
value is at most ρ.

For t > 1, the operator M̂ t is the t-step truncated
diffusion, and is recursively defined as M̂(M̂ t−1~x).

Define p̂v,t(w) to be the coordinate corresponding to
vertex w in the t-step truncated diffusion starting from
vertex v.

We stress that the t-step truncated diffusion is ob-
tained from a standard diffusion by truncating low
values at every step of the diffusion. Note that as
the truncated diffusion progresses, the l1-norm of the
vector may decrease at each step. Importantly, for any
distribution vector ~x, supp(M̂ t~x) has size at most
ρ−1. We heavily use this property in our running time
analysis.

We define level sets, a standard concept in spectral
partitioning algorithms. Somewhat abusing notation, for
vertex v ∈ V , we use ~v to denote the unit vector in
(R+)n corresponding to the vertex v. (We never use to
vector notation for any other kind of vectors.)

Definition III.2. For vertex v ∈ V , length t, and thresh-
old k, let Lv,t,k be the set of vertices corresponding to
the k largest coordinates in M̂ t~v (ties are broken by
vertex id).

For any set S of vertices, the conductance of S is
Φ(S) := E(S, S)/[2 min(|S|, |S|)d]. (We use E(S, S)
to denote the number of edges between S and its
complement.)

We describe the key subroutine that finds low conduc-
tance cuts. It performs a sweep cut over the truncated
diffusion vector.

cluster(v, t, k)

1) Determine M̂ t~v
2) For all k′ ∈ [k, 2k] calculate Φ(Lv,t,k′).
3) Find the largest k′ ∈ [k, 2k] (if any) with the

following properties: Φ(Lv,t,k′ ∪ {v}) ≤ φ and
Lv,t,k′ ∈ supp(M̂ t~v).

4) If such a k′ exists, set C := Lv,t,k′ ∪ {v}, else
C := {v}.

5) Return C.

Claim III.3. The procedure cluster(v, t, k) runs in
time O(ρ−1td log(ρ−1td) + kd log k). The output set C

has the following properties. (i) v ∈ C. (ii) If C is
not a singleton, then |C| ∈ [k, 2k], Φ(C) ≤ φ, and
C ⊆ supp(M̂ t~v).

Proof: Deferred to the full version [17]

B. The global partitioning procedure
The global partitioning procedure

globalPartition will output a partition of
the vertices satisfying the conditions in Definition I.1.
This global procedure will run in linear time. In the
next subsection, we show how the output of the global
procedure can be generated locally in poly(ε−1) time,
thereby giving us the desired partition oracle. It will
be significantly easier to understand and analyze the
partition properties of the global procedure.

The key ingredient in globalPartition that
allows for a local implementation is a preprocessing
step. The preprocessing allows for the “coordination”
required for consistency of various local partitioning
steps. All the randomness is used in the preprocessing,
after which the actual partitioning is deterministic. The
job of the preprocessing is to find the following sets
of values, which are used for two goals: (i) ordering
vertices, (ii) setting parameters for calls to cluster.

The preprocessing generates, for all vertices v, the
following values.
• hv: The phase of v.
• kv: The size threshold of v.
• tv: The walk length of v.

Before giving the procedure description, we explain
how these values are generated.

Phases: For each v, hv is set to max(X,h), where
X is independently sampled from Geo(δ), the geo-
metric distribution with parameter δ. Moreover h :=
2δ−1 log(δ−1), so the maximum phase value is capped.

Size thresholds: The computation of these thresholds
is the most complex part of our algorithm (and analysis),
and is the “magic ingredient” that makes the partition
oracle possible. We first run a procedure findr that
runs in poly(ε−1) time and outputs a set of phase
size thresholds k1, k2, . . . , kh. All the thresholds have
value at most ρ−1 and kh will be zero. The (involved)
description of findr and its properties are in §IV. For
now, it suffices to say that its running time is poly(ε−1),
and that it outputs phase size thresholds. The size
threshold for a vertex v is simply khv , corresponding
to the phase it belongs to.

Walk lengths: These are simply chosen independently
and uniformly in [1, `].

The analysis is more transparent when we assume
that all the randomness used by the algorithm is in a

6

random seed R, of O(n·poly(ε−1)) length. The seed R
is passed as an argument to the partitioning procedure,
which uses R to generate all the values described above.
(For convenience, we will assume random access to
the adjacency list of G, without passing the graph as
a parameter.)

It is convenient to define an ordering on the vertices,
given these values. For cleaner notation, we drop the
dependence on R.

Definition III.4. For vertex u, v ∈ V , we say that u ≺ v
if: hu < hv or if hu = hv , the id of v is less than that
of v.

globalPartition(R)
Preprocessing:

1) For every v ∈ V :
a) Use R to set hv := max(X,h) (X ∼ Geo(δ)).
b) Use R to set tv uniform random in [1, `].

2) Call findr(R) to generate values k1, k2, . . . , kh.
For every v ∈ V , set kv = khv

.
Partitioning:

1) Initialize the partition P as an empty collection.
Initialize the free set F := V .

2) For all vertices in V in increasing order of ≺:
a) Compute C = cluster(v, tv, kv).
b) Add the connected components of C ∩ F to

the partition P .
c) Reset F = F \ C.

3) Output P .

Since all of our subsequent discussions are about
globalPartition, we abuse notation assuming that
the preprocessing is fixed. We refer to cluster(v) to
denote cluster(v, tv, kv). These are the only calls to
cluster that are ever discussed, so it is convenient to
just parametrize by the vertex argument. Furthermore,
for ease of notation, we sometimes refer to the output
of the procedure as cluster(v).

We observe that the output P is indeed a partition
of V into connected components. At any intermediate
step, the free set F is precisely the set of vertices
that have not been assigned to a cluster. Note that
cluster(v) always contains v (Claim III.3), so all
vertices eventually enter (the sets of) P .

We note that v might not be in F when cluster(v)
is called. This may lead to new components in P
that do not involve v, which may actually not be low
conductance cuts. This may seem like an oversight:
why initiate diffusion clusters from vertices that are
already partitioned? Many challenges in our analysis
arise from such clusters. On the other hand, such an

“oblivious” partitioning scheme leads to a simple local
implementation.

C. The local implementation

A useful definition in the local implementation is that
of anchors of vertices. As mentioned earlier, we fix
the output of the preprocessing (which is equivalent to
fixing R).

Definition III.5. Consider the running of
globalPartition(R). The anchor of w is
the (unique) vertex w such that the component in P
containing v was created by the call to cluster(v).

Suppose we label every vertex by its anchor. We can
easily determine the sets of P locally.

Claim III.6. The sets of P are exactly the maximal
connected components of vertices with the same anchor.

Proof: We prove by induction over the ≺ ordering
of vertices. The base case is vacuously true. Suppose,
just before v is considered, all current sets in P are
maximal connected components with the same anchor,
which cannot be v. No vertex in F can have an anchor
yet; otherwise, it would be clustered and part of (a set
in) P . All the new vertices clustered have v as anchor.
Moreover, the sets added to P are precisely the maximal
connected components with v as anchor.

We come to a critical definition that allows for
searching for anchors. We define the “inverse ball” of a
vertex: this is the set of all vertices that reach v through
truncated diffusions. We note that reachability is not
symmetric, because the diffusion is truncated at every
step.

Definition III.7. For v ∈ V , let IB(v) = {w | ∃t ∈
[0, `], v ∈ supp(M̂ t ~w)}.

Claim III.8. |IB(v)| ≤ `ρ−1.

Proof: All vertices w ∈ IB(v) have the property
that (for some t ≤ `) p̂w,t(v) 6= 0. That implies that
pw,t(v) ≥ ρ. By the symmetry of the random walk,
pv,t(w) ≥ ρ. For any fixed t, there are at most ρ−1 such
vertices w. Overall, there can be at most `ρ−1 vertices
in IB(v).

Now we have a simple characterization of the anchor
that allows for local implementations.

Lemma III.9. The anchor of v is the smallest vertex
(according to ≺) in the set {s|s ∈ IB(v) and v ∈
cluster(s)}.

Proof: Let the anchor of v be the vertex u. We first
argue that u in the given set. Clearly, v ∈ cluster(u).

7

If u = v, then u = v ∈ IB(v) and we are done.
Suppsoe u 6= v. Then cluster(u) is not a singleton
(since it contains v). By Claim III.3, cluster(u)

is contained in the support of M̂ tv~u, implying that
v ∈ supp(M̂ tv~u). Thus, u ∈ IB(v) and the anchor
u is present in the given set.

It remains to argue that u is the smallest such
vertex. Suppose there exists u′ ≺ u in this set. In
globalPartition, cluster(u′) is called before
cluster(u). At the end of this call, v is partitioned
and would have u′ as its anchor. Contradiction.

We are set for the local implementation. For a vertex
v, we compute IB(v) and run cluster(u) for all u ∈
IB(v). By Lemma III.9, we can compute the anchor of
v, and by Claim III.6, we can perform a BFS to find all
connected vertices with the same anchor.

We begin by a procedure that computes IB(v). Since
the truncated diffusion is not symmetric, this requires a
little care. We use N(u) to denote the neighborhood of
vertex u.

findIB(v)

1) Initialize S = {v}.
2) For every t = 1, . . . , `:

a) For every w ∈ S ∪ N(S), compute M̂ t ~w. If
v ∈ supp(M̂ t ~w), add v to S.

3) Return S.

Claim III.10. The output of findIB(v) is IB(v). The
running time is O(d2`3ρ−2).

Proof: Deferred to the full version, [17].

We can now describe the local partitioning oracle
(modulo the description of findr).

findAnchor(v,R)

1) Run findr(R) to get the set K =
{k1, k2, . . . , kh}.

2) Run findIB(v) to compute IB(v).
3) Initialize A = ∅.
4) For every s ∈ IB(v):

a) Using R determine hs, ts. Using K, determine
ks.

b) Compute C = cluster(s, ts, ks).
c) If C 3 v, then add s to A.

5) Output the smallest vertex according to ≺ in A.

findPartition(v,R)

1) Call findAnchor(v,R) to get the anchor s.
2) Perform BFS from v. For every vertex w en-

countered, first call findAnchor(w,R). If the
anchor is s, add w to the BFS queue (else, ignore
w).

3) Output the set of vertices that entered the BFS
queue.

The following claim is a direct consequence of
Lemma III.9 and Claim III.10.

Claim III.11. The procedure findAnchor(v,R) out-
puts the anchor of v and runs in time O((d`ρ−1)3) plus
the running time of findr.

Proof: Observe that findAnchor(v,R) finds
IB(v), computes cluster(s) for each s ∈ IB(v),
and outputs the smallest (by ≺) s such that v ∈
cluster(s). By Lemma III.9, the output is the anchor
of v.

By Claim III.10, the running time of findIB(v)
is O(d2`3ρ−2). The number of calls to cluster is
|IB(v)|, which is at most `ρ−1 (Claim III.8). Each call
to cluster runs in time O(d`ρ−2), by Claim III.3 and
the fact that ks ≤ ρ−1). Ignoring the call to findr, the
total running time is O(d2`3ρ−3).

Theorem III.12. The output of
findPartition(v,R) is precisely the set in
P containing v, where P is the partition output
by globalPartition(R). The running time of
findPartition(v,R) is O((d`ρ−1)4) plus the
running time of findr.

Proof: By Claim III.11, findAnchor correctly
outputs the anchor. By Claim III.6, the set S in P con-
taining v is exactly the maximal connected component
of vertices sharing the same anchor (as v). The set S in
P is generated in globalPartition(R) by a call to
cluster, whose output is a set of size at most ρ−1.
The total number of calls to findAnchor made by
findPartition(v,R) is at most dρ−1, since a call
is made to either a vertex in the set S or a neighbor of
S. Overall, the total running time is O((d`ρ−1)5) plus
the running time of findr. (Instead of calling findr
in each call to findAnchor, one can simply store its
output.)

IV. COORDINATION THROUGH THE SIZE
THRESHOLDS: THE PROCEDURE findr

We now come to the heart of our algorithm; coor-
dination through findr. This section gives the cru-
cial ingredient in arguing that the partitioning scheme

8

does not cut too many edges. The ordering of vertices
(to form clusters) is chosen independent of the graph
structure. It is highly likely that, as the partitioning
proceeds, newer cluster(v) sets overlap heavily with
the existing partition. Such clusters may cut many new
edges, without clustering enough vertices. Note that
cluster(v) is a low conductance cut only in the
original graph; it might have high conductance restricted
to F (the current free set).

To deal with such “bad” clusters, we need to prove
that every so often, cluster(v) will successfully par-
tition enough new vertices. Such “good” clusters allow
the partitioning scheme to suffer many bad clusters. This
argument is finally carried about by a careful charging
argument. First, we need to argue that such good
clusters exist. The key tool is given by the following
theorem, which is proved using spectral graph theoretic
methods. We state the theorem as an independent state-
ment.

Theorem IV.1. Let G be a bounded degree graph in
a minor-closed family. Let F be an arbitrary set of
vertices of size at least βn. There exists a size threshold
k ≤ ρ−1 such that the following holds. For at least
(β2/ log2 β−1)n vertices s ∈ F , there are at least
(β/ log2 β−1)` timesteps t ≤ ` such that: there exists
k′ ∈ [k, 2k] such that (i) Ls,t,k′ ⊆ supp(M̂ t~s), (ii)
Φ(Ls,t,k′ ∪ {s}) < φ, and (iii) |Ls,t,k′ ∩ F | ≥ β3k.

The proof of this theorem is deferred to the full
version, [17]. In this section, we apply this theorem
to complete the description of the partition oracle and
prove its guarantees.

We discuss the significance of this theorem. The
diffusion used to define Ls,t,k′ occurs in G, but we
are promised a low conductance cut with non-trivial
intersection with F (since φ � β3). Moreover, such
cuts are obtained for a non-trivial fraction of timesteps,
so we can choice one uar. Given oracle access to
membership in F , it is fairly easy to find such a size
threshold by random sampling.

The importance of phases: Recall the global parti-
tioning procedure globalPartition. We can think
of the partitioning process as divided into phases, where
the hth phase involves calling cluster(v, tv, kv) for
all vertices v whose phase value is h. Consider the
free set at the beginning of a phase h, denoting it Fh.
We apply Theorem IV.1 to determine the size threshold
kh. Since all kv values in this phases are precisely
kh, this size threshold “coordinates” all clusters in this
phase. As the phase proceeds, the free set shrinks, and
the size threshold kh stops satisfying the properties of

Theorem IV.1. Roughly speaking, at this point, we start
a new phase h + 1, and recompute the size threshold.
The frequency of recomputation is chosen carefully to
ensure that the total running time remains poly(ε−1).

We now discuss the randomness involved in selecting
phases and why geometric random variables are used.
Recall that hv is independently (for all v) set to be
min(X,h), where X ∼ Geo(δ). We first introduce
some notation regarding phases.

Definition IV.2. The phase h seeds, denoted Vh, are
the vertices whose phase value is h. Formally, Vh =
{v | hv = h}. We use V<h to denote

⋃
h′<h Vh. (We

analogously define V≤h, V≥h.)
The free set at phase h, denoted Fh, is the free

set F in globalPartition, just before the first
phase h vertex is processed. Formally, Fh = V \⋃
v∈V<h

cluster(v).

One can think of the Vhs being generated iteratively.
Assume that we have fixed the vertices in V1, . . . , Vh−1.
All other vertices are in V≥h, implying that hv ≥ h
for such vertices. By the properties of the geometric
random variables, Pr[hv = h + 1|hv > h] = δ. Thus,
we can imagine that Vh+1 is generated by independently
sampling each element in V≥h with δ probability. We
restate this observation as Claim IV.4. Claim IV.5 is a
simple Chernoff bound argument.

Before proceeding, we state some standard Chernoff
bounds (Theorem 1.1 of [6]).

Theorem IV.3. Let X1, X2, . . . , Xr be independent
variables in [0, 1]. Let µ := E[

∑
iXi].

• Pr[X ≥ 3µ/2] ≤ exp(−µ/12).
• Pr[X ≤ µ/2] ≤ exp(−µ/8).
• For t ≥ 6µ, Pr[X ≥ t] ≤ 2−t.

Claim IV.4. For all v ∈ V and 1 < h < h, Pr[v ∈
Vh | v ∈ V≥h] = δ.

Claim IV.5. Let h < h. Condition on the ran-
domness used to specify V1, V2, . . . , Vh−1. Let S be
an arbitrary subset of V≥h. With probability at least
1− 2 exp(−δ|S|/12) over the choice of Vh, |S ∩ Vh| ∈
[δ|S|/2, 2δ|S|].

Proof: For every s ∈ S, let Xs be the indicator
random variable for s ∈ Vh. By Claim IV.4 and
independent phase choices for each vertex, the Xs

are independent Bernoullis with δ probability. By the
Chernoff lower tail of Theorem IV.3, Pr[

∑
s∈S Xs ≤

δ|S|/2] ≤ exp(−δ|S|/8) and Pr[
∑
s∈S Xs ≥ 2δ|S|] ≤

exp(δ|S|/12). A union bound completes the proof.

9

Claim IV.6. With probability at least 1− 2−δn, |Vh| ≤
δn.

Proof: Recall that h is the last phase and h =
2δ−1 log(δ−1). The probability that X ∼ Geo(δ) is at
least 2δ−1 log(δ−1) is (1 − δ)2δ

−1 log(δ−1)−1 < δ/6.
Hence, the probability that any vertex lies in Vh is at
most δ/6 and the expectation of Vh is at most δn/6.
. By the Chernoff bound of Theorem IV.3, Pr[|Vh| ≥
δn] ≤ 2−δn.

With this preamble, we proceed to the description of
findr and the main properties of its output.

A. The procedure findr

It is convenient to assume that for all v, hv and tv
have been chosen. These quantities are chosen inde-
pendently for each vertex using simple distributions, so
we will not carry as arguments the randomness used
to decide these quantities. Recall that the output of
findr is the set of size thresholds {k1, k2, . . . , kh}.
It is convenient to use Kh to denote {k1, k2, . . . , kh}.
Before describing findr, we define a procedure that
is a membership oracle for Fh.

IsFree(u, h,Kh−1)

1) If h = 1, output YES.
2) Run findIB(u) to determine IB(u). Let C be

IB(u) ∩ V<h.
3) Using Kh−1, determine kv for all v ∈ C.
4) For all v ∈ C, compute cluster(v, tv, kv). If

the union contains u, output NO. Else, output
YES.

Claim IV.7. Assume that Kh−1 is provided correctly.
Then IsFree(v, h,Kh−1) outputs YES iff v ∈ Fh. The
running time is O((d`ρ−1)3).

Proof: Deferred to the full version, [17].
We have the necessary tools to define the procedure

findr. We will need the following definition in our
description and analysis of findr.

Definition IV.8. Assume Fh ≥ βn. A vertex s ∈ V≥h is
called (h, k)-viable if C := cluster(s, ts, k) is not a
singleton and |C ∩ Fh| ≥ β3k. (If Fh < βn, no vertex
is (h, k)-viable.)

Let us motivate this definition. When C :=
cluster(s, ts, k) is not a singleton, it is a low con-
ductance cut of Θ(k) vertices. The vertex s is (h, k)-
viable if C contains a non-trivial fraction of free vertices
available in the hth phase. The viable vertices are those
from which clustering will make significant “progress”
in the hth phase. For each h, the procedure findr

searches for values of k that lead to many (h, k)-
viable vertices. In the next section, we prove that having
sufficiently many clusters come from viable vertices
ensures the cut bound of Definition I.1.

findr(R)

1) For h = 1 to h:
a) Sample β−10 uar vertices independently. Let
Sh be the multiset of sampled vertices that are
in phase ≥ h.

b) If |Sh| ≤ β−9/2, set kh = 0 and continue for
loop. Else, reset Sh to the multiset of the first
β−8 vertices sampled.

c) For k ∈ [ρ−1] and for every s ∈ Sh:
i) Compute C := cluster(s, ts, k).

ii) For all u ∈ C, call IsFree(u, h,Kh−1)
to determine if u ∈ Fh−1.

iii) If C is not a singleton and |C ∩ Fh−1| ≥
β3k, mark s as being (h, k)-viable.

d) If there exists some k such that there are at
least 12β4|Sh| (h, k)-viable vertices, assign an
arbitrary such k as kh. Else, assign kh := 0.

2) Output Kh = {k1, k2, . . . , kh}.

Claim IV.9. The running time of findr is
O((d`δ−1ρ−1)5).

Proof: There are h = 2δ−1 log(δ−1) iterations.
We compute the running time of each iteration. There
are at most ρ−1β−8 calls to cluster, each of
which takes O(d`ρ−2) time by Claim III.3. For each
call to cluster, there are at most ρ−1 calls to
IsFree. Each call to IsFree takes O((d`ρ−1)3) time
(Claim IV.7). The running time of each iteration is
O(β−10 +d`ρ−3β−8 +d3`3ρ−5β−8). By the parameter
settings, since `2 ≥ ε2·30 ≥ (ε/10)−8 = β−8, the
running time of each iteration O((d`ρ−1)5). The total
running time is O((d`δ−1ρ−1)5).

The following theorem gives the main guarantee of
findr. The proof is a fairly straightforward Chernoff
bound on top of an application of Theorem IV.1. Quite
simply, the proof just says the following. Theorem IV.1
shows the existence of (h, k) pairs for which many
vertices are viable. The findr procedure finds such
pairs by random sampling.

Theorem IV.10. The following property of the values
Kh of findr(R) and the preprocessing choices holds
with probability at least 1 − exp(−1/ε) over all the
randomness in R. For all h ≤ h, if |Fh| ≥ βn, at least
β5δn vertices in Vh are (h, kh)-viable.

Proof: Deferred to the full version, [17]

10

V. PROVING THE CUT BOUND: THE AMORTIZATION
ARGUMENT

We come to the final piece of proving the guarantees
of Theorem I.2. We need to prove that the number of
edges cut by the partition of globalPartition is
at most εnd. This requires an amortization argument
explained below. For the sake of exposition, we will ig-
nore constant factors in this high-level description. One
of the important takeaways is how various parameters
are chosen to prove the cut bound.

Consider phase h where |Fh| ≥ βn. Let us upper
bound the number of edges cut by the clustering done
on this phase. Roughly speaking, |Vh| = δn, so there
are δn clusters created in this phase. Each cluster
in this phase has at most 2kh vertices. The number
of edges cut by each such cluster is at most 2φkhd
(since cluster outputs a low conductance cut; ignore
singleton outputs). So the total number of edges cut is
at most 2φδkhnd.

Let us now lower bound the number of new vertices
that are partitioned in phase h; this is the set Fh+1 \Fh.
For each (h, kh)-viable v in Vh, cluster(v) contains
at least β3kh vertices in Fh. These will be newly
partitioned vertices. Here comes the primary difficulty:
the clusters for the different such v might not be disjoint.
We need to lower bound the union of the clustered
vertices in Fh. An alternate description of the challenge
is as follows. We are only guaranteed that clusters from
viable vertices v contains many vertices in Fh, the free
set at the beginning of phase h. What we really need
is for the cluster from v to contain many free vertices
at the time that v is processed. Phases were introduced
to solve this problem. By reducing δ, we can limit the
size of Vh, thereby limiting the intersection between the
clusters produced in this phase.

We now explain the math behind this argument.
Consider some w ∈ Fh and let cw be the number of
vertices in V≥h that cluster v (call these seeds). Thus,
cw = |{s | s ∈ V≥h, v ∈ cluster(s)}. The vertex w is
clustered in phase h iff one of these cw seeds is selected
in Vh. By Claim IV.4, each such seed is independently
selected in Vh with probability δ. The probability that
w is clustered in this phases is precisely 1− (1− δ)cw .
Crucially, cw ≤ |IB(w)| ≤ `ρ−1. We chose δ � `ρ−1,
so 1− (1− δ)cw ≈ δcw.

Thus, the expected number of newly clustered ver-
tices is at least

∑
w∈Fh

δcw. By rearranging summa-
tions,

∑
w∈Fh

cw =
∑
v∈V≥h

|cluster(v) ∩ Fh|. For
every (h, kh)-viable vertex v in V≥h, |cluster(v) ∩
Fh| ≥ β3kh. The arguments in the proof of Theo-
rem IV.10 shows that there are β5n such vertices in V≥h

whp. Hence, we can lower bound (in expectation) the
new number of newly clustered vertices as follows:∑

w∈Fh

δcw ≥ δ · (β5n) · (β3kh) = δβ8khn

We upper bounded the number of edges cut by
2φδkhnd. The ratio of edges cut to vertices clustered
is 8φβ−8d. The parameters are set to ensure that
8φβ−8 � ε, so the total number of edges cut is εnd.

The formal analysis requires some care to deal with
conditional probabilities and dependencies between var-
ious phases. Also, Theorem IV.10 talks about Vh and not
V≥h, which necessitates some changes. But the essence
of the argument is the same and is deferred to the full
version, [17].

ACKNOWLEDGEMENTS

We acknowledge Reut Levi for pointing out a correc-
tion in the statement of Theorem I.3.

REFERENCES

[1] Noga Alon, Paul Seymour, and Robin Thomas. A
separator theorem for nonplanar graphs. Journal of the
American Mathematical Society, 3(4):801–808, 1990.

[2] Noga Alon, Paul D. Seymour, and Robin Thomas. Planar
separators. SIAM J. Discrete Math., 7(2):184–193, 1994.
1

[3] I. Benjamini, O. Schramm, and A. Shapira. Every
minor-closed property of sparse graphs is testable. In
Symposium on the Theory of Computing (STOC), pages
393–402, 2008. 3

[4] Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri,
Asaf Shapira, and Christian Sohler. Finding cycles
and trees in sublinear time. Random Structures &
Algorithms, 45(2):139–184, 2014. 3

[5] Artur Czumaj, Asaf Shapira, and Christian Sohler. Test-
ing hereditary properties of nonexpanding bounded-
degree graphs. SIAM Journal on Computing,
38(6):2499–2510, 2009. 3

[6] D. P. Dubhashi and A. Panconesi. Concentration of
measure for the analysis of randomized algorithms.
Cambridge, 2009. 9

[7] Alan Edelman, Avinatan Hassidim, Huy N. Nguyen, and
Krzysztof Onak. An efficient partitioning oracle for
bounded-treewidth graphs. In Workshop on Random-
ization and Computation (RANDOM), pages 530–541,
2011. 3

[8] Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, and
Maximilian Wötzel. On testing minor-freeness in
bounded degree graphs with one-sided error. CoRR,
abs/1707.06126, 2017. 3

11

[9] H. Fichtenberger, P. Peng, and C. Sohler. Every testable
(infinite) property of bounded-degree graphs contains
an infinite hyperfinite subproperty,. In Symposium on
Discrete Algorithms (SODA), page 714726, 2019. 3

[10] O. Goldreich. Introduction to Property Testing. Cam-
bridge University Press, 2017. 2, 3

[11] O. Goldreich and D. Ron. A sublinear bipartite tester for
bounded degree graphs. Combinatorica, 19(3):335–373,
1999. 3

[12] O. Goldreich and D. Ron. Property testing in bounded
degree graphs. Algorithmica, 32(2):302–343, 2002. 1

[13] A. Hassidim, J. Kelner, H. Nguyen, and K. Onak.
Local graph partitions for approximation and testing. In
Foundations of Computer Science (FOCS), pages 22–31,
2009. 1, 2

[14] John Hopcroft and Robert Tarjan. Efficient planarity
testing. Journal of the ACM (JACM), 21(4):549–568,
1974. 1

[15] Akash Kumar, C. Seshadhri, and Andrew Stol-
man. Finding forbidden minors in sublinear time: A
o(n1/2 + o(1))-query one-sided tester for minor closed
properties on bounded degree graphs. In Foundations of
Computer Science (FOCS), pages 509–520, 2018. 3

[16] Akash Kumar, C. Seshadhri, and Andrew Stolman. Ran-
dom walks and forbidden minors II: a poly(d ε-1)-query
tester for minor-closed properties of bounded degree
graphs. In STOC 2019, Phoenix, AZ, USA, June 23-26,
2019., pages 559–567, 2019. 3

[17] Akash Kumar and C. Seshadhri and Andrew Stolman,
Random walks and forbidden minors III: poly(d /ε)-time
partition oracles for minor-free graph classes, Electron.
Colloquium Comput. Complex. (2021), volume 28. 3,
6, 8, 9, 10, 11

[18] K. Kuratowski. Sur le problème des courbes gauches
en topologie. Fundamenta Mathematica, 15:271–283,
1930. 1

[19] Reut Levi and Dana Ron. A quasi-polynomial time
partition oracle for graphs with an excluded minor. ACM
Transactions on Algorithms (TALG), 11(3):24, 2015. 2,
3

[20] László Lovász and Miklós Simonovits. The mixing
rate of markov chains, an isoperimetric inequality, and
computing the volume. In Foundations of Computer
Science (FOCS), pages 346–354, 1990. 3, 4

[21] R. Levi and N. Shoshan. Testing hamiltonicity (and
other problems) in minor-free graphs. Technical Report
2102.11728, arXiv, 2021. 3

[22] Richard J. Lipton and Robert Endre Tarjan. Applica-
tions of a planar separator theorem. SIAM J. Comput.,
9(3):615–627, 1980. 1

[23] Ilan Newman and Christian Sohler. Every property
of hyperfinite graphs is testable. SIAM Journal on
Computing, 42(3):1095–1112, 2013. 2, 3

[24] N. Robertson and P. D. Seymour. Graph minors. XII.
Distance on a surface. Journal of Combinatorial Theory
Series B, 64(2):240–272, 1995. 1

[25] N. Robertson and P. D. Seymour. Graph minors. XIII.
The disjoint paths problem. Journal of Combinatorial
Theory Series B, 63(1):65–110, 1995. 1

[26] N. Robertson and P. D. Seymour. Graph minors. XX.
Wagner’s conjecture. Journal of Combinatorial Theory
Series B, 92(1):325–357, 2004. 1

[27] D. Spielman. Lecture notes on spectral graph theory.
http://www.cs.yale.edu/homes/spielman/eigs/.

[28] D. Spielman and S.-H. Teng. A local clustering algo-
rithm for massive graphs and its application to nearly-
linear time graph partitioning. SIAM Journal on Com-
puting, 42(1):1–26, 2012. 3, 4

[29] K. Wagner. Über eine eigenschaft der ebenen komplexe.
Mathematische Annalen, 114:570–590, 1937. 1

[30] Yuichi Yoshida and Hiro Ito. Testing outerplanarity of
bounded degree graphs. Algorithmica, 73(1):1–20, 2015.
3

12

	Introduction
	Consequences
	Related work

	Main Ideas
	Global partitioning and its local implementation
	Truncated diffusion
	The global partitioning procedure
	The local implementation

	Coordination through the size thresholds: the procedure findr
	The procedure findr

	Proving the cut bound: the amortization argument
	References

