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ABSTRACT

Recently, cyber-physical systems are actively using cloud servers
to overcome the limitations of power and processing speed of edge
devices. When passwords generated on a client device are evalu-
ated on a server, the information is exposed not only on networks
but also on the server-side. To solve this problem, we move the
previous lightweight password strength estimation (LPSE) algo-
rithm to a homomorphic encryption (HE) domain. Our proposed
method adopts numerical methods to perform the operations of
the LPSE algorithm, which is not provided in HE schemes. In ad-
dition, the LPSE algorithm is modified to increase the number of
iterations of the numerical methods given depth constraints. Our
proposed HE-based LPSE (HELPSE) method is implemented as a
client-server model. As a client-side, a virtual keyboard system is
implemented on an embedded development board with a camera
sensor. A password is obtained from this system, encrypted, and
sent over a network to a resource-rich server-side. The proposed
HELPSE method is performed on the server. Using depths of about
20, our proposed method shows average error rates of less than 1%
compared to the original LPSE algorithm. For a polynomial degree
of 32K, the execution time on the server-side is about 5 seconds.
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« Security and privacy — Embedded systems security; -« Com-
puter systems organization — Embedded and cyber-physical
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1 INTRODUCTION

In recent cyber-physical systems (CPS), hardware devices are in-
creasingly connected through networks [21]. In particular, a resource-
rich cloud server is often used to overcome the speed and power
problems of tiny edge devices. For example, the virtual reality (VR)
system proposed by Kdmérédinen et al. offloads the majority of ren-
dering operations with high computational complexity to a cloud
server [16]. This is helpful for acceleration if the data transfer
bandwidth is kept low. However, the data is inevitably exposed to
the cloud server and network. As such, security and privacy have
become one of the main concerns in CPS design these days.

Cryptography is one of the critical solutions to CPS security
issues. Specifically, if data is encrypted on a user’s device before
being sent to another device, it preserves privacy from the threat
of attackers. For example, many recent wireless keyboards encrypt
data to be transmitted using the popular Advanced Encryption
Standard (AES) algorithm [8]. Although this is effective to preserve
privacy in a network, decryption is required to perform operations
on encrypted data. As a result, sensitive information is exposed to
an untrusted device.

Homomorphic encryption (HE) enables one to perform opera-
tions on encrypted data, also called a ciphertext, without decryption
[3]. Therefore, attackers on a cloud server cannot acquire any sensi-
tive information from the ciphertext. Thanks to this feature, various
HE-based real-world applications have been presented [13, 17]. In
addition to HE, other cryptography techniques, such as secure mul-
tiparty computation, are also widely used in privacy-preserving
computations [23, 24]. However, these techniques often require
frequent and continuous data transfer between client- and server-
sides, which is fatal in power-hungry CPS. HE has the advantage
that no other transfer is required after encrypted data (and some
keys) are initially sent. However, it has the disadvantage of being
slow due to a large amount of computation. To solve this problem,
various methods have recently been presented for acceleration,
such as using GPUs [18] and custom hardware accelerators [19, 20],
which makes large-scale end-to-end HE-based solutions working
in real-time feasible.

In this paper, we propose a virtual keyboard (VKB) system net-
worked with a cloud server for augmented reality (AR) and VR
purposes. Specifically, a password entered through this system is
encrypted using a HE scheme and then transmitted. The strength
of this encrypted password is then securely estimated in the cloud
server. As a password strength estimation algorithm, the light-
weight password strength estimation (LPSE) algorithm proposed by
Guo et al. is used [15]. In our proposed HE-based LPSE (HELPSE)
method, the numerical methods proposed by Cheon et al. [5, 6]
are adopted to support the division and comparison operation in
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the LPSE algorithm. Our proposed VKB system with HELPSE is
implemented as a client-server model using an embedded develop-
ment board and evaluated in terms of accuracy, execution time, and
memory footprint. In particular, the experimental results provide
the number of iterations of the numerical methods that gives the
accurate password strength estimation results for a practical HE
parameter set.

2 BACKGROUND
2.1 LPSE Algorithm

The LPSE algorithm is based on the similarity between an entered
password and a reference strong password [15]. A password is
represented as a vector with the following five components in order:
the numbers of digits, lowercase letters, uppercase letters, special
characters, and the password length. Each component has a specific
weight. In particular, weights for the five components are 1, 1, 2, 3,
and 1 in order. For example, if the entered password is P!3b8u5$,
the calculated password vector is (3, 2, 2, 6, 8). Each component
value of the reference strong password vector is calculated to have
equal probability. Suppose that we use a 94-key keyboard with
10 digits, 26 lowercase letters, 26 uppercase letters, and 32 special
characters. If the length of a password is 18, the strong password
vector is calculated as ([18 x é—g] X1, [18 X %J X1, [18 x S_ZJ X 2,
[18 x 32] x 3, 18) that is (2, 5, 10, 18, 18).

In this LPSE algorithm, a cosine-length similarity (CLS) is calcu-
lated to determine the similarity between an entered password and
the reference strong password. Suppose that an entered password
vector is (x1, x2, x3, X4, x5) and the reference strong password vector
is (Y1, Y2, Y3, Y4, ys). The CLS value of the two vectors, denoted by
sim(x, y), is then calculated as follows:

231 (i yi)  min(|1X]L, Y1)
IXITIYIT max(IXTL YD

where [|X]| = /33, x? and ||Y]| = /23, y% The CLS value

ranges from 0 to 1. As the component values of the two vectors are
similar to each other, the CLS value approaches 1.

Using the calculated CLS value, the password strength is esti-
mated as follows: 1) strong if the CLS value is larger than or equal
to 0.4; 2) weak if the CLS value is smaller than or equal to 0.19; 3)
medium otherwise. The values of these thresholds are empirically
chosen, and they vary depending on exceptional rules included in
the LPSE algorithm. Note that the original LPSE algorithm uses
an additional measurement called the password-distance similar-
ity (PDS) along with CLS. However, PDS is not considered in this
paper because the operations required for PDS calculation are not
much different from those required for CLS calculation and both
calculations can be done independently.

1)

sim(x,y) =

2.2 Numerical Methods in HE

Even though HE has the advantage of enabling operations on ci-
phertexts without decryption, several problems hinder practical
real-world applications in the HE domain. First, HE (for word-wide)
supports only addition and multiplication of ciphertexts. Subtrac-
tion of ciphertexts that is a variant of addition is also available.

Algorithm 1 Inv(x;d;) [6]

Input: x € (0, 2),d; € N

Output: an approximate value of 1/x
1. ag «—2—Xx
2: b —1—x

3 for(i=0;i<dj;i=i+1)do
4 biy1 « bl?

5 @i+l < a; - (1+bi1)

6: end for

7: return ag,

Algorithm 2 Comp(x, y; n, dc) [5]

Input: x,y € [0, 1], ne, de € N
Output: a value between 0 and 1 (1if x > y; 0if x < y)

Lae—x—y
2 for(i=1;i<de;i=i+1)do
3 a« fy(a)

4: end for

5. return (a+1)/2

Second, the maximum number of operations performed on a ci-
phertext is limited. This is because each operation increases noise
used to hide a plaintext message in a ciphertext, and the noise size
higher than a certain level precludes proper decryption. In particu-
lar, multiplication between ciphertexts rapidly increases the noise
level, so the number of consecutive multiplications is particularly
defined as the (multiplicative circuit) depth. This depth determines
whether a real-world application is feasible in the HE domain.

To support arithmetic/logical operations other than addition and
multiplication, several numerical methods have been presented
[5, 6]. Algorithm 1 shows a numerical method for finding a multi-
plicative inverse used in division [6, 14]. This algorithm is based
on the following formula to calculate 1/x.

Yx=1/(1-(1-x) ~ O 1+ (1-0""), @)

where d; is the number of iterations. If the value of x is between 0
and 2, the approximate value gets closer to the original value as the
d; value increases. There are two multiplications in each loop (lines
4 and 5 in Algorithm 1), but the depth is accumulated through an
operand with a larger depth. Therefore, the depth of Algorithm 1
in the HE domain, denoted as depth;,,, is d; + 1.

Algorithm 2 shows the numerical method for comparison oper-
ation between two numbers [5]. Suppose that two numbers to be
compared are x and y. Then, the comparison result is calculated
using the following formula: M Here, f is a step function
with a function value of 1 if the input value is greater than 0, and
-1 if the input value is less than 0. Since this step function cannot

be performed in the HE domain, it is approximated as follows:
&1 (2)
_ ~ . . A}
foe(@ =, 25 (J) a(1-d") 3)
Jj=0
The depth of Algorithm 2 in the HE domain, denoted as depthcomp,
is approximately d.[log,n.]. Typically, to obtain practical level of



Algorithm 3 Sqrt(x; d;) [6]

Input: x € [0, 1], ds € N
Output: an approximate value of vx
1. ap < X
2 bge—x 1
3 for(i=0;i<ds;i=i+1)do
4 a1 —a;i-(1 %)
b2 (b; 3)
1

5: bi+1 —
6: end for
7: return ag
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Figure 1: Overall architecture of a privacy-preserving VKB
system with the proposed HELPSE method.

accuracy, Algorithm 2 that includes a nested loop requires a larger
depth than Algorithm 1.

Algorithm 3 shows a numerical method to compute the square
root of a real number [6]. A square root value is used to compute
the min and max values between two numbers x and y as follows:

xty V& y? (4)

min(x,y) = 5 5 R
max(x,y) = # + (xTy)z ©)

If the number of iterations of Algorithm 3 is d, the depth of this al-
gorithm in the HE domain, denoted as depthyg, is 2ds 1. Since the
square root operation of the min/max functions involves one square
operation, their depth in the HE domain, denoted as depth
is 2ds.

Currently, there are three popular HE schemes [3]: BGV/BFV
scheme [1, 11], CKKS scheme [4], and DM/CGGI scheme [7, 10].
Among them, the CKKS scheme supports real number arithmetic.
Therefore, this HE scheme is most suitable for the numerical meth-
ods using real number operands. The CKKS scheme is available in
well-known open-source HE libraries, such as Microsoft SEAL [2].

min/max?

3 PRIVACY-PRESERVING VKB SYSTEM

As CPS, this paper considers a VKB system where a device with
a single camera sensor receives characters and sends them to a
server-side for processing. Specifically, the characters form a pass-
word. To evaluate a password while protecting it from the network
and server-side, this paper applies a HE scheme to the VKB system.
Specifically, a HELPSE method is proposed. This is a toy exam-
ple, and the proposed approach can be used for other real-world
applications running on similar CPS.

Figure 1 shows an overall architecture of a VKB system with
the proposed HELPSE method. First, a VKB algorithm receives a
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Figure 2: The modified VKB layout. (a) ready gesture on the
second-level layer with uppercase letters (b) click gesture on
the third-level layer with digits and special characters.

password through streaming video input from a single camera. As
a VKB algorithm, the method proposed by Lee et al. is used [22].
In this previous work, a keyboard layout is printed on a screen (of
an AR/VR device), and the key on which the index finger is placed
is entered by touching the thumb and index finger. This method
enables fast typing because the typing gesture is simple and a user
feels the touch of two fingers.

Although our proposed design employs the Lee’s VKB algorithm
to receive passwords, we had to significantly alter the interface
and user input to add functionality missing from the original VKB
layout with only lowercase letter keys. Namely, we changed the
VKB algorithm to start with a familiar QWERTY layout, and in-
tegrated three total layers. By holding up the index, middle, and
ring/little fingers of the right hand in a traditional numeric gesture,
the layout is interchangeable from layers with lowercase alphabet
letters, uppercase alphabet letters, and digits/special characters.
Typing gestures are carried over from the original VKB algorithm
by contacting the thumb and index finger. Figure 2 shows our mod-
ified VKB layout. In Figure 2(a), the index and middle fingers are
stretched out, so uppercase letters are displayed in the layout. The
uppercase letter G pointed to by the index finger is not yet entered
because the thumb and index finger are apart. In Figure 2(b), all
fingers are stretched out. Therefore, the displayed layout includes
digits and special characters. Since the thumb and index touch, the
special letter $ pointed to by the index finger is entered.

An entered password is converted into a password vector by the
LPSE algorithm. In this conversion, the following exceptional rules
presented in [15] are taken into account:

e Common 2-letter and 3-letter combinations are each calcu-
lated as one letter.
e Common starting and ending letters are not counted.
e Characters with a specific order are calculated as one char-
acter (e.g., qwerty, abcde, and 12345).
e Repeated characters are calculated as one character (e.g.,
aaaa, eeee, and 111).
e Special characters used like letters are calculated as letters
(e.g., re@dy and cl!ck).
The five elements of a password vector are encrypted into separate
five ciphertexts by the CKKS scheme and then transmitted to a cloud
server. The weights used in vector conversion are multiplied to the
encrypted password vector on the server-side and are assumed to
be unknown to the client-side. Our proposed HELPSE, which is



described in the next section, calculates the CLS value from the
encrypted password vector on the server. Since this CLS value is
still encrypted, the server-side cannot acquire any information on
the password.

4 SHALLOW DEPTH CLS FOR ENCRYPTED
PASSWORDS

This section converts the previous LPSE algorithm into a HE-based
one. To avoid bootstrapping that allows unlimited computations on
a ciphertext but requires extremely huge computational complexity,
we aim to complete all computations within a limited depth.

If CLS calculation shown in (1) is performed on an encrypted
password using the numerical inverse and min/max algorithms,
which is straightforward, a large depth is required. The details
are as follows: 1) ||X|| in the HE domain is first computed. Since
the reference strong password vector is a constant one, ||Y]| in
the HE domain is computed in advance. The depth required in
this step is 1 + depthsqrt; 2) The numerator and denominator of

the CLS formula, 337, (x; - y;) - min(|[X[|, [[Y]]) and [IX]] |]Y]] -
max(]|X]||,]|Y|]), in the HE domain are computed simultaneously.
These two computations additionally require the same depth of
1+depthy i mays 3) The inverse of || X|| [|Y]]-max(]|X]], [|Y]]) in the
HE domain is computed by Algorithm 1, and the depth;, is added;
4) The results of steps 2) and 3) are multiplied to each other, so the
final depth is 3+depthgg, +depthy; o +depthy,,. As described in
Section 2.2, depth;,, depthy,, and depth ;o are di+1, 2ds — 1,
and 2d;, respectively. Therefore, the total depth is 3 + 4ds + d; if we
use the same d value for depthyg and depthy;;, -

To reduce this total depth, our proposed method uses the numer-
ical comparison algorithm instead of the numerical square root and

min/max algorithms. It starts from the following equation:

(6)

1 min(IXILIYID _ Ja/0XIP2, i 1X]] > (Y]]
IXI YN max([IXIL Y1) 1/][Y]1%  otherwise

Suppose that w = Comp(||X||, ||Y|[; nc, dc). As the n. and d. values
increase, the w value becomes close to 1 if || X]|| > ||Y]|, and to 0 if
[IX]] < ||Y]]. Accordingly, the CLS formula is modified as follows:

5
sim(e, ) ~ D0 1) - (v g+ (1)) ()
i=1

1

Y12
This equation does not require the min/max functions, but the
square root function is still required to compute ||X|| in the nu-
merical comparison operation. However, squaring positive num-
bers does not change the comparison result, and therefore ||X]|
and ||Y|| are replaced with ||X||? and ||Y]|?, respectively. Suppose
that w’ = Comp(||X||% ||Y||%; ne, d¢). The CLS formula is then re-
expressed as follows:

1 1,1
Xz s e

5
sim(x, ) © " (xi - yi) - (w' - ( ) ®
i=1
The depth of the modified CLS formula in the HE domain is cal-
culated as follows: 1) || X||? in the HE domain is computed, which re-
quires a depth of 1; 2) Comp(||X||?, ||Y||%; ne, dc) and Inv(||X||%; d;)
are computed simultaneously. The former usually consumes a larger
depth than the latter, so the depth required in this step is depth

comp’

Table 1: Our HE Parameters for the 128-bit Security

Polynomial degree N | Bit-length of ¢ | Maximum depth*
2 885 20
%40 bits are allocated to the majority of primes.

3) The remaining operations including two multiplications between
ciphertexts are performed. Therefore, the total depth of the modified
CLS formula is 3+depth,, that is approximately 3+dc [log,nc]. If
the n, value is small, the modified formula provides more iterations,
and consequently higher accuracy, under the same depth constraint
compared to the original formula using the min/max and square
root functions.

5 EVALUATION

This section evaluates our proposed VKB system with the HELPSE
method. First, the experimental setup including HE parameters, test
passwords, and development hardware is introduced. The depth,
accuracy, execution time, and memory footprint of the proposed
method are then presented.

5.1 Experimental Setup

The proposed HELPSE method is implemented using Microsoft
SEAL open-source library [2]. In the CKKS scheme implemented
in this library, two parameters mainly affect the implementation
and performance of the target application: polynomial degree N
and total bit-length of coefficients g. Table 1 shows the parameters
of the CKKS scheme we used and the corresponding maximum
depth. When a security level is fixed, N and (proper) logg are pro-
portional [3]. In addition, as the size of q increases, the available
depth increases. However, as the N value increases, the execution
time increases significantly, and therefore the maximum N value
in the current SEAL version is 2!°. The proposed HELPSE method
uses this N value. For the 128-bit security that is popular for recent
privacy-preserving real-world applications, the corresponding bit-
length of q is 885 [2]. q is created as a product of distinct primes. As
recommended by SEAL, if about 40 bits are allocated to (majority of)
primes, 22 primes are generated. These primes are dropped by one
whenever a multiplication between two ciphertexts is performed.
Since the first and last primes are used for special purposes, the
maximum depth of this parameter set is 20.

For evaluation, we collected 20 test passwords. Table 2 shows
the collected passwords and their original CLS values compared
to the reference strong password vector (2, 5, 10, 18, 18). The test
passwords are categorized into four sets. Set 1 through Set 3 contain
similar passwords. However, Set 1 includes very weak passwords,
and Set 3 contains stronger passwords [12]. Set 4 includes very
strong passwords, of which the average CLS value is 0.7 [9].

Our proposed VKB system with the HELPSE method, which is
shown in Figure 1, is implemented as a client-server model. The
client-side is implemented using a Raspberry Pi 4 Model B, including
ARM Cortex-A72 and 8GB RAM, and a Microsoft Lifecam Cinema
720p Webcam. This implementation provides a good example of the
use of low-cost and accessible hardware, and it can easily be adapted
to a wide array of other devices and hardware. For the server-side,



Table 2: Test Passwords [9, 12] and Corresponding CLS Values by the Original LPSE [15]

Set 1 Set 2 Set 3 Set 4
Password CLS Password CLS Password CLS Password CLS
susan 0.135 | Susan53 0.212 | &Susan53 0.305 | &Ru$plgBO0@Qx5F&ES1 0.759
jellyfish 0.254 | jelly22fish 0.302 | jelly22fi$h 0.309 | PmC6!I1Bm@bsGiXR?q 0.717
ilovemypiano | 0.349 | !LoveMyPiano 0.400 | !'Lov3MyPiano 0.403 | va@@WG@!agSOoy?pH6 | 0.676
Sterling 0.243 | SterlingGmal2015 | 0.481 | SterlingGmail20.15 | 0.606 | I5SR!'BDgj5W3hpBpcQY 0.676
BankLogin 0.292 | BankLogin13 0.344 | BankLogin!3 0.347 | wu0@lo#Ou3Dv5DKr7Z 0.671

Table 3: Total Depths and Average Error Rates (d; = 2)

Table 4: Execution Time (Seconds) of LPSE Designs

de | ne | Total Error rate (%) Location Client Server Client
depth | Set1 | Set2 | Set3 | Set4 | Average Function Enc. | Dec. | LPSE | Enc. | Dec.
10 | 1237 | 11.62 | 11.04 | 321 | 9.56 Original LPSE [15] : - 2x105 | - -
12 7.45 7.52 7.26 2.82 6.26 AES-based [15, 25] 0.02 0.004 | 2x107° | 0.004 0.02
14 4.16 4.59 4.54 2.45 3.94 Proposed (3,2,2) 3.89 - 2.80 - 0.07
13 3.21 3.69 3.70 2.31 3.23 Proposed (4, 2,2) 4.67 - 4.35 - 0.07
16 0.35 0.60 0.73 1.39 0.77 Proposed (5,2,2) 5.41 - 6.19 - 0.08

19 0.02 0.06 | 0.13 | 0.70 0.23
16 0.11 0.23 | 035 | 1.06 0.44
20 0.00 | 0.00 | 0.01 | 0.16 0.04
19 0.00 | 0.00 | 0.01 | 0.15 0.04

QU B |W W Wi DN
DWW N[ W DN W N

a workstation with Intel Xeon W-2295 and 128GB RAM, working
with Ubuntu 18.04 LTS, is used.

5.2 Depth and Accuracy

Table 3 shows the total depths and error rates of the proposed
HELPSE method depending on the d. and n, values of Algorithm
2. In this table, the value of d; of Algorithm 1 is fixed at 2 because
values larger than 2 do not significantly affect the results. The first
and second columns show the d. and n; values, and these values
are set to meet the maximum depth under our HE parameter setting.
The third column shows the total depths required in the proposed
HELPSE method. The next columns show the error rates compared
to the original non-HE-based LPSE algorithm [15]. Specifically, the
last column shows the average error rates of the four password sets.
The error rates are calculated as follows:

__ |loriginal CLS — approximate CLS]|
- original CLS

error rate (%) %X 100 (9)
As the d; and n, values increase, the total depth increases be-
cause more consecutive multiplications between ciphertexts are
performed. However, the measured depths do not match the ideal
depths. This is because some SEAL functions we used for the im-
plementation consume a depth even in situations where it is not
necessary in order to provide simple and stable functions to begin-
ners on HE. For example, multiplication between a ciphertext and
a plaintext does not increase noise significantly, and thus depth
consumption is usually not required. However, the corresponding
SEAL function consumes a depth. For this reason, the total depths
of the proposed method are slightly higher than the ideal depths.
Overall, the larger d. and n. values show the smaller error rates.
Specifically, the d. value has a greater effect on the error rates than

the n. value. For example, (d;, n¢) of (3, 3) and (dc, n¢) of (4, 2)
require the same total depth of 16, but their average error rates are
0.77% and 0.44%, respectively. When the d. value is 4, the error rates
for all test sets are around 1% or less even if the values of n. and d;
are 2. This implies that the proposed HELPSE method working with
our practical HE parameters successfully adds password protection
to the original LPSE method.

5.3 Execution Time

Table 4 compares the execution times of various LPSE designs. As
previous designs, the original non-HE-based LPSE design and an
AES-based LPSE design are used. To implement the AES-based de-
sign, an open-source code for 256-bit AES was used [25]. Similar
to the proposed design, encryption and decryption are performed
on the client-side, and LPSE is performed on the server-side. How-
ever, decryption on an encrypted password and encryption on the
computed CLS value are additionally performed on the server to
perform LPSE on a non-encrypted password, which exposes a pass-
word to the server-side. The proposed design in this table uses three
(de, ne, d;) sets, (3, 2, 2), (4, 2, 2), and (5, 2, 2), of which depths are
13, 16, and 19, respectively. These depths affect the execution time,
which is described in the last paragraph of this subsection.

Compared to the previous LPSE designs that are not based on
HE, the proposed HELPSE design requires a longer execution time.
However, this time is the cost of not exposing a password to the
server-side. The original LPSE design is vulnerable on both network
and server-side, and the AES-based design does not preserve a
password on the server. The execution time of the proposed HELPSE
design can be reduced by using other open-source HE libraries that
support multi-threading or by hardware acceleration on the server.
Although the transmission time in the network is not included in
this table, the size of the transmitted ciphertexts is small (see the
next subsection) and does not affect real-time processing.



As shown in the last three rows, an increase in depth in the
proposed HELPSE causes an increase in execution time, which
is also shown in the encoding/encryption functions running on
the client-side. Specifically, if polynomial degree N is fixed, the
execution time in HELPSE increases in proportion to the increase
in depth. The time taken in the client functions can be shortened
by using resource-rich hardware. For example, when executing the
same client functions on the machine used for the server-side, the
execution times for (d¢, n¢, d;) of (3, 2, 2), (4, 2, 2), and (5, 2, 2) are
0.36, 0.43, and 0.50 seconds, respectively.

5.4 Memory Footprint

Typically, data with a large memory footprint in HE-based real-
world applications are generated keys and input/intermediate/output
ciphertexts. Generated keys are usually transmitted once, unlike

input/output ciphertexts that should be transmitted whenever an

input password changes, so they are not described in this subsection

in detail. The size of intermediate ciphertexts may vary greatly de-
pending on the implementation, and the memory allocated for them

is freed frequently. Therefore, the memory footprint of input/output

ciphertexts is only presented. To measure it, the encrypted pass-
word vector and CLS value were written as separate files. Under

our HE parameter setting, the resulting CLS value that is contained

in a single ciphertext was measured at 136 bytes. On the other hand,

since a password vector has 5 components, the memory footprint

of a password vector was measured at 680 bytes, which is usually

not burdensome in many CPS.

6 CONCLUSION

This paper moves the previous LPSE algorithm to the HE domain
to prevent password leakage in networks and a server-side. To per-
form operations in CLS calculations not supported by HE schemes,
numerical methods are exploited. In particular, the existing CLS for-
mula is modified to use the numerical comparison operation instead
of the numerical min/max functions, which increases accuracy for
a given depth. Our proposed HELPSE method is implemented as
a client-server model. Specifically, the client-side is a VKB system
for AR/VR, and a password is entered through this system. The
previous keyboard layout is modified so that not only lowercase
letters but also uppercase letters, digits, and special characters are
entered. As a future work, we plan to extend our approach to other
applications using passwords, where functions with more concealed
information are executed on a server-side. In addition, we will apply
the numerical methods for encrypted numbers to other CPS, such
as a system using neural networks.
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