A Performance Portability Framework for Python

Nader Al Awar
nader.alawar@utexas.edu
The University of Texas at Austin
Austin, Texas, USA

George Biros
gbiros@acm.org
The University of Texas at Austin
Austin, Texas, USA

ABSTRACT

Kokkos is a programming model for writing performance portable
applications for all major high performance computing platforms.
It provides abstractions for data management and common par-
allel operations, allowing developers to write portable high per-
formance code with minimal knowledge of architecture-specific
details. Kokkos is implemented as a heavily-templated C++ library.
However, C++ is not ideal for rapid prototyping and quick al-
gorithmic exploration. An increasing number of developers use
Python for scientific computing, machine learning, and data ana-
lytics. In this paper, we present a new Python framework, dubbed
PyKokkos, for writing performance portable applications entirely in
Python. PyKokkos provides Kokkos-like abstractions that are easier
to use and more concise than the C++ interface. We implemented
PyKokkos by building a translator from a subset of Python to C++
Kokkos and bridging necessary function calls via automatically gen-
erated Python bindings. PyKokkos is also compatible with NumPy,
a widely-used high performance Python library. By porting several
existing Kokkos applications to PyKokkos, including ExaMiniMD
(~3k lines of code in C++), we show that the latter can achieve
efficient execution with low performance overhead.

CCS CONCEPTS

« Software and its engineering — Source code generation;
« Computing methodologies — Parallel programming lan-
guages.

KEYWORDS
PyKokkos, Python, high performance computing, Kokkos

ACM Reference Format:

Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric. 2021. A Perfor-
mance Portability Framework for Python. In 2021 International Conference
on Supercomputing (ICS °21), June 14-17, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3447818.3460376

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’21, June 14-17, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8335-6/21/06...$15.00
https://doi.org/10.1145/3447818.3460376

Steven Zhu
stevenzhu@utexas.edu
The University of Texas at Austin
Austin, Texas, USA

Milos Gligoric
gligoric@utexas.edu
The University of Texas at Austin
Austin, Texas, USA

1 INTRODUCTION

Traditionally, parallel, high-performance code for scientific applica-
tions is written in low-level, architecture-specific high performance
computing (HPC) frameworks such as OpenMP [28], CUDA [14],
and others. These frameworks require that the user be aware of
architecture-specific details in order to write efficient code. For
example, the optimal data layout of a two-dimensional array differs
across different hardware devices: row-major on a CPU (OpenMP)
to enable cached memory accesses vs. column-major on a GPU
(CUDA) for coalesced memory accesses [18]. Additionally, each
framework has its own syntax for expressing parallel execution pat-
terns. This results in code that is closely coupled to a framework’s
syntax and idioms. Once an HPC application is implemented using
a specific framework, it cannot easily be ported to run on other
frameworks and devices.

Recently, there has been a paradigm shift in HPC programming
models to account for the issues mentioned above. Kokkos [18] and
RAJA [7] are two models that provide layers of abstraction over
existing HPC frameworks to enable writing performance portable
code, i.e., code that runs on different architectures with good perfor-
mance. Both models include high-level abstractions for expressing
common parallel execution patterns and memory layouts, and hide
low-level details about the target framework or device from the
user. Kokkos and RAJA are both implemented in C++, and applica-
tions written in either of the two can run on multiple devices with
minimal or no code changes required.

While Kokkos and RAJA have achieved their goal of performance
portability [20], general usability remains an issue. Templates, cryp-
tic error messages, manual memory management, complicated build
processes, and other aspects of C++ make for a high barrier of en-
try for scientists with limited backgrounds in computer science
and programming, despite scientific computing being an important
use-case of the Kokkos model.

Due to these shortcomings, dynamic languages such as Python
and Julia [9] are preferred to C++ in the scientific computing and ma-
chine learning communities [27], both for algorithmic exploration
but also increasingly for production. In the past decade, numerous
libraries have been developed for writing high-performance Python
code [6, 21, 30, 39]. For example, the NumPy library [21] provides a
high-performance multi-dimensional array type that is at the core
of scientific computing in Python.

While these libraries provide Python APIs, their performance
critical functions (also commonly called kernels) are implemented

ICS ’21, June 14-17, 2021, Virtual Event, USA

in C or C++ for performance and portability reasons. These ker-
nels are then wrapped in manually written language bindings for
interoperability with other languages, including Python. This is
commonly done in practice and can be seen in some of the most
popular Python packages, including SciPy [39], a Python library for
scientific computing, and machine learning libraries such as Ten-
sorFlow [6] and PyTorch [30]. However, if a kernel is not available,
developers have to look for alternatives.

Numba [25] is a just-in-time compiler for Python that targets
LLVM [26]. Numba can target a number of devices but does not pro-
vide high-level abstractions to hide device-specific code, so porta-
bility remains an issue. Cython [8] is a static compiler that extends
Python with C-like syntax to achieve better performance. However,
these extensions make Cython a superset of Python, which may
not be desirable, and Cython supports only OpenMP for parallelism
at this point.

We present PyKokkos, the first framework for writing perfor-
mance portable applications in (a subset of) Python. PyKokkos
is an implementation of the Kokkos programming model. It pro-
vides an API that enables developers to write high-performance,
device-portable code entirely in Python. Additionally, PyKokkos
interoperates with NumPy arrays, allowing for easy integration
with existing scientific applications written in Python.

PyKokkos translates Python kernel code to C++ Kokkos. Further-
more, it automatically generates the necessary Python language
bindings. It also makes use of existing (manually-written) Kokkos
bindings for memory allocations. Crucially, PyKokkos makes no
changes to the Python language or its interpreter. We evaluated
PyKokkos by manually porting a number of kernels from C++
Kokkos to PyKokkos, as well as ExaMiniMD [4], a scientific appli-
cation for molecular dynamics.

The main contributions of this paper include:

* Design of a framework, dubbed PyKokkos, for writing perfor-
mance portable Python code. PyKokkos is designed to closely
follow the Kokkos programming model while being more concise
and easier to use than C++ Kokkos.

* Implementation of the framework by combining code transla-
tion and automatic binding generation. PyKokkos supports three
styles to write PyKokkos applications and can currently run on
both CPUs and Nvidia GPUs.

* Evaluation of PyKokkos using a number of applications, includ-
ing existing high-performance kernels and ExaMiniMD, which is
a large-scale molecular dynamics application. Our results show
that the kernels generated by PyKokkos can match the perfor-
mance of manually written C++ kernels.

PyKokkos source code and applications that we wrote are available
at https://github.com/kokkos/pykokkos.

2 BACKGROUND AND EXAMPLE

In this Section, we first provide some background on Kokkos (Sec-
tion 2.1), then we introduce PyKokkos via an example (Section 2.2).

2.1 Kokkos

Kokkos is a programming model that provides abstractions for writ-
ing performance portable HPC code. The two major components of

Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric

the Kokkos model are execution spaces and memory spaces. Given
a computing node, the processors are modeled as execution space
instances, and the different memory locations are modeled as mem-
ory spaces. For example, on a machine with a CPU and a GPU, there
could be two (or more) execution spaces, the CPU and the GPU,
and two corresponding memory spaces, main memory and GPU
memory. Other main Kokkos abstractions include:

e Execution patterns: an execution pattern represents a parallel
operation, including parallel for, parallel reduce, and parallel scan,
as well as task-based programming abstractions.

e Execution policies: an execution policy specifies how a parallel
operation runs. The simplest policy is RangePolicy, which spec-
ifies that an operation will run for all values in a range. Another
policy is the TeamPolicy that can be used for hierarchical (also
known as nested) parallelism. The execution policy can also be
used to set the execution space.

e Memory layouts: the memory layout specifies how data buffers
are laid out in memory. For example, Kokkos supports column-
major and row-major layouts among others.

e Memory traits: the memory trait specifies access properties of
data buffers. For example, this could be set to Atomic, so that all
accesses to elements of the data buffer are atomic.

The C++ Kokkos library (Kokkos for short) is a concrete instanti-
ation of the programming model described above. The main data
structure is a multi-dimensional array referred to as a View. It is
implemented as a C++ class templated on the data type, number of
dimensions, memory space, memory layout, and memory trait. It
maintains a memory buffer internally and uses reference counting
for automatic deallocation. The following code snippet shows an
example of a one-dimensional View of size N holding elements of
type int.

Kokkos: :View<int*> v("v", N);

Kokkos uses C++ functors to define the computational body, also
known as a workunit, of parallel operations. Functors are classes or
structs that define operator () as an instance method. The body
of this method represents the operation that will be executed by the
threads. The following code shows a simple example of a functor
that performs a reduction over all the elements of a View.

struct Functor {
Kokkos: :View<int*> v;
Functor (Kokkos: :View<int*> v) { this->v = v; }
KOKKOS_FUNCTION
void operator() (int tid, int& acc) const {
acc += this->v(tid); }
}s

KOKKOS_FUNCTION is a macro that abstracts framework-specific
function type qualifiers for portability (e.g., __host__ __device__
for CUDA). A work index (tid in the example above) parameter
representing the thread ID is included in the operator () method
signature. Since this is a reduction operation, a scalar result must be
returned, so the definition includes an additional parameter, called
an accumulator, that is passed by reference to hold that result. The
scan operation additionally requires a boolean parameter to indicate
whether the scan operation is on its final pass; the final pass is used

A Performance Portability Framework for Python

to update the elements of a View. The parallel for operation only
requires a work index as a parameter.

All the variables and Views needed by a functor are defined
as instance variables (see v in the snippet above). An alternative
to functors is C++ lambdas, or anonymous functions. Instead of
instance variables, lambdas capture all the variables they need from
the scope they are defined in. Lambdas are commonly more concise
than functors, but the two are otherwise equivalent.

Kokkos provides a different function for each parallel operation:
parallel_for, parallel_reduce, and parallel_scan. These
functions accept as input an execution policy (or simply the number
of threads) as the first argument and a functor object or a lambda as
the second argument. As mentioned before, reduce and scan return
a scalar result, so their functions accept as input a third argument
passed by reference to hold that result. The following code shows
how the functor defined earlier is used to call parallel_reduce,
where N represents the number of elements of the View.

Functor f(v); int acc = 0;
Kokkos: :parallel_reduce(
Kokkos: :RangePolicy<>(0, N), £, acc);

Kokkos implements these operations for all the HPC backends it
supports, including OpenMP, CUDA, and others. The user selects
which backends to enable when invoking the compiler. During compi-
lation, Kokkos selects the default execution spaces from the enabled
backends, the corresponding memory spaces, and the optimal mem-
ory layouts for those spaces. An application can be ported to other
devices by re-compiling with the needed execution spaces.

2.2 PyKokkos via an Example

PyKokkos is a Python implementation of the Kokkos model that en-
ables developers to write performance portable Python applications.
It is implemented as a Python framework and provides an API that
is similar in structure to the Kokkos API, but is as easy to use as
regular Python (based on our experience). Internally, PyKokkos
translates certain parts of the application into Kokkos and C++,
automatically generates Python bindings for interoperability, and
compiles and imports them. It also makes use of existing bindings
to Kokkos to perform memory allocation.

Figure 1 shows an example written entirely in Python using
PyKokkos. This example is taken from the team_vector_loop ex-
ercise in the Kokkos tutorials repository [2], and is used to demon-
strate hierarchical parallelism in Kokkos. It calculates a matrix-
weighted inner product y” Ax. We manually ported the example
from Kokkos to PyKokkos.

The first step in writing a PyKokkos application is to import the
pykokkos package (line 1). The as pk statement added after the
import statement indicates that pk is an alias for pykokkos.

A PyKokkos functor is defined by decorating a class definition
with @pk.functor (line 3). The functor includes a constructor
__init__ (line 5) which defines member variables and Views. All
class members that are meant to be used in PyKokkos code have to
be defined with type annotations [5] in the constructor. PyKokkos
provides type annotations for Views that include the number of
dimensions, i.e., Viewl1D, View2D, etc. up to eight dimensions (the
maximum allowed by Kokkos) as well as the data type. Additional

ICS ’21, June 14-17, 2021, Virtual Event, USA

1 import pykokkos as pk

2

3 @pk.functor

4 class TeamVectorLoop:

5 def__init__(self, N: int, M: int,

6 y: pk.View2D[int], x: pk.View2D[int], A: pk.View3D[int]):
7 selfN: int =N

8 self M: int = M

9 self.y: pk.View2D[int] = y

10 self.x: pk.View2D[int] = x

1 self.A: pk.View3D[int] = A

13 @pk.workunit
14 def yAx(self, m: pk.TeamMember, acc: pk.Acc[int]):

15 e: int = m.league_rank()

16

17 def team_reduce(j: int, team_acc: pk.Acc[int]):

18 def vector_reduce(i: int, vector_acc: pk.Acc[int]):
19 vector_acc += self. A[e][j][i] self.x[e][i]

20

21 tempM: int = pk.parallel_reduce(

22 pk.ThreadVectorRange(m, self.M), vector_reduce)
23 team_acc += self.y[e][j] » tempM

24

25 tempN: int = pk.parallel_reduce(

26 pk.TeamThreadRange(m, self.N), team_reduce)

28 def single():

29 nonlocal acc
30 acc += tempN
31 pk.single(pk.PerTeam(m), single)

32
33 # Assume E, N, M are given on command line and parsed before use

"

34 if _name__=="_main_":

35 pk.set_default_space(pk.OpenMP)

36y = pk.View([E, N], dtype=int)

37 x = pk.View([E, M], dtype=int)

38 A =pkView([E, N, M], dtype=int)

39

40 t=TeamVectorLoop(N, M, y, x, A)

41 policy = pk.TeamPolicy(pk.Default, E, pk. AUTO, M)

42 result = pk.parallel_reduce(policy, t.yAx)

Figure 1: An example of a matrix-weighted inner product
kernel from the Kokkos tutorial written in PyKokkos.

type information for member Views, such as memory layout, can
be passed through the @pk. functor decorator (not shown here).

The functor object is created in the main function (which starts
on line 34). First, the default execution space is set (line 35). Second,
the Views y, x, and A are created by calling the View() constructor
(lines 36-38). The first argument to the constructor is a list of the
View’s dimensions. In this example, y and x are two dimensional
Views, and A is three dimensional; E, N, and M are arbitrary integer
values. The second argument is the data type of the View. Additional
arguments could include memory layouts, memory spaces, and
memory traits. If not specified, these are set based on the current

ICS ’21, June 14-17, 2021, Virtual Event, USA

default execution space. The Views are then passed to a functor
object through the constructor (line 40).

The execution policy of the functor is a TeamPolicy (line 41)
since it uses hierarchical parallelism. The first argument is the
execution space, OpenMP in this case since it was set as the default.
The second argument is the number of thread teams. In Kokkos, a
single thread team is a group of threads that share a common team
index. The third argument is the size of each team; AUTO tells Kokkos
to select the appropriate team size based on the target architecture.
The final argument is the vector length i.e., the number of threads
on the final level of parallelism.

To run the functor, parallel_reduce is called with the execu-
tion policy and workunit passed as arguments (line 42). When the
workunit finishes execution, parallel_reduce returns the result
of the reduction operation. This is in contrast to Kokkos, which
places the result in a variable passed by reference.

The body of the parallel operation is defined as a method dec-
orated with @pk.workunit (line 14). Since this is a reduction op-
eration, the workunit has two parameters: a work index and an
accumulator variable. The work index for this workunit has to be of
type pk.TeamMember since it uses hierarchical parallelism. Since
the accumulator is modified in the workunit, it cannot be a primi-
tive type in Python, so we use the pk.Acc class type parameterized
with a specific data type.

On the outermost team level, each thread obtains its team in-
dex via league_rank () (line 15), a value shared across threads in
the same team. The second level is the thread level and the third
and final level is the vector level. The operations in the inner lev-
els are defined using nested functions (lines 17 and 18). Nested
functions capture the variables that are in scope when they are
defined. In this case, both functions capture e (the team index), and
the innermost function captures j (the thread index). The nested
functions can then be invoked by calling parallel_reduce with
the appropriate execution policy (lines 22 and 26). Finally, one
thread per team member updates the outermost accumulator vari-
able (line 31). The nonlocal statement is needed in Python so that
acc is not redefined in the nested function. Once all threads are
finished executing, the reduction result is returned through the
original parallel_reduce on line 42.

This example can be executed with CUDA by simply changing
the default execution space (line 35). PyKokkos takes care of setting
the proper memory spaces and layouts in the View constructors.
It is also possible to set the default execution space externally in a
configuration file before running the example, meaning that zero
changes are required in the source code.

3 PYKOKKOS PROGRAMMING MODEL

In this Section, we first show three styles for writing PyKokkos
workunits (Section 3.1), then we show the Kokkos features that
are currently supported (Section 3.2), and finally we describe what
Python syntax is allowed for the parts of the application that get
translated to C++ (Section 3.3).

3.1 Code Styles

At present, PyKokkos supports three styles to organize workunits,
which we call ClassSty, ClassStyWithMain, and FunctionSty. We

Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric

/@pk.functor \ @pk.wcrk\oad \ @Jk.workunil \

class functor: class workload: def kernel(...):

def __init__(...):

def __init__(...):

if _name__=="__main__"
@pk.main pk.parallel_for(N, kernel, ...)
def run():

@pk.workunit

def kernel(...):

pk.parallel_for(N, kernel)

i — - @pk.workunit
#_pame__=="_main_": def kernel(...):
f = functor(...)

pk.parallel_for(N, f.kernel)

if_name__=="__main_"
w = workload(...)

\ / kpk.execute(space‘ w) J \ /

ClassSty ClassStyWithMain

FunctionSty

Figure 2: Visual summary of the three code styles supported
in PyKokkos; the highlighted boxes represent the code that
is translated to C++.

show the differences between these styles in Figure 2. The high-
lighted boxes in each style represent the code that is translated
to C++. In this Section, we will describe each style and show how
it compares to the syntax of Kokkos. Note that the developer can
arbitrarily mix and match the styles across a single application.

PyKokkos uses Python decorators to annotate functions and
classes that define workunits. Lines 3 and 13 in Figure 1 illustrate
the use of decorators available in PyKokkos.

3.1.1 ClassSty. In the ClassSty style (used in Figure 1), worku-
nits are defined as methods, and a single class can contain one or
more workunits. Each class is similar in style to a Kokkos func-
tor, with the major difference being that workunits are annotated
with @pk.workunit instead of the operator () method in C++.
Only Views and other member variables that are defined with type-
annotations in the constructor can be used in workunits. Addition-
ally, Kokkos functions can be defined as methods inside a PyKokkos
class using the @pk. function decorator. These methods can then
be called from any workunit within the class.

3.1.2 ClassStyWithMain. The ClassStyWithMain style is similar
to the ClassSty style except that it also contains a special method
decorated with @pk .main, which we refer to as the PyKokkos main
method. This method allows us to use parts of the Kokkos API
for which we currently do not have bindings, such as BinSort.
We add Python endpoints similar to the Kokkos API and trans-
late those calls directly to the corresponding C++ version. This
can also be used to call parallel operations, which similarly get
translated to Kokkos. To execute the main method, the user calls
pk.execute(execution_space, instance), where instance
is an instance of a pk.workload class.

3.1.3 FunctionSty. With this style, PyKokkos attempts to mimic
C++ lambda usage in Kokkos. (Using Python lambdas is not an
option since they are limited to a single expression unlike lambdas
in C++.) The FunctionSty style allows standalone workunits that
are defined as global functions (outside any class). In addition to the
specific arguments required by each operation (e.g., accumulator
for reduction), all Views and variables needed by the workunit are
passed as type-annotated arguments. These arguments are passed
to the workunit when the parallel operation is called. For example,

A Performance Portability Framework for Python

Table 1: Kokkos Features Supported in PyKokkos.

Feature Details

Views Multi-dimensional Views, Subviews, Dual Views

Memory Spaces HostSpace, CudaSpace, CudaUVMSpace

Memory Layouts LayoutRight, LayoutLeft

Memory Traits Atomic, RandomAccess, Restrict, Unmanaged

Execution Spaces OpenMP, CUDA, Threads, Serial

Execution Patterns parallel_for, parallel_reduce, parallel_scan

Execution Policies RangePolicy, = MDRangePolicy, = TeamPolicy,

TeamThreadRange, ThreadVectorRange, WorkTag

Hierarchical Parallelism Team Loops, Vector Loops

Atomic Operations All atomic_fetch_[op] operations

Other Kokkos Functions, BinSort, Timer, printf

if we were to write the example in Figure 1 in the FunctionSty style,
the variables and Views would have been passed through the call
to parallel_reduce () on line 42.

3.2 Features

Table 1 shows what parts of Kokkos are supported in PyKokkos.
The first column shows the names of the key Kokkos features and
the second column shows the parts that are supported in PyKokkos.

PyKokkos Views are created through a regular constructor call
(see lines 36-38 in Figure 1). Multi-dimensional Views are supported,
as well as Kokkos Subviews, which are slices of Views that reference
a subset of an existing View’s data, and View resizing. Kokkos
DualViews contain both a host and device buffer and are used to
easily transfer data between the two. PyKokkos does not provide
an abstraction for DualViews explicitly; instead, data is copied
implicitly to device memory when necessary, as we will show in
Section 4.2.3. This avoids burdening the user with explicit memory
copies and is in line with our view that PyKokkos can be used for
rapid prototyping.

PyKokkos Views can be allocated in HostSpace (main mem-
ory), CudaSpace (CUDA GPU global memory), or CudaUVMSpace
(CUDA GPU unified memory). The supported memory layouts are
LayoutRight (row-major) and LayoutLeft (column-major). All
memory traits available in Kokkos are supported.

The supported Kokkos backends are OpenMP, CUDA, Threads,
and Serial. In the future, other backends can be supported sim-
ply by adding API endpoints that allow the user to select them.
All major loop-based execution patterns are supported. There is
also support for most execution policies, including Range-Policy,
MDRangePolicy (multi-dimensional range), as well as the other
policies needed for hierarchical parallelism shown in Figure 1.

In Kokkos, WorkTags are used as identifiers for operator ()
methods in functors, since these methods cannot have user-defined
names and a functor could have multiple workunits. Unlike Kokkos,
PyKokkos identifies workunits through the @pk . workunit decora-
tor (line 13 in Figure 1), so user-defined names can be used instead
of WorkTags.

ICS ’21, June 14-17, 2021, Virtual Event, USA

There is also support for various Kokkos features including some
atomic operations, Kokkos functions (functions called from worku-
nits), BinSort, the Kokkos Timer, and printf () in workunits.

3.3 Syntax Rules

PyKokkos translates all functions and classes that are annotated
with @pk.functor, @pk.workunit, and @pk.function, which
we collectively refer to as annotated code, to C++ Kokkos. This
forces restrictions on what is allowed in annotated code. In this
Section, we describe these restrictions in detail.

Python is a dynamically typed language, meaning that variable
types can change at run-time. On the other hand, C++ is stati-
cally typed, meaning that all variable types need to be known at
compile-time and cannot be altered at run-time. Therefore, anno-
tated code must have type annotations for all variables and Views;
this includes both local and instance variables. Additionally, these
variables cannot be assigned to values of a different type. These
restrictions do not apply outside annotated code.

Another characteristic of Python that affects translation is scop-
ing. Whenever a function is called in Python, it creates a new local
scope. Variables defined inside control blocks like if and for are
scoped to the containing function. If the body of a control block
contains a variable definition, then that variable can be accessed
after the control block provided that it is executed. If the body of
the control block is not executed, accessing the variable results
in a run-time error. In C++, variables defined in control blocks
go out of scope at the end of those blocks. Attempting to access
these variables outside the block they were defined in results in
a compile-time error. Therefore, PyKokkos annotated code has to
conform to the C++ scoping rules in this regard.

Finally, not all variable types are allowed in annotated code. As
of now, the types allowed are int, float, bool, C++ integer and
floating point types of different sizes (e.g., int32_t, double, etc.),
pk.View, and some NumPy primitive types. PyKokkos also allows
user-defined classtypes that can be used in annotated code. These
classtypes are Python classes with constructors and methods deco-
rated with @pk . function (classtypes are therefore also considered
as annotated code). Other types are not supported either because
they are not necessary (strings), there is no clear C++ equivalent,
or the C++ equivalent cannot be used in Kokkos code. Additionally,
using modules from the Python Standard Library is not allowed in
annotated code, except for several functions from the math module
that can be mapped to C++ cmath functions.

In summary, PyKokkos annotated code is a subset of Python that
adds restrictions to its dynamic typing, scoping rules, and allowed
types in order to enable translation to C++.

4 PYKOKKOS INTERNALS

In this Section, we describe the PyKokkos framework internals. We
implemented PyKokkos entirely in Python in order to allow for
easy integration into existing Python codebases. Additionally, the
Python Standard Library contains modules for working with the
Python AST.

At a high level, PyKokkos first translates annotated code written
in Python into C++ Kokkos code, compiles that code into a shared
object file that can be imported as a Python module, and finally

ICS °21, June 14-17, 2021, Virtual Event, USA

PKC

Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric

.py files

@

CLI

.
@

C++ source sl
© l::l

®

@ Import + Call

Runtime

(®Results

Figure 3: An overview of the PyKokkos framework implementation.

1 double bind_yAx(

2 int N, int M,

3 Kokkos: :View<double **> y,
4 Kokkos: :View<double **> x,
5 Kokkos: :View<double *x*> A,

6 int league_size, int team_size, int vector_length) {
7 // Functor is translated from Python

8 Functor functor(N, M, y, x, A);

9 double acc = 0;

10

11 Kokkos: :parallel_reduce (

12 Kokkos: : TeamPolicy<Functor: : yAx>(

13 league_size, team_size, vector_length),
14 functor, acc);

15 return acc;

16 }

Figure 4: The wrapper function generated by PyKokkos for
the inner product example.

imports that module and calls the workunits as required. The pro-
cess is illustrated in Figure 3. The compile-time phase is handled
by PKC (Section 4.1), a command line tool that accepts as input
any number of Python source files. The run-time phase (importing
modules, calling bindings, and creating Views) is handled by the
PyKokkos Runtime (Section 4.2), which is the part of the PyKokkos
framework that interfaces Python with C++.

4.1 PKC

During translation, PyKokkos relies solely on information available
statically to translate annotated code. This means that the entire
process can be done at compile-time (prior to running the applica-
tion) to avoid the translation and compilation overhead at run-time.
However, PyKokkos also supports run-time translation if there is a
call to annotated code that has not been translated; we will describe
this in Section 4.2.

Parser. PKC first calls the Parser (step @ in Figure 3) passing as
input the files containing the annotated code. The Parser uses the
ast module to generate an AST from the Python source. It then
scans the AST to find and obtain all annotated code. All of the
relevant AST nodes are then passed to the Translator (step @).

Translator. The next step is to translate the AST nodes into C++.
First, the Translator checks that the PyKokkos annotated code
does not use any types and Standard Library functions that are
not allowed. (Although PyKokkos does not currently type-check
annotated code, this can be done by the user if desired using a
type-checker such as MyPy [1].)

The Translator proceeds by extracting all PyKokkos class mem-
bers, functions, and workunits. First, it extracts all type information
for the class members from type annotations. C++Views are tem-
plated on data type, dimensionality, memory layout, memory space,
and memory traits, so PyKokkos has to collect this information
per View. The data type and dimensionality are extracted from the
View type annotation. Non-default memory layouts and memory
traits for each View can be passed in as arguments to the PyKokkos
decorator, otherwise the default values set by Kokkos are used.
Since the memory space depends on the execution space, PyKokkos
needs to generate a different template argument per memory space.
To avoid generating multiple types per memory space, we use a
macro that is defined based on the enabled execution space.

Note that regardless of the PyKokkos style used, annotated code
is always translated into Kokkos functors and not lambdas, as this
simplifies the translation process. The member variables of the
generated C++ Kokkos functor are the class members extracted in
the previous step.

The final step is to generate bindings to call the translated worku-
nits. Since there are no existing bindings for invoking the parallel
operations, we cannot call them directly from Python. To solve this,
the Translator creates wrapper functions that call the parallel oper-
ations internally. Figure 4 shows the wrapper function generated
for the example shown in Figure 1. The arguments of the wrapper
are the members extracted in the previous step and are passed to
the functor constructor (line 8). The wrapper then calls parallel
reduce (line 11) and returns the result (line 15). The Translator
then binds these wrappers using the C++ pybind11 library [32].
The Translator passes the C++ AST to a Serializer (step 3) which
generates a source file and passes it to a C++ compiler (step @)
which compiles it into a shared object file (step).

During compilation, PKC calls the C++ compiler once for each
supported backend (although a user can select only a subset of
backends), from which it selects a default execution space in a
manner similar to the default selection that occurs during Kokkos
compilation. It writes this execution space to a file that is read at
run-time and used to set the default execution space as a substitute
for the user doing so explicitly (line 35 in Figure 1).

4.2 Runtime

The PyKokkos API can be divided into two groups: an interface for
executing code and an interface for Views. First, we show how the
PyKokkos Runtime (and by extension Kokkos) is initialized. Second,
we show how the Runtime invokes parallel operations. Third, we
discuss how Views are created and shared between Python and C++.
Finally, we describe how annotated code can be run sequentially in
Python, which can help debug kernels.

A Performance Portability Framework for Python

4.2.1 Initialization. PyKokkos is initialized when the import py-
kokkos statement is executed. This creates all the necessary enti-
ties that are needed by PyKokkos at run-time: the Runtime, Parser,
Translator, and Serializer. Additionally, PyKokkos internally calls
Kokkos: :initialize (). This initializes all Kokkos internal ob-
jects and acquires hardware resources. PyKokkos also registers
Kokkos: :finalize() to be called when Python terminates.

4.2.2 Parallel Execution. To call a parallel operation, the user has to
pass in a workunit and execution policy. This workunit can either be
a method in an initialized object i.e., ClassSty, or a free function i.e.,
FunctionSty. For the latter, the user also passes in all the necessary
arguments. For the former, the Runtime automatically extracts these
arguments from the class members. The ClassStyWithMain style
does not require an execution policy since it executes multiple
workunits, each of which could potentially have a different policy.

The Runtime then checks whether a module (i.e., the shared
object file) corresponding to the workunit has already been gener-
ated with PKC. If not, this means that the compile-time phase was
skipped by the user, so the Runtime has to call PKC (step ®).

The Runtime can then import the module and call the necessary
wrapper function (step (D). If any View type or primitive type does
not match the C++ type in the translated code, an error message is
printed. This could happen if the type was changed in Python at
run-time. For ClassSty and FunctionSty the execution policy passed
by the user provides additional arguments that are passed on to the
wrapper function, where they are used to construct the execution
policy object (e.g., line 12 in Figure 4).

The wrapper function instantiates the Kokkos functor and ex-
ecution policies, and then calls the necessary parallel operations.
After execution terminates, the Runtime transfers the results of all
reduction and scan operations back to Python. For FunctionSty and
ClassSty there is only a single result that will be returned directly
by the wrapper function (step ®). For ClassStyWithMain, there
could be multiple calls to parallel reduce or scan, so the result of
each operation is added to a View that the Runtime can access.

4.2.3 Views. PyKokkos Views are classes created through regular
constructor calls (see lines 36-38 in Figure 1). Similar to Kokkos,
the user is not expected to set the memory space and layout of a
PyKokkos View for portability reasons. Instead, PyKokkos selects
these based on the current default execution space. For the CPU
execution spaces (such as OpenMP), the memory space is always
set to HostSpace. For CUDA, PyKokkos does not use CudaSpace
since it is not accessible from Python. It has to select a host ac-
cessible memory space i.e., HostSpace or CudaUVMSpace (Unified
Virtual Memory [13]). At run-time, HostSpace Views are copied
to CudaSpace as needed. This approach allows the user to switch
between different execution and memory spaces without worrying
about where the data is located in memory. It can also be applied
to execution spaces that PyKokkos will support in the future (e.g.,
AMD GPUs). The only drawback is the overhead introduced by
copying data between different memory spaces.

When the PyKokkos View constructor is called, it invokes the
C++ Kokkos View constructor internally through the available
Python bindings [32]. This constructor allocates the memory for
the View data buffer and the binding returns a Python object that
provides access to the underlying data buffer through a NumPy

ICS ’21, June 14-17, 2021, Virtual Event, USA

array. The returned object can be passed by reference between C++
and Python through pybind11.

The PyKokkos View type is therefore a wrapper over a NumPy
array. Its purpose is to provide an interface that is similar to the
Kokkos View interface, specifically the constructor. Otherwise, it
behaves as a regular NumPy array in Python. This allows PyKokkos
to be easily added to existing Python codebases.

4.2.4 Pure Python Execution. Since valid annotated code is a subset
of valid Python code, PyKokkos supports execution of workunits in
Python. This is especially helpful for debugging logic-based errors
in Python rather than C++ due to the dynamic nature of Python.

We implement calls to parallel operations using sequential for
loops. In every iteration, we pass the current iteration counter to
the workunit as the thread ID. To support hierarchical parallelism,
we pass an object which provides access to the thread and team
ID. MDRangePolicy iterates over multiple ranges, so we loop over
a combination of two thread IDs. In reduce and scan operations,
the pk.Acc object wraps the result as a substitute for Python’s
lack of reference types for primitives. We overloaded the arithmetic
operators of pk.Acc so it can behave like a regular primitive type
without any extra function calls.

5 EVALUATION

In this Section, we present the results of our evaluation of PyKokkos.
First, we show how PyKokkos performance compares to C++ Kokkos
for smaller applications where the running time is dominated by
kernel execution. Second, we compare PyKokkos and Kokkos per-
formance for a larger application. Third, we report the cost of pure
Python execution of PyKokkos (i.e., Python sequential execution).
Fourth, we compare the PyKokkos code to Kokkos code in terms
of the lines of code and number of characters. Finally, we briefly
compare PyKokkos with Numba.

5.1 Evaluation Setup

We ran all experiments on an Ubuntu 18.04.5 machine with a 6-core
Intel i7-8700 3.20GHz CPU and 64GB RAM and an Nvidia GeForce
RTX 2080 GPU with 8GB of memory. For all our experiments, we
used Python 3.8.3, Kokkos 3.1.01, OpenMP 4.5, CUDA 10.2, GCC
7.5, and Numba 0.51.

5.2 Subjects

For the purposes of our experiments, we ported existing C++ Kokkos
applications to PyKokkos. We implemented 7 exercises from the
official Kokkos tutorials repository [2]. All exercises follow a struc-
ture similar to the example in Figure 1: calculate a matrix-weighted
inner product using an outer loop and inner loop, each of which
performs a reduction operation. Each exercise introduces a feature
that improves on the previous exercise. A couple of exercises that
are not ported use features that we do not currently support, while
a number of them are not relevant to PyKokkos, e.g., 01 which uses
malloc() instead of Views (and therefore is not meaningful to
be ported to Python). Specifically, we ported 02, 03, 04, subview,
mdrange, team_policy, and team_vector_loop:

e 02: Introduces Views and uses the View constructors instead of
malloc() in 01.

ICS ’21, June 14-17, 2021, Virtual Event, USA Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric

Table 2: Comparison of Execution Time of PyKokkos and Kokkos Applications with OpenMP and CUDA.
Application Size OpenMP Time [s] CUDA Time [s]

Kernel Total Kernel Total
PyKokkos Kokkos Ratio PyKokkos Kokkos PyKokkos Kokkos Ratio PyKokkos Kokkos

02 218 210 70.3 69.5 1.01X 71.8 69.8 5.2 53 0.98 x 7.6 6.2
219 210 140.5 139.2 1.01X 142.4 139.8 10.7 107 1.00 x 14.2 11.6
03 218x 210 69.8 69.5 1.00 X 71.3 69.8 5.2 53 0.98 x 7.5 7.3
219% 210 139.5 139.2 1.00 X 141.3 139.8 10.7 10.7 1.00 x 14.0 13.8
04 218 210 69.6 69.5 1.00 X 71.2 69.8 5.2 53 0.98 x 7.5 7.2
219% 210 139.5 139.2 1.00 X 141.5 139.8 10.7 107 1.00 x 14.1 13.8
mdrange 218 210 70.2 69.5 1.01X 72.9 69.8 5.2 53 0.98 x 7.3 6.2
219% 210 141.2 139.2 1.01X 145.4 139.8 10.7 10.7 1.00 X 13.7 11.6
subview 218 210 69.7 69.5 1.00 X 71.2 69.8 5.2 53 0.98 x 7.5 7.3
219 210 139.9 139.2 1.01X 141.7 139.8 10.7 107 1.00 x 14.0 13.8
team_policy 218 210 69.8 69.6 1.00 X 71.3 69.9 5.3 53 1.00 X 7.6 7.3
219 210 139.9 139.4 1.00 X 141.6 140.0 10.4 104 1.00 X 13.7 13.5
team_vector_loop 28x 210x 210 70.6 704 1.00 X 72.1 70.7 7.9 8.0 0.99 X 10.2 9.9
29% 210x 210 141.0 140.5 1.00 X 142.7 141.1 15.9 159 1.00 x 19.3 19.1
nstream 2%7% 1 143.8 144.6 0.99 X 145.6 145.1 10.6 10.6 1.00 X 13.2 11.5
2281 286.7 287.9 1.00 x 289.0 288.9 21.1 21.1 1.00 X 253 22.1
stencil 212x212 15.9 157 101X 26.5 25.3 4.0 40 1.00 x 6.4 6.1
213213 63.1 62.1 1.02 x 102.5 100.2 15.7 16.0 0.98 x 22.0 21.5
transpose 212x212 23.9 240 100 X 25.2 24.1 1.7 1.7 1.00 X 2.9 2.6
2B3x213 95.4 958 1.00 X 9.8 96.1 6.5 6.5 1.00 X 8.2 7.4
bytes_and_flops 212y 210 127.2 129.8 0.98 x 128.4 129.8 53.0 537 0.99 X 54.2 54.5
213x 210 254.4 259.5 0.98 X 255.6 259.5 103.6 1053 0.98 X 104.8 106.1
gather 221 2° 112.4 111.2 1.01X 114.0 1113 323 326 0.99 X 34.0 33.4
222 2° 223.3 2227 1.00 x 225.4 222.9 64.3 65.7 0.98 X 66.6 66.5
gups 277x 1 104.0 1040 1.00 X 105.5 104.3 2.5 25 1.00 x 4.7 4.1
2281 207.2 2049 1.01x 209.0 205.7 5.0 50 1.00 x 8.2 7.2
BabelStream 2% 1 71.3 715 1.00 X 72.5 71.9 4.1 41 1.00 x 5.4 5.3
25% 1 143.0 1442 0.99 X 144.3 144.8 8.1 8.1 1.00 x 9.6 9.7
e 03: Introduces device (i.e., GPU) Views and shows how memory We also implemented the nstream, stencil, and transpose kernels
is copied between host and device. from the Parallel Research Kernels (or PRK) repository [24]; the
e 04: Introduces memory spaces, layouts, and RangePolicy. bytes_and_flops, gups, and gather benchmarks from the official

Kokkos repository; and BabelStream [15]. Finally, we ported Ex-
aMiniMD [4], a ~3k lines of code molecular dynamics application,
entirely to Python (and PyKokkos). We excluded code from the
original implementation (which is written entirely in C++) that
was not executed by the inputs provided in the repository. For all

e mdrange: Introduces MDRangePolicy to initialize matrix A.

e subview: Introduces subview to split each column of A into a
one-dimensional View.

e team_policy: Introduces two-level hierarchical parallelism by

replacing the inner sequential reduction with a parallel version PyKokkos code, we used the ClassStyWithMain style. All kernel
that uses TeamPolicy. execution times were collected with the Simple Kernel Timer from
e team_vector_loop: Increases the dimensionality of each view the kokkos-tools repository [3].

and introduces three-level hierarchical parallelism using Team-
Thread-Range (shown in Figure 1).

A Performance Portability Framework for Python

6 1 PyKokkos (OpenMP)
--#-- Kokkos (OpenMP)
5] —&— PyKokkos (CUDA) >
-m-- Kokkos (CUDA) 4
— 41
L
Q3]
g’
'_
2 4
1 4
0 o
4000 32000 108000 256000 500000

Atoms

Figure 5: ExaMiniMD total execution time.

5.3 Performance: Small Applications

In this Section, we compare the performance of PyKokkos to Kokkos
for smaller applications where the running time is dominated by
kernel execution. All values shown (e.g., execution time) represent
the mean of three runs. Additionally, each application runs the
kernel 1,000 times. All CUDA execution times are using CUDA
device memory (i.e., CudaSpace).

Table 2 shows execution time for all applications. The first col-
umn shows the name of the application. The second column shows
the size of the largest Views used in our experiments. For the tuto-
rial exercises, this View is A. The rest of the table shows execution
time of the main kernel and total execution time of PyKokkos
and Kokkos using both OpenMP and CUDA backends. The Ratio
columns show PyKokkos kernel execution time relative to Kokkos.

The results show that PyKokkos can achieve performance parity
with Kokkos for these applications. By comparing kernel execution
time for both PyKokkos and Kokkos across both backends, it can
be seen that kernel code generated by PyKokkos can match the
corresponding Kokkos version for performance. Any slight differ-
ence can likely be attributed to the overhead caused by running the
Python interpreter concurrently with the kernels. For the CUDA
backend, this effect is less pronounced since GPU execution is not
as affected by the Python interpreter.

To measure the overhead introduced by PyKokkos, we compare
the total running time to kernel execution time. It can be seen that
for these applications, the overhead introduced by the PyKokkos
Runtime and Python itself is minimal. (The stencil application total
time is much longer than kernel time for both PyKokkos and Kokkos
since it calls a different kernel to increment the input View each
iteration.) Additionally, the overhead introduced by the Python
interpreter on total execution time is minimal, as these applications
spend very little time in non-PyKokkos Python code.

In summary, PyKokkos can match Kokkos for smaller applica-
tions dominated by kernel execution time. We expect this solid
performance for all applications where kernel execution time dom-
inates the time spent inside the Python interpreter.

5.4 Performance: ExaMiniMD

In this Section, we compare the performance of PyKokkos to Kokkos
for ExaMiniMD. ExaMiniMD first reads an input file and initializes

ICS ’21, June 14-17, 2021, Virtual Event, USA

Table 3: ExaMiniMD Performance Metrics for the Largest
Number of Atoms in Figure 5.

Metric OpenMP CUDA
PyKokkos Kokkos PyKokkos Kokkos

Loop Time [s] 4.90 4.51 2.15 0.86

Total Time [s] 6.12 5.02 3.60 1.83

Atomsteps/s [1/s] 1.02e+07 1.11e+07 2.33e+07 5.78e+07

the position, velocity, and force Views in a sequential for loop. The
size of these Views is #atoms X 3. It then executes another sequential
for loop for 100 time steps, updating the position, velocity, and force
Views and calculating the temperature, potential energy, and kinetic
energy values by calling parallel kernels.

In our initial PyKokkos implementation of ExaMiniMD we ob-
served relatively large execution times, around 18s using OpenMP
for the largest size (x-axis) shown in Figure 5. We profiled our
implementation and discovered that the total execution time was
dominated by the sequential for loop that initializes the Views, not
the kernels written in PyKokkos. Since Python is an interpreted
language, sequential loops with large iteration counts (e.g., #atoms
in ExaMiniMD) have significantly more overhead than in C++. We
rewrote the initialization loop using Numba [25], a JIT compiler that
translates Python to LLVM, to optimize the for loop. This resulted
in performance comparable to the C++ for loop.

Figure 5 shows a plot of the total execution time vs. number
of atoms. We used Unified Memory for all CUDA runs. For both
OpenMP and CUDA, we observe performance comparable to Kokkos.
The extra performance overhead in the PyKokkos implementation
does not substantially increase as the size increases.

To understand this overhead, we first look at the kernel execution
times shown in Figure 6. For all PyKokkos kernels, we observe
minimal to no overhead compared to Kokkos. This is in agreement
with the results observed for the kernels in Table 2.

Table 3 shows performance metrics collected during execution:
loop time is the amount of time spent in the main loop (that runs
for 100 time steps), total time is end-to-end execution time, and
atomsteps per second is the number of atoms multiplied by time
steps per second. In addition to kernel execution time, these metrics
include time spent during Python execution. Here, we observe
larger performance differences between PyKokkos and Kokkos than
in the kernels themselves. Thus the additional overhead observed
in the loop time and total time can be attributed to time spent in
the Python interpreter, outside of the generated kernels.

5.5 Pure Python Execution

In this Section, we report the cost of pure Python execution in
PyKokkos (Section 4.2.4). Since all kernels are executed using Python
sequential loops, we expect substantial performance overhead. We
use the tutorial exercises to highlight the cost of each feature in-
dividually. Table 4 shows a comparison of total execution time
using different PyKokkos backends. We set the timeout to 300s and
show the largest size that completes within this budget. Clearly,
this mode should be used only for debugging logical errors, as it

ICS °21, June 14-17, 2021, Virtual Event, USA

Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric

1071 PyKokkos (OpenMP)
E= Kokkos (OpenMP)
10-2 PyKokkos (CUDA)
A Kokkos (CUDA)

Kernel Label

Figure 6: ExaMiniMD kernel time for the largest number of atoms in Figure 5. Number of kernel calls is shown in parentheses.

Table 4: Comparison of Pure Python Execution to OpenMP
and CUDA in PyKokkos.

Application Size PyKokkos Time [s]
Python OpenMP CUDA
02 28x 210 169.0 1.1 1.2
03 28x 210 167.0 1.1 13
04 28x 210 169.0 1.1 1.2
mdrange 28x 210 173.0 1.1 13
subview 28% 210 139.0 1.1 1.2
team_policy 27x 210 194.0 1.1 1.1
team_vector_loop 2'x 27x 210 245.0 1.2 1.1

Table 5: Code Characteristics of PyKokkos and Kokkos Ap-
plications. Numbers for Tutorials and PRK show Total for
all Applications in those Groups.

Application PyKokkos Kokkos Reduction [%]

LOC NOC LOC NOC LOC NOC
Tutorials 503 15758 592 18627 15 15
PRK 290 10004 385 11379 24 12
ExaMiniMD 2846 94811 3269 113210 12 16

does not escape the Python interpreter and provides users with a
familiar debugging environment.

5.6 Code Characteristics

Table 5 shows basic code characteristics of the applications used in
our experiments. The first column shows the source of the applica-
tions. We do not use the benchmarks since they include additional
boilerplate for initialization or BabelStream since it includes code
for other frameworks. The second and third columns show the lines
of code (LOC) and number of characters (NOC) for Kokkos and
PyKokkos, respectively. For the Tutorials and PRK rows, we show a
single entry that is the summation of the values for each individual
application. The fourth column shows the reduction in code size of
the PyKokkos implementation compared to Kokkos.

Table 6: Comparison of Execution Time of PyKokkos and
Numba Applications with OpenMP and CUDA.

Application Size OpenMP Time [s] CUDA Time [s]
PyKokkos Numba PyKokkos Numba
nstream 28x 1 289.0 290.2 25.3 25.3
stencil 213x213 102.5 106.1 22.0 22.4
transpose 213%213 96.8 103.1 8.2 8.3

Table 5 shows that PyKokkos code is more concise than Kokkos.
We identify several reasons. First, Kokkos applications have to add
code to initialize and finalize the Kokkos context. In PyKokkos,
this is hidden from the user. Second, C++ naturally tends to be
more verbose than Python. Static typing in particular contributes
significantly to code clutter, even more so when templates and
nested namespaces are involved. Some Kokkos applications include
typedef and using declarations to avoid repeating long types,
but even that still adds to the clutter. In contrast, type annotations
are optional in Python (outside of PyKokkos annotated code), and
dynamic typing subsumes the need for templates. Third, in C++,
header files need to be included for string manipulation, IO, and
other functionality, most of which is available in Python without
any imports. Parsing command line arguments in C++ needs to be
done through string comparison and large contiguous blocks of if
statements, while in Python, this can be done with the argparse
module from the Standard Library.

5.7 Numba Comparison

In this Section, we compare PyKokkos to Numba. Specifically, we
are interested in examining the effort required to write kernels tar-
geting CPUs and GPUs in each framework. Of all of our test subjects,
only the PRK applications have existing Numba implementations.
However, the kernels do not make use of the parallelism features
in Numba, so we modified them by setting parallel=True and
using prange. We also made further changes to get performance
closer to the PyKokkos implementation, but we note once again
that our goal is not to provide a complete performance comparison
between the two, and that both implementations could be opti-
mized further. For stencil and transpose, we manually implemented
tiling in the Numba kernels to get better performance. This was not

A Performance Portability Framework for Python

needed in the PyKokkos implementations due to the availability
of MDRangePolicy, which provides a multi-dimensional iteration
space with tiling.

We also implemented the kernels using CUDA through Numba.
This required us to to use syntax specific to CUDA and to manually
set the number of threads and blocks at each kernel launch.

Table 6 shows a comparison of total execution times. For all
kernels, we observe similar execution times. All PyKokkos kernels
use one common code for both OpenMP and CUDA, while for
Numba, we had to re-implement the kernels for each device and
add loop tiling for the CPU kernel. PyKokkos kernels are therefore
more performance portable.

6 LIMITATIONS AND FUTURE WORK

PyKokkos currently supports a subset of the Kokkos API so addi-
tional work is needed to add other Kokkos features, such as scratch
memory, scatter Views, etc. So far, we have focused on the most
commonly used features. In the future, we plan to add higher level
abstractions (i.e., extended API in Python) that allow for the same
level of performance while being more familiar to Python pro-
grammers. We also plan on adding support for Kokkos Kernels,
a library containing Kokkos implementations of commonly used
linear algebra and graph kernels [34].

We selected Kokkos instead of similar libraries, such as RAJA,
due to Kokkos being older and more established in the commu-
nity. Additionally, the availability of bindings for View creation in
Kokkos was a plus. However, it would also be possible to develop
an abstraction layer over both libraries to allow for translation to
target both Kokkos and RAJA.

Current support for debugging PyKokkos applications is limited
to execution in Python. This approach is helpful for finding logic-
based bugs but not concurrency bugs. In the future, we plan to
add support for running PyKokkos with a debugger by adding line
number information to the generated C++ code. Optimizing pure
Python execution would also improve debugging experience.

7 DISCUSSION

Dynamic compilation. One additional benefit of PyKokkos over
Kokkos is that the translation to Kokkos can happen dynamically
during the execution of a program. This, for example, enables a user
to build a kernel during the execution of a program and execute
it in the appropriate execution space. So far, we have focused on
migrating existing kernels to PyKokkos. However, it would be inter-
esting to see how we can benefit further from dynamic compilation,
and if such a style would lead to a novel way for writing kernels.

Existing kernels. In our examples, we (manually) migrated ex-
isting kernels to PyKokkos. As stated earlier in the paper, using
existing (manually-written) Python bindings one can invoke exist-
ing kernels written in C++. Thus, our migration from C++ to Python
was performed only with the goal to evaluate PyKokkos styles and
performance. We envision PyKokkos being used for writing new
kernels, and existing kernels being invoked via bindings.

8 RELATED WORK

There has been a significant effort to improve high performance
Python. Numba [25] compiles a subset of the language to LLVM IR

ICS ’21, June 14-17, 2021, Virtual Event, USA

and provides support for parallelism. Cython [8] extends Python
with C types and translates code to C; at this point Cython supports
only OpenMP for several parallel constructs. Shed Skin [37] com-
piles pure Python 2 programs to C++ but only supports a restricted
subset of Python. Unlike prior work, PyKokkos enables performance
portability across HPC frameworks by targeting the C++ Kokkos
library and supports the latest version of Python. Dask [35] and
Pygion [38] enable distributed task-based programming in Python.
PyKokkos focuses on shared-memory parallelism instead.

There has been previous work on higher level abstractions to
facilitate programmability and portability. PyTorch [30] and Ten-
sorFlow [6] are high performance libraries that provide abstrac-
tions for tensor computing and machine learning. Halide [33] is
a domain specific language (DSL) embedded in C++ for writing
portable, high performance image processing code. Diff Taichi [23]
is a high-performance framework embedded in Python for build-
ing differentiable physical simulators. IrGL [29] is an intermediate
representation for parallel graph algorithms that is compiled to
CUDA. PyKokkos closely follows the Kokkos model for perfor-
mance portability without necessarily specializing in a specific
application domain.

Java has seen an increase in popularity for GPU computing [16].
Lime [17] and HJ-OpenCL [22] are Java-based DSLs that can access
GPUs while providing limited support for various Java features.
Lime is a Java-compatible object-oriented language capable of gen-
erating GPU code for OpenCL or CUDA. HJ-OpenCL generates
OpenCL kernels from the Habanero-Java language, and further
work [19] adds support for dynamic object allocation. Rootbeer [31]
translates Java code that implements a specific kernel interface to
CUDA workloads. Jacc [12] is another framework that translates na-
tive annotated Java code, but takes a different approach by directly
generating Nvidia PTX rather than OpenCL or CUDA. GVM [10] is
a Java interpreter that runs entirely on GPUs. TornadoVM [11] is
a Java framework for high-performance heterogeneous program-
ming. PyKokkos is embedded in Python rather than Java, and is not
limited to GPU execution since it targets Kokkos instead of device
specific frameworks.

A recent approach to transcompiling is unsupervised translation
by training on monolingual source code [36]. PyKokkos takes a
more traditional approach to translation that does not include ma-
chine learning. Combining the two approaches is worth exploring.

9 CONCLUSION

We presented PyKokkos, a new Python framework for writing
performance portable applications entirely in Python. PyKokkos
provides Kokkos-like abstractions that are easier to use and more
concise than the C++ interface. We implemented PyKokkos by
building a translator from PyKokkos annotated code to C++ Kokkos
and bridging necessary function calls via automatically generated
Python bindings. Our results showed that PyKokkos can obtain
performance close to Kokkos for applications that dominated by
kernel execution time. PyKokkos applications are more concise
than their Kokkos counterparts, and can achieve comparable per-
formance in most cases. Kokkos provides a performance portability
programming ecosystem, and we believe that PyKokkos enables
developers to utilize such an ecosystem.

ICS ’21, June 14-17, 2021, Virtual Event, USA

ACKNOWLEDGMENTS

We thank Martin Burtscher, Mattan Erez, Ian Henriksen, Damien
Lebrun-Grandie, Jonathan R. Madsen, Arthur Peters, Keshav Pin-
gali, David Poliakoff, Sivasankaran Rajamanickam, Christopher J.
Rossbach, Joseph B. Ryan, Karl W. Schulz, Christian Trott, and the
anonymous reviewers for their feedback on this work. This work
was partially supported by the US National Science Foundation
under Grant Nos. CCF-1652517 and CCF-1817048, and the Depart-
ment of Energy, National Nuclear Security Administration under
Award Number DE-NA0003969.

REFERENCES

[7

[

8

=

=

[10]

[11]

[12

[13

[14
[15]

[17

[18

[19]

2012. MyPy. https://github.com/python/mypy.

2015. Kokkos Tutorials. https://github.com/kokkos/kokkos-tutorials.

2016. KokkosP Profiling Tools. https://github.com/kokkos/kokkos-tools.

2017. ExaMiniMD. https://github.com/ECP- copa/ExaMiniMD.

2020. typing - Support for type hints. https://docs.python.org/3/library/typing.
html.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaogiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In USENIX Symposium on Operating Systems Design and Implementation.
265-283.

David A. Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William
Killian, Adam J. Kunen, Olga Pearce, Peter Robinson, Brian S. Ryujin, and
Thomas RW Scogland. 2019. RAJA: Portable Performance for Large-Scale Sci-
entific Applications. In Workshop on Performance, Portability and Productivity in
HPC. 71-81.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Selje-
botn, and Kurt Smith. 2011. Cython: The Best of Both Worlds. In Computing in
Science and Engineering. 31-39.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia: A
Fresh Approach to Numerical Computing. SIAM Rev. 59, 1 (2017), 65-98.
Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric. 2019.
Design, Implementation, and Application of GPU-based Java Bytecode Inter-
preters. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications. 177:1-177:28.

James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria
Xekalaki, Christos Kotselidis, and Mikel Lujan. 2018. Exploiting High-
performance Heterogeneous Hardware for Java Programs Using Graal. In Inter-
national Conference on Managed Languages & Runtimes. 4:1-4:13.

James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Lujan. 2017. Boost-
ing Java Performance Using GPGPUs. In International Conference on Architecture
of Computing Systems. 59-70.

CudaUVM 2013. Unified Memory in CUDA 6. https://developer.nvidia.com/
blog/unified-memory-in-cuda-6.

CUDAWebPage 2020. CUDA Zone. https://developer.nvidia.com/cuda-zone.
Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2016.
GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-
Core Processors Across Diverse Parallel Programming Models. In International
Conference on High Performance Computing. 489-507.

Jorge Docampo, Sabela Ramos, Guillermo L. Taboada, Roberto R. Expdsito, Juan
Tourifio, and Ramén Doallo. 2013. Evaluation of Java for General Purpose GPU
Computing. In International Conference on Advanced Information Networking and
Applications Workshops. 1398-1404.

Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J.
Fink. 2012. Compiling a High-level Language for GPUs: (via Language Support
for Architectures and Compilers). In Conference on Programming Language Design
and Implementation. 1-12.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enabling manycore performance portability through polymorphic memory access
patterns. Journal of Parallel and Distributed Computing 74, 12 (2014), 3202-3216.
Max Grossman, Shams Imam, and Vivek Sarkar. 2015. HJ-OpenCL: Reducing the
Gap Between the JVM and Accelerators. In Principles and Practices of Programming
on The Java Platform. 2-15.

[20

[21

@
=

[32

[33

(34

Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric

Stephen Lien Harrell, Joy Kitson, Robert Bird, Simon John Pennycook, Jason
Sewall, Douglas Jacobsen, David Neill Asanza, Abaigail Hsu, Hector Carrillo
Carrillo, Hessoo Kim, and Robert Robey. 2018. Effective Performance Portability.
In International Workshop on Performance, Portability and Productivity in HPC

(P3HPC). 24-36.
Charles R. Harris, K. Jarrod Millman, Stefan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gerard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (2020), 357-362.

Akihiro Hayashi, Max Grossman, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
2013. Accelerating Habanero-Java Programs with OpenCL Generation. In In-
ternational Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools. 124-134.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan
Ragan-Kelley, and Frédo Durand. 2020. Diff Taichi: Differentiable Programming
for Physical Simulation. International Conference on Learning Representations
(2020).

Intel. 2013. PRK. https://github.com/ParRes/Kernels.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-Based
Python JIT Compiler. In Workshop on the LLVM Compiler Infrastructure in HPC.
1-6.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization. 75-86.

Travis E. Oliphant. 2007. Python for Scientific Computing. Computing in Science
and Engineering 9, 3 (2007), 10-20.

OpenMPWebPage 2020. OpenMP. https://www.openmp.org.

Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimization
of Graph Algorithms on GPUs. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 1-19.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems. 8024-8035.
Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. 2012. Rootbeer:
Seamlessly Using GPUs from Java. In International Conference on High Perfor-
mance Computing and Communication. 375-380.

pybind11 2020. Pybind11 Documentation. https://pybind11.readthedocs.io/en/
stable/intro.html.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Programming Language Design and Implementation. 519-530.
Sivasankaran Rajamanickam, Seher Acer, Luc Berger-Vergiat, Vinh Dang, Nathan
Ellingwood, Evan Harvey, Brian Kelley, Christian R. Trott, Jeremiah Wilke,
and Ichitaro Yamazaki. 2021. Kokkos Kernels: Performance Portable Sparse/-
Dense Linear Algebra and Graph Kernels. https://arxiv.org/abs/2103.11991.
arXiv:2103.11991 [cs.MS]

Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and
task scheduling. In Python in Science Conference. 130-136.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised Translation of Programming Languages. In Advances in
Neural Information Processing Systems, Vol. 33. 20601-20611.

ShedSkin 2020. Shed Skin. https://shedskin.github.io.

E. Slaughter and A. Aiken. 2019. Pygion: Flexible, Scalable Task-Based Parallelism
with Python. In Parallel Applications Workshop, Alternatives To MPL 58-72.
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stefan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261-272.

	Abstract
	1 Introduction
	2 Background and Example
	2.1 Kokkos
	2.2 PyKokkos via an Example

	3 PyKokkos Programming Model
	3.1 Code Styles
	3.2 Features
	3.3 Syntax Rules

	4 PyKokkos Internals
	4.1 PKC
	4.2 Runtime

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Subjects
	5.3 Performance: Small Applications
	5.4 Performance: ExaMiniMD
	5.5 Pure Python Execution
	5.6 Code Characteristics
	5.7 Numba Comparison

	6 Limitations and Future Work
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

