
ROOSTERIZE: Suggesting Lemma Names for Coq

Verification Projects Using Deep Learning

Pengyu Nie∗, Karl Palmskog†, Junyi Jessy Li∗, Milos Gligoric∗

pynie@utexas.edu, palmskog@kth.se, jessy@austin.utexas.edu, gligoric@utexas.edu
∗ The University of Texas at Austin, Austin, TX, USA † KTH Royal Institute of Technology, Stockholm, Sweden

Abstract—Naming conventions are an important concern in
large verification projects using proof assistants, such as Coq.
In particular, lemma names are used by proof engineers to
effectively understand and modify Coq code. However, providing
accurate and informative lemma names is a complex task,
which is currently often carried out manually. Even when
lemma naming is automated using rule-based tools, generated
names may fail to adhere to important conventions not specified
explicitly. We demonstrate a toolchain, dubbed ROOSTERIZE,
which automatically suggests lemma names in Coq projects.
ROOSTERIZE leverages a neural network model trained on
existing Coq code, thus avoiding manual specification of naming
conventions. To allow proof engineers to conveniently access
suggestions from ROOSTERIZE during Coq project development,
we integrated the toolchain into the popular Visual Studio Code
editor. Our evaluation shows that ROOSTERIZE substantially
outperforms strong baselines for suggesting lemma names and
is useful in practice. The demo video for ROOSTERIZE can be
viewed at: https://youtu.be/HZ5ac7Q14rc.

Index Terms—Coq, lemma names, neural networks

I. INTRODUCTION

In large software projects with many contributors, names

of methods and classes are important for code comprehen-

sion and modification. Open source projects often document

their naming conventions carefully, impose them on proposed

contributions, and willingly accept naming fixes [1].

The Coq proof assistant [2] is increasingly used to de-

velop trustworthy software systems, e.g., compilers [3] and

distributed systems [4]. As such verification projects grow

in scope and size, naming conventions become an important

concern. In particular, proof engineers use lemma names to

effectively understand and modify code [5].

In contrast to method names in Java-like languages, which

tend to use camel case and regular English words (e.g.,

openServerConnection), Coq lemma names often mix

camel case and underscores with heavily abbreviated termi-

nology from logic and advanced mathematics, which makes

the naming task more difficult. For example, in the Math-

ematical Components (MathComp) Coq library, the lemma

name extprod_mulgA is used to express “associativity of

multiplication operations in external product groups”, i.e., a

property of abstract algebra. This meaning is obtained by first

decomposing the name into extprod, mul, g, and A, and

then consulting the MathComp naming conventions [6].

Currently, documentation and enforcement of lemma nam-

ing conventions in Coq projects is largely a manual process.

While some aspects of naming conventions can be captured

by rule-based tools, specification of rules is tedious and often

incomplete. Moreover, most large Coq projects use mutually

incompatible lemma naming schemes.

We present ROOSTERIZE, a toolchain which automatically

suggests Coq lemma names. ROOSTERIZE learns naming

conventions by leveraging neural networks trained on existing

Coq code. The deep learning and suggestion processes use

multiple representations of lemma statements, including syntax

trees and Coq kernel trees (also called elaborated terms) [7].

In essence, ROOSTERIZE consists of (1) a set of components

written in OCaml that interact with Coq or directly process

information extracted from Coq, and (2) a set of components

written in Python that perform name learning and generation.

The first set of components is based on the SerAPI library [8]

for serialization of Coq data, while the second set of compo-

nents is based on the PyTorch deep learning framework [9]

and the OpenNMT library [10].

The core of ROOSTERIZE is command-line based. Although

valuable, this does not provide a convenient interface for proof

engineers as they are stating and proving new Coq lemmas.

Hence, we integrated the toolchain into Visual Studio Code

(VSCode) [11], a popular editor for Coq source code.

We evaluated an earlier version of ROOSTERIZE using a

corpus derived from the MathComp family of Coq projects,

finding that the toolchain significantly outperforms strong

baselines on automatic metrics [7]. Moreover, we found

encouraging results in a qualitative case study where the

maintainer of a medium-sized Coq project manually evaluated

over 150 name suggestions generated by ROOSTERIZE.

The earlier toolchain version provided few conveniences

beyond basic name suggestions via the command line, and

did not include any editor integration. In addition to the novel

integration with VSCode, the toolchain version presented here

provides a significantly more automated installation process

and supports system-level configuration of Coq project and

name suggestion parameters, making it suitable for wider use

by proof engineers.

Our code, documentation, and pre-trained models are pub-

licly available on GitHub:

https://github.com/EngineeringSoftware/roosterize.

II. TECHNIQUE AND IMPLEMENTATION

In this section, we explain the workflow of the ROOSTERIZE

toolchain, and then briefly describe our neural network model

for lemma name generation.

1



PyTorch

SubTok

3

MISeq2Seq
4

DataMiner

2

Coq source/compiled files

syntax and terms

lemma names

CoqSerAPIser{comp,tok,name}

1

Fig. 1: Low-level workflow of ROOSTERIZE.

ENCODERS

lemma statement

· · ·

L 1 .

chopped syntax tree

· · ·

(Prod )

chopped kernel tree

· · ·

(VernacExpr )

fully

connected

layer

lemma name

DECODER

〈BOS〉

mg eq nerode 〈EOS〉

Fig. 2: Neural architecture of lemma name generation model

in ROOSTERIZE, exemplified for the name mg_eq_nerode.

A. Toolchain Workflow

Fig. 1 illustrates the low-level workflow of the ROOS-

TERIZE toolchain. (1) We use the SerAPI library [8] for

extracting data from Coq files, using three programs: sertok

for extracting tokens, sercomp for extracting the syntax

trees, and sername for extracting kernel trees. Syntax trees

are Coq’s internal representations of source code elements,

including lemmas, during the parsing phase. Kernel trees

are Coq’s internal representations of statements and func-

tions during proof checking, and contain rich information

relevant for lemma naming. (2) DataMiner orchestrates

these programs to obtain all lemmas in the given Coq files

and their names, lemma statements, and syntax and kernel

trees. (3) SubTok sub-tokenizes the inputs for the neural

network model. (4) MISeq2Seq is the multi-input neural

network model for lemma name generation (Section II-B). The

model is implemented in the popular deep learning framework

PyTorch [9], and is based on the OpenNMT library [10].

Users interact with ROOSTERIZE by using its command-

line interface or the VSCode extension. We use the Language

Server Protocol (LSP) [12] to connect the server (the core

of ROOSTERIZE including data extraction scripts and the

lemma name generation model) with the client (the VSCode

extension). This simplifies future integration with other editors

that also support LSP, e.g., Emacs.

B. Neural Network Model for Generating Lemma Names

We consider lemma name generation with an encoder-

decoder mindset, and use sequence-to-sequence (SEQ2SEQ)

neural architectures specifically designed for transduction

tasks [13]. Fig. 2 illustrates the architecture of our model [7].

The encoders are Recurrent Neural Networks (RNNs) that

learn a deep semantic representation of a given lemma

statement from its tokens, syntax tree, and kernel tree. The

model can be configured to use any combination of the three

encoders. The decoder is another RNN that generates the

descriptive lemma name based on the input deep semantic

representation. We equipped the decoder RNN with attention

mechanism [14] and copy mechanism [15] to improve the

generation accuracy.

All the inputs and the output are sequences of sub-tokens;

the sub-tokens of inputs are obtained using a sub-tokenizer,

and the sub-tokens of the output are concatenated to form the

generated lemma name. We implemented the sub-tokenizer

based on the conventions outlined by MathComp develop-

ers [6] (e.g., the lemma name extprod mulgA should be sub-

tokenized to extprod, , mul, g, and A). Because syntax and

kernel trees can be large, we implemented chopping heuristics

to remove the parts irrelevant for generating lemma names

before feeding them to the encoders. Our heuristics essentially:

(1) replace the fully qualified name sub-trees with only the

last component of the name; (2) remove the line number

information from sub-trees; (3) extract the singletons, i.e., non-

leaf nodes that have only one child.

III. TOOL INSTALLATION

ROOSTERIZE currently supports macOS and Linux-based

operating systems. The first installation step is to download

the ROOSTERIZE repository:

$ git clone \
https://github.com/EngineeringSoftware/roosterize

$ cd roosterize && git checkout v1.1.0+8.10.2

Required software and libraries. ROOSTERIZE depends on

two sets of software and libraries: (1) OCaml, Coq, and

SerAPI; (2) PyTorch and other Python libraries.

To install OCaml (4.07.1), Coq (8.10.2) and SerAPI (0.7.1),

we recommend using the OCaml-based package-management

system OPAM [16] version 2.0.7 or later:

$ opam switch create roosterize 4.07.1
$ opam switch roosterize && eval $(opam env)
$ opam update
$ opam pin add coq 8.10.2
$ opam pin add coq-serapi 8.10.0+0.7.1

To install PyTorch and other Python libraries, we recom-

mend using the package-management system Conda [17]. The

installation script may be different depending on the operating

system and whether to use GPU or not. For example, on Linux,

to use CPU only:

$ conda env create --name roosterize \
--file conda-envs/cpu.yml

$ conda activate roosterize

After installing these required software and libraries, users

can use ROOSTERIZE via its command-line interface.

VSCode extension. The ROOSTERIZE VSCode extension can

be installed easily from VSCode marketplace: launch “VS

Code Quick Open” (Ctrl+P), paste the following command:

ext install EngineeringSoftware.roosterize-vscode

2





TABLE I: Results of ROOSTERIZE Models.

Model BLEU Frag.Acc. Top1 Top5

Stmt+ChopKnlTree+ChopSynTree 45.4 22.2% 7.5% 16.5%

Stmt+ChopKnlTree 47.2 24.9% 9.6% 18.0%

Stmt+ChopSynTree 37.7 18.1% 6.1% 10.6%

ChopKnlTree+ChopSynTree 45.4 22.9% 7.6% 15.3%

Stmt 38.9 19.4% 6.9% 11.6%

Retrieval-based 28.3 10.0% 0.2% 0.3%

Table I shows the results. We observed that Stmt

+ChopKnlTree achieved the best performance and substan-

tially outperforms the retrieval-based baseline. This shows

the importance of using Coq’s internal structures. Lemma

statement and syntax tree do not work well together primarily

because the two representations contain mostly the same in-

formation. We performed extensive ablation studies to confirm

the effectiveness of the other parts of the model (Section 6.2

of our IJCAR’20 paper [7]), including the chopping heuristics

and the attention and copy mechanisms. We also performed

a generalization study which confirms that ROOSTERIZE can

perform well on a new project with little additional training

(Appendix D.3 of our IJCAR’20 paper [7]).

B. Qualitative

We carried out a qualitative case study using ROOSTERIZE

by applying it to the FCSL PCM Coq project, which comprises

690 lemmas. 36 suggestions (5%) exactly matched the exist-

ing lemma names. We then asked the project maintainer to

comment on the remaining suggestions. The maintainer found

that 20% of the suggested names he inspected were of good

quality, out of which more than half were of high quality.

Considering that the analysis was of top-1 suggestions, we

find these results encouraging.

VI. LIMITATIONS AND FUTURE WORK

Due to limitations in the protocol that VSCode uses to

communicate with Coq, our VSCode extension cannot obtain

name suggestions for a lemma in real time as it is being edited,

i.e., by monitoring changes to the Coq source file and proof

state. However, our toolchain can support this mode of use

once protocol limitations are lifted.

The quality of lemma name suggestions is highly dependent

on the quality of the pre-trained neural networks, and building

a model requires careful curation of Coq training data. While

we have constructed such a high-quality dataset based on the

MathComp family of projects, additional datasets must be

curated to suggest names that follow conventions other than

those for MathComp.

VII. CONCLUSION

We presented ROOSTERIZE, a toolchain for suggesting

lemma names in Coq verification projects. Nearly all related

work addresses fundamentally different name generation tasks

in conventional languages such as Java [1]. An exception is

Aspinall and Kaliszyk [5], who learn naming from a corpus for

the HOL Light proof assistant; however, their technique only

suggests names that appear in the training data. ROOSTERIZE

uses novel neural network models pre-trained on existing Coq

code to generate lemma names. Our quantitative evaluation

showed that ROOSTERIZE outperforms several strong base-

lines, and our qualitative evaluation demonstrated the quality

of generated lemma names. We believe ROOSTERIZE can be

especially useful to proof engineers in large Coq projects

to ensure that lemma names follow prevailing conventions.

Through our integration of ROOSTERIZE with the VSCode

editor, naming suggestions can be continually provided as Coq

code is added and revised.

ACKNOWLEDGMENTS

We thank Cyril Cohen, Emilio Jesús Gallego Arias, Anton

Trunov, and the anonymous reviewers for their comments

and feedback. This work was partially supported by the US

National Science Foundation under Grant No. CCF-1652517

and the University of Texas at Austin Continuing Fellowship.

REFERENCES

[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in FSE, 2014.

[2] Coq Development Team, “The Coq proof assistant, version 8.10.0,”
Oct. 2019. [Online]. Available: https://zenodo.org/record/3476303

[3] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, 2009.

[4] I. Sergey, J. R. Wilcox, and Z. Tatlock, “Programming and proving with
distributed protocols,” PACMPL, vol. 2, no. POPL, 2018.

[5] D. Aspinall and C. Kaliszyk, “What’s in a theorem name?” in ITP, 2016.
[6] C. Cohen and A. Trunov, “Contribution guide for the Mathematical

Components library,” 2018, last accessed 2020-11-20. [Online].
Available: https://github.com/math-comp/math-comp/blob/mathcomp-1.
9.0/CONTRIBUTING.md

[7] P. Nie, K. Palmskog, J. J. Li, and M. Gligoric, “Deep generation of Coq
lemma names using elaborated terms,” in IJCAR, 2020.

[8] E. J. Gallego Arias, “SerAPI: Machine-friendly, data-centric seri-
alization for Coq,” MINES ParisTech, Tech. Rep., 2016, https://
hal-mines-paristech.archives-ouvertes.fr/hal-01384408.

[9] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in PyTorch,” in Autodiff Workshop, 2017. [Online].
Available: https://openreview.net/forum?id=BJJsrmfCZ

[10] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “OpenNMT:
Open-source toolkit for neural machine translation,” in ACL Demo, 2017.

[11] Microsoft, “Visual Studio Code Website,” 2020, last accessed 2020-11-
20. [Online]. Available: https://code.visualstudio.com

[12] Microsoft, “Language Server Protocol Website,” 2020, last
accessed 2020-11-19. [Online]. Available: https://microsoft.github.
io/language-server-protocol/

[13] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NeurIPS, 2014.

[14] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in EMNLP, 2015.

[15] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in ACL, 2017.

[16] OPAM Development Team, “OCaml Package Manager,” 2020, last
accessed 2020-11-19. [Online]. Available: https://opam.ocaml.org

[17] Anaconda, Inc., “Miniconda - Conda documentation,” 2020, last
accessed 2020-11-19. [Online]. Available: https://docs.conda.io/en/
latest/miniconda.html

[18] Coq Development Team, “Building a Coq project,” 2019, last
accessed 2020-11-20. [Online]. Available: https://coq.inria.fr/distrib/V8.
10.2/refman/practical-tools/utilities.html

[19] P. Nie, K. Palmskog, J. J. Li, and M. Gligoric, “MathComp Corpus
of Coq Code,” 2020, last accessed 2020-11-20. [Online]. Available:
https://github.com/EngineeringSoftware/math-comp-corpus

[20] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in ACL, 2002.

4


