PyKokkos: Performance Portable Kernels in Python

Nader Al Awar Neil Mehta Steven Zhu
nader.alawar@utexas.edu neilmehta@lbl.gov stevenzhu@utexas.edu
The University of Texas at Austin NERSC The University of Texas at Austin

Austin, Texas, USA

George Biros
gbiros@acm.org
The University of Texas at Austin
Austin, Texas, USA

ABSTRACT

As modern supercomputers have increasingly heterogeneous hard-
ware, the need for writing parallel code that is both portable and per-
formant across different hardware architectures increases. Kokkos
is a C++ library that provides abstractions for writing performance
portable code. Using Kokkos, programmers can write their code
once and run it efficiently on a variety of architectures. However,
the target audience of Kokkos, typically scientists, prefers dynami-
cally typed languages such as Python instead of C++. We demon-
strate a framework, dubbed PyKokkos, that enables performance
portable code through Python. PyKokkos transparently translates
code written in a subset of Python to C++ and Kokkos, and then
connects the generated code to Python by automatically generating
language bindings. PyKokkos achieves performance comparable
to Kokkos in ExaMiniMD, a ~3k lines of code molecular dynamics
mini-application. The demo video for PyKokkos can be found at
https://youtu.be/1oFvhlhoDaY.
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1 INTRODUCTION

Modern high-performance computing (HPC) systems are adopt-
ing increasingly heterogeneous hardware: the current TOP500
list [3], which ranks supercomputers based on a standard bench-
mark, shows that seven of the top ten include more than one kind
of processor, typically a CPU and a GPU. This hardware is provided
by various semiconductor chip vendors, including Intel, Nvidia, and
AMD. This presents a challenge to end users, as targeting each kind
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of hardware requires that users learn specific programming inter-
faces and frameworks, such as OpenMP or CUDA, and learn about
architecture-specific details to extract optimal performance, such
as optimal memory layouts. Consequently, users end up re-writing
code to achieve the same functionality on different hardware.

It is therefore desirable to write code once and be able to run it
on different hardware without losing performance. Kokkos [10] is a
framework and C++ library for writing performance portable code.
Using Kokkos, users can write parallel, high-performance code
that can run efficiently on different hardware without needing to
re-write any code. Kokkos achieves this by providing high-level ab-
stractions that generalize over different HPC frameworks, providing
unified syntax and hiding architecture-specific details.

Python has recently seen widespread use in the machine learn-
ing and scientific computing communities [9]. As the main im-
plementation of Python is an interpreter, it’s performance is an
issue when compared to C++. Python users have therefore turned
to libraries and packages such as NumPy [7], which provides a
high-performance array type, and SciPy [11], which includes na-
tive implementations of algorithms commonly used in scientific
computing. These implementations are written in C or C++ and
are exposed to Python. However, scientists typically need to write
their own implementations of parallel high-performance functions
(also known as kernels), ideally using Python.

We present PyKokkos, a Python framework for writing perfor-
mance portable kernels entirely through Python [4, 12]. PyKokkos
is a Python implementation of the Kokkos framework, and allows
users to write high-performance kernels that can run efficiently
on a variety of architectures. PyKokkos provides a domain-specific
language (DSL for short) embedded in Python for writing these
kernels. It will translate this DSL into C++ and Kokkos, and then
automatically generate language bindings to access the generated
kernel code from Python.

We evaluated PyKokkos by porting existing Kokkos applications
and kernels to Python and PyKokkos [4], finding that PyKokkos
applications can achieve performance similar to their Kokkos coun-
terparts, while being more concise (i.e., requiring less lines of code).

PyKokkos is open source and is publicly available on GitHub as
part of the official Kokkos organization at:
https://github.com/kokkos/pykokkos.
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1 import pykokkos as pk

3 @pk.functor
4 class InnerProduct:
5 def__init__(self, N: int, M: int):

6 selfN: int =N
7 self M: int =M
8 self.y: pk.View1D[int] = pk.View([N], dtype=int)

9 self.x: pk.View1D[int] = pk.View([M], dtype=int)
10 self.A: pk.View2D[int] = pk.View([N, M], dtype=int)

12 @pk.workunit
13 def yAx(self, j: int, acc: pk.Acc[int]):

14 temp2: int = 0

15 for i in range(self.M):

16 temp2 += self. A[j][i] » self.x[i]
17 acc += self.y[j] = temp2

19 # Assume N, M are given on the command line and parsed before use
20 if __name__=="__main_ "

21 pk.set_default_space(pk.OpenMP)

22t =InnerProduct(N, M)

23 policy = pk.RangePolicy(pk.Default, 0, N)

24 result = pk.parallel_reduce(policy, t.yAx)

Figure 1: An example of a matrix-weighted inner product
kernel from the Kokkos tutorial written in PyKokkos.

2 EXAMPLE

In this section, we first describe the main abstractions used in
Kokkos, and then show an example of a PyKokkos kernel that
illustrates these abstractions in Python.

2.1 Kokkos

The main goal of Kokkos is to allow writing high performance
code that is portable across different architectures. Consequently,
it provides abstractions for parallel execution and data structures
to enable this goal. The main abstractions for parallel execution
include execution spaces, which represent the processors on a par-
ticular machine, such as CPUs and GPUs; execution patterns, which
represent common parallel operations, such as a parallel for, paral-
lel reduce, and parallel scan; and execution policies, which specify
how a kernel will run (i.e., execution space, number of threads, etc.).
The main abstractions for data structures include memory spaces,
which represent the memory accessible from these processors, and
memory layouts, which specify how memory buffers are arranged
in memory, such as row-major or column-major.

2.2 PyKokkos

Figure 1 shows an example of a matrix-weighted inner product
kernel written in Python and PyKokkos. This was originally written
in C++ and Kokkos in the 03 exercise in the official Kokkos tutorials
repository [1], but we ported the example to Python and PyKokkos.

To use PyKokkos from Python, the user must first import the
pykokkos module (line 1). The as pk statement means that pk can
be used as an alias to pykokkos.

PyKokkos provides three styles for writing kernels. The style
shown in Figure 1 is an example of the ClassSty style. In this style,
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the user first defines a class with a @pk . functor decorator (line 3),
referred to as a functor. The user can then write each kernel as a
method in the class decorated with @pk.workunit (line 12).

Inside the class, the user defines a constructor, which is the
__init__ method in Python (line 5). In the constructor, the user
defines all member variables that they wish to access from the
kernels. As PyKokkos will translate kernels to C++, the user must
specify the types of all variables that will be used in kernel code.
This is accomplished through the use of Python’s type annota-
tions [2]. Lines 6 and 7 show an example of member variables
defined as integers using Python’s int type annotation. Besides
integers, PyKokkos allows other Python primitive types such as
bool, float, as well as NumPy primitive types. Another impor-
tant datatype used in Kokkos and PyKokkos is the View. A View
is an n-dimensional array that serves as the main data structure
in Kokkos. PyKokkos provides type annotations for views that in-
clude the dimensionality and the datatype (lines 8-10). The View
constructor accepts as input a list of dimensions and the datatype
of the elements. Crucially, the user does not need to specify the
memory layout (i.e. row-major or column-major), as that will be
selected by PyKokkos using the currently enabled execution space.

With the member variables defined, the user can begin writing
kernels. Recall, a kernel is defined as a method decorated with
@pk.workunit, yAx in this example (line 13). The first argument
of a workunit is self, which simply refers to the class instance.
This argument will not be translated to C++ as this is implicit
in C++; a type annotation is therefore not needed. The second
argument is an integer that represents a thread ID, which will have
a unique value per each thread at run-time. Since this kernel will
perform a reduction, we will need a third argument to hold the
result of that reduction, called an accumulator. In C++ and Kokkos,
it would be enough to pass a variable by reference to hold the
result. Python, however, does not allow passing primitive types
by reference. Consequently, we introduce a new type annotation,
pk.Acc, parameterized on the datatype of the accumulator, i.e.
pk.Acc[int] which is equivalent to int& in C++.

The kernel’s body also contains type annotations. We first define
a temporary variable (line 14), then perform a sequential reduction
(lines 15-16). Finally, we update the accumulator (line 17).

The user can now call the kernel. Starting from main (line 20),
the user first sets the default execution space to be OpenMP (line 21).
This ensures that, by default, all views will be allocated in a mem-
ory space accessible from the CPU with the appropriate memory
layouts. The user then creates an object of the functor class (line 22)
and a RangePolicy, specifying the execution space (pk.Default
will evaluate to OpenMP in this case), the starting thread ID, and
the number of threads to launch (line 23). The user can then call
pk.parallel_reduce, passing in the execution policy and the
kernel to be executed. When the kernel finishes execution, the
result is returned (line 24).

To run this kernel with CUDA, the only change necessary is
passing pk.Cuda to pk.set_default_space on line 21.

3 TECHNIQUE AND IMPLEMENTATION

In this section, we describe the implementation and workflow of
the PyKokkos framework [4, 12]. The workflow of PyKokkos can



PyKokkos: Performance Portable Kernels in Python

be divided into two phases: an ahead-of-time (AOT) phase and a
run-time phase. During the AOT phase, PyKokkos translates kernel
code to C++ and Kokkos, then generates language bindings code
to allow inter-operation between Python and the generated kernel
code, and finally compiles the generated code. During the run-time
phase, PyKokkos imports the compiled code from Python and calls
it. Additionally, PyKokkos makes use of existing Python language
bindings for C++ Kokkos views from the PyKokkos-Base repository.

3.1 AOT Phase

Figure 2 [12] shows a high level overview of the implementation
and workflow of PyKokkos. First, the user provides the Python files
containing the PyKokkos kernel code to PKC (step @ in Figure 2).
PKC, short for PyKokkos compiler, is the main component of the
framework which handles translation and language binding code
generation, accessible through a command line script.

PKC will parse the user-provided Python files to extract a Python
abstract syntax tree (AST for short) (step (@)using the Python stan-
dard library module ast. The translator component of PKC will
walk through this tree and translate it to a C++ AST that contains
the functor and kernel code (step 3).

Once the kernel code is generated, PKC must do additional work
to make it accessible from Python. This is accomplished through the
use of language bindings, which allow for inter-operation between
different languages. For PyKokkos, we are interested in calling
C++ from Python, so we make use of pybind11, a library to create
Python bindings of C++ code. PKC will generate a wrapper function
that instantiates the functor and calls the kernel, and then generate
pybind11 code to bind the wrapper function.

The output of the translator is a C++ AST that includes both the
functor and the language binding code. PKC serializes the AST into
a C++ source file (step @) and compiles it into a shared object file
(step (®) that it caches on the filesystem to be used at run-time.

3.2 Run-Time Phase

During the run-time phase, the user calls their kernel code as if it
were normal Python (line 24 in Figure 1). At this stage, PyKokkos
checks if the kernel code has already been translated and compiled
in the AOT phase by looking for the shared object file. If PyKokkos
does not find it, it will internally call PKC to generate it at run-
time (step (®). Note that this will incur significant overhead due to
calling the C++ compiler; however, once the shared object file has
been generated, subsequent calls to the kernel will simply re-use it
instead of re-compiling, even across different runs.

PyKokkos will then import the shared object file and call the re-
quested kernel (step (D), returning the result if the kernel performed
a parallel reduce or scan operation (step ®).

PyKokkos additionally makes use of existing Python language
bindings for C++ Kokkos views. These bindings allow calling the
C++ constructor of the views, which will return a View object
to Python that behaves as a regular NumPy array. As in Kokkos,
PyKokkos will automatically select the memory space and layout
according to the default execution space, although the user is al-
lowed to manually override these. In case the selected memory
space is not accessible from Python (e.g., GPU memory), PyKokkos
will instead allocate the View in main memory and automatically
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copy data to the necessary memory space prior to kernel execution.
This saves the user from reasoning about data copying and syn-
chronization and also allows PyKokkos to support any architecture
as long as it supports data copying to and from main memory.

4 INSTALLATION

In this section we describe the steps needed to install PyKokkos.

Required software and libraries. PyKokkos requires the Conda [5]
package manager and compilers supported by Kokkos (e.g. NVCC
for CUDA). Each Kokkos execution space additionally requires the
corresponding framework’s software (e.g., a CUDA installation).
The first step is to clone the PyKokkos-Base repository and install
the necessary dependencies into a new Conda environment.
$ git clone https://github.com/kokkos/pykokkos-base/
$ cd pykokkos-base
$ conda create --name pyk --file requirements.txt
This will create an environment called pyk. Afterwards, the user
can install PyKokkos-Base into the environment.
$ python setup.py install -- -DKokkos_ENABLE_OPENMP=0N \
-DKokkos_ENABLE_CUDA=ON -DENABLE_LAYOUTS=0N
This command calls the Python setup script, which will compile
the C++ View constructor bindings. The arguments after install
specify the execution spaces to enable, as well as enabling memory
layouts in the View constructors. The next step is to clone and
install PyKokkos itself.

$ git clone https://github.com/kokkos/pykokkos/
$ pip install --user -e .

5 USAGE

We briefly describe how PyKokkos applications can be executed.
The first step is to invoke pkc. py script, passing in one or more
files containing the kernels and specifying the execution space.
Since the PyKokkos code is embedded in regular Python code, the
application can then be launched normally.
$ pkc.py 03.py -spaces OpenMP

$ python 03.py

Figures 3 and 4 show screenshots of the output of these com-
mands respectively. Alternatively, users can skip the call to pkc. py
and launch the application directly, causing PyKokkos to translate
and compile the kernels at run-time.

6 EVALUATION

In this section, we summarize a performance evaluation of PyKokkos
using ExaMiniMD [4], a ~3k lines of code molecular dynamics mini-
application. ExaMiniMD was originally written in C++ and Kokkos,
but we ported it to Python and PyKokkos.

Figure 5 shows a plot the number of atoms (x-axis) and total Ex-
aMiniMD execution time (y-axis). We show data for both PyKokkos
and Kokkos, using both OpenMP and CUDA. The plots show that
Python and PyKokkos with OpenMP only introduces minimal, con-
stant overhead that does not scale with the size of the input data,
even as the number of atoms increases. For CUDA, we do observe
extra overhead. By profiling ExaMiniMD further, we found that the
PyKokkos kernels themselves achieved performance identical to
the original Kokkos kernels. The additional constant overhead can
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Figure 2: An overview of the PyKokkos framework implementation.

final) nalawar@seoul:~/demo$ pkc.py 03.py -spaces OpenMP
root:Path 03.py

root:0 workloads

root:1 functors

root:0 workunits

root:0 classtypes

INFO:root:translation 0.001s

INFO:root:compilation 7.386s

Figure 3: Screenshot of using PKC from the command line.

(pyk

INFO:
INFO:
INFO:
INFO:
INFO:

(pyk _final) nalawar@seoul:~/demo$ python 03.py

Total size S = 262144 N = 256 M = 1024

Computed result for 256 x 1024 is 262144.0

N(256) M(1024) nrepeat(100) problem(MB) time(2.12) bandwidth(GB/s)

Figure 4: Screenshot of running the 03 exercise.
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Figure 5: ExaMiniMD total execution time.

be attributed to the startup time of the Python interpreter. Further-
more, the extra overhead for CUDA can be attributed to Kokkos
prefetching memory, which is currently not available in PyKokkos
(although support for this is being added currently).

In summary, PyKokkos achieves performance on par with Kokkos
with only small overhead. Our ICS’21 paper [4] includes a more
extensive evaluation on numerous smaller kernels, showing simi-
lar results, as well as a study of code complexity that shows that
PyKokkos code is more concise and less verbose than Kokkos.

7 CONCLUSION

We presented PyKokkos, a framework for writing performance

portable kernels using Python. Existing approaches include Cython [6],

which provides C-like language extensions and statically compiles
code for better performance; Cython, however, currently has lim-
ited support for parallelism. Numba [8] is a just-in-time compiler
that compiles a subset of Python to LLVM IR. Numba supports
parallelism, but does not provide performance portability. Way-
Out [12] automatically generates language bindings for existing

C++ code; the developers were able to generate bindings for a li-
brary of pre-existing kernels written in C++ and Kokkos. PyKokkos
allows users to write new kernels entirely through Python. Our eval-
uation showed that PyKokkos can match Kokkos for performance,
even for larger applications such as ExaMiniMD.
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