
PyKokkos: Performance Portable Kernels in Python

Nader Al Awar
nader.alawar@utexas.edu

The University of Texas at Austin

Austin, Texas, USA

Neil Mehta
neilmehta@lbl.gov

NERSC

Berkeley, California, USA

Steven Zhu
stevenzhu@utexas.edu

The University of Texas at Austin

Austin, Texas, USA

George Biros
gbiros@acm.org

The University of Texas at Austin

Austin, Texas, USA

Milos Gligoric
gligoric@utexas.edu

The University of Texas at Austin

Austin, Texas, USA

ABSTRACT

As modern supercomputers have increasingly heterogeneous hard-

ware, the need for writing parallel code that is both portable and per-

formant across different hardware architectures increases. Kokkos

is a C++ library that provides abstractions for writing performance

portable code. Using Kokkos, programmers can write their code

once and run it efficiently on a variety of architectures. However,

the target audience of Kokkos, typically scientists, prefers dynami-

cally typed languages such as Python instead of C++. We demon-

strate a framework, dubbed PyKokkos, that enables performance

portable code through Python. PyKokkos transparently translates

code written in a subset of Python to C++ and Kokkos, and then

connects the generated code to Python by automatically generating

language bindings. PyKokkos achieves performance comparable

to Kokkos in ExaMiniMD, a ∼3k lines of code molecular dynamics

mini-application. The demo video for PyKokkos can be found at

https://youtu.be/1oFvhlhoDaY.

KEYWORDS

PyKokkos, Python, high performance computing, Kokkos

ACM Reference Format:

Nader Al Awar, Neil Mehta, Steven Zhu, George Biros, and Milos Gligoric.

2022. PyKokkos: Performance Portable Kernels in Python. In 44th Interna-

tional Conference on Software Engineering Companion (ICSE ’22 Companion),

May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3510454.3516827

1 INTRODUCTION

Modern high-performance computing (HPC) systems are adopt-

ing increasingly heterogeneous hardware: the current TOP500

list [3], which ranks supercomputers based on a standard bench-

mark, shows that seven of the top ten include more than one kind

of processor, typically a CPU and a GPU. This hardware is provided

by various semiconductor chip vendors, including Intel, Nvidia, and

AMD. This presents a challenge to end users, as targeting each kind

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9223-5/22/05.
https://doi.org/10.1145/3510454.3516827

of hardware requires that users learn specific programming inter-

faces and frameworks, such as OpenMP or CUDA, and learn about

architecture-specific details to extract optimal performance, such

as optimal memory layouts. Consequently, users end up re-writing

code to achieve the same functionality on different hardware.

It is therefore desirable to write code once and be able to run it

on different hardware without losing performance. Kokkos [10] is a

framework and C++ library for writing performance portable code.

Using Kokkos, users can write parallel, high-performance code

that can run efficiently on different hardware without needing to

re-write any code. Kokkos achieves this by providing high-level ab-

stractions that generalize over different HPC frameworks, providing

unified syntax and hiding architecture-specific details.

Python has recently seen widespread use in the machine learn-

ing and scientific computing communities [9]. As the main im-

plementation of Python is an interpreter, it’s performance is an

issue when compared to C++. Python users have therefore turned

to libraries and packages such as NumPy [7], which provides a

high-performance array type, and SciPy [11], which includes na-

tive implementations of algorithms commonly used in scientific

computing. These implementations are written in C or C++ and

are exposed to Python. However, scientists typically need to write

their own implementations of parallel high-performance functions

(also known as kernels), ideally using Python.

We present PyKokkos, a Python framework for writing perfor-

mance portable kernels entirely through Python [4, 12]. PyKokkos

is a Python implementation of the Kokkos framework, and allows

users to write high-performance kernels that can run efficiently

on a variety of architectures. PyKokkos provides a domain-specific

language (DSL for short) embedded in Python for writing these

kernels. It will translate this DSL into C++ and Kokkos, and then

automatically generate language bindings to access the generated

kernel code from Python.

We evaluated PyKokkos by porting existing Kokkos applications

and kernels to Python and PyKokkos [4], finding that PyKokkos

applications can achieve performance similar to their Kokkos coun-

terparts, while being more concise (i.e., requiring less lines of code).

PyKokkos is open source and is publicly available on GitHub as

part of the official Kokkos organization at:

https://github.com/kokkos/pykokkos.



ICSE ’22 Companion, May 21ś29, 2022, Pittsburgh, PA, USA Nader Al Awar, Neil Mehta, Steven Zhu, George Biros, and Milos Gligoric

1 import pykokkos as pk

2

3 @pk.functor

4 class InnerProduct:

5 def __init__(self, N: int, M: int):

6 self.N: int = N

7 self.M: int = M

8 self.y: pk.View1D[int] = pk.View([N], dtype=int)

9 self.x: pk.View1D[int] = pk.View([M], dtype=int)

10 self.A: pk.View2D[int] = pk.View([N, M], dtype=int)

11

12 @pk.workunit

13 def yAx(self, j: int, acc: pk.Acc[int]):

14 temp2: int = 0

15 for i in range(self.M):

16 temp2 += self.A[j][i] ∗ self.x[i]

17 acc += self.y[j] ∗ temp2

18

19 # Assume N, M are given on the command line and parsed before use

20 if __name__ == "__main__":

21 pk.set_default_space(pk.OpenMP)

22 t = InnerProduct(N, M)

23 policy = pk.RangePolicy(pk.Default, 0, N)

24 result = pk.parallel_reduce(policy, t.yAx)

Figure 1: An example of a matrix-weighted inner product

kernel from the Kokkos tutorial written in PyKokkos.

2 EXAMPLE

In this section, we first describe the main abstractions used in

Kokkos, and then show an example of a PyKokkos kernel that

illustrates these abstractions in Python.

2.1 Kokkos

The main goal of Kokkos is to allow writing high performance

code that is portable across different architectures. Consequently,

it provides abstractions for parallel execution and data structures

to enable this goal. The main abstractions for parallel execution

include execution spaces, which represent the processors on a par-

ticular machine, such as CPUs and GPUs; execution patterns, which

represent common parallel operations, such as a parallel for, paral-

lel reduce, and parallel scan; and execution policies, which specify

how a kernel will run (i.e., execution space, number of threads, etc.).

The main abstractions for data structures include memory spaces,

which represent the memory accessible from these processors, and

memory layouts, which specify how memory buffers are arranged

in memory, such as row-major or column-major.

2.2 PyKokkos

Figure 1 shows an example of a matrix-weighted inner product

kernel written in Python and PyKokkos. This was originally written

in C++ and Kokkos in the 03 exercise in the official Kokkos tutorials

repository [1], but we ported the example to Python and PyKokkos.

To use PyKokkos from Python, the user must first import the

pykokkosmodule (line 1). The as pk statement means that pk can

be used as an alias to pykokkos.

PyKokkos provides three styles for writing kernels. The style

shown in Figure 1 is an example of the ClassSty style. In this style,

the user first defines a class with a @pk.functor decorator (line 3),

referred to as a functor. The user can then write each kernel as a

method in the class decorated with @pk.workunit (line 12).

Inside the class, the user defines a constructor, which is the

__init__ method in Python (line 5). In the constructor, the user

defines all member variables that they wish to access from the

kernels. As PyKokkos will translate kernels to C++, the user must

specify the types of all variables that will be used in kernel code.

This is accomplished through the use of Python’s type annota-

tions [2]. Lines 6 and 7 show an example of member variables

defined as integers using Python’s int type annotation. Besides

integers, PyKokkos allows other Python primitive types such as

bool, float, as well as NumPy primitive types. Another impor-

tant datatype used in Kokkos and PyKokkos is the View. A View

is an n-dimensional array that serves as the main data structure

in Kokkos. PyKokkos provides type annotations for views that in-

clude the dimensionality and the datatype (lines 8-10). The View

constructor accepts as input a list of dimensions and the datatype

of the elements. Crucially, the user does not need to specify the

memory layout (i.e. row-major or column-major), as that will be

selected by PyKokkos using the currently enabled execution space.

With the member variables defined, the user can begin writing

kernels. Recall, a kernel is defined as a method decorated with

@pk.workunit, yAx in this example (line 13). The first argument

of a workunit is self, which simply refers to the class instance.

This argument will not be translated to C++ as this is implicit

in C++; a type annotation is therefore not needed. The second

argument is an integer that represents a thread ID, which will have

a unique value per each thread at run-time. Since this kernel will

perform a reduction, we will need a third argument to hold the

result of that reduction, called an accumulator. In C++ and Kokkos,

it would be enough to pass a variable by reference to hold the

result. Python, however, does not allow passing primitive types

by reference. Consequently, we introduce a new type annotation,

pk.Acc, parameterized on the datatype of the accumulator, i.e.

pk.Acc[int] which is equivalent to int& in C++.

The kernel’s body also contains type annotations. We first define

a temporary variable (line 14), then perform a sequential reduction

(lines 15-16). Finally, we update the accumulator (line 17).

The user can now call the kernel. Starting from main (line 20),

the user first sets the default execution space to be OpenMP (line 21).

This ensures that, by default, all views will be allocated in a mem-

ory space accessible from the CPU with the appropriate memory

layouts. The user then creates an object of the functor class (line 22)

and a RangePolicy, specifying the execution space (pk.Default

will evaluate to OpenMP in this case), the starting thread ID, and

the number of threads to launch (line 23). The user can then call

pk.parallel_reduce, passing in the execution policy and the

kernel to be executed. When the kernel finishes execution, the

result is returned (line 24).

To run this kernel with CUDA, the only change necessary is

passing pk.Cuda to pk.set_default_space on line 21.

3 TECHNIQUE AND IMPLEMENTATION

In this section, we describe the implementation and workflow of

the PyKokkos framework [4, 12]. The workflow of PyKokkos can



PyKokkos: Performance Portable Kernels in Python ICSE ’22 Companion, May 21ś29, 2022, Pittsburgh, PA, USA

be divided into two phases: an ahead-of-time (AOT) phase and a

run-time phase. During the AOT phase, PyKokkos translates kernel

code to C++ and Kokkos, then generates language bindings code

to allow inter-operation between Python and the generated kernel

code, and finally compiles the generated code. During the run-time

phase, PyKokkos imports the compiled code from Python and calls

it. Additionally, PyKokkos makes use of existing Python language

bindings for C++ Kokkos views from the PyKokkos-Base repository.

3.1 AOT Phase

Figure 2 [12] shows a high level overview of the implementation

and workflow of PyKokkos. First, the user provides the Python files

containing the PyKokkos kernel code to PKC (step 1○ in Figure 2).

PKC, short for PyKokkos compiler, is the main component of the

framework which handles translation and language binding code

generation, accessible through a command line script.

PKC will parse the user-provided Python files to extract a Python

abstract syntax tree (AST for short) (step 2○)using the Python stan-

dard library module ast. The translator component of PKC will

walk through this tree and translate it to a C++ AST that contains

the functor and kernel code (step 3○).

Once the kernel code is generated, PKC must do additional work

to make it accessible from Python. This is accomplished through the

use of language bindings, which allow for inter-operation between

different languages. For PyKokkos, we are interested in calling

C++ from Python, so we make use of pybind11, a library to create

Python bindings of C++ code. PKCwill generate a wrapper function

that instantiates the functor and calls the kernel, and then generate

pybind11 code to bind the wrapper function.

The output of the translator is a C++ AST that includes both the

functor and the language binding code. PKC serializes the AST into

a C++ source file (step 4○) and compiles it into a shared object file

(step 5○) that it caches on the filesystem to be used at run-time.

3.2 Run-Time Phase

During the run-time phase, the user calls their kernel code as if it

were normal Python (line 24 in Figure 1). At this stage, PyKokkos

checks if the kernel code has already been translated and compiled

in the AOT phase by looking for the shared object file. If PyKokkos

does not find it, it will internally call PKC to generate it at run-

time (step 6○). Note that this will incur significant overhead due to

calling the C++ compiler; however, once the shared object file has

been generated, subsequent calls to the kernel will simply re-use it

instead of re-compiling, even across different runs.

PyKokkos will then import the shared object file and call the re-

quested kernel (step 7○), returning the result if the kernel performed

a parallel reduce or scan operation (step 8○).

PyKokkos additionally makes use of existing Python language

bindings for C++ Kokkos views. These bindings allow calling the

C++ constructor of the views, which will return a View object

to Python that behaves as a regular NumPy array. As in Kokkos,

PyKokkos will automatically select the memory space and layout

according to the default execution space, although the user is al-

lowed to manually override these. In case the selected memory

space is not accessible from Python (e.g., GPU memory), PyKokkos

will instead allocate the View in main memory and automatically

copy data to the necessary memory space prior to kernel execution.

This saves the user from reasoning about data copying and syn-

chronization and also allows PyKokkos to support any architecture

as long as it supports data copying to and from main memory.

4 INSTALLATION

In this section we describe the steps needed to install PyKokkos.

Required software and libraries. PyKokkos requires the Conda [5]

package manager and compilers supported by Kokkos (e.g. NVCC

for CUDA). Each Kokkos execution space additionally requires the

corresponding framework’s software (e.g., a CUDA installation).

The first step is to clone the PyKokkos-Base repository and install

the necessary dependencies into a new Conda environment.

$ git clone https://github.com/kokkos/pykokkos-base/

$ cd pykokkos-base

$ conda create --name pyk --file requirements.txt

This will create an environment called pyk. Afterwards, the user

can install PyKokkos-Base into the environment.

$ python setup.py install -- -DKokkos_ENABLE_OPENMP=ON \

-DKokkos_ENABLE_CUDA=ON -DENABLE_LAYOUTS=ON

This command calls the Python setup script, which will compile

the C++ View constructor bindings. The arguments after install

specify the execution spaces to enable, as well as enabling memory

layouts in the View constructors. The next step is to clone and

install PyKokkos itself.

$ git clone https://github.com/kokkos/pykokkos/

$ pip install --user -e .

5 USAGE

We briefly describe how PyKokkos applications can be executed.

The first step is to invoke pkc.py script, passing in one or more

files containing the kernels and specifying the execution space.

Since the PyKokkos code is embedded in regular Python code, the

application can then be launched normally.

$ pkc.py 03.py -spaces OpenMP

$ python 03.py

Figures 3 and 4 show screenshots of the output of these com-

mands respectively. Alternatively, users can skip the call to pkc.py

and launch the application directly, causing PyKokkos to translate

and compile the kernels at run-time.

6 EVALUATION

In this section, we summarize a performance evaluation of PyKokkos

using ExaMiniMD [4], a ∼3k lines of code molecular dynamics mini-

application. ExaMiniMD was originally written in C++ and Kokkos,

but we ported it to Python and PyKokkos.

Figure 5 shows a plot the number of atoms (x-axis) and total Ex-

aMiniMD execution time (y-axis). We show data for both PyKokkos

and Kokkos, using both OpenMP and CUDA. The plots show that

Python and PyKokkos with OpenMP only introduces minimal, con-

stant overhead that does not scale with the size of the input data,

even as the number of atoms increases. For CUDA, we do observe

extra overhead. By profiling ExaMiniMD further, we found that the

PyKokkos kernels themselves achieved performance identical to

the original Kokkos kernels. The additional constant overhead can




	Abstract
	1 Introduction
	2 Example
	2.1 Kokkos
	2.2 PyKokkos

	3 Technique and Implementation
	3.1 AOT Phase
	3.2 Run-Time Phase

	4 Installation
	5 Usage
	6 Evaluation
	7 Conclusion
	Acknowledgments
	References

