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Abstract

Sound gradual types come in many forms and offer varying
levels of soundness. Two extremes are deep types and shal-
low types. Deep types offer compositional guarantees but
depend on expensive higher-order contracts. Shallow types
enforce only local properties, but can be implemented with
first-order checks. This paper presents a language design
that supports both deep and shallow types to utilize their
complementary strengths.

In the mixed language, deep types satisfy a strong com-
plete monitoring guarantee and shallow types satisfy a first-
order notion of type soundness. The design serves as the
blueprint for an implementation in which programmers can
easily switch between deep and shallow to leverage their dis-
tinct advantages. On the GTP benchmark suite, the median
worst-case overhead drops from several orders of magnitude
down to 3x relative to untyped. Where an exhaustive search
is feasible, 40% of all configurations run fastest with a mix
of deep and shallow types.

CCS Concepts: « Software and its engineering — Seman-
tics; Constraints; Functional languages.
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1 A Spectrum of Type Enforcement

Taken broadly, the research area of gradual typing presents
several type-enforcement strategies that enforce static types
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against untyped code to varying levels of fidelity. Among
strategies that are compatible with an untyped host language
and provide a type soundness guarantee, two promising al-
ternatives are Natural [39, 58, 50] and Transient [68]. The
Natural strategy uses higher-order contracts to enforce the
behavioral claims implied by higher-order types. The Tran-
sient strategy uses first-order checks to enforce basic aspects
of types. Unsurprisingly, these two strategies come with dif-
ferent benefits and drawbacks. Contracts in Natural enable
deep types that satisfy type soundness and complete mon-
itoring [26]. These contracts, however, can impose a huge
performance cost [29]. First-order checks in Transient en-
able only shallow types, which promise a weak soundness
guarantee, but these checks rarely dominate the running
time of a program [68, 28, 49].

The question thus arises as to whether the two enforce-
ment strategies can interoperate, giving programmers deep
types when guarantees matter and shallow types to avoid
performance bottlenecks. This paper provides an affirmative
answer via three contributions.

o A theoretical model that integrates deep-typed code,
shallow-typed code, and untyped code via a semantics
that applies ideas from Natural and Transient (sec-
tion 3). The model comes with two essential meta-
theorems: the first validates plain type soundness for
shallow-typed code, and the second shows that deep-
typed code retains the customary type soundness prop-
erty via complete monitoring,.

e An implementation of Typed Racket [61] that permits
developers to combine deep, shallow, and untyped
components (section 4). The deep and shallow halves
of the implementation stand on equal footing. Switch-
ing between them is a one-line change.

e A practical evaluation of the performance, guarantees,
and expressiveness of the revised Typed Racket imple-
mentation (section 5). The performance study of this
novel three-way Typed Racket demonstrates signifi-
cant improvements on the GTP benchmark suite [31]
over the two-way versions.

Deep and shallow types can interoperate without sacrificing
their formal properties. Best of all, the combination brings
measurable benefits. These contributions strongly suggest
that combining type-sound gradual typing strategies is an
effective means to give programmers control over the pro-
tection/performance tradeoff.
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2 Background
2.1 Gradual, Migratory, Mixed-Typed

Gradual typing explores combinations of static and dynamic
typing [50, 58, 39, 30]. The goal of this research is a language
that supports two styles of code in a convenient manner.
Untyped code is free to perform any computation that the
language can express. Typed code is restricted to well-typed
computations, but comes with a guarantee that static types
are meaningful predictions about run-time behaviors. Differ-
ences among gradual languages arise over what makes for
a convenient mix. True gradually-typed languages include
a universal Dynamic type that helps to blur the distinction
between typed and untyped code [52]. Migratory typing sys-
tems add idiomatic types to an existing language [61]. Other
mixed-typed methods include the development of novel lan-
guages [70, 42, 37, 49] and compilers [47, 5].

With these various end-goals in mind, our formal devel-
opment (section 3) begins with two restrictions: types may
only be enforced with ahead-of-time techniques and there
is no dynamic type. These rules ensure a widely-applicable
baseline for languages that can mix typed and untyped code.

2.2 Deep and Shallow Types

Sound gradual language designs do not agree on how types
should guide the behavior of a program. Two leading alterna-
tives for run-time properties are deep and shallow types. To
a first approximation, deep types enforce (but do not verify)
the same guarantees as conventional static types and shallow
types enforce only local type soundness.

Figure 1 presents a three-module program to illustrate the
gap between deep and shallow types. The untyped module
on top contains a stub definition for a function text that
expects two arguments. This module is a simplified picture of
the Racket images/icons/symbol module, which incorpo-
rates thousands of lines of rendering and raytracing code—a
module that is easiest left untyped. The typed module in the
middle is an interface for the untyped function, which passes
on (in a higher-order manner) to clients who might rely on
the type. The type correctly states that text expects a string
and a font object and computes a bitmap object. Finally, the
untyped client module on the bottom mistakenly calls text
with two strings instead of one string and one object.

The question raised by this example is whether static
types can catch the mistake in the untyped client. Deep and
shallow types give opposite answers:

e Deep types enforce the typed interface with run-time
obligations for both the client and the library. Because
the client sends a string where the type expects a font
object, the client triggers a run-time type error.

e Shallow types guarantee the local integrity of typed
code, but nothing more. The untyped client is allowed
to send any input to the untyped text function, in-
cluding two strings, without causing a type-level error.
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(define (text s f)
;; render string s using font f

L)
\4
(require/typed/provide
(text (-> String Font Bitmap)))
\4

(text "cat" "roman")

Figure 1: Untyped library, typed interface, and untyped
client
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Figure 2: Outline for deep, shallow, and untyped interactions

From a theoretical perspective, shallow types satisfy a
type soundness property and nothing more [68, 25]. Sound-
ness states that the type of an expression predicts the kinds
of values that evaluation can produce. In typed code, these
predictions are often specific and useful. For example, an ex-
pression with a function type cannot evaluate to a number. In
untyped code, these predictions are trivial; soundness merely
ensures a well-formed result. A property that distinguishes
deep types from shallow is complete monitoring [12, 26].
Semantics that satisfy complete monitoring enforce types as
invariants that all clients, typed or untyped, can rely on.

2.2.1 Natural Semantics. One way to implement deep
types is the Natural semantics [58, 39, 50].! Natural inter-
prets types as contracts in a straightforward manner.? For
example, base types are enforced with predicate checks, types
for immutable values are enforced with first-order traver-
sals, and types for higher-order values such as arrays and
functions are enforced with higher-order wrapper contracts.
Because each contract fully enforces a type, these contracts
need only guard the boundaries between typed and untyped
code. Within typed modules, code can run efficiently and
employ type-directed optimizations [57].

2.2.2 Transient Semantics. The Transient semantics is
an implementation of shallow types that does not require
wrappers [68]. Transient enforces types by injecting first-
order checks throughout typed pieces of code: typed, public
functions must check their inputs; typed modules must check
their untyped imports; and typed expressions must check

!Natural is a.k.a. Guarded [66], Behavioral [9], and Deep [63].

ZResearchers are actively seeking improved variants of Natural [34, 21, 53,
51, 20] and measuring the efficiency of implementations [14, 37]. Theoretical
results about Natural hold for these semantics-preserving variants as well.
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Figure 3: Surface syntax

the results computed during a function call, the elements
extracted from a data structure, and the outcome of any
downcasts. In figure 2, these conditions imply one check:
the typed interface must check that text is a function. In
general, every line of typed code may add several Transient
checks, but each check is inexpensive. By contrast to higher-
order contracts, the checks do not traverse values and do not
impose allocation and indirection costs.

3 Model and Metatheory

A normal gradual language allows for two styles of code,
typed and untyped, and uses run-time checks to enforce
the claims made by static types. Our model allows for three
syntaxes: deep-typed code, shallow-typed code, and untyped
code. Both deep and shallow code must satisfy the same
type checker, which validates conventional well-formedness
properties. Untyped code has fewer constraints. Run-time
checks enforce type claims at boundaries, but use different
strategies for deep and for shallow types.

Overall, the primary goal of the model is to test whether
deep, shallow, and untyped code can safely interoperate. A
secondary goal of the model is to outline an implementation.
For this reason, the three syntaxes compile to one kernel
language that can express a variety of standard run-time
checks: a wrap term applies a contract, a scan term performs
a first-order (predicate) check, and a noop term represents
a boundary that any value may cross. Figure 2 sketches the
plan for applying these terms at type boundaries in a way
that protects deep and shallow code from untyped values
(including values that have passed through a typed context).

3.1 Three-Way Surface Syntax

The surface syntax (figure 3) equips a basic expression lan-
guage with optional type annotations and module bound-
aries. Surface expressions s consist of function applications
(app s s), primitive operation applications (unops, binops s),
variables x, integers i, pairs (s, s), and optionally-annotated
functions. An untyped function has no annotation (Ax.s), a
deep-typed function has a plain type annotation (A(x:7). s),
and a shallow-typed function has an underlined type an-
notation (A(x: 7). s). The underline is a syntactic hint that
only the top-level shape of this type is guaranteed at run-
time. Types 7 express natural numbers (Nat), integers (Int),
pairs (rX7), and functions (r — 7). Modules associate a label
with an expression (module L s). The label L is either D for
deep-typed code, S for shallow-typed code, or U for untyped
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code. For example, the term (module D s) says that sg is a
deep-typed expression. Any module expressions within s,
are free to use any typing style (D, S, or U).

3.2 Three-Way Surface Typing

Deep and shallow code must satisfy strong (and equal) type
constraints. Untyped code is subject to a weaker constraint;
namely, it cannot reference variables that it did not bind.
These well-formedness conditions are spelled out in the typ-
ing judgment of figure 4, which relates a type environment
I' and an expression s to a result specification. A result T is
either a type 7 for deep-typed code, an underlined type 7,
for shallow-typed code, or the uni-type U for untyped code.

With the exception of modules, the typing rules are stan-
dard for a basic functional language. Modules allow any
kind of expression to appear within another. For instance,
an untyped expression may appear within a deep expression
provided that the untyped code is well-formed. There are
seven such rules to ensure that the module language (Lo)
matches the type of the subexpression (Tp); figure 4 presents
these rules as one template rule (in [brackets]) and a table.

Figure 4 also defines a subtyping judgment (<:) and a type-
assignment for primitive operations (A). Subtyping declares
that the natural numbers are a subset of the integers and
extends this covariantly to pairs and contra/co-variantly to
function domains/codomains. The primitive operations are
consequently overloaded to accept natural numbers or inte-
gers. The purpose of this basic subtyping judgment is not
to sketch out a numeric tower [3], but rather to show that
an upcast (via subtyping) can weaken the run-time checks
that shallow code inserts. Weakening may have serious prag-
matic implications for gradual union, intersection, and object
types [8, 59, 2, 56, 35, 62].

3.3 Common Evaluation Syntax

Evaluation expressions e consist of variables, values, primi-
tive applications, function applications, errors, and bound-
ary terms. Unlike the surface syntax, there are no module
terms. Instead, the three boundary terms describe run-time
checks. A wrap boundary asks for the full enforcement of
a type, either with a comprehensive first-order check or a
higher-order wrapper. A scan boundary asks for a first-order
type-shape (o) check. A noop boundary asks for no check.
Values and errors represent the possible results of an eval-
uation. The values are integers, pairs, functions, and guard
wrappers. A guard wrapper (G (10 — 71) vp) provides type-
restricted access to a function. Shallow-typed functions have
a shape annotation and a scan tag in the evaluation syntax
(A(x : scan ). e) to suggest that such functions must vali-
date the shape of their input at run-time. Errors may arise
from either a failed check at wrap boundary (WrapErr), a
failed check at a scan boundary (ScanErr), a division by zero
(DivZerokErr), or a malformed untyped expression (TagErr).
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Figure 4: Surface typing (selected rules), subtyping, and
types for primitive operations

e =x|v| (e e)| unope | binopee | appee |
Error | wrapt e | scano e | noop e

v =i|{(v,v) | Ax.e | A(x:7).e | A(x:scano).e |
G(r—1)v

o = Nat | Int | Pair | Fun | Top

Error = WrapErr | ScanErr | DivZeroErr | TagErr

E = o | unopE | binopEe | binopvE | (E,e) | (v,E) |

appEe | appvE | noopE|scanc E | wrapt E

Figure 5: Evaluation syntax

3.4 Three-Way Evaluation Typing

The evaluation syntax comes with three typing judgments
that describe the invariants of deep, shallow, and untyped
code. The deep typing judgment (+-p) validates full types, the
shallow judgment (Fs) checks top-level type shapes, and the
untyped judgment (+-¢;) checks that all variables are bound.
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Figure 6: Deep typing judgment (selected rules)

Both the deep and untyped rules are similar to the cor-
responding surface-language rules because they support
equally-strong conclusions (full types and the uni-type). The
shallow judgment is different because it validates type shapes
instead of full types. When inspecting a pair, for example, the
shallow judgment concludes with the Pair shape no matter
what shapes the elements have. Consequently, a pair elimi-
nation form such as (fst x¢) has the Top shape because the
pair may contain any sort of value. Similar comments apply
to functions and applications. Thus if a program expects a
certain shape from a pair element or a function call, then the
program must use a scan term to confirm the expectation.

3.5 Compilation from Surface to Evaluation

A compilation pass maps surface terms with modules to
evaluation-language terms with run-time checks. The goal
of the inserted checks is to ensure that well-typed surface
expressions are well-typed in the evaluation syntax.

e In deep-typed code, all module boundaries to non-
deep code become wrap checks. Compilation inserts
no other checks.

e In shallow code, deep boundaries become wrap checks
and untyped boundaries become scan checks. Extra
scan checks protect typed code (e.g., from pairs).

o In untyped code, boundaries to deep modules become
wrap checks and boundaries to shallow modules be-
come scan checks. There are no other checks.

The rules in figure 9 present selected details of compilation.
Variables compile to themselves. Functions in deep (and un-
typed) code simply recur on the function body and compile
to a new function. Functions in shallow code add a scan tag
to their argument to indicate the need for a domain check,
because untyped code can potentially invoke these functions.
Applications in deep (and untyped) code recur on their subex-
pressions. Applications in shallow code insert an additional
scan check to validate the result. Pair elimination forms (fst,
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Figure 7: Shallow typing (selected rules), subtyping, and
type-to-shape metafunction
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Figure 8: Untyped typing judgment (selected rules)

snd) use scans in a similar way. Finally, one template rule
and a table represent six rules for module boundaries. These
rules correspond to arrows in figure 2.

Example. The three-module program from figure 1 can
be encoded with shallow types roughly as follows:
let xo = module § (module U (Axg x1._)) in
appxo ‘cat’ ‘roman’
Compilation yields a term with one scan check:
let xo = noop (scan Fun (Axg x1._)) in
app xo ‘cat’ ‘roman’
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Figure 9: Surface-to-evaluation compilation (selected rules)

3.6 Reduction Relation

The left half of figure 10 presents a notion of reduction for
the evaluation syntax. (Section 3.7 discusses the right half.)
Each rule relates two expressions (e > e). Rules that share a
syntactically-equal domain come with a test for the domain
expression. These tests use basic set theory to pattern-match
on expressions; for example, the test (vy € A(x:7). e) holds
when the value v is a type-annotated lambda.

The rules for unary and binary operations apply the §
metafunction (figure 11) and halt with a tag error if § is
undefined. In general, § models the behavior of a run-time
system that works at a lower level of abstraction than the
evaluation language. For unary operations, § eliminates a
pair. For binary operations, § performs arithmetic.

The rules for function application check that the first ex-
pression is a function and try to substitute the argument
expression into the function body. If the function has a type-
shape annotation (o), then a shape check (figure 11) vali-
dates the argument before substitution. If the function is
enclosed in a guard wrapper, then the application unfolds
into two wrap checks: one for the argument and one for the
result. Functions that are wrapped in several guards must
step through several unfoldings.

The remaining rules state the behavior of run-time checks.
A noop boundary performs no check and lets any value
across. A scan boundary checks the top-level shape of an
incoming value against the expected type-shape, and halts
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unop vy > TagErr
if §(unop, vy) is undefined

unop vy > §(unop, vy)
if §(unop, vy) is defined
binop vy v, > TagErr

if 8(binop, vy, v1) is undefined

binop vy vy > §(binop, vy, v1)
if 8(binop, vy, v1) is defined

app vy v; > TagErr
if ~shape-match (Fun, vy)

app (Axo. eg) vo > eq[x0 < Vo]

app (A(xo:70). eg) vo B> eo[x0 0]

app (A(xg:scan ay). eg) vo > ScanErr

if —shape-match (oy, vy)

app (A(xo :scan ay). ey) vo > eo[xo < Vo]
if shape-match (g, vy)

app(G(rp— 1) vo)vr b
wrap 71 (app v (wWrap 7 v1))
noop vy > g

scah oy Vg > ScanErr
if =shape-match (o4, vo)

scan oy Vg > g
if shape-match (0, vo)

wrap 7y U > WrapErr
if —shape-match (shape (zy), vo)

wrap (1o — 71) vg > G (1g—11) vy
if shape-match (Fun, vy)

wrap (1o X71) {vo, V1) > (wrap Ty Vg, Wrap 71 v )

wrap Ty g > g
if 7y € Int U Nat and shape-match (zy, vy)

def . . .
e —" e| = reflexive, transitive, compatible

(w.r.t. E) closure of >

o are

Fss: T~ e Aep > e

(€)' (o)
- 4
(unop (v0)™) > (TagErr)t
if vy ¢ (v)! and d(unop, vy) is undefined
R ~
(unop (o)) 5+ (8(unop, vp)) "
if d(unop, vy) is defined

(binop (v0) (01)™) " (TagErr)®

ifv; ¢ (v)’ and d(binop, vy, v1) is undefined

(binop (vo)™ (v1)"
if 8(binop, vy, v1) is defined

- 4
(app (o)™ v1) B* (TagErr)!
if vy ¢ (v) and —shape-match (Fun, vy)

N
(app (Ax0. €)™ vg)

N
(app (A(x0:70). €)™ vo)

- 4
(app (A(xq :scan ay). e)" v9) B (Scan Err)®
if ~shape-match (oy, vy)

ly
) 5+ (8(binop, vy, v1))"2
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(scan o (v9)")
if =shape-match (oo, vo)

(scan g (w0)™) "

if shape-match (oy, vo)

= 0
(wrap 7o (v0)") 5+ (WrapErr)©
if ~shape-match (shape(z), vo)

= 0
(wrap (79— 1) (v9)")
if shape-match (Fun, vy)

N
(wrap (70x71) ({v0, 01))"")

= ¢
(wrap 7o (v0)") 5 (1)
if 7y € Int U Nat and shape-match (ty, vy)

5 (vp) 0

def
+ . e .
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(w.r.t. E) closure of

Figure 10: Semantics for the evaluation syntax (left) and a labeled variant (right)
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‘5:unova—>v‘

O(fst, (vg, v1)) = vy
d(snd, (vg, v1)) = vy

’5:binop><v><v—>v‘

5(]1)][,15, i(), ll) = io + il
d(quotient, iy, 0) = DivErr
d(quotient, iy, i) = |io/i1]

‘ shape-match: o X v— B ‘

shape-match (Fun, vg) = True
ifvg € Ax.e UA(x:7). e UA(x:scano).e UG T v

shape-match (Pair, (v, v1)) = True

shape-match (Int, i) = True
shape-match (Nat, ng) = True
shape-match (Top, vo) = True
shape-match oy, vg) = False

otherwise
el 1 ln) = b+ 1o

Figure 11: Semantic metafunctions

if the two disagree. Lastly, a wrap boundary checks the top-
level shape of a value and then proceeds based on the type.
For function types, a wrap installs a guard wrapper. For pairs,
a wrap validates both components and creates a new pair
value. For base types, the shape check is enough.

The semantics of the evaluation syntax is given in standard
fashion [13] as the the reflexive, transitive closure of the
compatible closure of > relative to the evaluation contexts
(E) from figure 5. Each expression has a unique redex thanks
to the inductive structure of evaluation contexts.

3.7 Labeled Evaluation, Deep Label Consistency

The model requires two final definitions to enable a syntactic
analysis of complete monitoring: a label-annotated reduction
relation and a consistency judgment that validates the labels.
Labels provide a specification of who owns what in a running
program. More precisely, the labels on an expression describe
the surface modules that are responsible for the behavior
of the expression. A consistently-labeled expression keeps
deep-typed code separate from shallow and untyped code.
Informally, consistent labelling is possible if a semantics can
check all inputs to and outputs from deep-typed values.
The right half of figure 10 presents a labeled notion of
reduction for the evaluation language.® By design, the reduc-
tion rules are identical to the basic rules from figure 10 except
for superscript labels and parentheses. Labels are metadata;
they do not change the underlying behavior of a reduction
rule. The labels on the left-hand expression of each rule give
names to the parties responsible for any relevant subexpres-
sions. The labels on the right-hand expression show how

3The design of a labeled reduction relation is like any other definition in that
it requires ingenuity to create and careful reading to understand. To help
readers gain an intuition for appropriate labeling, the appendix presents
the guidelines that underlie figure 10.
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e =x|v|(ee)| unope| binopee | appee | Error |
wrap © (e)’ | scana ()’ | noop (e) | (e)¢
v =i|(v,0) | Ax.e | A(x:7).e | A(x:scano).e |

G(r—1) () | ()

E=...|(E)f

C=Dy [ Di|...[SolS|...[UlU]...
¢ = sequence of labels (¢)

L=-](x:0),L

)" = ()

Figure 12: Labeled evaluation syntax

Abbreviation: (- - - (eo)fO .-

responsibilities change in response to the reduction step. For
example, an untyped function application (app (Axy. ey) vo)
substitutes an argument value into the function body. Be-
cause of the substitution, the parties that were responsible
for the function become responsible for both the value and
for the expression that the function computes. The label
metafunction rev (figure 11) keeps these labels in proper or-
der by reversing them—because the argument value flows in
to the function.

Labels typically accumulate without bound. The only way
that labels may disappear is after a successful run-time check
or after an error (when evaluation is over). For example, the
wrap rule for base types says that client £; may assume full
responsibility of numbers that reach a well-typed boundary.

Technically, the addition of labels to the evaluation lan-
guage calls for an entirely new syntax (figure 12). The ex-
pression form (e) attaches a label to any subexpression. A
similar value form (v)¢ lets any value appear under an arbi-
trary number of labels. These labels correspond to modules
from the surface syntax, and thus combine a kind (9D, S, or
U) with a unique identifying number. The labeled syntax
has two other noteworthy aspects:

o All boundaries require a label for their subexpression.
This means that the v in the following four patterns
must have at least one label: (wrap 7y vy), (scan oy vy),
(noop vy), and (G 1y vy).

e To reduce parenthesis and superscripts, the abbreva-
tion (-)" captures a sequence of labels. For example,

¢ -
the value ((_(4)50)[1) * matches the pattern (vo)?® with
Vo = 4 and f() =€0, 51, 52.

Figure 13 presents a consistency judgment for labeled ex-
pressions. The judgment allows any mix of shallow ($) and
untyped (U) labels around an expression, but restricts the
use of deep labels (D). Concretely, the judgment analyzes an
expression relative to a context label and an environment
(L). Variables must have a binding in the label environment
that matches the context label and most other expressions
simply need consistent subterms; these rules are deferred
to the appendix. Boundary expressions and guarded values
are ownership switch points; these terms are consistent if
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;Lo I eg ;Lo I g ;Lo I eg ;Lo IF vy Dy; Ly I+ e
to; Lo - noop (eo)g1 Co; Lo I+ scan oy (60)(31 Co; Lo - wrap 1 (eo)’l?1 £o; Lo - G 1 (vo)f1 Dy; Lo I+ (eo)@1
S1; Lo - e Uy; Lo I+ e Uy Lo - e So; Lo I e
So3 Lo I+ (eo)™ So3 Lo I (e0)™ Up; Lo - (eo)™ Uos Lo + (eo)™

Figure 13: Deep label consistency (selected rules)

their subterm matches the context label that appears inside
the boundary. The rules for labeled expressions specify the
allowed mixtures. Shallow and untyped labels can mix to-
gether around an expression, but a deep-labeled expression
must have only deep labels around it.

3.8 Properties

Type soundness predicts the possible outcomes of a well-
typed expression. Because the surface language allows three
kinds of typed expression (deep, shallow, and untyped), the
definition is parameterized over both a language kind L and a
characterization function F that maps a subset of the surface
types T to an evaluation-language type (either 7, o, or U).

Definition 3.1 (TS (+1, F)). Language L satisfies TS (rr, F)
if for all sy such that s so : T holds and F (T) is defined, one
of the following holds:

e s —* vy and rp vy : F(T)
e so —" Error
e 59 —" diverges

There are three important characterization functions F
for the analysis: 1 is the identity function on types 7; shape
maps underlined types 7, to shapes o (similar to shape from
figure 7); and 0 maps U to u.

Theorem 3.2 (type soundness).
e Language D satisfies TS (Fp, 1)
e Language S satisfies TS (-5, shape)
e Language U satisfies TS (Fq;, 0)

Proof Sketch. By lemmas for progress, preservation, and com-
pilation (deferred to the appendix). O

Unlike a conventional soundness theorem [40, 69], defini-
tion 3.1 does not claim that the evaluation of a well-typed
expression cannot go wrong by throwing a tag error. Such
a claim would not hold for typed expressions that contain
faulty untyped modules. It is true, however, that the reduc-
tion of a well-typed redex cannot yield a tag error:

Lemma 3.3 (type discipline). Ife, is typed (either o ey : 7o
or ts ey : 09) and ey > ey then e; ¢ TagErr.

Complete monitoring states that the evaluation language
has control over every interaction between deep-typed code

and weaker code. More precisely, the proof-technical ques-
tion is whether the labels that arise in evaluation are consis-
tent according to the I judgment (figure 13).

Theorem 3.4 (complete monitoring). If rs so: T ~ ey and
Co;- I+ eg and ey 5% eq then £y;- I €.

Proof Sketch. By a preservation argument. The proofs for a
few interesting cases are sketched below. Other cases are in
the appendix.

C . T b + £1rev(Ty) bty

ase: (app (Axo. €)™ vo) >((eo[x0 (o) D
1. ¢y is all deep or a mix of shallow and untyped, by
deep-label consistency of the redex

. €15+ IF vy, also by deep-label consistency of the redex

. let £, be the rightmost label in the sequence £,

Cose - ((vo))g1 rev(to) by steps 1 and 2

. ;- I+ xo for each occurrence of x in ey, by deep-
label consistency of the redex

6. by a substitution lemma

SN

Case: (app(Gro—n (Uo)go)) v ) '>+
(wrap s (app o (wrap o (o)) )
1. £o; - I+ vy, by deep-label consistency of the redex
2. {3;+ I vy, again by deep-label consistency
3. {, is either all deep or a mix of shallow and untyped,
again by the consistency of the redex
4. by the definition of I
Case (noop (o)) "5 (o)
by the definition of ~», because a noop boundary con-
nects either two deep components or a mix of shallow
and untyped components (self edges or § to U)

= ¢
Case: (scan oy (v9)") IDJ'(ScamErr)f1
by the definition of I

- ¢ -
Case: (scan oy (v0)%) 5 (vo)""
by the definition of ~», because a scan boundary links
only shallow and/or untyped components

= { = {1
Case: (wrap (19— 71) (v0)™) 5 (G 50— 11 (00)™)
by the definition of I O

4 Implementation Challenges

We have implemented three-way interactions atop Typed
Racket. The extension combines the standard “Deep” Typed
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Racket, which implements the natural semantics [60], with
the “Shallow Racket” implementation of transient [27]. Pro-
grammers may choose deep or shallow types when declaring
a module. Switching between the two is a one-line change
except in programs that fine-tune the checks that guard type
boundaries (section 4.4).

For the most part, the model was an effective guide for the
implementation. Deep and Shallow share a common surface
syntax, type checker, and evaluation syntax. The key issue
was how to modify these compiler back-ends to produce
code with context-dependent runtime checks. Unexpected
challenges arose regarding separate compilation, the enforce-
ment of deep types, and metaprogramming.

4.1 Wrapping Contracts and Type Environments

Higher-order exports from deep-typed code need protection
from untyped and shallow-typed clients. Wrapping contracts
are a convenient way to implement this protection because
they let deep modules share exports with no performance
overhead. They introduce a problem with separate compi-
lation, however, because the type checker for shallow code
must find a type for these wrappers to understand uses of
deep-typed identifiers.

In Typed Racket, all exports from deep code statically
resolve to either an unwrapped identifier or a wrapped one
depending on the context in which they are used [10, 57].
The wrappers do not have types due to the organization of
compiled code. Types appear in one submodule [18] while
wrappers appear in a sibling submodule to delay the cost of
building them. But because the wrappers are implemented as
Racket contracts [16], they come with a compile-time pointer
to the unwrapped identifier. Shallow Racket follows these
pointers to typecheck interactions.

4.2 Shallow-to-Deep Contracts

Deep-typed code needs to wrap imports from untyped and
shallow-typed modules. Because untyped imports lack types,
the straightforward solution is to ask programmers for a
type-annotated import statement and to generate contracts
at the import. Shallow imports already have types. This raises
a question about where to prepare the validating contracts:
the exporting shallow module or the importing deep module.

Shallow Racket eagerly prepares contracts for its deep-
typed clients and stores these contracts in a lazily-loaded
submodule. The main benefit of this approach is that multiple
clients can reference one set of contract definitions.

4.3 Macros and Hidden Exports

Macro expansion may cause private identifiers from one
module to appear in the expansion of another module [17, 19].
If one module uses deep types and the other uses shallow, this
behavior is a threat to type soundness. The stowed identifiers
must be protected like any other export.
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By default, Deep and Shallow Racket cannot share macros.
Programmers can enable reuse by exporting a macro unsafely.
An open question is whether a static analysis can determine
which macros may safely cross type boundaries.

4.4 Three-Way Boundary Utilities

Static types and higher-order contracts are fundamentally
different tools. Types enable proofs via static analysis. Con-
tracts check behaviors dynamically. For certain types, such
as a type for terminating functions [44], it is difficult to gen-
erate an approximating contract. A language may therefore
wish to offer an API that lets programmers specify the con-
tracts that enforce deep types at a boundary. These APIs
must be adapted to support a three-way implementation.

Typed Racket comes with two tools for type boundaries.
The first, require/untyped-contract, expects a typed iden-
tifier and a subtype of the identifier’s actual type; it uses the
subtype to generate a contract. This behavior can make it
somewhat harder to switch from Deep to Shallow types. For
example, the standard array library uses this tool to give
untyped code access to an overloaded function that expects
either an array of integers or an array of natural numbers.
Rather than generate a contract based on the overloaded type,
which would require a higher-order union contract, the li-
brary uses a subtype that expects arrays of integers. Shallow
code can access this array function as well, but only through
the contract. Switching a module from Deep to Shallow may
therefore require casts to meet the subtype.

The second tool combines two identifiers. In the follow-
ing example, f is defined as a context-sensitive identifier
that expands to tf in Deep code and to uf in untyped code:
(define-typed/untyped-identifier f tf uf). Shallow
cannot be trusted with tf because of its weak soundness
guarantee, and it cannot use uf if that identifier lacks a type.
Thus, the tool needs a third input for Shallow contexts.

5 Evaluation

The integration of Deep and Shallow Typed Racket offers
substantial benefits over either one alone:

e Switching from Shallow to Deep strengthens the for-
mal guarantees for a block of code (section 5.1).

e Switching from Deep to Shallow can remove spurious
errors from a program (section 5.2).

e The combination of Deep and Shallow improves worst-
case overheads relative to untyped code (section 5.3).

5.1 Guarantees by Deep

By design, deep types enforce stronger guarantees than shal-
low. A deep type is a behavioral claim that is substantiated
by comprehensive run-time checks. No matter where a deep-
typed value ends up, the type constrains its behavior. A shal-
low type is valid only in a limited scope. If a value escapes
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(define b :
(box #\X))

(Boxof Char) | » (set-box! any #\Y)

Deep: cannot write to box

(define any : Any b) Shallow: (void)

Figure 14: Deep Racket enforces the top type (Any) with a
contract that rejects all inputs

to untyped or less-precisely typed code, e.g., via subtyping,
then its original type gets forgotten (section 2.2).

Prior work suggests that the relative weakness of shallow
types can lead to confusing situations. Lazarek et al. [38]
performed an automated study of debugging in Typed Racket
and found that Shallow blame errors are more likely to reach
a dead end than Deep blame errors. Tunnell Wilson et al. [63]
conducted a survey using a hypothetical gradual language
and reported that participants found the behaviors allowed
by shallow types “unexpected” more often than deep types.
Migrating from shallow to deep types may therefore be an
effective way of finding the root issue in a buggy program.

5.2 Expressiveness by Shallow

Shallow Racket can express a variety of useful programs
that Deep Racket rejects at run-time. At first glance, the
existence of such programs is surprising because the theory
suggests that the deep semantics is more “correct” (section 3).
It turns out that deep types can be overly restrictive; in such
programs, delayed shallow checks work better in practice. In
other programs, the gap between Deep and Shallow Racket
is due to implementation issues. Refer to the appendix for
motivating examples submitted by Typed Racket users.

5.2.1 Relaxed Top Type. Statically, the top type is a su-
pertype of every other type. Programmers often use this
type as a convenient placeholder to avoid committing to a
more-specific type. When enforced as a deep type, however,
the top type has a strict semantics that prevents clients from
inspecting top-wrapped values [15]. For example, if deep
code exports a function using a top type, then non-deep
clients cannot invoke the function.

The shallow top type imposes no such restrictions. Un-
typed code may invoke a shallow function exported via the
top type, and may even write to a top-typed array. These
behaviors can be useful and do not undermine the weak
shallow soundness guarantee.

Figure 14 presents an example in Typed Racket that uses
a mutable box and the top type Any, which is not a dynamic
type. When module in the left part of the figure uses Deep
types, the untyped client cannot mutate the box. With Shal-
low, untyped mutations are allowed.

5.2.2 No Missing Wrappers. Mutable values that can ap-
pear in deep code need tailored wrappers to monitor their

Ben Greenman

interactions with non-deep clients. These wrappers are diffi-
cult to implement because they often require support from
the run-time system [54]. Unsurprisingly, some infrequently-
used types in Deep Racket lack wrappers (12 in total).

By contrast, a shallow language avoids the question of how
to implement wrappers. Shallow types need only first-order
checks, which require far less engineering.

5.2.3 Uniform Behavior. Although the purpose of deep
wrappers is to reject type-incorrect operations without oth-
erwise changing behaviors, certain wrappers in Deep Racket
do cause subtle changes. The most problematic ones are the
wrappers for polymorphic types. Deep Racket enforces types
such as (A11 (A) (-> A A)) with a function contract that
seals inputs and unseals outputs [32]. The seals change the
outcome of basic operations.

Shallow Racket avoids all such changes in behavior, in-
cluding the well-known object identity issues [54, 36, 66, 65],
because the transient semantics does not use wrappers.

5.3 Performance by Deep and Shallow

The three-way mix of deep and shallow types improves per-
formance across the board. On the GTP benchmark suite
v6.0 [31], toggling between deep and shallow avoids patho-
logical cases. Mixing deep and shallow modules can further
improve performance, up to 2x faster than deep or shallow
alone (relative to untyped code).

All data in this section was collected on a single-user Linux
box with 4 physical i7-4790 3.60GHz cores and 16GB RAM.
The machine ran Racket v7.8.0.5+ [46] and a pre-release of
Typed Racket [64] that extends Typed Racket v1.12. Each
data point is the result of running one program configuration
nine times in a row and averaging the speed of the final eight
runs. Our Racket [46] does not optimize transient checks to
the same extent as a tracing JIT compiler (section 6), so there
is potential room for improvement.

5.3.1 Deep and Shallow Combined. Mixing deep and
shallow types within one program configuration can improve
its performance. Such configurations are quite common in
the GTP benchmarks. Out of the 2V configurations in sixteen
of the smaller benchmarks, a median of 37.5% run fastest with
a mix of deep and shallow types (table 1). These mixtures
also increase the number of D-deliverable migration paths
(defined in section 5.3.4). All paths in fsm, morsecode, Inm,
and kcfa become 1.2-deliverable when configurations can
mix deep and shallow types.

These encouraging numbers are the result, however, of
a search through 3V configurations. The following three
subsections therefore investigate Deep and Shallow mixtures
without relying on an exhaustive search.

5.3.2 Case Studies. To test whether fast-running configu-
rations can be found without a search, we manually explored
deep and shallow combinations in the following programs:
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Table 1: Percent of configurations that run fastest with a
mix of Deep and Shallow modules.
Benchmark Best w/ D+S Benchmark Bestw/D+S

forth 12% zordoz 47%
fsm 38% Inm 66%
fsmoo 31% suffixtree 48%
mbta 19% kcfa 55%
morsecode 25% snake 46%
zombie 6% take5 36%
dungeon 31% acquire 64%
jpeg 38% tetris 62%

Table 2: Worst-case overheads vs. the untyped configuration
for Deep alone, Shallow alone, and an either-or mix.
Benchmark Worst Deep Worst Shallow Worst D||S

sieve 16x 4.36x 2.97x
forth 5800x 5.51x 5.43x
fsm 2.24x 2.38x 1.91x
fsmoo 420x 4.28x 4.25x
mbta 1.91x 1.74x 1.71x
morsecode 1.57x 2.77x 1.3x
zombie 46x 31x 31x
dungeon 15000x 4.97x 3.16x
jpeg 23x 1.66x 1.56x
zordoz 2.63x 2.75x 2.58x
Inm 1.23x 1.21x 1.17x
suffixtree 31x 5.8x 5.8x
kcfa 4.33x 1.24x 1.24x
snake 12x 7.67x 7.61x
take5 44x 2.99x 2.97x
acquire 4.22x 1.42x 1.42x
tetris 13x 9.93x 5.44x
synth 47x 4.2x 4.2x
gregor 1.72x 1.59x 1.51x
quadT 26x 7.39x 7.23x
quadU 55x 7.57x 7.45x

MsgPack. MsgPack is a Typed Racket library that con-
verts Racket values into serialized MessagePack data.* The
author of this library reported poor performance due to deep
type boundaries. Changing a bridge module from deep to
shallow types (a one-line change), reduces the time needed to
run all tests from 320 seconds to 204 seconds (40% speedup).

Synth. The synth benchmark is based on an untyped pro-
gram that interacts with a deep-typed math library to syn-
thesize music.” This untyped program runs 14x slower than
a deep-typed version because of the library boundary. When
the library uses shallow types instead, the gap between an
untyped and deep-typed client improves to 5x.

5.3.3 Deep or Shallow, Worst-Case. Both deep and shal-
low implementations have known bottlenecks. With deep

4gitlab.com/HiPhish/MsgPack.rkt
Sgithub.com/stamourv/synth
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Table 3: Percent of 3-deliverable migration paths for Deep
alone, Shallow alone, and an either-or mix.
Benchmark Deep paths Shallow paths D||S paths

sieve 0% 0% 100%
forth 0% 0% 50%
fsm 100% 100% 100%
fsmoo 0% 0% 50%
mbta 100% 100% 100%
morsecode 100% 100% 100%
zombie 0% 0% 50%
dungeon 0% 0% 67%
jpeg 0% 100% 100%
zordoz 100% 100% 100%
Inm 100% 100% 100%
suffixtree 0% 0% 12%
kcfa 33% 100% 100%
snake 0% 0% 0%
take5 0% 100% 100%

types, high-traffic boundaries can lead to huge costs [34, 55,
29]. With shallow types, every line of typed code contributes
a small cost [68, 28].

By switching between Deep and Shallow a programmer
can often, however, avoid the worst-cases of each. Table 2
quantifies the benefits of this either-or strategy on the GTP
benchmarks. The first column shows that, as expected, deep
types may have enormous costs. The second column shows
that the worst configurations for Shallow Racket are far
less severe. The third column shows, however, that toggling
between Deep and Shallow often avoids the pathologies of
each style. Numbers in this third column are typeset in bold
if they are the best (lowest) in their row.

Remark: the either-or “toggling” strategy is possible only
because Deep and Shallow can interoperate. Most of the
benchmarks rely on deep-typed code that lives outside their
N core migratable modules (16 out of 21 benchmarks). With-
out interoperability, the outside code would require changes
that are unrealistic to make in practice.

In table 2, the sieve and tetris benchmarks are notable
successes. The zombie benchmark is the worst. Deep Racket
pays a huge cost in zombie because functions repeatedly
cross its module boundaries. Shallow Racket pays a high cost
as well because zombie uses functions to simulate message-
passing objects, and therefore contains many elimination
forms that incur shape checks.

5.3.4 Migration Paths. The complementary strengths of
Deep and Shallow Racket can help programmers avoid bot-
tlenecks as they migrate an untyped codebase to a typed
configuration. Consider the set of all migration paths, each
of which begins at the untyped configuration and adds types
to one module at a time until reaching the fully-typed con-
figuration. A path is D-deliverable if all of its configurations
run at most D times slower than the untyped configuration.


https://gitlab.com/HiPhish/MsgPack.rkt
http://msgpack.org/
https://groups.google.com/g/racket-users/c/6KQxpfMLTn0/m/lil_6qSMDAAJ
https://gitlab.com/HiPhish/MsgPack.rkt
https://github.com/stamourv/synth
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Table 3 counts the proportion of 3-deliverable paths out
of all N! migration paths in a subset of the GTP benchmarks.
Larger benchmarks are omitted. The first column counts
paths in Deep Racket, the second column counts paths in
Shallow Racket, and the third column counts paths using
Deep or Shallow at each point. With Deep alone, all paths
in nine benchmarks reach a bottleneck that exceeds the 3x
limit. With Shallow alone, all paths in seven benchmarks
exceed the limit as well—often near the end of the migration
path. With the either-or mix, only one benchmark (snake)
has zero 3-deliverable paths.

6 Related Work

Two gradual languages, Thorn [70] and StrongScript [48],
support a combination of sound concrete types and erased
like types. Thorn is a scalable scripting language that com-
piles to the JVM [7]. StrongScript extends TypeScript [6]
with concrete types. Pyret explores a type-based combina-
tion, with deep checks for types that describe fixed-size data
and shallow checks for other types.® For example, pair types
get a deep check and list types get a shallow check. Static
Python combines shallow and concrete checks [4]. Shallow
checks are the default, and programmers can opt-in to con-
crete data structures. Outside the realm of gradual typing,
option contracts allow client code to trust (and skip checking)
specific contracts from server code [11].

The model in section 3 builds on the semantic framework
of Greenman and Felleisen [25], which is in turn inspired
by Matthews and Findler [39]. Unlike those frameworks, the
present model uses a surface-to-evaluation compiler similar
to how Chung et al. [9] compile several gradual languages to
the KafKa core language. The compiler in section 3 is inspired
by the coercion calculus [33]; in particular, its completion
pass that makes run-time type checks explicit.

There is a great deal of related work that addresses the
performance of deep or shallow types via implementation
techniques [14], static analysis [45, 44, 67, 41], compilation
techniques [5, 47, 49], and clean-slate language designs [42,
37, 43]. These improvements are orthogonal to a combined
language; they should apply to a three-way language as well
as any normal gradual language. As a case in point, our three-
way Typed Racket benefits from collapsible contracts [14].

7 Future Work

One drawback apparent in the model is that deep and shallow
cannot trust one another. Deep code always wraps inputs
from shallow code because they may have originated in un-
typed code. Greenman [22] sketches two ideas for removing
checks from deep—shallow boundaries. One requires an es-
cape analysis. The other asks for a shallow semantics that
creates wrappers (such as in [8]) instead of the transient se-
mantics. A third idea is to adapt confined gradual typing [1].

%Personal communication. pyret.org

Ben Greenman

If the type system can prove that confined values originate
in typed code and never escape to untyped, then deep and
shallow can freely share these values.

A second future direction is to identify best practices for
coding in a three-way language. Anecdotal experience sug-
gests the following strategy:

1. Start by adding deep types because their strong guar-
antees may help identify logical errors.

2. If performance becomes an issue, switch to shallow.

3. Once all critical boundaries are typed, use deep to
maximize the effect of type-driven optimizations.

Adapting the notion of a rational programmer [38] may pro-
vide a way to systematically test the usefulness of this mi-
gration plan. Meanwhile, there may be additional ways to
leverage the spectrum of type enforcement.

8 Conclusion

This is the first implementation of a sound gradual type
system where programmers can explicitly choose to trade
performance for guarantees as they add types. If a new set of
type annotations brings unacceptable overhead, switching
the types’ semantics from deep to shallow can avoid the
bottleneck and may even be good enough to deploy. The
guarantees from deep types can always be used for debug-
ging the inevitable failure, and can be applied sparingly to
defend a critical module. In the future, implementors may
wish to explore other ways to trade performance for guaran-
tees, making the trade-off even more programmable.
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