2020 25th International Conference on Pattern Recognition (ICPR) | 978-1-7281-8808-9/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICPR48806.2021.9412590

2020 25th International Conference on Pattern Recognition (ICPR)
Milan, Italy, Jan 10-15, 2021

MINT: Deep Network Compression via Mutual
Information-based Neuron Trimming

Madan Ravi Ganesh Jason J. Corso Salimeh Yasaei Sekeh
EECS EECS SCIS
University of Michigan University of Michigan University of Maine

Ann Arbor, Michigan

Abstract—Most approaches to deep neural network compres-
sion via pruning either directly evaluate a filter’s importance
using its weights or optimize an alternative objective function
with sparsity constraints. While these methods offer a useful
way to approximate contributions from similar filters, they often
either ignore the dependency between layers or solve a more
difficult optimization objective than standard cross-entropy. Our
method, Mutual Information-based Neuron Trimming (MINT),
approaches deep compression via pruning by enforcing sparsity
based on the strength of the dependency between filters of
adjacent layers, across every pair of layers in the network.
The dependency is calculated using conditional geometric mutual
information which evaluates the amount of similar information
exchanged between filters using a graph-based criterion. When
pruning a network, we ensure that retained filters contribute
the majority of the information towards succeeding layers which
ensures high performance. Our novel approach is highly com-
petitive with existing state-of-the-art compression-via-pruning
methods on standard benchmarks for this task: MNIST, CIFAR-
10, and ILSVRC2012, across a variety of network architectures
despite using only a single retraining pass. Also, we discuss our
observations of a common denominator between our pruning
methodology’s response to adversarial attacks and calibration
statistics when compared to the original network.

I. INTRODUCTION

Balancing the trade-off between the size of a deep network
and achieving high performance is the most important con-
straint when designing deep neural networks (DNN) that can
easily be translated to hardware. Although deep learning yields
remarkable performance in real-world problems like medical
diagnosis [1], [2], autonomous vehicles [3], [4], and others,
they consume a large amount of memory and computational
resources that limit their large-scale deployment. With current
state-of-the-art (SOTA) deep networks spanning hundreds of
millions if not billions of parameters [5], compressing them
while maintaining high performance is challenging.

In this work, we approach DNN compression using network
pruning [6]. There are two broad approaches to network
pruning, (a) unstructured pruning, where a filter’s importance
is evaluated using weights [6] or constraints like the 4
norm [7] on them, without modifying the overall objective
function, and (b) structured pruning, where the objective func-
tion is modified to include structured sparsity constraints [8].
Most unstructured pruning approaches ignore the dependency
between layers and the impact of pruning on downstream
layers while structured pruning methods force the network to

978-1-7281-8808-9/20/$31.00 ©2020 IEEE

Ann Arbor, Michigan

Orono, Maine

Deep Weight-based Ml-based
Network Pruning Pruning
Layer 1 * *
0.1_0.5 .)
0.35 0.06 0.06 + MI=162x10"*

Layer 2

21 03| |

021 - 0.25 (MI =210 107*
N O O O
Layer 3 (
g U/ N N _J

Fig. 1: Weight-based pruning does not consider the depen-
dency between layers. Instead it suggests the removal of
low weight values. Mutual information (MI)-based pruning
computes the value of information passed between layers,
quantified by the MI value, and suggests the removal of
weights from the latter layer

optimize a harder and more sensitive optimization objective.
The underlying common theme between both approaches is
their use of filter weights as a proxy for importance.

Evaluating a filter’s importance purely from its weights is
insufficient since it does not take into account the dependencies
between filters or account for any form of uncertainty. These
factors are critical since higher weight values do not always
represent its true importance and a filter’s contribution can be
compensated elsewhere in the network. Consider the exam-
ple shown in Fig. 1, where a simple weight-based criterion
suggests the removal of small valued weights. However, the
mutual information (MI) score, which we use to measure
the dependency between pairs of filters and emphasize their
importance, values the first layer’s weights over the latter layer.
Pruning based on the MI scores would ensure a network where
the retained filters pass on as much information as possible to
the next layer.

To overcome prior issues, we propose Mutual Information-
based Neuron Trimming (MINT) as a novel approach to
pruning deep networks that stochastically accounts for the
dependency between layers. Fig. 2 outlines our approach. In
MINT, we use an estimator for conditional geometric mutual
information (GMI), inspired by [9], to measure the dependency
between filters of successive layers. Specifically, we use a
graph-based criterion (Friedman-Rafsky Statistic [10]) to mea-
sure the conditional GMI between the activations of filters at

8251

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

ﬂctivations from each layer

N ’ : I

Compute Dependencies (p)

70 p(FHD FOY — (gt FO

Prune Deep Network \

7O

0 0
7FN(I) ‘ FN(I))

Train Fl(l‘*'l) Q F](\i(ﬁl)) P(FJ(\f(Jl:ll))) F]EQ‘)) = I(Fl(é(ﬁl)) Re-train/
..................... sort Fine-tune
_____________ (F FDY o p(FED FY,)
....... ——
\ O output 1o o, FO)t (FD, FY,) O OUD

Fig. 2: Illustration of the experimental setup highlighting the components of MINT. Between every pair of filters in consecutive
layers (I, 1 +1) we compute the conditional geometric mutual information (GMI), using the activations from each filter, as
the importance score. The total number of filters in each layer is defined by N () and N (*1). The conditional GMI score
indicates the importance of a filter in layer I’s contribution towards a filter in layer [+ 1. We then threshold filters based on the
importance scores to ensure that we retain only filters that pass the majority of the information to successive layers. Finally,
we retrain the network once to maintain a desired level of performance

layer land I+ 1, denoted by F (I_’), F (j’_"l), given the remaining

filters in layer I. On evaluating all such dependencies, between
filters of every pair of layers in the network, we sort the
importance scores. Finally, we threshold a desired percentage
of these values to retain filters that contribute the majority of
the information to successive layers. Thus, MINT maintains
high performance with compressed and retrained networks.

Through MINT, we contribute a network pruning method
that addresses the need to use dependency between layers
as an important factor to prune networks. By maintaining
filters that contribute the majority of the information passed
between layers, we ensure that the impact of pruning on
downstream layers is minimized. In doing so, we achieve
highly competitive performance to the SOTA across multi-
ple Dataset-CNN architecture combinations, highlighting the
general applicability of our method.

Further, we empirically analyze our approach using visu-
alizations that illustrate the focus of learned representations,
adversarial attacks, and expected calibration error, to provide
a better understanding of our method. We highlight a possible
common denominator between its security vulnerability and
decrease in calibration error while illustrating the intended
effects of retaining filters that contribute the majority of
information between layers.

II. RELATED WORKS

Deep network compression offers several strategies to help
reduce network size while maintaining high performance, such
as low-rank approximations [11], quantization [12], knowledge
distillation [13], and network pruning [6], [14], [15]. In this
work, we focus on network pruning since it offers a controlled
setup to study and compare changes in the dynamics of
a network when filters are removed. We broadly classify
network pruning methods into two categories, unstructured,
and structured, which we describe below. Also, we highlight

common strategies to calculate multivariate dependencies and
how they vary from our method.

A. Network Pruning

1) Unstructured pruning: Some of the earliest in this line of
work used the second-order relationship between the objective
function and weights of a network to determine which weights
to remove [16]. Although these methods provide deep insights
into the relationships within networks, their large computa-
tional requirements and run-times made them less practical.
They were surpassed by an alternative approach that thresh-
olded the weight values themselves to obtain a desired level of
sparsity before retraining [6]. Apart from the simplicity of this
approach, it also highlighted the importance of re-training from
known minima as opposed to from scratch. Instead of pruning
weights in one shot, [17] offered a continuous and recursive
strategy of using mini-iterations to evaluate the importance of
connections using their weights, remove unimportant ones, and
train the network. Similarly, [7] proposed pruning filters using
the l1-norm of their weight values as a measure of importance.
By melding network pruning using weights with network
quantization and Huffman coding [18] showed superior com-
pression performance compared to any individual pipeline.
However, the direct use of weight values across all these
methods does not capture the relationships between different
layers or the impact of removing weights on downstream
layers. In MINT, we address this issue by explicitly computing
the dependency between filters of successive layers and only
retaining filters that contribute a majority of the information.
This ensures that there isn’t a severe impact downstream.

A subset of unstructured methods uses data to derive the
importance of filter weights. Among them, ThiNet [14] posed
the reconstruction of outcomes with the removal of weights
as an optimization objective to decide on weights. More
recently, NISP [19] used the contribution of neurons towards

8252

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

the reconstruction of outcomes as a metric to remove filters.
These works represent a shift to data-driven logic to consider
the downstream impact of pruning, with the use of external
computations (e.g., feature ranking in [19]). Compared to
the deterministic relationship learned between the weights
and feature ranking methods, our method uses a probabilistic
approach to measure the dependency between filters, thereby
accounting for some form of uncertainty. Further, our method
uses one single prune-retrain step compared to multiple itera-
tions of fine-tuning performed in these methods.

2) Structured Pruning: The shift to structured pruning was
based on the idea of seamlessly interfacing with hardware
systems as opposed to relying on software accelerators. One
of the first methods to do this extended the original brain
damage [16] formulation to include fixed pattern masks for
specified groups while using a group-sparsity regularizer [20].
This idea was further extended in works that used the group-
lasso formulation [8], individual or multiple I, norm con-
straints [21] on the channel parameters, and in works that bal-
anced individual vs. group relationships [22] to induce sparsity
across desired structures. These methods explicitly affect the
training phase of a chosen network by optimizing a harder and
more sensitive objective function. Further, side-effects like-
stability to adversarial attacks, calibration, and differences in
the learned representations have not been fully quantified. In
our work, we optimize the standard cross-entropy objective

function, characterize and compare the behaviour of the orig-
inal network to their compressed counterparts.

Hybrid methods combine the notion of a modified objective
function with the measurement of the downstream impact of
pruning by enforcing sparsity constraints on the outcomes
of groups [23], using a custom group-lasso formulation with
a squared dependency on weight values as the importance
measure [24] or an adversarial pruned network generator
to compete with the features derived from the original net-
work [15]. The disadvantages of these methods include their
multi-pass scheme and large training times as well as those
inherited from modifying the objective function.

B. Multivariate Dependency Measures

The accurate estimation of multivariate dependency in high-
dimensional settings is a hard task. The first in this line of work
involved Shannon Mutual Information which was succeeded
by several plug-in estimators including Kernel Density Estima-
tors [25] and KNN estimators [26]. However, their dependence
on density estimates and large run-time complexity meant they
were not suitable for large scale applications including neural
networks. Faster plug-in methods based on graph theory and
nearest neighbour ratios [27] were proposed as an alternative.
More solutions that use statistics like KL divergence [28] or
Renyi-a [29] were proposed to help bypass density estimation
fully. Instead, in this work, we focus on a conditional GMI
estimator, similar to [9], which bypasses the difficult task of
density estimation and is also non-parametric and scalable.

1. MINT

MINT is a data-driven approach to pruning networks by
learning the dependency between filters/nodes of successive
layers. For every pair of layers in a deep network, we use
the conditional GMI (Section I1I-A) between the activations
of every filter from a chosen layer [and a filter from layer
[+ 1, given the existence of every other possible filter in layer
[to compute an importance score. Here, data flows from layer
[to 1+ 1. Once all such importance scores are evaluated, we
remove a fixed portion of filters with the lowest scores. This
induces the desired level of sparsity in the network before
we retrain the network to maintain high accuracy. The core
algorithm is outlined and explained in the sections below.

A. Conditional Geometric Mutual Information

In this section, we review conditional GMI estimation as
featured in [9] and use a close approximation of their method
to calculate multivariate dependencies in our algorithm.

finitjon We first defi 1. f f GMId d
> G parameters p'€ {0 T)aha 'g 2 91 p consider

d d
two random variables X6 R *and YR ¢ with joint and
marginal distributions f (X, y), f (x), and f(y) respectively.
The GMI between X and Y is given by

I(X;Y)= -1+ x
p

4pq) 1
Sy (X,¥) — afcew fr(¥)° dxdy — (p — q)
pfxy (X,y) + gfx(X)fv(y)

(1
Considering the special case of p = g =1/2 in Eqn. 1 we
obtain,

IX;Y) =1

2 Ixy (X, Y) i (X)fy (¥) dx dy. (2)
Jxy (X, y) + fx (X)fy (¥)

The conditional form of this measure, proposed in [9], is,

IX;Y|Z)=Ez[I(X;Y|Z=1z)], where 3)
IX;Y|Z=z) =
Ixviz(x, Y|Z) faz(x|Z)fv 1z(y]Z)
1 2 dx dy.
Jxv 1z(X,y £) * fxiz(x z)fv 1z(y z) Xy
4

Estimator In general, for a set of m samples drawn from
f(X,y, z), we estimate I[(X; Y Z) as follows: (1) Split data
into two subsets S1 and Sz, (2) Use the Nearest Neighbour
Bootstrap algorithm [30] to generate conditionally independent
samples from Sz points an(hna_me the new set S,. (3) Merge
St and S; ie. S = St S;. (4) Construct a Minimum
Spanning Tree (MST) on S. (5) Compute Friedman-Rafsky
statistic [31], Rm, which is the number of edges on the MST
linking dichotomous points i.e. edges connecting points in Si
to points in Sy. (6) The estimate for I(X;Y|Z), denoted by 9,
is obtained as 1— Rm/m . Note: Within the MINT, we apply
the conditional GMI estimator, indicated as the function p(),

on a set of activations obtained from each filter we consider.

8253

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

B. Approach

Setup In a deep network containing a total of L layers,
we compute the dependency (p) between filters in every
consecutive pair of layers. Here, the layer [is closer to the
input while layer [+1 is closer to the output among the chosen
pair of consecutive layers. The activations for a given node in
layer [+ 1, are computed as,

Fi*(x) = o(wx +b), (5)

where x € R™9 m is the total number of samples, d is the
feature dimension and x is the input to a given layer used to
compute the activations. o) is an activation function, w &€

A . .
RN (, ’and b are the weight vector and bias.

Notations
F,.(IH) : The activations from the selected filter iin layer

[+ 1,
N (+1) : Total number of filters in layer [+ 1.

SF (1) The set of indices that indicate the values that

are retained in the weight vector of the selected filter.

- p(): The dependency between two filters, computed using
IX; Y|Z) (importance score).
F: The set of all filters excluding F}(') in layer L

. Threshold on importance score to ensure only strong
contributions are retained.

Description In every iteration of MINT (Alg. 1), we find the
set of weight values in w to retain while the remaining are
zeroed out.

. For a given pair consecutive of layers (I, [+ 1), we
compute the dependency between every filter in layer
I + 1 in relation to filters in layer . The main intent
of framing the algorithm in this perspective is that the
activations from layers closer to the input have a direct
effect on downstream layers while the reverse is not true
for a forward pass of the network.

. Usir%g_ the %ctivations F() for the selected filters,
(F (R F (1) we compute the conditional GMI (Eqn. 4)

7

between t{lem given all the remaining filters in layer L
This dependency captures the relationship between filters
in the context of all the contributions from the preceding
layer. Since the activations of layer [+ 1 are weighted
combinations from all filters in the preceding layer, we
needtoaccount for this when considering the dependence
of activations between two selected filters.

. Based on the strength of each p(F(,-’+1), F}l)), the con-
tribution of filters from the previous layer is either re-
tained/removed. We define a threshold 6 for this purpose,
a key hyper-parameter.

SF a+1) stores the indices of all filters from layer [that

are retained for a selected filter F;, (#1). The weights for
retained filters are left the same while the weights for
the entire kernel in the other filters are zeroed out. In the
context of fully connected layers, we retain or zero out
specific weight values.

Algorithm 1: MINT pruning algorithm for filters of
layers (I, [+ 1)
for Every pair of layers (I, L +1),lc1,2,...,L _ 1
do
for F{*Y, ie1,2,... N+ do
Initialize SF(1+1) = J;
for F{V,j€1,2,...N" do
(I+1))y = (I+1) () y.
(F0, 5O = (ED, O | ROy,
if o(F; ,F;)= 6 then
. I
SF§1+1) = SF§Z+1) U 1ndex(Fj())
end
end

end

end

Group Extension While evaluating dependencies between
every pair of filters allows us to take a close look at their
relationships, it does not scale well to deeper or wider
architectures. To address this issue, we evaluate filters in
groups rather than individually. We define G as the total
number of groups in a layer, where each group contains an
equal number of filters. We explore in detail the impact of
varying the number of groups in Section IV-D. Although
there are multiple approaches to grouping filters, in this
work we restrict ourselves to sequential grouping, where
groups are constructed from consecutive filters. There
is no explicit requirement for a pre-grouping step before
our algorithm so long as a balanced grouping of filters isused.

Finer Details MINT is constructed on the assumption that the
majority of information from the preceding layer is available
and the filter in consideration can selectively retain contribu-
tions for a subset of previous filters. This allows us to work
on isolated pairs of layers with minimal interference on down-
stream layers since retaining filters with high MI will ensure
the retention of filters that contribute the most information to
the next layer. By maintaining as much information as possible
between layers, the amount of critical information passed to
layers further on is maintained.

IV. EXPERIMENTAL RESULTS

We breakdown the experimental results into three major
sections. In Section IV-C, we focus on the comparison of our
method against SOTA deep network pruning algorithms, in
Section IV-D we highlight the significance of various hyper-
parameters used in MINT, and finally, in Section IV-E we
characterize MINT-compressed networks w.r.t. their learned
representations, response to adversarial attacks, and calibration
statistics and compare them to their original counterparts. As
a prelude to these sections, we describe the datasets, models,
and metrics used across our experiments. We restrict the
implementation details to the appendices.

8254

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

(98.55)

(98.55)

(98.52)

87 (98.55)
— | |
8" 10 20 50 8550 250 450 650
Number of groups (G)

arams. P
© @ ©
g8 8 8
Params. Pruned (%)
® » o
g % 8
3
8
&
&

Samples per class (m)

(@) (b)

Fig. 3: (a) An increase in the number of groups per layer
allows for finer grouping of filters which in turn leads to
more accurate GMI estimates and thresholding. Thus, there
is a steady increase in the number of parameters that can
be removed to achieve > 98.50 performance. (b) Keeping
G = 20, we observe that increasing the number of samples
per class improves the GMI estimate accuracy which in turn
allows for better thresholding and an increase in parameters
pruned. The values on top of the bar plots are test accuracy

A. Datasets and Models

Our experiments are divided into the following Dataset-
DNN combinations, in the order of increasing complex-
ity, MNIST [32] + Multi-Layer Perceptron, CIFAR10 [33]

+ VGGI16 [34], CIFARIO + ResNet56 [35] and finally
ILSVRC2012 [36] + ResNet50.

B. Metrics

Parameters Pruned (%): The percentage of parameters re-
moved from the baseline network. A higher value alongside
good performance indicates a superior method.

Test Accuracy (%): The best performance on the testing
set, upon training, for baseline networks, and re-training, for
pruning methods.

Memory Footprint (Mb): Memory consumed when storing
the weights of a network in CSR format under “npz” files.

C. Comparison against existing methods

As a first step in showcasing MINT’s abilities, we compare
it against SOTA baselines in network pruning. The baselines
in Table I are arranged in ascending order of the percentage
of parameters pruned, from top-down. Our algorithm outper-
forms most of the SOTA pruning baselines across the number
of pruned parameters while maintaining high accuracy and
reducing the memory footprint of the network. We note that
while most of the pruning baselines listed use multiple prune-
retrain steps to achieve their result, we use only a single step
to match or outperform them.

D. Hyper-parameter Empirical Analysis

We take a closer look at two important hyper-parameters
that help MINT scale well to deep networks, (a) number of
groups in a layer G, and (b) the number of samples per class,

m, used to compute the conditional GMI. Below, we look into
how each of them impacts the percentage of parameters pruned
while maintaining > 98.50% accuracy on MNIST + MLP.

Group size G directly corresponds to the number of filters
that are grouped together when computing conditional GMI
and thresholding. Higher G leads to lesser filters per group,
which should allow for a more fine-grained computation of
multivariate dependency and thereby, more precise pruning.
In this experiment, m = 250. Results in Fig. 3a match our
expectations by illustrating the increase in the percentage of
parameters pruned to maintain the desired performance.

Samples per class The number of samples per class directly
impacts the final number of activations used to compute the
conditional GMI. The GMI estimator should improve its esti-
mates as the number of samples per class and the total number
of samples is increased. In this experiment, G = 20. Fig. 3b
validates our expectation by showing a steady improvementin
the percentage of parameters pruned as the number of samples
per class and thereby the total number of samples is increased.

E. Characterization

The standard metrics used to compare deep network pruning
methods are the percentage of parameters pruned and the
overall recognition performance. However, the original intent
of compressing networks was to deploy them in real-world
scenarios which necessitate other characterizations like robust-
ness to adversarial attacks, the ability to reflect true confidence
in predictions, and more.

While the core idea behind MINT is to retain filters that
contribute the majority of the information passed to the next
layer, in using a subset of the available filters we remove
a certain portion of the information passed down. Fig. 4
compares the portions of the image that contribute towards the
desired target class, between the original (top row) and MINT-
compressed networks (bottom row). We observe that the use
of a subset of filters in the compressed network has reduced
the effective portions of the image that contribute towards a
decision, not to mention minor modifications to the features
used themselves.

To understand the impact of pruning networks in the context
of adversarial attacks we use two common adversarial attacks,
Iterative FGSM [39], which doesn’t exclusively target a de-
sired class, and Iterative-LL [40], which targets the selection
of the least likely class. Fig. 5 shows the response of the
original and MINT-compressed networks to both attacks. We
clearly observe that MINT-compressed networks are more
vulnerable to targeted and non-targeted attacks. We posit that
the reduction in the number of filters used and reduction in
available redundant features are the reason MINT-compressed
networks are vulnerable to adversarial attacks.

Calibration statistics [41] measure the agreement between
the confidence provided by the network and the actual prob-
ability. These measures provide an orthogonal perspective to

8255

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I: MINT is easily able to compete with SOTA pruning methods across all our evaluated benchmarks, using only a
single prune-retrain step. Baselines use multiple prune-retrain steps and are arranged in increasing order of Parameters Pruned
%. We highlight a subset of available methods in the table. * indicates comparison of layer 2’s weights

Method Params. Pruned(%) Test Accuracy (%) Memory(Mb)
Baseline N.A. 98.59 0.537
AT D SSL [8] 90.95* 98.47 N.A.
MNIQT Network Slimming[21] 96.00* 98.51 N.A.
MINT (ours)(6 = 0.645) 96.20% 98.47 0.022
Baseline N.A. 93.98 53.868
. Pruning Filters [7] 64.00 93.40 N.A
CIFAR-10 2o =2l 73.80 93.02 N.A
GAL [15] 82.20 93.42 N.A.
MINT (ours) (6 = 0.850) 83.46 93.43 9.020
Baseline N.A. 92.55 3.109
GAL [15] 11.80 93.38 N.A.
DNl Pruning Filters [7] 13.70 93.06 N.A.
CTEAR.1DO NISP [19] 42.40 93.01 N.A.
OED [37] 43.50 93.29 N.A.
MINT (ours) (6 = 0.184) 5241 93.47 1.552
MINT (ours) (6 = 0.208) 57.01 93.02 1.461
Baseline N.A. 76.13 91.157
GAL [15] 16.86 71.95 N.A.
OED [37] 25.68 73.55 N.A.
ResNet50 SSS [23] 27.05 74.18 N.A.
ILSVRC2012 NISP [19] 43.82 71.99 N.A.
ThiNet [14] 51.45 71.01 N.A.
MINT (ours) (6 = 0.1000) 43.01 71.50 52.365
MINT (ours) (6 = 0.1101) 49.00 71.12 47.513
MINT (ours) (6 = 0.1103) 49.62 71.05 46.925

Original ResNet56

Target: Bird

Target: Dog

Target: Cat

Fig. 4: Visualizations using GradCAM [38] illustrate the decrease in effective portions of the image that contribute towards
specific target classes in MINT-compressed ResNet56 (row 2) when compared to the original un-pruned network (row 1)

adversarial attacks since they measure statistics only for in-
domain images while adversarial attacks alter the input. Fig. 6
highlights the decrease in Expected Calibration Error (ECE)
for the MINT-compressed networks when compared to their

8256

original counterparts. The plot illustrates that the histogram
trend is closer to matching the ideal trend indicated by the
linear red curve. After pruning, the sparse networks seem to
behave similarly to a regularizer by focusing on a smaller

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

MLP - MNIST VGG16 - CIFAR10 ResNet56 (52.41%) - CIFAR10

80 ResNet50 (43.00%) - ILSVRC2012
08 —e— FGSM Original —e— FGSM Original
20 —e— FGSM MINT-compressed —e— FGSM MINT-compressed
80 = LL Original =t LL Original
96 80 —a= LL MINT-compressed 60 —A= LL MINT-compressed
o o s = -~
I £ E60 3
oy o) oy 340
S92 © 60 o o
=1 = 3540 S
8 S 50 8 8
<€ 90 < < < 20
=& FGSM Original o= FGSM Original 20
gg| —o= FGSM MINT-compressed \ 40| —a= FGSM MINT-compressed
—+— LL Original \ —s— LL Original Seo
gg| —~ LLMINT-compressed % 30| —a= LL MINT-compressed *<e o 0
0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008
Normalized & Normalized € Normalized € Normalized
(a) (b) () (d)

Fig. 5: By enforcing the use of an important subset of filters from all the available ones, MINT-compressed networks begin to
overvalue their importance. MINT-compressed networks seem more susceptible to targeted and non-targeted adversarial attacks
when compared to the original network. Here, E refers to the E ball in lo norm

A% Orig. MLP 10 Orig. VGG16 10 Orig. ResNet56 10 Orig. ResNet50
0.8 0.8 0.8 0.8
o6 306 06 o6
%) O 8] o
B B e =
§ 0.4 § 0.4 § 0.4 § 0.4
< < < <
0.2 0.2 0.2 0.2
080 02 04 06 08 10 080 02 04 06 08 10 %80 02 04 06 08 10 %80 02 04 06 08 10
Logit Bins Logit Bins Logit Bins Logit Bins
(a) ECE:0.0077 (b) ECE:0.0517 (c) ECE:0.0762 (d) ECE:0.0305
40 MINT MLP 10 MINT VGG16 10 MINT ResNet56 16 MINT ResNet50
0.8 0.8 0.8 0.8
o6 06 06 06
%) O O O
B B £ B
§ 0.4 § 0.4 § 0.4 é 0.4
< < < <
0.2 0.2 0.2 0.2
%80 02 04 06 08 10 %0 02 04 06 08 10 %80 02 04 06 08 10 %80 02 04 06 08 10
Logit Bins Logit Bins Logit Bins Logit Bins
(e) ECE:0.0054 (f) ECE:0.0500 (g) ECE:0.0383 (h) ECE:0.0069

Fig. 6: Calibration statistics measure the agreement between the confidence output of the network and the true probability. The
red line indicate the ideal trend. We observe that MINT-compressed networks act as a regularizer to decrease the Expected
Calibration Error (ECE) when compared to the original network as well as better match the ideal curve

subset of features and decreasing the ECE. On the other hand, use conditional GMI to evaluate importance and incorporate
the original networks contain many levels of redundancies stochasticity in our algorithm to help retain filters that pass
which could translate to overfitting and having higher ECE. the majority of the information through layers. In doing so,
MINT achieves better pruning performance than SOTA base-
lines, using a single prune-retrain step. When characterizing
In this work, we propose MINT as a novel approach to the behaviour of MINT-pruned networks, we observe that it
network pruning in which the dependency between filters of Dehaves like a regularizer and. improves the calibration of
successive layers is used as a measure of importance. We the network. However, a reduction in the number of filters

V. CONCLUSION

8257

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

used and redundancies makes pruned networks susceptible
to adversarial attacks. Our future direction of work includes
improving the robustness of compressed networks as well as
detailing the sensitivity of layers to network pruning.

ACKNOWLEDGMENT

This work has been partially supported (Madan Ravi

Ganesh and Jason J. Corso) by NSF IIS

1522904 and

NIST 60NANB17D191 and (Salimeh Yasaei Sekeh) by NSF
1920908; the findings are those of the authors only and do not
represent any position of these funding bodies.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

J.-G. Lee, S. Jun, Y.-W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim,
“Deep learning in medical imaging: general overview,” Korean journal
of radiology, vol. 18, no. 4, pp. 570-584, 2017.

A. M. Abdel-Zaher and A. M. Eldeib, “Breast cancer classification using
deep belief networks,” Expert Systems with Applications, vol. 46, pp.
139-144, 2016.

G. Tinchev, A. Penate-Sanchez, and M. Fallon, “Learning to see the
wood for the trees: Deep laser localization in urban and natural en-
vironments on a cpu,” I[EEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1327-1334, 2019.

S. M. Grigorescu, B. Trasnea, L. Marina, A. Vasilcoi, and T. Cocias,
“Neurotrajectory: A neuroevolutionary approach to local state trajectory
learning for autonomous vehicles,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 3441-3448, 2019.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, 2019, pp. 4780-4789.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135-1143.

H. Li, A. Kadav, 1. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.
W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074-2082.

S. Yasaei Sekeh and A. O. Hero, “Geometric estimation of multivariate
dependency,” Entropy, vol. 21, no. 8, p. 787, 2019.

J. H. Friedman, L. C. Rafsky et al., “Graph-theoretic measures of
multivariate association and prediction,” The Annals of Statistics, vol. 11,
no. 2, pp. 377-391, 1983.

M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in Proceedings of the British
Machine Vision Conference 2014. British Machine Vision Association,
2014. [Online]. Available: https://doi.org/10.5244%2Fc.28.88

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869—6898, 2017.

L. Lu, M. Guo, and S. Renals, “Knowledge distillation for small-
footprint highway networks,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2017.
[Online]. Available: https://doi.org/10.1109%2Ficassp.2017.7953072
J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058-5066.

S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and

D. Doermann, “Towards optimal structured cnn pruning via generative
adversarial learning,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 2790-2799.

Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598—605.
Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in neural information processing systems, 2016, pp.
1379-1387.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]
[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

8258

R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V.I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 9194-9203.

V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain
damage,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2554-2564.

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
2736-2744.

J. Yoon and S. J. Hwang, “Combined group and exclusive sparsity
for deep neural networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
3958-3966.

Z. Huang and N. Wang, “Data-driven sparse structure selection for
deep neural networks,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 304-320.

J. Li, Q. Qi, J. Wang, C. Ge, Y. Li, Z. Yue, and H. Sun, “Oicsr: Out- in-
channel sparsity regularization for compact deep neural networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 7046-7055.

A. Kraskov, H. Stogbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.

K. R. Moon, K. Sricharan, and A. O. Hero, “Ensemble estimation
of mutual information,” in 2017 IEEE International Symposium on
Information Theory (ISIT). 1EEE, 2017, pp. 3030-3034.

M. Noshad, K. R. Moon, S. Y. Sekeh, and A. O. Hero, “Direct estimation
of information divergence using nearest neighbor ratios,” in 2017 IEEE
International Symposium on Information Theory (ISIT). IEEE, 2017,
pp. 903-907.

N. Leonenko, L. Pronzato, V. Savani et al., “A class of rényi information
estimators for multidimensional densities,” The Annals of Statistics,
vol. 36, no. 5, pp. 2153-2182, 2008.

S. Gao, G. Ver Steeg, and A. Galstyan, “Efficient estimation of mutual
information for strongly dependent variables,” in Artificial intelligence
and statistics, 2015, pp. 277-286.

R. Sen, A. T. Suresh, K. Shanmugam, A. G. Dimakis, and S. Shakkottai,
“Model-powered conditional independence test,” in Advances in neural
information processing systems, 2017, pp. 2951-2961.

J. H. Friedman and L. C. Rafsky, “Multivariate generalizations of the
wald-wolfowitz and smirnov two-sample tests,” Ann. Statist., pp. 697—
717, 1979.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2016. [Online]. Available:
https://doi.org/10.1109%2Fcvpr.2016.90

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252,2015.

Z. Wang, S. Lin, J. Xie, and Y. Lin, “Pruning blocks for cnn compression
and acceleration via online ensemble distillation,” IEEE Access, vol. 7,
pp. 175 703-175 716, 2019.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618-626.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well calibrated
probabilities using bayesian binning,” in Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.

	Madan Ravi Ganesh
	Jason J. Corso
	Salimeh Yasaei Sekeh
	do
	Notations
	end end

