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Abstract—Most approaches to deep neural network compres- 
sion via pruning either directly evaluate a filter’s importance 
using its weights or optimize an alternative objective function 
with sparsity constraints. While these methods offer  a  useful 
way to approximate contributions from similar filters, they often 
either ignore the dependency between layers or solve a more 
difficult optimization objective than standard cross-entropy. Our 
method, Mutual Information-based Neuron Trimming (MINT), 
approaches deep compression via pruning by enforcing sparsity 
based on the strength of the dependency between filters of 
adjacent layers, across every  pair  of  layers  in  the  network. 
The dependency is calculated using conditional geometric mutual 
information which evaluates the amount of similar information 
exchanged between filters using a graph-based criterion. When 
pruning a network, we ensure that  retained  filters  contribute 
the majority of the information towards succeeding layers which 
ensures high performance. Our novel approach is highly com- 
petitive with existing state-of-the-art compression-via-pruning 
methods on standard benchmarks for this task: MNIST, CIFAR- 
10, and ILSVRC2012, across a variety of network architectures 
despite using only a single retraining pass. Also, we discuss our 
observations of a common denominator between our pruning 
methodology’s response to adversarial attacks and calibration 
statistics when compared to the original network. 

I. INTRODUCTION 

Balancing the trade-off between the size of a deep network 
and achieving high performance is the most important con- 
straint when designing deep neural networks (DNN) that can 
easily be translated to hardware. Although deep learning yields 
remarkable performance in real-world problems like medical 
diagnosis [1], [2], autonomous vehicles [3], [4], and others, 
they consume a large amount of memory and computational 
resources that limit their large-scale deployment. With current 
state-of-the-art (SOTA) deep networks spanning hundreds of 
millions if not billions of parameters [5], compressing them 
while maintaining high performance is challenging. 

In this work, we approach DNN compression using network 
pruning [6]. There are two broad approaches to network 
pruning, (a) unstructured pruning, where a filter’s importance 
is evaluated using weights [6] or constraints  like  the  l1  
norm [7] on them, without modifying the overall objective 
function, and (b) structured pruning, where the objective func- 
tion is modified to include structured sparsity constraints [8]. 
Most unstructured pruning approaches ignore the dependency 
between layers and the impact of pruning on downstream 
layers while structured pruning methods force the network to 

 

 
Fig. 1: Weight-based pruning does not consider the depen- 
dency between layers. Instead it suggests  the  removal  of  
low weight values. Mutual information (MI)-based pruning 
computes the value of information passed between layers, 
quantified by the MI value, and suggests the removal of 
weights from the latter layer 

 

optimize a harder and more sensitive optimization objective. 
The underlying common theme between both approaches is 
their use of filter weights as a proxy for importance. 

Evaluating a filter’s importance purely from its weights is 
insufficient since it does not take into account the dependencies 
between filters or account for any form of uncertainty. These 
factors are critical since higher weight values do not always 
represent its true importance and a filter’s contribution can be 
compensated elsewhere in the network. Consider the exam- 
ple shown in Fig. 1, where a simple weight-based criterion 
suggests the removal of small valued weights. However, the 
mutual information (MI) score, which  we  use  to  measure 
the dependency between pairs of filters and emphasize their 
importance, values the first layer’s weights over the latter layer. 
Pruning based on the MI scores would ensure a network where 
the retained filters pass on as much information as possible to 
the next layer. 

To overcome prior issues, we propose Mutual Information- 
based Neuron Trimming (MINT) as a novel approach to 
pruning deep networks that stochastically accounts for the 
dependency between layers. Fig. 2 outlines our approach. In 
MINT, we use an estimator for conditional geometric mutual 
information (GMI), inspired by [9], to measure the dependency 
between filters of successive layers. Specifically, we use a 
graph-based criterion (Friedman-Rafsky Statistic [10]) to mea- 
sure the conditional GMI between the activations of filters at 
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Fig. 2: Illustration of the experimental setup highlighting the components of MINT. Between every pair of filters in consecutive 
layers (l, l + 1) we compute the conditional geometric mutual information (GMI), using the activations from each filter, as 
the importance score. The total number of filters in each layer is defined by N (l) and N (l+1). The conditional GMI score 
indicates the importance of a filter in layer l’s contribution towards a filter in layer l + 1. We then threshold filters based on the 
importance scores to ensure that we retain only filters that pass the majority of the information to successive layers. Finally, 
we retrain the network once to maintain a desired level of performance 

 
layer l and l + 1, denoted by F (l), F (l+1), given the remaining common strategies to calculate multivariate dependencies and 

i j 
filters in layer l. On evaluating all such dependencies, between 
filters of every pair of layers in the network, we sort the 
importance scores. Finally, we threshold a desired percentage 
of these values to retain filters that contribute the majority of 
the information to successive layers. Thus, MINT maintains 
high performance with compressed and retrained networks. 

Through MINT, we contribute a network pruning method 
that addresses the need  to  use  dependency  between  layers 
as an important factor to prune networks. By maintaining 
filters that contribute the majority of the information passed 
between layers, we ensure that the impact of pruning on 
downstream layers is minimized. In doing so, we achieve 
highly competitive performance to the SOTA  across  multi- 
ple Dataset-CNN architecture combinations, highlighting the 
general applicability of our method. 

Further, we empirically analyze our approach using visu- 
alizations that illustrate the focus of learned representations, 
adversarial attacks, and expected calibration error, to provide  
a better understanding of our method. We highlight a possible 
common denominator between its security vulnerability and 
decrease in calibration error while illustrating the intended 
effects of retaining filters that contribute the majority of 
information between layers. 

II. RELATED WORKS 

Deep network compression offers several strategies to help 
reduce network size while maintaining high performance, such 
as low-rank approximations [11], quantization [12], knowledge 
distillation [13], and network pruning [6], [14], [15]. In this 
work, we focus on network pruning since it offers a controlled 
set up  to  study  and  compare  changes  in  the  dynamics  of  
a network when filters are removed. We broadly classify 
network pruning methods into two categories, unstructured, 
and structured, which we describe below. Also, we highlight 

how they vary from our method. 

A. Network Pruning 
1) Unstructured pruning: Some of the earliest in this line of 

work used the second-order relationship between the objective 
function and weights of a network to determine which weights 
to remove [16]. Although these methods provide deep insights 
into the relationships within networks, their large computa- 
tional requirements and run-times made them less practical. 
They were surpassed by an alternative approach that thresh- 
olded the weight values themselves to obtain a desired level of 
sparsity before retraining [6]. Apart from the simplicity of this 
approach, it also highlighted the importance of re-training from 
known minima as opposed to from scratch. Instead of pruning 
weights in one shot, [17] offered a continuous and recursive 
strategy of using mini-iterations to evaluate the importance of 
connections using their weights, remove unimportant ones, and 
train the network. Similarly, [7] proposed pruning filters using 
the l1-norm of their weight values as a measure of importance. 
By melding network pruning using weights with network 
quantization and Huffman coding [18] showed superior com- 
pression performance compared to any individual pipeline. 
However, the direct use of weight values across all these 
methods does not capture the relationships between different 
layers or the impact of removing weights on downstream 
layers. In MINT, we address this issue by explicitly computing 
the dependency between filters of successive layers and only 
retaining filters that contribute a majority of the information. 
This ensures that there isn’t a severe impact downstream. 

A subset of unstructured methods uses data to derive the 
importance of filter weights. Among them, ThiNet [14] posed 
the reconstruction of outcomes with the removal of weights  
as an optimization objective to decide on weights. More 
recently, NISP [19] used the contribution of neurons towards 
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the reconstruction of outcomes as a metric to remove filters. 
These works represent a shift to data-driven logic to consider 
the downstream impact of pruning, with the use of external  
computations (e.g., feature ranking in  [19]).  Compared  to  
the deterministic relationship learned between the  weights  
and feature ranking methods, our method uses a probabilistic 
approach to measure the dependency between filters, thereby 
accounting for some form of uncertainty. Further, our method 
uses one single prune-retrain step compared to multiple itera- 
tions of fine-tuning performed in these methods. 

2) Structured Pruning: The shift to structured pruning was 
based on the idea of seamlessly interfacing with hardware 
systems as opposed to relying on software accelerators. One  
of the first methods to do this extended the original brain 
damage [16] formulation to include fixed pattern masks for 
specified groups while using a group-sparsity regularizer [20]. 
This idea was further extended in works that used the group- 
lasso formulation [8], individual or multiple ln norm con- 
straints [21] on the channel parameters, and in works that bal- 

III. MINT 
MINT is a data-driven approach to pruning networks by 

learning the dependency between filters/nodes of successive 
layers. For every pair of layers in a deep network, we use 
the conditional GMI (Section III-A) between the activations 
of every filter from a chosen layer l and a filter from layer  
l + 1, given the existence of every other possible filter in layer 
l to compute an importance score. Here, data flows from layer 
l to l + 1. Once all such importance scores are evaluated, we 
remove a fixed portion of filters with the lowest scores. This 
induces the desired level of sparsity in the network before 
we retrain the network to maintain high accuracy. The core 
algorithm is outlined and explained in the sections below. 

A. Conditional Geometric Mutual Information 
In this section, we review conditional GMI estimation as 

featured in [9] and use a close approximation of their method 
to calculate multivariate dependencies in our algorithm. 
Definition  We  first  define  a  general  form  of  GMI denoted by  I :  For  parameters  p ∈ (0, 1) and  q  = 1 − p  consider 

anced individual vs. group relationships [22] to induce sparsity p 
d d 

across desired structures. These methods explicitly affect the 
training phase of a chosen network by optimizing a harder and 
more sensitive objective function. Further, side-effects like- 
stability to adversarial attacks, calibration, and differences in 
the learned representations have not been fully quantified. In 

two random variables X R x and Y R y with joint and 
marginal distributions f (x, y), f (x), and f (y) respectively. 
The GMI between X and Y is given by 

 
  1  I (X; Y) = × 

our work, we optimize the standard cross-entropy objective 
function, characterize and compare the behaviour of the orig- 
inal network to their compressed counterparts. 

p 
        fXY 

4pq 
(x, y) − qfX 

 
(y) fY (y)

)2 
dx dy − (p − q)2

1 

. 

Hybrid methods combine the notion of a modified objective 
function with the measurement of the downstream impact of 

pfXY (x, y) + qfX (x)fY (y)  
(1) 

pruning by enforcing sparsity  constraints  on  the  outcomes 
of groups [23], using a custom group-lasso formulation with   
a squared dependency on weight values as the importance 
measure [24] or  an  adversarial  pruned  network  generator  
to compete with the features derived from the original net- 
work [15]. The disadvantages of these methods include their 
multi-pass scheme and large training times as well as those  
inherited from modifying the objective function. 

 

B. Multivariate Dependency Measures 

The accurate estimation of multivariate dependency in high- 
dimensional settings is a hard task. The first in this line of work 
involved Shannon Mutual Information which was succeeded 
by several plug-in estimators including Kernel Density Estima- 
tors [25] and KNN estimators [26]. However, their dependence 
on density estimates and large run-time complexity meant they 
were not suitable for large scale applications including neural 
networks. Faster plug-in methods based on graph theory and 
nearest neighbour ratios [27] were proposed as an alternative. 
More solutions that use statistics like KL divergence [28] or 
Renyi-α [29] were proposed to help bypass density estimation 

 

Considering the special case of p = q = 1/2 in Eqn. 1 we 
obtain, 

I(X; Y) = 1   2  fXY (x, y)fX (x)fY (y) dx dy. (2) 
fXY (x, y) + fX (x)fY (y) 

The conditional form of this measure, proposed in [9], is, 

I(X; Y|Z) = EZ [I(X; Y|Z = z)] ,  where (3) 

I(X; Y|Z = z) = 

1 2 
 fXY |Z(x, y|z)fX|Z(x|z)fY |Z(y|z) 

dx dy.
 

fXY |Z(x, y z) + fX|Z(x z)fY |Z(y z) 
(4) 

Estimator In general,  for  a  set  of  m samples  drawn  from 
f (x, y, z), we estimate I(X; Y Z) as follows: (1) Split data 
into two subsets S1 and S2, (2) Use the Nearest Neighbour 
Bootstrap algorithm [30] to generate conditionally independent 
samples from S2 points and name the new set S̄2. (3) Merge 
S1  and  S̄2  i.e.  S  :=  S1   S̄2.  (4)  Construct  a  Minimum 
Spanning Tree (MST) on S. (5) Compute Friedman-Rafsky 
statistic [31], Rm, which is the number of edges on the MST 
linking dichotomous points i.e. edges connecting points in S1 

to points in S̄2. (6) The estimate for I(X; Y|Z), denoted by I�, 

estimator, similar to [9], which bypasses the difficult task of 
density estimation and is also non-parametric and scalable. 

the conditional GMI estimator, indicated as the function ρ(), 
on a set of activations obtained from each filter we consider. 
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B. Approach 
Setup In a deep network containing a total of L layers,     
we compute the dependency (ρ) between filters in every 
consecutive pair of layers. Here, the layer l is closer to the 
input while layer l+1 is closer to the output among the chosen 
pair of consecutive layers. The activations for a given node in 
layer l + 1, are computed as, 

F (l+1)(x) = σ (wx + b) , (5) 

 
 

Algorithm 1: MINT pruning algorithm for filters of 
layers (l, l + 1) 

 
 

for Every pair of layers (l, l + 1), l 1, 2, . . . , L 1 
do 

for F (l+1), i ∈ 1, 2, . . . N (l+1) do 
Initialize SF (l+1) = ∅; 

for F (l), j ∈ 1, 2, . . . N (l) do    
ρ(F (l+1), F (l)) = I(F (l+1), F (l) | F (l)); 

(l+1) (l) 
where x ∈ Rm×d, m is the total number of samples, d is the if ρ(F , F ) ≥ δ then 
feature dimension and x is the input to a given layer used to 
compute the activations. σ() is an activation function, w ∈ 
RN , and b are the weight vector and bias. 

 
Notations 

• Fi : The activations from the selected filter i in layer 
l + 1. 

• N (l+1) : Total number of filters in layer l + 1. 

SF (l+1)   = SF (l+1)  ∪ index(Fj    ) 
end 

end 
end 

end 
 

 

• SF (l+1) : The set of indices that indicate the values that 
are retained in the weight vector of the selected filter. 

• ρ(): The dependency between two filters, computed using 
I(X; Y|Z) (importance score). 

Group Extension While evaluating dependencies between 
every pair of filters allows us to take a close look at their 
relationships, it does not scale well to deeper or wider 
architectures. To address this issue, we evaluate filters in 
groups rather than individually. We define G as the total 

(l) (l) • Fj    : The set of all filters excluding Fj in layer l. 
• δ: Threshold on importance score to ensure only strong 

contributions are retained. 
Description In every iteration of MINT (Alg. 1), we find the 
set of weight values in w to retain while the remaining are 
zeroed out. 

• For a given pair consecutive of layers (l, l + 1), we 
compute the dependency between every filter in layer  
l + 1 in relation to filters in layer l. The main intent   
of framing the algorithm in this perspective is that the 
activations from layers closer to the input have a direct 
effect on downstream layers while the reverse is not true 
for a forward pass of the network. 

• Using   the   activations   F ()   for   the   selected   filters, 
(F (l+1), F (l)) we compute the conditional GMI (Eqn. 4) 

number of groups in a layer, where each group contains an 
equal number of filters. We explore in detail the impact of 
varying the number of groups in Section IV-D.  Although 
there are multiple approaches to grouping filters,  in  this  
work we restrict ourselves to sequential grouping, where 
groups  are  constructed   from   consecutive   filters.   There   
is no explicit requirement for  a  pre-grouping  step  before  
our algorithm so long as a balanced grouping of filters is used. 

 
Finer Details MINT is constructed on the assumption that the 
majority of information from the preceding layer is available 
and the filter in consideration can selectively retain contribu- 
tions for a subset of previous filters. This allows us to work  
on isolated pairs of layers with minimal interference on down- 
stream layers since retaining filters with high MI will ensure i j 

between them given all the remaining filters in layer l. 
This dependency captures the relationship between filters 
in the context of all the contributions from the preceding 
layer. Since the activations of layer l + 1 are weighted 
combinations from all filters in the preceding layer, we 
need to account for this when considering the dependence 
of activations between two selected filters. 

• Based  on  the  strength  of  each  ρ(Fi         , Fj    ),  the  con- 
tribution of filters from the previous layer is either re- 
tained/removed. We define a threshold δ for this purpose, 
a key hyper-parameter. 

• SF (l+1)  stores the indices of all filters from layer l that  
are retained for a selected filter F (l+1). The weights for 
retained filters are left the same while the weights for   
the entire kernel in the other filters are zeroed out. In the 
context of fully connected layers, we retain or zero out 
specific weight values. 

the retention of filters that contribute the most information to 
the next layer. By maintaining as much information as possible 
between layers, the amount of critical information passed to 
layers further on is maintained. 

 
IV. EXPERIMENTAL RESULTS 

We breakdown the experimental results into three major 
sections. In Section IV-C, we focus on the comparison of our 
method against SOTA deep network pruning algorithms, in 
Section IV-D we highlight the significance of various hyper- 
parameters used in MINT, and finally, in Section IV-E we 
characterize MINT-compressed networks w.r.t. their learned 
representations, response to adversarial attacks, and calibration 
statistics and compare them to their original counterparts. As  
a prelude to these sections, we describe the datasets, models, 
and metrics used across our experiments. We restrict the 
implementation details to the appendices. 
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(a) (b) 

Fig. 3: (a) An increase in the number of groups per layer 
allows for finer grouping of filters which in turn leads to 
more accurate GMI estimates and thresholding. Thus, there 
is a steady increase in the number of parameters that can   
be removed to achieve > 98.50 performance. (b) Keeping 
G = 20, we observe that increasing the number of samples 
per class improves the GMI estimate accuracy which in turn 
allows for better thresholding and an increase in parameters 
pruned. The values on top of the bar plots are test accuracy 

 

A. Datasets and Models 
Our experiments are divided into the following Dataset- 

DNN combinations, in  the  order  of  increasing  complex-  
ity, MNIST [32] + Multi-Layer Perceptron, CIFAR10 [33] 
+ VGG16 [34], CIFAR10 + ResNet56 [35] and finally 
ILSVRC2012 [36] + ResNet50. 

B. Metrics 
Parameters Pruned (%): The percentage of parameters re- 
moved from the baseline network. A higher value alongside 
good performance indicates a superior method. 
Test Accuracy (%): The best performance  on  the  testing 
set, upon training, for baseline networks, and re-training, for 
pruning methods. 
Memory Footprint (Mb): Memory consumed when storing 
the weights of a network in CSR format under “npz” files. 

C. Comparison against existing methods 
As a first step in showcasing MINT’s abilities, we compare 

it against SOTA baselines in network pruning. The baselines 
in Table  I are arranged in ascending order of the percentage  
of parameters pruned, from top-down. Our algorithm outper- 
forms most of the SOTA pruning baselines across the number 
of pruned parameters while maintaining high accuracy and 
reducing the memory footprint of the network. We note that 
while most of the pruning baselines listed use multiple prune- 
retrain steps to achieve their result, we use only a single step 
to match or outperform them. 

D. Hyper-parameter Empirical Analysis 
We take a closer look at two important hyper-parameters 

that help MINT scale well to deep networks, (a) number of 
groups in a layer G, and (b) the number of samples per class, 

m, used to compute the conditional GMI. Below, we look into 
how each of them impacts the percentage of parameters pruned 
while maintaining > 98.50% accuracy on MNIST + MLP. 

 
Group size G directly corresponds to the number of filters 
that are grouped together when computing conditional GMI 
and thresholding. Higher G leads to lesser filters per group, 
which should allow for a more fine-grained computation of 
multivariate dependency and thereby, more precise pruning. 
In this experiment, m = 250. Results in Fig. 3a match our 
expectations by illustrating the increase in the percentage of 
parameters pruned to maintain the desired performance. 

 
Samples per class The number of samples per class directly 
impacts the final number of activations used to compute the 
conditional GMI. The GMI estimator should improve its esti- 
mates as the number of samples per class and the total number 
of samples is increased. In this experiment, G = 20. Fig. 3b 
validates our expectation by showing a steady improvement in 
the percentage of parameters pruned as the number of samples 
per class and thereby the total number of samples is increased. 

 
E. Characterization 

The standard metrics used to compare deep network pruning 
methods are the percentage of parameters pruned and the 
overall recognition performance. However, the original intent 
of compressing networks was to deploy them in real-world  
scenarios which necessitate other characterizations like robust- 
ness to adversarial attacks, the ability to reflect true confidence 
in predictions, and more. 

While the core idea behind MINT is to retain filters that 
contribute the majority of the information passed to the next 
layer, in  using  a  subset  of  the available  filters  we  remove 
a certain portion of the information passed down. Fig. 4 
compares the portions of the image that contribute towards the 
desired target class, between the original (top row) and MINT- 
compressed networks (bottom row). We observe that the use  
of a subset of filters in the compressed network has reduced 
the effective portions of the image that contribute towards a 
decision, not to mention minor modifications to the features 
used themselves. 

To understand the impact of pruning networks in the context 
of adversarial attacks we use two common adversarial attacks, 
Iterative FGSM [39], which doesn’t exclusively target a de- 
sired class, and Iterative-LL [40], which targets the selection 
of the least likely class. Fig. 5 shows the response of the 
original and MINT-compressed networks to both attacks. We 
clearly observe that MINT-compressed networks are more 
vulnerable to targeted and non-targeted attacks. We posit that 
the reduction in the number of filters used and reduction in 
available redundant features are the reason MINT-compressed 
networks are vulnerable to adversarial attacks. 

Calibration statistics [41] measure the agreement between 
the confidence provided by the network and the actual prob- 
ability. These measures provide an orthogonal perspective to 
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TABLE I: MINT is easily able to compete with SOTA  pruning methods across all our evaluated benchmarks, using only a  
single prune-retrain step. Baselines use multiple prune-retrain steps and are arranged in increasing order of Parameters Pruned 
%. We highlight a subset of available methods in the table. ∗ indicates comparison of layer 2’s weights 

 

Method Params. Pruned(%) Test Accuracy (%) Memory(Mb) 
Baseline N.A. 98.59 0.537 

MLP SSL [8] 90.95∗ 98.47 N.A. 
MNIST Network Slimming [21] 96.00∗ 98.51 N.A. 

MINT (ours)(δ = 0.645) 96.20∗ 98.47 0.022 

Baseline N.A. 93.98 53.868 

VGG16 Pruning Filters [7] 64.00 93.40 N.A 
CIFAR-10 SSS [23] 73.80 93.02 N.A 

GAL [15] 82.20 93.42 N.A. 
MINT (ours) (δ = 0.850) 83.46 93.43 9.020 

Baseline N.A. 92.55 3.109 
GAL [15] 11.80 93.38 N.A. 

ResNet56 Pruning Filters [7] 13.70 93.06 N.A. 
CIFAR-10 NISP [19] 42.40 93.01 N.A. 

OED [37] 43.50 93.29 N.A. 
MINT (ours) (δ = 0.184) 52.41 93.47 1.552 
MINT (ours) (δ = 0.208) 57.01 93.02 1.461 

Baseline N.A. 76.13 91.157 
GAL [15] 16.86 71.95 N.A. 
OED [37] 25.68 73.55 N.A. 

ResNet50 SSS [23] 27.05 74.18 N.A. 
ILSVRC2012 NISP [19] 43.82 71.99 N.A. 

ThiNet [14] 51.45 71.01 N.A. 
MINT (ours) (δ = 0.1000) 43.01 71.50 52.365 
MINT (ours) (δ = 0.1101) 49.00 71.12 47.513 
MINT (ours) (δ = 0.1103) 49.62 71.05 46.925 

 

Fig. 4: Visualizations using GradCAM [38] illustrate the decrease in effective portions of the image that contribute towards 
specific target classes in MINT-compressed ResNet56 (row 2) when compared to the original un-pruned network (row 1) 

 

adversarial attacks since they measure statistics only for in- 
domain images while adversarial attacks alter the input. Fig. 6 
highlights the decrease in Expected Calibration Error (ECE) 
for the MINT-compressed networks when compared to their 

original counterparts. The plot illustrates that the histogram 
trend is closer to matching the ideal trend indicated by the 
linear red curve. After pruning, the sparse networks seem to 
behave similarly to a regularizer by focusing on a smaller 

 
 

8256 

 
 



Authorized licensed use limited to: University of Maine. Downloaded on June 08,2022 at 14:02:36 UTC from IEEE Xplore. Restrictions apply.  

 
(a) (b) (c) (d) 

Fig. 5: By enforcing the use of an important subset of filters from all the available ones, MINT-compressed networks begin to 
overvalue their importance. MINT-compressed networks seem more susceptible to targeted and non-targeted adversarial attacks 
when compared to the original network. Here, E refers to the E ball in l∞ norm 

 
 

(a) ECE:0.0077 (b) ECE:0.0517 (c) ECE:0.0762 (d) ECE:0.0305 
 

(e) ECE:0.0054 (f) ECE:0.0500 (g) ECE:0.0383 (h) ECE:0.0069 

Fig. 6: Calibration statistics measure the agreement between the confidence output of the network and the true probability. The 
red line indicate the ideal trend. We observe that MINT-compressed networks act as a regularizer to decrease the Expected 
Calibration Error (ECE) when compared to the original network as well as better match the ideal curve 

 
subset of features and decreasing the ECE. On the other hand, 
the original networks contain many levels of redundancies 
which could translate to overfitting and having higher ECE. 

V. CONCLUSION 

In this work, we propose MINT as a novel approach to 
network pruning in which the dependency between filters of 
successive layers is used as a measure of importance. We 

use conditional GMI to evaluate importance and incorporate 
stochasticity in our algorithm to help retain filters that pass  
the majority of the information through layers. In doing so, 
MINT achieves better pruning performance than SOTA base- 
lines, using a single prune-retrain step. When characterizing 
the behaviour of MINT-pruned networks, we observe that it 
behaves like a regularizer and  improves  the  calibration  of 
the network. However, a reduction in the number of filters 
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used and redundancies makes  pruned  networks  susceptible 
to adversarial attacks. Our future direction of work includes 
improving the robustness of compressed networks as well as 
detailing the sensitivity of layers to network pruning. 
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