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Widespread changes in surface temperature 
persistence under climate change

Jingyuan Li1 & David W. J. Thompson1,2 ✉

Climate change has been and will be accompanied by widespread changes in surface 
temperature. It is clear that these changes include global-wide increases in mean 
surface temperature and changes in temperature variance that are more 
regionally-dependent1–3. It is less clear whether they also include changes in the 
persistence of surface temperature. This is important as the e!ects of weather events 
on ecosystems and society depend critically on the length of the event. Here we 
provide an extensive survey of the response of surface temperature persistence to 
climate change over the twenty-"rst century from the output of 150 simulations run 
on four di!erent Earth system models, and from simulations run on simpli"ed models 
with varying representations of radiative processes and large-scale dynamics. 
Together, the results indicate that climate change simulations are marked by 
widespread changes in surface temperature persistence that are generally most 
robust over ocean areas and arise due to a seemingly broad range of physical 
processes. The "ndings point to both the robustness of widespread changes in 
persistence under climate change, and the critical need to better understand, 
simulate and constrain such changes.

The climate system response to increasing greenhouse gases includes 
changes not only in the mean temperature but also in the shape of 
the temperature distribution1–3. Both are essential for understanding 
changes in the amplitude and timescale of temperature events under 
climate change. Increases in the mean temperature alter the likelihood 
of temperature events by shifting the probability distribution towards 
higher values; changes in the temperature variance and skewness affect 
the incidence of temperature events by altering the shape of the distri-
bution. The evidence for changes in the mean surface temperature is 
overwhelming and incontrovertible in both observations and numerical 
simulations of climate change1–3. The evidence for changes in the vari-
ance and skewness of the temperature distribution is less extensive. 
Nevertheless, there is evidence that both have changed in select regions 
for a variety of physical reasons4–15.

Here we examine the evidence and physics of changes in the persis-
tence of temperature events under climate change. Persistence has 
a key role in the climate impacts of a given temperature event. But 
interestingly, relatively few studies have explored how and why per-
sistence will evolve under climate change in a global context. To date, 
the evidence is limited.

One set of studies argues for increases in observed temperature per-
sistence in data through the early 2000s (refs. 16,17), but the changes in 
observed persistence are not clearly reproduced in different datasets, 
at different locations, and over different time periods (for example, 
see Figs. 5 and S10 of ref. 17). Another observational study indicates 
sporadic changes in the duration of observed extreme temperature 
events over the latter half of the 20th century18. But the most significant 
changes are limited to the summer months and to land data averaged 

over select spatial regions. An analysis of output from CMIP5 (the Cou-
pled Model Intercomparison Project Phase 5) infers changes in tem-
perature persistence from changes in the shape of temperature power 
spectra19, but the results are characterized by considerable regional 
and inter-model variability. An analysis of atmospheric models forced 
with prescribed 2 K increases in sea surface temperatures (SSTs) reveals 
regional increases in land surface temperature persistence20, but the 
experiment design has known biases in the attribution of extreme 
events21 and, importantly, prescribing the SST field renders surface 
temperature persistence fixed over ocean areas. Numerous studies 
argue that Arctic sea ice loss leads to systematic changes in the mid-
latitude circulation, including its persistence (for example, ref. 22). 
However, the proposed linkages have not been reproducible in many 
observational and modelling studies and are therefore controversial 
(for example, ref. 23).

Here we reveal that climate change leads to pervasive changes in tem-
perature persistence in simulations run on a range of climate models, 
including comprehensive Earth system models (ESMs) and simpler 
models with varying representations of radiative and dynamical pro-
cesses. The changes in persistence arise from a seemingly wide range 
of physical processes. The results highlight the ubiquitous nature of 
changes in temperature persistence under climate change, and the criti-
cal importance of better understanding and constraining such changes.

Persistence changes in ESMs
We begin by exploring changes in persistence in large ensembles of 
climate change simulations run on four ESMs: the NCAR CESM1, CSIRO 
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Mk3.6, CCCma CanESM2 and GFDL ESM2M (Methods). Surface tem-
perature persistence is estimated as the lag 10-day autocorrelation of 
daily mean temperatures, r10. The variance explained by persistence is 
thus estimated as r2

10, and changes in persistence under climate change 
are estimated as the per cent changes in r2

10 between two 30-year peri-
ods: the ‘Historical’ period 1970–1999 and ‘Future’ period 2070–2099. 
The autocorrelation provides a simple and robust way of measuring 
persistence and is directly related to the length of temperature events 
(Methods; Extended Data Figs. 1 and 2). In addition, results are largely 
insensitive to the choice of time lag used in the analyses (Methods; 
Extended Data Figs. 3, 4 and 5). See Methods for details of the ESM 
output, analysis, statistical significance and reproducibility.

The climatological-mean values of r10 for the Historical and Future 
periods are shown for reference in Extended Data Fig. 6. In general, the 
climatological-mean persistence is highest in the tropics and decreases 
rapidly with latitude in accordance with the more pronounced ampli-
tude of weather ‘noise’ at middle and high latitudes. The per cent 
changes in r2

10 between the two periods are shown in Fig. 1. Both the 
CESM1 and Mk3.6 ESMs indicate widespread increases in persistence 
over time that exceed 50% over much of the globe (Fig. 1a,b). The 
CanESM2 and ESM2M ESMs likewise indicate widespread increases in 
persistence across the Northern Hemisphere—particularly over the 
ocean basins, northwestern North America, and central Siberia—and 
throughout the Southern Hemisphere subtropics (Fig. 1c,d). However, 
the CanESM2 and ESM2M results also indicate decreases in persistence 
in the tropics and—particularly in the ESM2M—over the high latitudes 
of the Southern Hemisphere. As discussed below, many of the inter-
model differences are consistent with inter-model differences in the 
El-Niño/Southern Oscillation (ENSO) response to climate change and 
the amplitude of mixing in the Southern Ocean.

The robustness of the changes in persistence is further explored in 
Fig. 2. All four ESMs indicate robust increases in regional-scale surface tem-
perature  persistence throughout the Arctic (Fig. 2a–d) and the Northern 

Hemisphere (Fig. 2e–h). The increases over the Arctic are particularly 
pronounced and are consistent with observed increases in the duration 
of Arctic warm events24. Three out of four ESMs indicate similarly robust 
increases in regional-scale surface temperature persistence in the Southern  
Hemisphere (Fig. 2m–o). The most notable exception is the ESM2M, which 
indicates weak decreases in persistence over the Southern Ocean (Figs. 1 
and 2p). Consistent with Fig. 1, the simulations run on the CESM1 indicate 
increases in persistence in the tropics (Fig. 2i) while the simulations run 
on the CanESM2 and ESM2M indicate decreases there (Fig. 2k–l).

The results in Figs. 1 and 2 are shown separately for output from four 
large ensembles, and thus account for the uncertainty due to internal 
climate variability. Fig. 3 probes the same results averaged over all four 
large ensembles, and thus accounts for the uncertainty due to both internal  
and model–model variability. As can also be inferred from Fig. 1, the most 
robust responses include: (1) widespread increases in persistence across 
the middle and high latitudes of the Northern Hemisphere, including the 
Arctic, the North Pacific and North Atlantic basins, northwestern North 
America and central Siberia; (2) widespread increases in persistence 
throughout the subtropical oceans in both hemispheres; and (3) localized 
decreases in persistence along the periphery of Antarctica. The changes 
in the tropics are generally not robust from one model to the next.  
As noted above and discussed further below, they are highly dependent 
on model simulations of changes in ENSO under climate change.

Changes in simplified numerical models
Similarly robust changes in persistence are found in climate change 
experiments run on relatively simple numerical models. Here we con-
sider output from three sets of climate change experiments run with 
no ocean dynamics, no land or sea ice, and varying representations of 
atmospheric radiative processes and large-scale dynamics.

The first two sets are from the ‘longwave hierarchy’ of numerical 
models published in ref. 25. Both sets include a ‘control’ and a ‘4 × CO2’ 
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Fig. 1 | Changes in surface temperature persistence in ESMs. a–d, The changes 
in persistence between the Historical period (1970–1999) and the Future period 
(2070–2099) calculated from large ensembles run on four ESMs. Warm (red) 
colours represent an increase in persistence from the Historical to Future 
periods, while cool (blue) colours repesent a decrease in persistence over the 
same period. Results show the per cent changes in the variance explained by 
the lag 10-day autocorrelation; that is, the per cent changes in r2

10. Note that r2
10 

is calculated first for individual ensemble members and then averaged over all 

ensemble members. The results are derived from 40 ensemble members run 
on the NCAR CESM1 (a), 30 ensemble members run on the CSIRO Mk3.6 (b),  
50 ensemble members run on the CCCma CanESM2 (c), and 30 members run  
on the GFDL ESM2M (d). Stippling indicates grid points where at least 75% of the 
ensemble members agree on the sign of the change (a likelihood of ~0.1% by 
chance) and where the ensemble mean results exceed the 95% confidence 
threshold based on a two-tailed test of the t-statistic. See Methods for details of 
the ESM output, analysis, statistical significance and reproducibility.
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simulation run on an atmospheric general circulation model coupled 
to a slab ocean model. The differences between the two sets lies in 
their treatment of atmospheric radiation: in the first set, the radiative 
effects of atmospheric composition are parameterized by prescribing 
the optical depth (that is, a ‘gray radiation’ scheme); in the second set, 
they are calculated using a comprehensive radiation scheme (RRTMG). 
See Methods and ref. 25 for details.

Figure  4 shows the autocorrelation functions of near-surface 
temperatures from both sets of experiments averaged over all grid 
points in the extratropics (Fig. 4a,b) and tropics (Fig. 4c,d). In both 
regions, surface temperature persistence increases notably under 
climate change when the atmospheric optical depth is increased either 
explicitly (Fig. 4a,c) or through the attendant changes in greenhouse 
gases (Fig. 4b,d). The increases in persistence are most pronounced in 
the numerical configuration that includes an interactive water vapor 
feedback (Fig. 4b,d), potentially due to the importance of the water 
vapor feedback in low-frequency climate variability26. In both sets of 
simulations, the increases are notable as they arise in the absence of 
changes in sea ice, ocean dynamics, clouds, the land surface, and the 
ocean mixed-layer depth.

The third set of climate change experiments is from the radiative/
convective equilibrium (RCE) simulations published in ref. 27. Again, 
the experiments include a control and a 4 × CO2 simulation run on an 
atmospheric general circulation model coupled to a slab ocean model. 
But in this case the insolation is spatially homogeneous and the Corio-
lis parameter is set to zero everywhere (that is, the model is run in a 
‘tropics-world’ configuration (Methods)27. The model configuration 

includes clouds and comprehensive radiation, but has no sea ice, no 
land surface, no ENSO, fixed surface heat capacity, and no extratropical 
dynamics. The RCE output is only available in monthly-mean form and 
thus the lag correlations are discretized by month. Nevertheless, the 
output affords a very large sample size (Methods). As shown in Fig. 5, 
the simulations again indicate marked increases in surface temperature 
persistence under increasing levels of atmospheric CO2.

Interpretation
What physical processes might underlie the widespread changes in 
temperature persistence indicated above? For pedagogical purposes, 
consider a linearized version of the surface energy budget:

C
T
t

F λT
d ′
d

= ′ − ′, (1)eff
s

s

where primes denote variations about a long-term mean state; T ′s 
denotes the surface temperature anomaly; Ceff denotes the effective 
heat capacity of the ocean-mixed layer and/or land surface; F ′ repre-
sents the anomalous surface fluxes associated with internal climate 
variability; and λ is a damping coefficient. The term λT− ′s represents 
the damping of surface temperature anomalies by the surface fluxes 
of latent, sensible and radiant heat.

There are three ways to change the persistence of T ′s in equation (1). 
One is to change the time-varying characteristics of the forcing, F ′; a 
second is to change the effective heat capacity Ceff; and a third is to 
change the damping coefficient λ. We consider all three below.
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Fig. 2 | Spatially averaged surface temperature 
persistence. a–p, The lag 10-day autocorrelation 
r10 averaged over the indicated regions and 
shown for individual ensemble members during 
the Historical period (1970–1999; blue) and 
Future period (2070–2099; red). Note that r10 is 
calculated first at individual grid boxes and then 
averaged over the indicated regions. As such, the 
results reflect persistence calculated at the grid 
box level. The Arctic is defined as the region 
poleward of 65 degrees North; the Northern 
Hemisphere (NH) and Southern Hemisphere (SH) 
extratropics are defined as the regions poleward 
of 20 degrees; the tropics are defined as the 
region 20S to 20N. The results are derived from 
40 ensemble members run on the NCAR CESM1 
(a, e, i, m), 30 ensemble members run on the 
CSIRO Mk3.6 (b, f, j, n), 50 ensemble members 
run on the CCCma CanESM2 (c, g, k, o), and 30 
members run on the GFDL ESM2M (d, h, l, p). 
See Methods for details of the ESM output and 
analysis.
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Potential changes in the forcing
The timescale of the forcing (F ′) is linked to the persistence of large-scale 
atmospheric dynamics and their attendant surface fluxes. Trends in the 
midlatitude circulation have been linked to changes in surface  
temperature persistence in some climate simulations20, the persistence 
ofthe extratropical circulation has been suggested to vary with the  
latitude of the storm track28, and many climate models indicate decreases 

in the incidence of atmospheric blocking29. However, trends in the  
midlatitude circulation vary from one climate change simulation to the 
next30 and there is considerable uncertainty in the response of blocking 
to climate change; for example, the simulated changes in blocking are 
generally smaller than model biases in blocking incidence29.

The timescale of the forcing is also influenced by the amplitude of 
the ENSO phenomenon, as ENSO has pronounced amplitude on sea-
sonal timescales and influences climate throughout the tropics31 and 
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Fig. 3 | Changes in persistence averaged over all four ESMs. a–c, The changes 
in persistence between the Historical period (1970–1999) and the Future period 
(2070–2099) averaged over 150 ensemble members run on four ESMs. Warm 
(red) colours represent an increase in persistence from the Historical to Future 
periods, while cool (blue) colours repesent a decrease in persistence over the 
same period. Results show the per cent changes in the variance explained by 
the lag 10-day autocorrelation; that is, the per cent changes in r2

10. Note that r2
10 

is calculated first for individual ensemble members and then averaged over all 
ensemble members from all four ESMs. The results are averaged over 40 

ensemble members run on the NCAR CESM1, 30 ensemble members run on  
the CSIRO Mk3.6, 50 ensemble members run on the CCCma CanESM2 and  
30 members run on the GFDL ESM2M. Stippling indicates grid boxes where  
the multi-model mean changes are significant at the 95% level based on the 
t-statistic, and the signs of the changes are the same in ensemble means from at 
least three out of the four ESMs. See Methods for details of the ESM output, 
analysis, statistical significance and reproducibility. a, b, c show the same 
results from three different perspectives to highlight different regions of the 
globe.
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Fig. 4 | Changes in persistence in slab-ocean 
numerical models. a–d, The autocorrelation 
functions of surface temperature from two sets 
of climate change simulations run on an 
aquaplanet model with a fixed slab-ocean 
depth. Shown are results from a version of the 
model with a gray-radiation scheme in which the 
longwave optical depth is prescribed (a,c), and 
from a version of the model with a 
comprehensive radiation scheme (RRTMG) 
(b,d). Results are first calculated at individual 
grid points and then averaged poleward of 20 
degrees latitude (a,b) and between 20 N and 
20 S (c,d). Dark grey curves show results from 
the control simulations; light grey curves show 
results from climate change simulations in 
which optical depth or greenhouse gas 
concentrations are increased in a manner 
consistent with a fourfold increase in carbon 
dioxide from the control. Shading represents 
the 95% confidence intervals on the 
autocorrelation values (Methods). The model 
output is from ref. 25. See Methods for details of 
the model output, analysis and statistical 
significance.
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extratropics32. The inter-model differences in persistence changes 
indicated in Figs. 1 and 2 are consistent with inter-model differences in 
simulated changes in ENSO variability. The CESM1 and Mk3.6 simula-
tions indicate increases over the twenty-first century in both tropical 
surface temperature persistence (Figs. 1 and 2) and the variance of 
the ENSO phenomenon (Extended Data Fig. 7; see also ref. 33 and refer-
ences therein). The ESM2M and CanESM2 simulations indicate opposite 
changes in both (Figs. 1 and 2, and Extended Data Fig. 7; see also ref. 
34). Despite the probable importance of ENSO for future changes in 
temperature persistence, it is worth emphasizing that robust changes 
in temperature persistence readily arise in simulations with no ENSO 
variability, as shown in Figs. 4 and 5.

Potential changes in the heat capacity
A second way to increase the persistence of T ′s is to change the heat 
capacity Ceff. If the timescale of F ′ is much shorter than the timescale 
of T ′s, then the autocorrelation decays exponentially with lag as fol-
lows35,36:

r τ
λ

C
τ( ) = exp

−
. (2)

eff











Thus, surface temperature persistence increases as the surface heat 
capacity increases and/or the damping coefficient decreases, and vice 
versa.

Over the Arctic, increases in the areal coverage of open water under 
climate change should lead to increases in Ceff, as the effective heat 
capacity of open water is much higher than that of sea ice. The large 

increases in Arctic surface temperature persistence simulated by the 
ESMs (Figs. 1–3) are broadly consistent with the melting of sea ice there.

Over the oceans, the effective heat capacity of the surface is related 
to the depth of the ocean mixed layer. Numerous simulations suggest 
increases in near-surface ocean stratification and thus decreases in 
mixed-layer depth under climate change37,38, and the simulations run 
on CESM1 indicate decreases in mixed-layer depth over the twenty-first 
century39. All else being equal, decreases in mixed-layer depth will lead 
to decreases in Ceff and thus in surface temperature persistence. Inter-
estingly, the ESMs explored here indicate increases in persistence over 
most extratropical maritime regions (Fig. 1) including, notably, the 
North Pacific in the CESM1 where mixed-layer depths are decreasing 
(see Fig. 1g in ref. 39). Thus, other factors are probably key in these 
regions.

Changes in ocean stratification and mixed-layer depth are probably 
dominant for the simulated decreases in Southern Ocean tempera-
ture persistence in the ESM2M. Relative to other ESMs, the ESM2M has 
comparatively robust ocean convection and thus deep mixed layers in 
the Southern Ocean40. This is supported by the comparatively weak 
Southern Ocean warming, small sea-ice losses, and large decreases in 
Southern Ocean convection in ESM2M under climate change (Extended 
Data Fig. 8; refs. 41–44). In general, the largest increases in ocean stratifica-
tion under climate change should arise in regions where the mixed layer 
is deepest under historical conditions (for example, ref. 37). Thus, the 
relatively robust Southern Ocean convection under historical condi-
tions in the ESM2M should lead to relatively large increases in strati-
fication there and (all else being equal) decreases in SST persistence.

Over terrestrial regions, the effective heat capacity of the surface 
may change; for example, via variations in snow cover, soil moisture 
and vegetation. Soil moisture–temperature feedbacks have been 
linked to changes in surface temperature variance over select areas 
(for example, ref. 5). However, the influence of land surface changes 
on surface temperature variability varies from one region to the next 
and depends on model representations of land-surface processes45. As 
shown in Fig. 1, the most robust changes in persistence are found not 
over land areas but over the oceans.

Importantly, the idealized climate change simulations highlighted 
in Figs. 4 and 5 are run with fixed mixed-layer depths, no land surface, 
and no sea ice. They therefore indicate that widespread increases in 
persistence can readily arise even in the absence of changes in the 
surface heat capacity.

Potential changes in damping
A third way to change surface temperature persistence is through 
changes in the damping term λT− ′s. The damping term reflects a para-
metrization of the feedback between a perturbation in surface tem-
perature and the resulting anomalous fluxes of sensible, latent and 
radiative heat.

The feedbacks due to the surface fluxes of sensible and latent heat 
are a function of the near-surface wind speed and the vertical gradi-
ents in the temperature and specific humidity perturbation within the 
atmospheric boundary layer (for example, ref. 46). Maritime regions 
where the mean wind increases under climate change may thus be 
marked by increases in the turbulent air–sea feedback and (from equa-
tion (2)) decreases in surface temperature persistence. This process 
may prove important over the high latitude Southern Ocean where 
the mean winds are expected to increase under climate change2. In the 
absence of changes in the surface wind speed, the turbulent air–sea 
feedback generally increases with SSTs (see Fig. 4 in ref. 47) and is thus 
unlikely to contribute to increases in surface temperature persistence.

The feedback due to the surface fluxes of longwave radiation is a func-
tion of the longwave optical depth of the atmosphere. Increases in the 
longwave optical depth under climate change should lead to a reduction 
in the thermal damping—and thus an increase in the persistence—of 
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Fig. 5 | Changes in persistence in a simplified ‘tropics-world’ simulation. 
The autocorrelation functions of near-surface temperature from a climate 
change simulation run on an aquaplanet model with a fixed slab-ocean depth, 
no rotation and spatially homogenous insolation. Results are first calculated at 
individual grid points and then averaged over the globe. The dark grey curve 
shows results from a control simulation; the light grey curve shows results from 
a climate change simulation in which greenhouse gas concentrations are 
increased by a factor of four. Shading represents the 95% confidence intervals 
on the autocorrelation values (Methods; note that the confidence intervals are 
very small due to the very large sample size used in the analysis). The model 
output is from ref. 27. See Methods for details of the model output, analysis and 
statistical significance.
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surface temperature anomalies. For example, consider the case of a warm 
temperature anomaly applied at the surface. The damping of the anomaly 
by the anomalous upward flux of longwave radiation is attenuated by 
the anomalous downward flux of longwave radiation that arises as the 
lower atmosphere warms48. Under climate change, the surface is radia-
tively coupled to a lower and warmer level of the atmosphere, and thus 
the surface longwave radiative fluxes should be less efficient in damping 
a given surface temperature anomaly. Radiative coupling between the 
surface and atmosphere should contribute to the persistence of surface 
temperature anomalies for the same reasons that thermal coupling 
contributes to the persistence of midlatitude SST anomalies49 and the 
tropospheric relaxation timescale to radiative–convective equilibrium50.

The importance of changes in radiative damping for changes in sur-
face temperature persistence is suggested by the numerical experi-
ments shown in Figs. 4 and 5. The simulations indicate marked increases 
in persistence, despite the fact that there is no land surface (Figs. 4 
and 5), no sea ice (Figs. 4 and 5), no clouds (Fig. 4), no ocean dynamics 
(Figs. 4 and 5), no changes in slab-ocean depth (Figs. 4 and 5), and no 
extratropical dynamics (Fig. 5). We reason that changes in longwave 
radiative damping have a potentially key but largely overlooked role in 
changes in temperature persistence under climate change.

Conclusions
Robust and widespread changes in surface temperature persistence 
arise in climate change simulations run on a variety of numerical con-
figurations. They derive from a seemingly broad array of physical fac-
tors. Such changes in temperature persistence project directly onto the 
timescales of extreme temperature events, and thus have potentially 
key implications for various societies and ecosystems. The results here 
point to the critical need to better understand, simulate and constrain 
changes in surface temperature persistence under climate change.
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Methods
Earth system models
We analyse climate change simulations run on four different ESMs: the 
National Center for Atmospheric Research CESM1, the Commonwealth 
Scientific and Industrial Research Organisation Mk3.6, the Canadian 
Centre for Climate Modeling and Analysis CanESM2, and the Geophysical  
Fluid Dynamics Laboratory ESM2M. The output includes a total of 
150 runs, including: (1) 40 simulations run on the CESM1 (ref. 51); (2) 
30 simulations run on the Mk3.6 (ref. 52); (3) 50 simulations run on the 
CanESM2 (ref. 53); and (4) 30 simulations run on the ESM2M54. All four 
ESMs are fully coupled atmosphere–ocean–land–ice climate models. The 
large-ensemble output is made available through the Multi-Model Large 
Ensemble Archive with the guidance of the US CLIVAR Working Group on 
Large Ensembles55,56. Output is accessed via the NCAR Climate Variability 
Diagnostics Package for Large Ensembles56 and the Climate Data Gateway.

Persistence in the ESMs
Persistence is estimated from the autocorrelation function. We calcu-
late the autocorrelation of surface temperature in the ESMs as follows.

For each ESM, the daily mean surface temperature output is obtained 
from all ensemble members from two periods that represent the  
historical and future climate: 1970–1999 for the Historical period and 
2070–2099 for the Future period.

The time-varying ensemble mean temperature is subtracted from 
all grid points in all ensemble members over both periods. Removing  
the ensemble mean is essential so that the surface temperature  
persistence in each ensemble member is not biased by low-frequency 
variability in the forcings applied to the model. For example, the rate 
of global warming is not stationary over the enitre 1970–2099 period, 
and thus the latter part of the twenty-first century may exhibit changes 
in persistence due simply to changes in the rate of global warming.

The persistence of surface temperature is estimated from the autocorre-
lation of the temperature time series. The autocorrelation is calculated as:

r τ
T t T t τ

T t
( ) =

′( ) ′( + )

′( )2

where T  denotes surface temperature, primes denote departures from 
the ensemble mean, overbars denote the time mean, and τ denotes the 
lag autocorrelation in days.

The ensemble and zonal mean autocorrelations are calculated using 
the Fisher z-transformation. That is, we transform autocorrelations 
to their respective z-values, compute means and differences of the 
resulting z-values, and then back-transform the mean or differenced 
z-values to obtain the resulting correlations.

Lastly, changes in persistence are quantified as the per cent changes in 
variance explained by the lag 10-day autocorrelation between the Future 
and Historical periods; that is, − 1

r

r

2
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2
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 where r2
10 denotes the variance 

explained by the lag 10-day autocorrelation. The per cent changes are 
calculated from the ensemble-mean autocorrelations mentioned above.

Use of the autocorrelation to assess persistence
There are numerous ways to quantify the persistence of weather  
(for example, refs. 57,58). We use the lag autocorrelation for three primary 
reasons. First, it is simple and requires few design choices as it involves 
correlating a time series with itself at another lag. There is no need to 
make subjective choices on the threshold or timescale of a temperature 
event, and the results can be easily reproduced. Second, the autocorre-
lation is calculated from all elements in a time series. Methods based on 
a predetermined threshold inevitably rely on a subjectively truncated 
data set. And third, the autocorrelation is directly related to the length 
of events on the wings of the frequency distribution; that is, it is directly 
related to the length of extreme warm and cold events.

Extended Data Figures 1 and 2 demonstrate the close relationship 
between the autocorrelation of temperature data and the average length 
of ‘warm events’, where the length of a warm event is defined as the number 
of consecutive days on which temperatures exceed one standard devia-
tion. The conclusions are not influenced by the amplitude of the threshold, 
albeit the sample size becomes smaller as the threshold increases.

Extended Data Figure 1 shows the 2d density plots of the lag 1-day 
autocorrelation and the average length of warm events calculated at 
all grid boxes in the CESM1 historical output for four sample ensemble 
members. The average length of warm events increases monotoni-
cally with autocorrelation: time series with a larger autocorrelation 
are associated with longer warm events, and vice versa. As shown in 
Extended Data Fig. 2a, results calculated first for individual ensemble 
members and then averaged over all 40 ensemble members bear close 
resemblance to those derived from individual ensemble members.

The results shown in Extended Data Fig. 1 are derived from more than 
10,000 days at more than 55,000 grid points, and the results shown in 
Extended Data Fig. 2a are further averaged over 40 ensemble members. 
The relationships are thus derived from a very large sample size and 
make clear the robust relationship between the autocorrelation and the 
length of warm events. The results are also consistent with the funda-
mental characteristics of a red-noise process. The grey dots in Extended 
Data Fig. 2b are generated by averaging the CESM1 ensemble-mean 
output from Extended Data Fig. 2a over bins that span 0.001 on the 
abscissa. The averaging serves to emphasize the centroid of the more 
than 55,000 data points used to generate Extended Data Fig. 2a. The 
black line shows the corresponding results derived not for CESM1 out-
put but for red-noise time series generated as

x t r t x t t r t ε t( ) = (∆ ) ( − ∆ ) + (1 − (∆ ) ) ( ),2 1/2

where ε t( ) is randomly drawn from a standardized normal distribution 
and r t(∆ ) is the autocorrelation of x t( ) at lag t∆ . The specified autocor-
relation r t(∆ ) is shown on the abscissa of Extended Data Fig. 2b. As 
evidenced in the results, the relationship between the autocorrelation 
and persistence of temperature events in the CESM1 output is consist-
ent with the characteristics of a red-noise process.

Statistical significance of ESM results
The stippling in Fig. 1 indicates results that are significant in the fol-
lowing two ways.

First, the sign of the results is the same in at least 75% of the ensemble 
members. If there is no change in temperature persistence (the null 
hypothesis), then there is an equal chance of either an increase or a 
decrease in the autocorrelation at a given grid point in a given ensemble 
member. The likelihood that results from at least 75% of all ensemble 
members will exhibit the same sign (either positive or negative) can be 
modelled using a binomial distribution with a probability of success 
of 0.5. In the case of 40 ensemble members:

∼ 
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Second, the differences in r2
10 averaged over all ensemble members 

exceed the 95% confidence threshold. The significance of the differ-
ences in means is assessed from a two-tailed test of the t-statistic
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where the subscripts F and H denote the Future and Historical periods, 
respectively; overbars denote the mean of r2

10 within each period;  
σ denotes the standard deviation of r2

10 within each period; and N denotes 
the number of independent values in each period, assumed to be  
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number of ensemble members (for example, N N= = 40F H  if there are 
40 ensemble members). The results are controlled for the false  
discovery rate59.

The stippling in Fig. 3 indicates results that are significant in the 
following two ways.

First, the multi-model mean changes are significant at the 95% level 
based on a two-tailed test of the t-statistic.

Second, the signs of the changes are the same in ensemble means 
from at least three out of the four ESMs.

Note that the results derived from the ESMs are based on a very 
large sample size. The results in Figs. 1 and 3 are derived from more 
than 10,000 days and averaged over 30–50 ensemble members (Fig. 1) 
and 150 ensemble members (Fig. 3). The results in Fig. 2 are further  
averaged over many grid points.

Robustness to different lags
Figures 1–3 show results for the lag 10-day autocorrelation. Extended 
Data Fig. 3 highlights results from the CESM1 output for other lags, and 
Extended Data Fig. 4 highlights results from the CESM1 output for the 
total differences rather than percentage differences. Note that the total 
differences yield the same spatial patterns as the per cent differences, 
but by construction have larger amplitudes where the climatological-mean 
persistence r 2

10,Historical is largest, such as the tropics.
For the most part, the patterns of the differences are highly stable to 

the choice of the time lag used in the analysis. In the case of the results 
shown in Extended Data Figure 4, the spatial correlation between maps 
derived for results at lag i and lag i+1 increases from r ~ 0.95 when i=1 to 
r ~ 0.995 when i > 5 (Extended Data Fig. 5a). Likewise, the spatial correla-
tions between the lag 10-day map and maps calculated for results at all 
other lags exceeds r = 0.9 for all lags between i = 1 and i = 30 (Extended Data 
Fig. 5b). In other words, the results shown in Figs. 1–3 are largely insensitive  
to changes in the time lag used to estimate the autocorrelation.

The most notable differences between results derived for different  
lags in Extended Data Figs. 3 and 4 are found in association with results 
from the lag 5-day map. For example, the lag 5-day map indicates  
negligible changes in persistence over the Sahara, whereas the lag 10-, 15- 
and 20-day maps indicate increasingly large changes. In the specific case 
of the Sahara, the discrepancies arise because the autocorrelation curves 
do not indicate clear separation until a lag of approximately 7 days (not 
shown). Note that even in the specific case of the Sahara, the lag autocor-
relations are stable at lags longer than 10 days (Extended Data Figs. 3 and 4).

Simpler models
The climate change simulations run with the gray radiation scheme 
and comprehensive radiation scheme shown in Fig. 4 were performed 
as part of a longwave hierarchy of numerical model configurations25. 
Details of the simulations are provided in ref. 25. Details of the gray 
radiation scheme are provided in refs. 25 and 60. Details of the correlated  
k method used in the RRTMG scheme are provided in ref. 61.

The gray radiation and RRTMG simulations were run on the GFDL 
AM2.1 atmospheric general circulation model62 at a uniform horizontal 
resolution of 2.8 degrees, with 48 vertical levels, and at a time step of 
900 s. The model was run in an aquaplanet configuration and coupled 
to a slab-ocean model with a depth of 30 m (ref. 63). There is no land 
surface, there is no ocean heat transport, there is no sea ice and there 
are no clouds. The simulations are forced with roughly equinoctial 
values of insolation (as per equation 3 in ref. 25) and there is no diurnal 
or seasonal cycle. The simulations were spun-up for 10 years (gray 
radiation) and 20 years (RRTMG). The analyses shown here are based 
on 10 years of four times daily output.

The control and climate change experiments are forced as follows. 
In the case of the RRTMG configuration, the control simulation is 
forced with CO2 concentrations of 355 ppmv, and the climate change 
simulation is forced with a fourfold increase in CO2 concentrations 
relative to the control. In the case of the gray radiation configuration, 

the simulations are forced with prescribed optical depths that are con-
figured so that the long-term mean sea surface temperature fields in the 
gray radiation control and climate change simulations closely match 
those in the corresponding RRTMG simulations. In all simulations, the 
ocean mixed-layer depth is fixed at 30 m.

The climate change simulations run in RCE and shown in Fig. 5 are 
from ref. 27. The simulations were run on the atmospheric component 
of the MPI-ESM1.2 (ref. 64) at horizontal resolution T31 and with 47 ver-
tical levels. Insolation is spatially homogeneous with a global mean 
value of 340 W m−2. The Coriolis parameter is zero everywhere. The 
model was run in an aquaplanet configuration and—unlike models 
used in many RCE experiments—is coupled to a slab-ocean model with 
a depth of 25 m. There is no land or ocean heat transport. The model 
simulates cloud processes and employs a comprehensive radiation 
scheme (RRTMG). There are no extratropical dynamical processes as 
the Coriolis parameter is zero and there is no meridional structure in 
the insolation. The analyses shown here are based on 104 months of 
output. The control and climate change experiments are forced with 
spatially homogeneous CO2 concentrations corresponding to prein-
dustrial and four times preindustrial levels, respectively. Details of the 
simulations are provided in ref. 27.

Statistical significance of the simpler model results
The error bars on the autocorrelation curves in Figs. 4 and 5 are cal-
culated as follows.

First, the correlations are transformed to their corresponding 
z-values using the Fischer z-transformation.

The 95% error bars on the z-values are then calculated, assuming 
the following number of samples: one sample for every 30 days in the 
extratropics in Fig. 4; one sample for every 180 days in the tropics in 
Fig. 4; one sample for every 24 months in Fig. 5; and one sample for every 
1,000,000 km2 (~500 spatial samples). For example, in the case of the 
104 months of grid-point output used to generate Fig. 5, the procedure 
amounts to approximately 2 × 105 samples. The inclusion of spatial reso-
lution in the number of samples used in the z-value confidence intervals 
is justified, as the mean correlations averaged across all grid boxes 
(as used in Fig. 5) are effectively identical to the correlations found 
by concatenating time series at all grid boxes into a single time series.

Lastly, the z-values were back-transformed to provide 95% confidence 
intervals on the respective correlation coefficients.

Note that the confidence intervals are generally very small due to 
the very large sample sizes used in the analyses.

Data availability
The large-ensemble output is publicly available via the Multi-Model 
Large Ensemble Archive (MMLEA) at the National Center for Atmos-
pheric Research (https://doi.org/10.1038/s41558-020-0731-2).  
The output from the gray radiation and RRTMG simulations were 
provided by Zhihong Tan at the NOAA Geophysical Fluid Dynamics 
Laboratory; the output from the RCE simulations were provided 
by Gabor Drotos at the Institute for Cross-Disciplinary Physics and 
Complex Systems, Palma de Mallorca, Spain. All data used to con-
struct the figures are archived in Figshare (https://doi.org/10.6084/
m9.figshare.15078807.v1). All other data that support the findings 
of the study are available from the corresponding author upon rea-
sonable request.

Code availability
Code that was used in this study is available from the corresponding 
author upon reasonable request. 
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Extended Data Fig. 1 | The relationship between the autocorrelation and 
the average length of a warm event. The 2d density plot of the lag-one 
autocorrelation and the average length of warm events calculated as a function 
of grid box in the CESM1 historical output. Warm events are defined as periods 

when temperatures exceed one standard deviation. Panels (a-d) show results 
for four sample ensemble members in the CESM1. Each panel includes results 
from 55296 grid boxes. Data density is found using a Gaussian kernel density 
estimate.



Extended Data Fig. 2 | The ensemble-mean relationship between the 
autocorrelation and the average length of a warm event. (a) The 2d density 
plot of the lag-one autocorrelation and the average length of warm events 
calculated as a function of grid box in the CESM1 historical output. Results are 
calculated for each ensemble member and then averaged over all ensemble 
members. Warm events are defined as periods when temperatures exceed one 
standard deviation. Each panel includes results from 55296 grid boxes. (b; 
shading) As in the top panel, but results are averaged over bins that span 0.001 
on the abscissa. (b; black line) Results derived from randomly generated 
red-noise time series with autocorrelation specified on the abscissa. Data 
density is found using a Gaussian kernel density estimate.
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Extended Data Fig. 3 | Changes in variance explained by persistence as a 
function of lag. The changes in persistence between the “historical” period 
1970-1999 and the “future” period 2070-2099 calculated from 40 
large-ensembles run on the NCAR CESM1. Warm (red) colours represent an 
increase in persistence from the Historical to Future periods, while cool (blue) 
colours represent a decrease in persistence over the same period. Results show 
the percent changes in the variance explained by the (a) lag 5, (b) lag 10, (c) lag 
15, and (d) lag 20-day autocorrelations. That is, they show: − 1

r i Future

r i Historical

2
,

2
,

 where 

r2
i denotes the variance explained by the lag i-day autocorrelation. Note that 

the autocorrelations are calculated first for individual ensemble members and 
then averaged over all ensembles using the Fisher-z transformation. Stippling 
indicates grid points where at least 75% of the ensemble members agree on the 
sign of the change (a likelihood of ~0.1% by chance) and where the ensemble 
mean results exceed the 95% confidence threshold based on a two-tailed test of 
the t-statistic. Note that panel (b) is identical to Figure 1a. See Methods for 
details of the ESM output, analysis, statistical significance, and reproducibility.



Extended Data Fig. 4 | Changes in persistence as a function of lag. The 
changes in persistence between the “historical” period 1970-1999 and the 
“future” period 2070-2099 calculated from 40 large-ensembles run on the 
NCAR CESM1. Warm (cool) colors represent an increase (decrease) in 
persistence from the historical to future period. Results show the actual 
changes in the variance explained by the (a) lag 5, (b) lag 10, (c) lag 15, and (d) lag 
20-day autocorrelations, not the percent changes as shown in Extended Data 
Figure 3. That is, they show: r r−i Future i Historical

2
,

2
,  where r2

i denotes the variance 

explained by the lag i-day autocorrelation. The autocorrelations are calculated 
first for individual ensemble members and then averaged over all ensembles 
using the Fisher-z transformation. Stippling indicates grid points where at least 
75% of the ensemble members agree on the sign of the change (a likelihood of 
~0.1% by chance) and where the ensemble mean results exceed the 95% 
confidence threshold based on a two-tailed test of the t-statistic. See Methods 
for details of the ESM output, analysis, statistical significance, and 
reproducibility.
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Extended Data Fig. 5 | Testing the robustness of changes in persistence to 
lag. (a) The results at lag i on the abscissa indicate the spatial correlation 
between 1) the spatial map formed as r r−i Future i Historical

2
,

2
, , where r i Future

2
,  and 

r i Historical
2

, indicate the variance explained by the lag i-day autocorrelation in 
the Future and Historical periods, respectively, and the autocorrelations are 

calculated first for individual ensemble members and then averaged over all 
ensembles (e.g., the lag i=10 map is shown in Extended Data Figure 4b); and  
2) the corresponding map calculated for lag i+1. (b) As in panel (a), but for the 
spatial correlations between 1) the map formed for lag i and 2) the map formed 
for lag i=10. Results are based on all members from the CESM1 output.



Extended Data Fig. 6 | Climatological-mean autocorrelations of surface 
temperature in the historical and future periods. The lag 10-day 
autocorrelations of surface temperature in large ensembles run on the four 
indicated ESMs for (top) the 1970-1999 historical period; (bottom) the  

2070-2099 future period. The results are derived from (a, e) 40 ensemble 
members run on the NCAR CESM1, (b, f) 30 ensemble members run on the 
CSIRO Mk3.6, (c, g) 50 ensemble members run on the CCCma CanESM2, and  
(d, h) 30 members run on the GFDL ESM2M.
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Extended Data Fig. 7 | Assessing changes in ENSO in large ensembles run on 
four ESMs. Scatter plots of the standard deviation of the monthly mean Nino 
3.4 index during the historical period 1970-1999 and the future period 2070-
2099 derived from (a) 40 ensemble members run on the NCAR CESM1, (b) 30 

ensemble members run on the CSIRO Mk3.6, (c) 50 ensemble members run on 
the CCCma CanESM2, and (d) 30 members run on the GFDL ESM2M. The black 
diagonal lines represent the 1:1 line. Dots indicate results from individual 
ensemble members. The output was obtained from the NCAR CVDP-LE.



Extended Data Fig. 8 | Southern Ocean temperatures and SH sea ice extent 
in large ensembles run on four ESMs. Monthly mean values of (left) Southern 
Ocean temperatures; (right) Southern Hemisphere sea ice extent in large 
ensembles from the indicated ESMs. Results are shown for individual ensemble 
members and smoothed for display purposes using a 13 month running mean. 

Results are derived from (a, b) 40 ensemble members run on the NCAR CESM1, 
(c, d) 30 ensemble members run on the CSIRO Mk3.6, (e, f) 50 ensemble 
members run on the CCCma CanESM2, and (g, h) 30 members run on the GFDL 
ESM2M. The output was obtained from the NCAR CVDP-LE.


