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M Check for updates

Climate change has been and will be accompanied by widespread changes in surface
temperature. Itis clear that these changes include global-wide increases in mean
surface temperature and changes in temperature variance that are more
regionally-dependent' . Itis less clear whether they also include changesin the

persistence of surface temperature. This isimportant as the effects of weather events
onecosystems and society depend critically on the length of the event. Here we
provide an extensive survey of the response of surface temperature persistence to
climate change over the twenty-first century from the output of 150 simulations run
on four different Earth system models, and from simulations run on simplified models
with varying representations of radiative processes and large-scale dynamics.
Together, the results indicate that climate change simulations are marked by
widespread changes in surface temperature persistence that are generally most
robust over ocean areas and arise due to a seemingly broad range of physical
processes. The findings point to both the robustness of widespread changesin
persistence under climate change, and the critical need to better understand,
simulate and constrain such changes.

The climate system response to increasing greenhouse gasesincludes
changes not only in the mean temperature but also in the shape of
the temperature distribution'. Both are essential for understanding
changesin the amplitude and timescale of temperature events under
climate change. Increasesin the mean temperature alter thelikelihood
oftemperature events by shifting the probability distribution towards
higher values; changes in the temperature variance and skewness affect
theincidence of temperature events by altering the shape of the distri-
bution. The evidence for changes in the mean surface temperature is
overwhelming and incontrovertible in both observations and numerical
simulations of climate change!>. The evidence for changes in the vari-
ance and skewness of the temperature distribution is less extensive.
Nevertheless, thereis evidence that both have changedin select regions
for avariety of physical reasons* ™,

Here we examine the evidence and physics of changes in the persis-
tence of temperature events under climate change. Persistence has
akey role in the climate impacts of a given temperature event. But
interestingly, relatively few studies have explored how and why per-
sistence will evolve under climate change in a global context. To date,
the evidence s limited.

Oneset of studies argues forincreases in observed temperature per-
sistence in data through the early 2000s (refs.'*"), but the changes in
observed persistence are not clearly reproduced in different datasets,
at different locations, and over different time periods (for example,
see Figs. 5 and S10 of ref. 7). Another observational study indicates
sporadic changes in the duration of observed extreme temperature
events over the latter half of the 20th century'®. But the most significant
changes are limited to the summer months and to land data averaged

over select spatial regions. An analysis of output from CMIP5 (the Cou-
pled Model Intercomparison Project Phase 5) infers changes in tem-
perature persistence from changesin the shape of temperature power
spectra', but the results are characterized by considerable regional
and inter-model variability. An analysis of atmospheric models forced
with prescribed 2Kincreasesin seasurface temperatures (SSTs) reveals
regional increases in land surface temperature persistence?, but the
experiment design has known biases in the attribution of extreme
events® and, importantly, prescribing the SST field renders surface
temperature persistence fixed over ocean areas. Numerous studies
argue that Arctic seaice loss leads to systematic changes in the mid-
latitude circulation, including its persistence (for example, ref. %),
However, the proposed linkages have not been reproducible in many
observational and modelling studies and are therefore controversial
(for example, ref. %),

Here wereveal that climate change leads to pervasive changesin tem-
perature persistence in simulations run on arange of climate models,
including comprehensive Earth system models (ESMs) and simpler
models with varying representations of radiative and dynamical pro-
cesses. The changes in persistence arise from a seemingly wide range
of physical processes. The results highlight the ubiquitous nature of
changesintemperature persistence under climate change, and the criti-
calimportance of better understanding and constraining such changes.

Persistence changesin ESMs

We begin by exploring changes in persistence in large ensembles of
climate change simulations run on four ESMs: the NCAR CESM1, CSIRO
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Fig.1|Changesinsurface temperature persistencein ESMs. a-d, The changes
inpersistence between the Historical period (1970-1999) and the Future period
(2070-2099) calculated from large ensembles run on four ESMs. Warm (red)
coloursrepresentanincreasein persistence fromthe Historical to Future
periods, while cool (blue) colours repesent adecrease in persistence over the
same period. Results show the per cent changesin the variance explained by
thelag10-day autocorrelation; that s, the per cent changes in r?,,. Note that 1%,
iscalculated first forindividual ensemble members and then averaged over all

Mk3.6, CCCma CanESM2 and GFDL ESM2M (Methods). Surface tem-
perature persistence is estimated as the lag 10-day autocorrelation of
daily mean temperatures, r,,. The variance explained by persistence is
thus estimated as r,,, and changes in persistence under climate change
are estimated as the per cent changesin r*,, between two 30-year peri-
ods: the ‘Historical’ period1970-1999 and ‘Future’ period 2070-2099.
The autocorrelation provides a simple and robust way of measuring
persistence andis directly related to the length of temperature events
(Methods; Extended Data Figs.1and 2). Inaddition, results are largely
insensitive to the choice of time lag used in the analyses (Methods;
Extended DataFigs. 3, 4 and 5). See Methods for details of the ESM
output, analysis, statistical significance and reproducibility.

The climatological-mean values of r,, for the Historical and Future
periods are shown for referencein Extended DataFig. 6. Ingeneral, the
climatological-mean persistenceis highest in the tropics and decreases
rapidly with latitude in accordance with the more pronounced ampli-
tude of weather ‘noise’ at middle and high latitudes. The per cent
changes in r*,, between the two periods are shown in Fig. 1. Both the
CESM1 and Mk3.6 ESMs indicate widespread increases in persistence
over time that exceed 50% over much of the globe (Fig. 1a,b). The
CanESM2 and ESM2M ESMs likewise indicate widespread increasesin
persistence across the Northern Hemisphere—particularly over the
ocean basins, northwestern North America, and central Siberia—and
throughout the Southern Hemisphere subtropics (Fig.1c,d). However,
the CanESM2 and ESM2M results also indicate decreasesin persistence
inthetropics and—particularly inthe ESM2M—over the high latitudes
of the Southern Hemisphere. As discussed below, many of the inter-
model differences are consistent with inter-model differences in the
El-Nifio/Southern Oscillation (ENSO) response to climate change and
the amplitude of mixing in the Southern Ocean.

The robustness of the changes in persistence is further explored in
Fig.2.Allfour ESMsindicate robust increasesin regional-scale surface tem-
perature persistence throughout the Arctic (Fig.2a-d) and the Northern
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ensemble members. Theresultsare derived from40 ensemble membersrun
onthe NCAR CESM1 (a), 30 ensemble members run on the CSIRO Mk3.6 (b),

50 ensemble members run onthe CCCma CanESM2 (c), and 30 membersrun
onthe GFDLESM2M (d). Stippling indicates grid points where atleast 75% of the
ensemble members agree on the sign of the change (alikelihood of ~0.1% by
chance) and where the ensemble mean results exceed the 95% confidence
threshold based onatwo-tailed test of the t-statistic. See Methods for details of
the ESM output, analysis, statistical significance and reproducibility.

Hemisphere (Fig. 2e-h). The increases over the Arctic are particularly
pronounced and are consistent with observed increases in the duration
of Arcticwarmevents*. Three out of four ESMsindicate similarly robust
increasesinregional-scalesurfacetemperature persistenceinthe Southern
Hemisphere (Fig.2m-o0). The most notable exceptionis the ESM2M, which
indicates weak decreases in persistence over the Southern Ocean (Figs. 1
and2p). Consistent with Fig.1, the simulations runon the CESMlindicate
increases in persistence in the tropics (Fig. 2i) while the simulations run
on the CanESM2 and ESM2M indicate decreases there (Fig. 2k-1).
Theresultsin Figs.1and 2 are shown separately for output from four
large ensembles, and thus account for the uncertainty due to internal
climate variability. Fig. 3 probes the same results averaged over all four
largeensembles,and thusaccountsfortheuncertainty duetobothinternal
and model-model variability. As canalso be inferred fromFig.1, the most
robust responsesinclude: (1) widespread increases in persistence across
themiddleand high latitudes of the Northern Hemisphere, including the
Arctic, the North Pacificand North Atlantic basins, northwestern North
America and central Siberia; (2) widespread increases in persistence
throughout the subtropical oceansinbothhemispheres; and (3) localized
decreasesin persistence alongthe periphery of Antarctica. The changes
in the tropics are generally not robust from one model to the next.
Asnoted above and discussed further below, they are highly dependent
onmodel simulations of changes in ENSO under climate change.

Changes in simplified numerical models

Similarly robust changes in persistence are found in climate change
experiments runonrelatively simple numerical models. Here we con-
sider output from three sets of climate change experiments run with
no oceandynamics, no land or seaice, and varying representations of
atmospheric radiative processes and large-scale dynamics.

The first two sets are from the ‘longwave hierarchy’ of numerical
models published in ref. . Both sets include a ‘control’ and a ‘4 x CO,’
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Fig.2|Spatially averaged surface temperature
persistence. a-p, Thelag10-day autocorrelation
rpaveraged over theindicated regions and
shown forindividual ensemble members during
the Historical period (1970-1999; blue) and
Future period (2070-2099; red). Note that ry, is
calculated firstatindividual grid boxes and then
averaged over the indicated regions. Assuch, the
resultsreflect persistence calculated at the grid
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simulation run on an atmospheric general circulation model coupled
to a slab ocean model. The differences between the two sets lies in
their treatment of atmosphericradiation:in the first set, theradiative
effects of atmospheric composition are parameterized by prescribing
theoptical depth (thatis, a ‘gray radiation’ scheme); in the second set,
they are calculated using acomprehensive radiation scheme (RRTMG).
See Methods and ref. * for details.

Figure 4 shows the autocorrelation functions of near-surface
temperatures from both sets of experiments averaged over all grid
points in the extratropics (Fig. 4a,b) and tropics (Fig. 4c,d). In both
regions, surface temperature persistence increases notably under
climate change when the atmospheric optical depthisincreased either
explicitly (Fig. 4a,c) or through the attendant changes in greenhouse
gases (Fig.4b,d). Theincreasesin persistence are most pronouncedin
the numerical configuration that includes an interactive water vapor
feedback (Fig. 4b,d), potentially due to the importance of the water
vapor feedback in low-frequency climate variability. In both sets of
simulations, the increases are notable as they arise in the absence of
changesin seaice, ocean dynamics, clouds, the land surface, and the
ocean mixed-layer depth.

The third set of climate change experiments is from the radiative/
convective equilibrium (RCE) simulations published in ref. . Again,
the experiments include a control and a4 x CO, simulation run on an
atmospheric general circulation model coupled to a slab ocean model.
Butinthis case the insolation is spatially homogeneous and the Corio-
lis parameter is set to zero everywhere (thatis, the model isrunina
‘tropics-world’ configuration (Methods)?. The model configuration

T 1
015 02 025 03 0.1

T 1
015 02 025 03

includes clouds and comprehensive radiation, but has no seaice, no
land surface, no ENSO, fixed surface heat capacity, and no extratropical
dynamics. The RCE output is only available in monthly-mean formand
thus the lag correlations are discretized by month. Nevertheless, the
output affords a very large sample size (Methods). As shown in Fig. 5,
the simulations again indicate marked increases in surface temperature
persistence under increasing levels of atmospheric CO,.

Interpretation
What physical processes might underlie the widespread changes in
temperature persistence indicated above? For pedagogical purposes,
consider alinearized version of the surface energy budget:
4

Ceff% =
where primes denote variations about a long-term mean state; 7
denotes the surface temperature anomaly; C. denotes the effective
heat capacity of the ocean-mixed layer and/or land surface; F’ repre-
sents the anomalous surface fluxes associated with internal climate
variability; and Ais a damping coefficient. The term —AT/ represents
the damping of surface temperature anomalies by the surface fluxes
of latent, sensible and radiant heat.

There are three ways to change the persistence of T;in equation (1).
One is to change the time-varying characteristics of the forcing, F’; a
second is to change the effective heat capacity C; and a third is to
change the damping coefficient A. We consider all three below.

F-AT?, o))
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Fig.3|Changesin persistence averaged over all four ESMs. a-c, The changes
inpersistence between the Historical period (1970-1999) and the Future period
(2070-2099) averaged over 150 ensemble members run on four ESMs. Warm
(red) coloursrepresentanincreasein persistence from the Historical to Future
periods, while cool (blue) coloursrepesent adecrease in persistence over the
same period. Results show the per cent changes in the variance explained by
thelag10-day autocorrelation; thatis, the per cent changes in r*,. Note that %,
iscalculated first forindividual ensemble members and then averaged over all
ensemble members fromall four ESMs. The results are averaged over 40

Potential changes in the forcing

Thetimescale of the forcing (F’) is linked to the persistence of large-scale
atmospheric dynamics and their attendant surface fluxes. Trendsin the
midlatitude circulation have been linked to changes in surface
temperature persistence insome climate simulations®, the persistence
ofthe extratropical circulation has been suggested to vary with the
latitude of the storm track®®, and many climate models indicate decreases

Aquaplanet slab-ocean
with gray radiation scheme

Aquaplanet slab-ocean
with comprehensive radiation

ensemble members run onthe NCAR CESM1, 30 ensemble members runon

the CSIROMk3.6, 50 ensemble members run on the CCCma CanESM2 and

30 members run on the GFDL ESM2M. Stippling indicates grid boxes where

the multi-model mean changes are significant at the 95% level based on the
t-statistic, and the signs of the changes are the same in ensemble means from at
least three out of the four ESMs. See Methods for details of the ESM output,
analysis, statistical significance and reproducibility. a, b, c show the same
results from three different perspectives to highlight different regions of the
globe.

in the incidence of atmospheric blocking®’. However, trends in the
midlatitude circulation vary fromone climate change simulation to the
next*® andthereis considerable uncertainty in the response of blocking
to climate change; for example, the simulated changes in blocking are
generally smaller than model biases in blocking incidence?.

The timescale of the forcing is also influenced by the amplitude of
the ENSO phenomenon, as ENSO has pronounced amplitude on sea-
sonal timescales and influences climate throughout the tropics* and

Fig.4|Changesinpersistenceinslab-ocean
numerical models. a-d, The autocorrelation
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Fig.5|Changesinpersistenceinasimplified ‘tropics-world’ simulation.
Theautocorrelation functions of near-surface temperature fromaclimate
change simulation runonanaquaplanet model with afixed slab-ocean depth,
norotationand spatially homogenousinsolation. Results are first calculated at
individual grid points and then averaged over the globe. The dark grey curve
shows results froma control simulation; the light grey curve shows results from
aclimate change simulationinwhich greenhouse gas concentrations are
increased by afactor of four. Shading represents the 95% confidence intervals
ontheautocorrelation values (Methods; note that the confidence intervals are
very small due to the very large sample size used in the analysis). The model
outputis fromref.?. See Methods for details of the model output, analysis and
statistical significance.

extratropics®. The inter-model differences in persistence changes
indicatedin Figs.1and 2 are consistent with inter-model differencesin
simulated changes in ENSO variability. The CESM1and Mk3.6 simula-
tions indicate increases over the twenty-first century in both tropical
surface temperature persistence (Figs. 1and 2) and the variance of
the ENSO phenomenon (Extended DataFig. 7; see also ref. > and refer-
encestherein). The ESM2M and CanESM2 simulations indicate opposite
changes in both (Figs.1and 2, and Extended Data Fig. 7; see also ref.
34). Despite the probable importance of ENSO for future changes in
temperature persistence, itis worth emphasizing that robust changes
intemperature persistence readily arise in simulations with no ENSO
variability, as shown in Figs. 4 and 5.

Potential changes in the heat capacity

A second way to increase the persistence of T/ is to change the heat
capacity C.. If the timescale of F” is much shorter than the timescale
of T/, then the autocorrelation decays exponentially with lag as fol-
lows®?;

r(t)= exp{c_—ir} 2)

Thus, surface temperature persistence increases as the surface heat
capacity increases and/or the damping coefficient decreases, and vice
versa.

Overthe Arctic, increasesin the areal coverage of open water under
climate change should lead to increases in Cy, as the effective heat
capacity of open water is much higher than that of seaice. The large

increases in Arctic surface temperature persistence simulated by the
ESMs (Figs.1-3) are broadly consistent with the melting of seaice there.

Overthe oceans, the effective heat capacity of the surfaceisrelated
tothe depth of the ocean mixed layer. Numerous simulations suggest
increases in near-surface ocean stratification and thus decreases in
mixed-layer depth under climate change®?®, and the simulations run
on CESMlindicate decreases in mixed-layer depth over the twenty-first
century®. All else being equal, decreases in mixed-layer depth will lead
to decreases in C;and thus in surface temperature persistence. Inter-
estingly, the ESMs explored hereindicate increases in persistence over
most extratropical maritime regions (Fig. 1) including, notably, the
North Pacific in the CESM1 where mixed-layer depths are decreasing
(see Fig. 1g in ref. *). Thus, other factors are probably key in these
regions.

Changesinoceanstratification and mixed-layer depth are probably
dominant for the simulated decreases in Southern Ocean tempera-
ture persistence inthe ESM2M. Relative to other ESMs, the ESM2M has
comparatively robust ocean convection and thus deep mixed layersin
the Southern Ocean*’. This is supported by the comparatively weak
Southern Ocean warming, small sea-ice losses, and large decreasesin
Southern Ocean convectionin ESM2M under climate change (Extended
DataFig. 8; refs.*""**).Ingeneral, the largest increases in ocean stratifica-
tionunder climate change should arise in regions where the mixed layer
is deepest under historical conditions (for example, ref.*). Thus, the
relatively robust Southern Ocean convection under historical condi-
tions in the ESM2M should lead to relatively large increases in strati-
fication there and (all else being equal) decreases in SST persistence.

Over terrestrial regions, the effective heat capacity of the surface
may change; for example, via variations in snow cover, soil moisture
and vegetation. Soil moisture-temperature feedbacks have been
linked to changes in surface temperature variance over select areas
(for example, ref. °). However, the influence of land surface changes
on surface temperature variability varies from one region to the next
and depends onmodel representations of land-surface processes®. As
shownin Fig. 1, the most robust changes in persistence are found not
over land areas but over the oceans.

Importantly, the idealized climate change simulations highlighted
inFigs. 4 and 5 are run with fixed mixed-layer depths, no land surface,
and no seaice. They therefore indicate that widespread increases in
persistence can readily arise even in the absence of changes in the
surface heat capacity.

Potential changes in damping

A third way to change surface temperature persistence is through
changes in the damping term -AT,. The damping termreflects a para-
metrization of the feedback between a perturbation in surface tem-
perature and the resulting anomalous fluxes of sensible, latent and
radiative heat.

The feedbacks due to the surface fluxes of sensible and latent heat
are a function of the near-surface wind speed and the vertical gradi-
entsinthe temperature and specific humidity perturbation within the
atmospheric boundary layer (for example, ref. *¢). Maritime regions
where the mean wind increases under climate change may thus be
marked by increasesin the turbulent air-seafeedback and (from equa-
tion (2)) decreases in surface temperature persistence. This process
may prove important over the high latitude Southern Ocean where
the meanwinds are expected to increase under climate change?. Inthe
absence of changes in the surface wind speed, the turbulent air-sea
feedback generally increases with SSTs (see Fig. 4 inref. ) and is thus
unlikely to contribute toincreases in surface temperature persistence.

The feedback due to the surface fluxes oflongwave radiationis afunc-
tion of the longwave optical depth of the atmosphere. Increases in the
longwave optical depth under climate change should lead toareduction
in the thermal damping—and thus an increase in the persistence—of
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surface temperature anomalies. For example, consider the case of awarm
temperature anomaly applied at the surface. The damping of the anomaly
by the anomalous upward flux of longwave radiation is attenuated by
the anomalous downward flux of longwave radiation that arises as the
lower atmosphere warms*®, Under climate change, the surface is radia-
tively coupled to alower and warmer level of the atmosphere, and thus
the surface longwave radiative fluxes should be less efficient in damping
agiven surface temperature anomaly. Radiative coupling between the
surface and atmosphere should contribute to the persistence of surface
temperature anomalies for the same reasons that thermal coupling
contributes to the persistence of midlatitude SST anomalies* and the
tropospheric relaxation timescale to radiative—convective equilibrium®.

Theimportance of changesin radiative damping for changes in sur-
face temperature persistence is suggested by the numerical experi-
mentsshowninFigs.4 and 5. The simulationsindicate marked increases
in persistence, despite the fact that there is no land surface (Figs. 4
and 5), noseaice (Figs. 4 and 5), no clouds (Fig. 4), no ocean dynamics
(Figs. 4 and 5), no changes in slab-ocean depth (Figs. 4 and 5), and no
extratropical dynamics (Fig. 5). We reason that changes in longwave
radiative damping have a potentially key but largely overlooked role in
changes in temperature persistence under climate change.

Conclusions

Robust and widespread changes in surface temperature persistence
arisein climate change simulations run on a variety of numerical con-
figurations. They derive from a seemingly broad array of physical fac-
tors. Such changes in temperature persistence project directly onto the
timescales of extreme temperature events, and thus have potentially
keyimplications for various societies and ecosystems. The results here
pointtothe critical need to better understand, simulate and constrain
changes in surface temperature persistence under climate change.
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Methods

Earth system models

We analyse climate change simulations run on four different ESMs: the
National Center for Atmospheric Research CESM1, the Commonwealth
Scientific and Industrial Research Organisation Mk3.6, the Canadian
Centre for Climate Modeling and Analysis CanESM2, and the Geophysical
Fluid Dynamics Laboratory ESM2M. The output includes a total of
150 runs, including: (1) 40 simulations run on the CESMI (ref. *); (2)
30 simulations run on the Mk3.6 (ref. *%); (3) 50 simulations run on the
CanESM2 (ref. **); and (4) 30 simulations run on the ESM2M>*. All four
ESMsare fully coupled atmosphere-ocean-land-ice climate models. The
large-ensemble outputis made available through the Multi-Model Large
Ensemble Archive with the guidance of the US CLIVAR Working Group on
Large Ensembles®*¢, Outputisaccessed viathe NCAR Climate Variability
Diagnostics Package for Large Ensembles*® and the Climate Data Gateway.

Persistence in the ESMs
Persistenceis estimated from the autocorrelation function. We calcu-
late the autocorrelation of surface temperature in the ESMs as follows.

Foreach ESM, the daily mean surface temperature outputis obtained
from all ensemble members from two periods that represent the
historical and future climate: 1970-1999 for the Historical period and
2070-2099 for the Future period.

The time-varying ensemble mean temperature is subtracted from
allgrid points in all ensemble members over both periods. Removing
the ensemble mean is essential so that the surface temperature
persistence ineach ensemble member is not biased by low-frequency
variability in the forcings applied to the model. For example, the rate
ofglobal warming is not stationary over the enitre 1970-2099 period,
andthus the latter part of the twenty-first century may exhibit changes
in persistence due simply to changes in the rate of global warming.

Thepersistence of surface temperatureis estimated fromthe autocorre-
lation of the temperature time series. The autocorrelation s calculated as:

_T@OT(t+0)
T'(0)

r(1)

whereT denotes surface temperature, primes denote departures from
the ensemble mean, overbars denote the time mean, and 7 denotes the
lag autocorrelation in days.

The ensemble and zonal mean autocorrelations are calculated using
the Fisher z-transformation. That is, we transform autocorrelations
to their respective z-values, compute means and differences of the
resulting z-values, and then back-transform the mean or differenced
z-values to obtain the resulting correlations.

Lastly, changesin persistence are quantified as the per cent changes in

variance explained by thelag10-day autocorrelation between the Future

10, Future

2
10, Historical

explained by the lag 10-day autocorrelation. The per cent changes are
calculated from the ensemble-meanautocorrelations mentioned above.

andHistorical periods; that s, — wherer?,,denotesthevariance

Use of the autocorrelation to assess persistence

There are numerous ways to quantify the persistence of weather
(forexample, refs. %), We use the lag autocorrelation for three primary
reasons. First, itissimple and requires few design choices asitinvolves
correlating a time series with itself at another lag. There is no need to
make subjective choices onthe threshold or timescale of atemperature
event, and theresults can be easily reproduced. Second, the autocorre-
lationis calculated fromall elementsinatime series. Methods based on
apredetermined threshold inevitably rely onasubjectively truncated
dataset. And third, the autocorrelationis directly related to the length
ofevents onthe wings of the frequency distribution; thatis, itis directly
related to the length of extreme warm and cold events.

Extended Data Figures 1 and 2 demonstrate the close relationship
betweentheautocorrelation of temperature dataand the average length
of‘warmevents’, where the length ofawarmeventis defined asthe number
of consecutive days on which temperatures exceed one standard devia-
tion. The conclusions are notinfluenced by theamplitude of the threshold,
albeit the sample size becomes smaller as the threshold increases.

Extended Data Figure 1 shows the 2d density plots of the lag 1-day
autocorrelation and the average length of warm events calculated at
allgrid boxes in the CESM1 historical output for four sample ensemble
members. The average length of warm events increases monotoni-
cally with autocorrelation: time series with a larger autocorrelation
are associated with longer warm events, and vice versa. As shown in
Extended Data Fig. 2a, results calculated first for individual ensemble
members and then averaged over all 40 ensemble members bear close
resemblance to those derived from individual ensemble members.

Theresults shownin Extended Data Fig.1are derived from more than
10,000 days at more than 55,000 grid points, and the results shownin
Extended DataFig.2aare further averaged over 40 ensemble members.
The relationships are thus derived from a very large sample size and
make clear the robust relationship between the autocorrelation and the
length of warm events. The results are also consistent with the funda-
mental characteristics of ared-noise process. The grey dots in Extended
Data Fig. 2b are generated by averaging the CESM1 ensemble-mean
output from Extended Data Fig. 2a over bins that span 0.001 on the
abscissa. The averaging serves to emphasize the centroid of the more
than 55,000 data points used to generate Extended Data Fig. 2a. The
black line shows the corresponding results derived not for CESM1out-
put but for red-noise time series generated as

x(8) = r(Ax(t - AD) + (1- r(AL)%)2e(t),

where g(t)israndomly drawn fromastandardized normal distribution
andr(At)istheautocorrelation of x(¢)atlagAt. The specified autocor-
relation r(A¢) is shown on the abscissa of Extended Data Fig. 2b. As
evidencedintheresults, the relationship between the autocorrelation
and persistence of temperature eventsin the CESM1 output is consist-
ent with the characteristics of a red-noise process.

Statistical significance of ESM results
The stippling in Fig. 1indicates results that are significant in the fol-
lowing two ways.

First, thesignof theresultsis the sameinatleast 75% of the ensemble
members. If there is no change in temperature persistence (the null
hypothesis), then there is an equal chance of either an increase or a
decreaseintheautocorrelationatagivengrid pointinagivenensemble
member. The likelihood that results from at least 75% of all ensemble
members will exhibit the same sign (either positive or negative) canbe
modelled using a binomial distribution with a probability of success
of 0.5.In the case of 40 ensemble members:

40
P(x230)= Y

(40](0.5))((0.5)40‘* ~0.1%
x=30 X

Second, the differences in r,, averaged over all ensemble members
exceed the 95% confidence threshold. The significance of the differ-
ences in means is assessed from a two-tailed test of the ¢-statistic

Xp— Xy

,
o , o
Nr Ny

where the subscripts Fand H denote the Future and Historical periods,
respectively; overbars denote the mean of r’,, within each period;
odenotesthestandard deviation of 2, within each period; and Ndenotes
the number of independent values in each period, assumed to be
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number of ensemble members (for example, N;= N;= 40 if there are
40 ensemble members). The results are controlled for the false
discovery rate®.

The stippling in Fig. 3 indicates results that are significant in the
following two ways.

First, the multi-model mean changes are significant at the 95% level
based on atwo-tailed test of the ¢-statistic.

Second, the signs of the changes are the same in ensemble means
from at least three out of the four ESMs.

Note that the results derived from the ESMs are based on a very
large sample size. The results in Figs. 1and 3 are derived from more
than 10,000 days and averaged over 30-50 ensemble members (Fig.1)
and 150 ensemble members (Fig. 3). The results in Fig. 2 are further
averaged over many grid points.

Robustness to different lags

Figures 1-3 show results for the lag 10-day autocorrelation. Extended
Data Fig. 3 highlights results from the CESM1 output for other lags, and
Extended Data Fig. 4 highlights results from the CESM1 output for the
total differences rather than percentage differences. Note that the total
differences yield the same spatial patterns as the per cent differences,
butbyconstructionhavelargeramplitudeswherethe climatological-mean
persistence rg iscorica iS 1argest, such as the tropics.

For the most part, the patterns of the differences are highly stable to
the choice of the time lag used in the analysis. In the case of the results
shownin Extended Data Figure 4, the spatial correlation between maps
derived for results at lag i and lag i+1increases fromr~0.95 when i=1to
r-0.995wheni>5 (Extended Data Fig. 5a). Likewise, the spatial correla-
tions between the lag 10-day map and maps calculated for results at all
otherlags exceedsr=0.9foralllags betweeni=1and i=30 (Extended Data
Fig.5b).Inotherwords, the resultsshownin Figs.1-3 are largelyinsensitive
to changes in the time lag used to estimate the autocorrelation.

The most notable differences between results derived for different
lags in Extended Data Figs. 3 and 4 are found in association with results
from the lag 5-day map. For example, the lag 5-day map indicates
negligible changesin persistence over the Sahara, whereas thelag10-,15-
and 20-day maps indicate increasingly large changes. In the specific case
oftheSahara, the discrepancies arise because the autocorrelation curves
do notindicate clear separation until a lag of approximately 7 days (not
shown). Note thatevenin the specific case of the Sahara, the lagautocor-
relations are stable atlags longer than10 days (Extended DataFigs.3and 4).

Simpler models

The climate change simulations run with the gray radiation scheme
and comprehensive radiation scheme shownin Fig. 4 were performed
as part of alongwave hierarchy of numerical model configurations?®.
Details of the simulations are provided in ref. %. Details of the gray
radiation scheme are provided in refs.” and ®. Details of the correlated
kmethod used in the RRTMG scheme are provided in ref. .,

The gray radiation and RRTMG simulations were run on the GFDL
AM2.1atmospheric general circulation model®?at a uniform horizontal
resolution of 2.8 degrees, with 48 vertical levels, and at a time step of
900s. Themodelwas runinanaquaplanet configuration and coupled
to aslab-ocean model with a depth of 30 m (ref. ). There is no land
surface, there is no ocean heat transport, there is no seaice and there
are no clouds. The simulations are forced with roughly equinoctial
values of insolation (as per equation 3 in ref. ) and there is no diurnal
or seasonal cycle. The simulations were spun-up for 10 years (gray
radiation) and 20 years (RRTMG). The analyses shown here are based
on 10 years of four times daily output.

The control and climate change experiments are forced as follows.
In the case of the RRTMG configuration, the control simulation is
forced with CO, concentrations of 355 ppmv, and the climate change
simulation is forced with a fourfold increase in CO, concentrations
relative to the control. In the case of the gray radiation configuration,

the simulations are forced with prescribed optical depths that are con-
figured so that the long-term mean sea surface temperature fields in the
gray radiation control and climate change simulations closely match
thosein the corresponding RRTMG simulations. Inall simulations, the
ocean mixed-layer depthis fixed at 30 m.

The climate change simulations run in RCE and shown in Fig. 5 are
fromref.?. The simulations were run on the atmospheric component
of the MPI-ESM1.2 (ref. ®*) at horizontal resolution T31and with 47 ver-
tical levels. Insolation is spatially homogeneous with a global mean
value of 340 W m2. The Coriolis parameter is zero everywhere. The
model was run in an aquaplanet configuration and—unlike models
used inmany RCE experiments—is coupled to aslab-ocean model with
adepth of 25 m. There is no land or ocean heat transport. The model
simulates cloud processes and employs a comprehensive radiation
scheme (RRTMG). There are no extratropical dynamical processes as
the Coriolis parameter is zero and there is no meridional structure in
the insolation. The analyses shown here are based on 10* months of
output. The control and climate change experiments are forced with
spatially homogeneous CO, concentrations corresponding to prein-
dustrial and four times preindustrial levels, respectively. Details of the
simulations are provided in ref. 7.

Statistical significance of the simpler model results
The error bars on the autocorrelation curves in Figs. 4 and 5 are cal-
culated as follows.

First, the correlations are transformed to their corresponding
z-values using the Fischer z-transformation.

The 95% error bars on the z-values are then calculated, assuming
the following number of samples: one sample for every 30 days in the
extratropics in Fig. 4; one sample for every 180 days in the tropics in
Fig.4;onesample for every 24 monthsin Fig. 5; and one sample for every
1,000,000 km?(-500 spatial samples). For example, in the case of the
10*months of grid-point output used to generate Fig. 5, the procedure
amounts to approximately 2 x10° samples. The inclusion of spatial reso-
lution inthe number of samples used in the z-value confidence intervals
isjustified, as the mean correlations averaged across all grid boxes
(asused in Fig. 5) are effectively identical to the correlations found
by concatenating time series at all grid boxes into a single time series.

Lastly, thez-values were back-transformed to provide 95% confidence
intervals on the respective correlation coefficients.

Note that the confidence intervals are generally very small due to
the very large sample sizes used in the analyses.

Data availability

Thelarge-ensemble outputis publicly available via the Multi-Model
Large Ensemble Archive (MMLEA) at the National Center for Atmos-
pheric Research (https://doi.org/10.1038/s41558-020-0731-2).
The output from the gray radiation and RRTMG simulations were
provided by Zhihong Tan at the NOAA Geophysical Fluid Dynamics
Laboratory; the output from the RCE simulations were provided
by Gabor Drotos at the Institute for Cross-Disciplinary Physics and
Complex Systems, Palma de Mallorca, Spain. All data used to con-
struct the figures are archived in Figshare (https://doi.org/10.6084/
mo.figshare.15078807.v1). All other data that support the findings
of the study are available from the corresponding author upon rea-
sonable request.

Code availability

Code that was used in this study is available from the corresponding
author uponreasonable request.
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Extended DataFig.1| Therelationship between the autocorrelationand when temperatures exceed one standard deviation. Panels (a-d) show results
theaveragelength ofawarmevent. The 2d density plot of the lag-one for four sample ensemble membersin the CESM1. Each panelincludes results

autocorrelationand the average length of warmevents calculated asafunction ~ from 55296 grid boxes. Data density is found using a Gaussian kernel density
ofgrid boxin the CESM1 historical output. Warm events are defined as periods estimate.
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Extended DataFig.2| The ensemble-meanrelationship between the
autocorrelationand the average length of awarmevent. (a) The 2d density
plotof thelag-one autocorrelation and the average length of warmevents
calculated asafunction of grid box in the CESM1 historical output. Resultsare
calculated for each ensemble member and then averaged over all ensemble
members. Warm events are defined as periods when temperatures exceed one
standard deviation. Each panelincludes results from 55296 grid boxes. (b;
shading) Asinthe top panel, butresults are averaged over bins that span 0.001
ontheabscissa. (b; blackline) Results derived fromrandomly generated
red-noise time series with autocorrelation specified on the abscissa. Data
density is found using a Gaussian kernel density estimate.
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Extended DataFig.3|Changesinvariance explained by persistenceasa
function oflag. The changesin persistence between the “historical” period
1970-1999 and the “future” period 2070-2099 calculated from 40
large-ensembles run onthe NCAR CESM1. Warm (red) colours represent an
increasein persistence from the Historical to Future periods, while cool (blue)
coloursrepresentadecreasein persistence over the same period. Results show
the percentchangesinthe variance explained by the (a) lag52(b) lag10, (c) lag

15,and (d) lag 20-day autocorrelations. Thatis, they show: . Lfuture__ 1 where
i, Historical

r;denotes the variance explained by the lag i-day autocorrelation. Note that
the autocorrelations are calculated first for individual ensemble members and
thenaveraged over all ensembles using the Fisher-z transformation. Stippling
indicates grid points where atleast 75% of the ensemble members agree on the
signof the change (alikelihood of ~0.1% by chance) and where the ensemble
mean results exceed the 95% confidence threshold based onatwo-tailed test of
the t-statistic. Note that panel (b) isidentical to Figure 1a. See Methods for
details of the ESM output, analysis, statistical significance, and reproducibility.



Extended DataFig.4|Changesin persistence as afunction oflag. The
changesin persistence between the “historical” period1970-1999 and the
“future” period 2070-2099 calculated from 40 large-ensembles runon the
NCAR CESM1. Warm (cool) colors represent anincrease (decrease) in
persistence from the historical to future period. Results show the actual
changesinthe variance explained by the (a) lag 5, (b) lag 10, (c) lag 15, and (d) lag
20-day autocorrelations, not the percent changes as shown in Extended Data
Figure 3. That s, they show: r?; yeure— % pistoricas Where i denotes the variance

explained by the lagi-day autocorrelation. The autocorrelations are calculated
firstforindividual ensemble members and then averaged over all ensembles
using the Fisher-z transformation. Stippling indicates grid points where at least
75% of the ensemble members agree on the sign of the change (alikelihood of
~0.1% by chance) and where the ensemble mean results exceed the 95%
confidence threshold based on a two-tailed test of the t-statistic. See Methods
for details of the ESM output, analysis, statistical significance, and
reproducibility.
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between 1) the spatial map formed as r?; ryeure = % istoricatr WHeTe r%; puure and 2) the corresponding map calculated for lag i+1. (b) Asin panel (a), but for the
r? isoricat indicate the variance explained by the lag i-day autocorrelationin spatial correlations between1) the map formed for lagiand 2) the map formed

the Future and Historical periods, respectively, and the autocorrelations are forlagi=10. Results are based on allmembers from the CESM1output.
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Extended DataFig. 6 | Climatological-mean autocorrelations of surface 2070-2099 future period. Theresults are derived from (a, e) 40 ensemble
temperaturein the historical and future periods. The lag10-day members runonthe NCAR CESML, (b, f) 30 ensemble membersrun onthe
autocorrelations of surface temperature in large ensembles run on the four CSIROMK3.6, (c, g) 50 ensemble members run on the CCCma CanESM2, and
indicated ESMs for (top) the 1970-1999 historical period; (bottom) the (d, h)30 members runon the GFDLESM2M.
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Extended DataFig.7|Assessing changesin ENSOinlarge ensemblesrunon
four ESMs. Scatter plots of the standard deviation of the monthly mean Nino
3.4indexduringthe historical period 1970-1999 and the future period 2070-
2099 derived from (a) 40 ensemble members run onthe NCAR CESM1, (b) 30
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ensemble members run on the CSIRO Mk3.6, (c) 50 ensemble members run on
the CCCma CanESM2, and (d) 30 members runon the GFDL ESM2M. The black
diagonallinesrepresent the1:1line. Dots indicate results fromindividual
ensemble members. The output was obtained from the NCAR CVDP-LE.
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Extended DataFig. 8| SouthernOceantemperatures and SHseaice extent Results are derived from (a, b) 40 ensemble members run on the NCAR CESML,
inlarge ensembles run on four ESMs. Monthly mean values of (left) Southern (c,d)30 ensemble members run on the CSIRO Mk3.6, (e, f) 50 ensemble
Oceantemperatures; (right) Southern Hemisphere seaice extentin large members runonthe CCCmaCanESM2, and (g, h) 30 membersrunonthe GFDL
ensembles fromthe indicated ESMs. Results are shown forindividualensemble ~ ESM2M. The output was obtained from the NCAR CVDP-LE.

members and smoothed for display purposes using a13 month running mean.



