A Transient Semantics for Typed Racket

Ben Greenman?, Lukas Lazarek?, Christos Dimoulas®, and Matthias Felleisen®
a Brown University”

b Northwestern University

¢ Northeastern University

Abstract Mixed-typed languages enable programmers to link typed and untyped components in various
ways. Some offer rich type systems to facilitate the smooth migration of untyped code to the typed world;
others merely provide a convenient form of type Dynamic together with a conventional structural type system.
Orthogonal to this dimension, Natural systems ensure the integrity of types with a sophisticated contract
system, while Transient systems insert simple first-order checks at strategic places within typed code. Fur-
thermore, each method of ensuring type integrity comes with its own blame-assignment strategy.

Typed Racket has a rich migratory type system and enforces the types with a Natural semantics. Reticu-
lated Python has a simple structural type system extended with Dynamic and enforces types with a Transient
semantics. While Typed Racket satisfies the most stringent gradual-type soundness properties at a significant
performance cost, Reticulated Python seems to limit the performance penalty to a tolerable degree and is
nevertheless type sound. This comparison raises the question of whether Transient checking is applicable to
and beneficial for a rich migratory type system.

This paper reports on the surprising difficulties of adapting the Transient semantics of Reticulated Python
to the rich migratory type system of Typed Racket. The resulting implementation, Shallow Typed Racket,
is faster than the standard Deep Typed Racket but only when the Transient blame assignment strategy is
disabled. For language designers, this report provides valuable hints on how to equip an existing compiler
to support a Transient semantics. For theoreticians, the negative experience with Transient blame calls for a
thorough investigation of this strategy.

ACM CCS 2012
= Software and its engineering - Error handling and recovery; Semantics;
Keywords migratory typing, gradual typing, transient semantics, compilers

The Art, Science, and Engineering of Programming

Perspective The Engineering of Programming

Area of Submission General-purpose programming, Language interoperability, Gradual
typing

“Work done at Northeastern University

® © Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen
@ This work is licensed under a “CC BY 4.0” license.

Submitted to The Art, Science, and Engineering of Programming.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

A Transient Semantics for Typed Racket

EJ Two Designs, Two Semantics

Over the past fifteen years, the study of language designs that can mix typed and
untyped code has emerged as a focal point of programming languages research.
The designs differ in two major directions. The first concerns the expressiveness of
types. Migratory typing systems aim to accommodate the programming idioms of
the untyped world [43, 46]. Gradual typing systems add type Dynamic to a general-
purpose type system, providing an easy way to type any piece of code [35, 36].
TypeScript combines these two ideas in a single language [30].

The second difference is about the run-time enforcement of types against untyped
code. Natural systems [29] check types at boundaries with higher-order contract
wrappers to guarantee type soundness and complete monitoring [12].! Transient
systems use first-order checks at boundaries and elimination forms to guarantee a weak
form of type soundness [48]. Both systems record blame information to explain failed
checks, but employ different ways of collecting information and different reporting
strategies [14, 50]. TypeScript does not protect its types at all and consequently cannot
assign blame when things go wrong.

Researchers should compare the two main design dimensions within a single plat-
form: (1) the overhead of run-time checks and (2) the usefulness of blame information
plus the cost of creating and maintaining it. As for (1), a preliminary investigation for
the small, functional core of Typed Racket exposes serious performance differences
between the Natural and Transient designs [21], calling for a thorough evaluation.
As for (2), the work we report in this paper has enabled a first comparison of the
usefulness of blame [28].

This paper reports on the challenge of adapting the Transient semantics of Retic-
ulated Python (section 2) to Typed Racket’s (section 3) migratory type system. It
addresses both the type integrity checking (section 4) as well as the blame-assignment
mechanism (section 5). Implementors of other mixed-typed languages, such as the
above-mentioned TypeScript, may use this report to adapt Transient to their own
compiler (section 6).

B} The Starting Point: Transient and Reticulated Python

Reticulated Python implements a rather direct adaptation of the original Transient
formal semantics [48, 50]. Similar to most formal models, Transient comes with a bare
bones type system. Reticulated adds a few types, most notably structural types for
classes and objects. Reticulated does not, however, add special provisions for common
Python idioms, many of which do not fit the mold of a conventional type system. 2

" Natural is also known as Guarded [48], Behavioral [9], and Deep [47].
2PEP 484 (python.org/dev/peps/pep-0484) describes a set of types that is well-suited to
Python; it includes true unions and one-off types such as Reversible.

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

To reconcile its limited type system with the flexibility of Python, Reticulated
relies on type Dynamic with implicit downcasts. In the literature, this combination is
advertised as the means for programmers to underspecify the types in a portion of
code, add precise types to critical parts, and gradually turn their untyped program
into a fully typed one [6, 36]. In practice, type Dynamic also serves as a catch-all
that must be deployed when existing code stretches the limits of the type system [23,
50]. Many Python programs do not have a fully-typed Reticulated variant; at best,
programmers can search for a most-static variant [6] that minimizes occurrences of
type Dynamic.

Together with its type system, Reticulated brings two fresh ideas: its strategies of
shallow checks and collaborative blame. The key observation for the first is that a
weak form of type soundness [21, 50] is within reach as long as the program validates
shallow, first-order properties at strategic places. Weak soundness predicts the rough
outline of result values rather than full type structure. For example, if an expression
has type (Listof (Listof Integer)) and reduces to a value v, then Reticulated guarantees
that v is a list and says nothing about the list elements. Reticulated enforces this
guarantee with first-order checks at all boundaries to less-precisely-typed code and all
value elimination forms.3 As for the second fresh idea, collaborative blame, run-time
checks update a global blame map with information about the values they inspect.
Although the blame map conflates all uses of a shared value [22] and requires an
unbounded number of entries, it provides valuable help by attributing a failed run-time
check to a set of boundary types [28].

The argument in favor of both ideas is to trade guarantees for simplicity and
efficiency. In particular, Reticulated does not require contract wrappers—neither to
enforce types nor to offer blame information. This paper describes how this trade-off
works out for a gradual type system that accommodates untyped idioms.

[E] The Destination: Typed Racket

In contrast to Reticulated, Typed Racket’s migratory type system is designed to
accommodate idioms that have emerged through the use of plain Racket [19]; Scheme,
its immediate predecessor; and the Lisp family in general. These idioms include set-
based reasoning about data, types for variable-arity functions, and the heavy use of
first-class values including continuations and classes.

Set-based reasoning gives rise to occurrence typing [44], which turns run-time
checks into logical assertions and tracks them through the branches of conditionals
and the decisions of higher-order functions such as filter. While the type system for the
functional subset of Racket is straightforward—other than occurrence types—the type
system for first-class classes [39, 41] separates classes from types to accommodate the
widely used mixin and trait idioms [17, 18]. Additionally, Typed Racket has universally

3 Elimination forms extract one value from another; refer to a standard text for details [26].

A Transient Semantics for Typed Racket

B Table1 Implementation overview

Transient Natural
syntax and types Typed Racket (for both)
compiler(s) Shallow Racket and Deep Racket
SB Racket
checking strategy shallow checks at deep contracts at
boundaries and at boundaries

elimination forms

blames a set of boundaries the first conflict between
a type and a value

guarantees weak type soundness type soundness and
complete monitoring

quantified types tailored to Racket’s functional subset [37] and row-polymorphism
for Racket’s class-based subset.

These unconventional types present a challenge for the Transient approach. Both
first-order checks and collaborative blame must be scaled up, if possible, to ensure
soundness and provide useful blame errors.

Side-by-Side Table 1 presents the end result of our implementation effort. The Tran-
sient and Natural semantics are present under one roof as different compilers for
the Typed Racket syntax and type system. Because of the high costs of Transient
blame-assignment, there are three compilers in total:

= Shallow Racket implements the Transient semantics without blame,
= SB Racket (or, Shallow Racket with Blame) implements Transient with blame, and
= Deep Racket is the discerning name for the original Typed Racket compiler.

The table also contrasts key properties of the Shallow and Deep semantics. First, for
checking types at run-time, Deep Racket uses tailor-made contracts [38] to check deep
behavioral properties including type soundness and complete monitoring, albeit with
a high worst-case performance cost [24, 40]. Contracts are exactly the implementation
complexity that Transient eliminates. Along the way, however, Transient sacrifices
compositional reasoning about types; this loss is reflected in Shallow Racket’s guaran-
tees. Similarly, contracts in Deep Racket offer the means for annotating values with
precise blame information. SB Racket keeps a blame map on the side instead, but the
indirection of this map and the permissiveness of shallow checks lead to error outputs
that, at least in theory, are imprecise [22].

Figure 1 illustrates the implications of Shallow and Deep Racket on a small program
that consists of three modules:

= the top module defines an untyped function that sorts a list of values using a given
comparison function to determine the ordering,

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

Untyped Sort

(define (sort vals 1t?)

) Shallow Racket:

» Enforces type (-> N N Bool) with a check for
Typed Median functions

((: median (-> (Listof N) = Protects typed functions with domain checks
2 W 2ol = SB Racket blames all uses of < including

N . . A
(define (medi) Is 1t7) median—client, but only if < is typed
erine (medlian vals 4

(define n (length vals))
(list-ref (sort vals 1t?)
(quotient n 2))) | Deep Racket:

= Enforces type (-> N N Bool) with a contract

Untyped Client

= Blames median—client boundary
(median (llst HBM AN "F")

<

B Figure 1 Shallow vs. Deep Racket

= the middle module defines a typed median function,
= the bottom client module calls median from an untyped context.
The client module also contains a mistake; it invokes median with a list of strings
and a comparison function that expects numbers. Both Shallow and Deep Racket can
detect this mistake, but under different conditions:
= Shallow and SB Racket can detect an error when the sort module calls the < function,
but only if < is declared in typed code. This weak guarantee arises because Shallow
enforces the underlined function type with a check that merely looks for a function;
thus < flows to the sort function no matter what, and only a typed variant of <
contains shallow checks that can detect an impedance mismatch.4 If SB Racket
detects such an error, it reports a set containing every client of the typed < function
that appears in the global blame map. The boundary between median and client
gets included in the set, but, depending on the context, it may be one among many.
= Deep Racket is guaranteed to detect this error because it enforces the underlined
function type with a contract that expects number inputs and halts the program
when < receives a string. The contract records blame information that directs the
programmer to the faulty median—client boundary.

4 The untyped Racket runtime can detect an error at its own level even when Shallow Racket’s
checks succeed.

A Transient Semantics for Typed Racket

Bringing Transient Type Integrity Checks to Typed Racket

Adapting the Transient semantics (without blame) to Typed Racket poses two major
challenges. The first concerns the kind of checks that the implementation must use to
realize the guarantees of transient. The second is about where to insert these checks.
The resulting implementation has significantly better worst-case performance than
Deep Racket (Natural semantics) across the GTP benchmark suite.>

42 Basic Ideas

Transient uses shallow checks to protect typed code from untyped values. The original
model [50] realizes this goal with a type-elaboration pass that puts tag checks into
three kinds of places:

= Elimination forms get wrapped in a result check. For example, if a cell x has type
Ref Int then every read from x gets wrapped in a tag check for integers. The checks
ensure safe reads even if untyped code has write access to the cell.

= The entry points of functions check the tags of their arguments. If f is defined
in typed code and has the type Int=Int, then f gets rewritten to protect its body
against untyped callers, which may apply f to non-integer inputs.

= All downcasts from type Dynamic get wrapped in a check.

A tag check is a predicate that is provided by the runtime system and inspects the
low-level representation of a value. The garbage-collection tags in SML provide one
kind of basis for tag checking [3]. Reticulated implements tag checks with Python’s
isinstance primitive. Note, however, that Reticulated uses more than tags to enforce
some of its types (section 4.2).

Implementation Typed Racket is a macro-based Racket library that injects three
major passes into the Racket compiler [42]. Instead of type checking source code
directly, Typed Racket first defers to the Racket macro expander and then checks
the expanded, kernel-language program. If the program is well-typed, a second
Typed Racket pass converts the types at module boundaries into contracts that ensure
sound interoperability with untyped code (but do not impede direct typed-to-typed
interactions). The final Typed Racket pass is a type-directed optimizer [2] that relies
on strong soundness to fine-tune code before it reaches the Racket compiler backend.

Shallow Racket, the adaptation of Transient to Typed Racket, leverages as much
as possible of the existing implementation, starting with the expansion pass and the
type checker. The second pass is replaced by a check-insertion pass that traverses the
program to add first-order checks. The final pass reuses all type-directed optimizations
that are safe for the weak soundness guarantee. Surprisingly, all but two optimizations
meet this safety criterion.

As noted in table 1, this paper refers to Typed Racket’s original Natural semantics as
Deep Racket and the new Transient semantics as Shallow Racket. To be clear, Shallow

5 docs.racket-lang.org/gtp-benchmarks/index.html

https://docs.racket-lang.org/gtp-benchmarks/index.html

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

and Deep Racket use the same type checker and different methods to moderate
typed-untyped interactions. Of the two, Deep Racket is more conservative; it halts
some programs that run to completion under Shallow’s relaxed semantics.

4.2 From Tags to Shapes

Value tags are ill-suited to represent sophisticated types. Indeed, the set of tags and
the language of types have radically different and competing design goals. Tags use a
small amount of space so that run-time code can cheaply answer frequently-asked
questions (is this an integer or a pointer?). Types exist to help programmers design
their code and understand it, and need not fit into run-time space constraints. Tag
checks suffice for the original Transient semantics only because its type system is
limited to integers, reference cells, and functions [50]. Adding a second data structure
reveals the growing pains: ML-style tags need not distinguish cells from, say, arrays.
Adapting Transient to Typed Racket calls for checks that inspect more than tags.

Shallow Racket thus adapts the notion of type shapes from the object-oriented
world [7] to represent complex types. A type shape is a first-order property of a type,
that is, a property related to the type’s top-most constructor or perhaps its immediate
constituents. A shape check is a predicate that decides whether a value has a specific
type shape. It may check a value tag, sign bits, or the mutability settings of a data
structure. It may enforce structural properties, for example that an object has at least
some N members. A shape may even traverse the full spine of a data structure.

Moving from tags to shapes raises the question of which shapes to enforce. Language
designs are beginning to explore this issue. Reticulated uses three kinds of shape:
isinstance questions for most types, including lists and strings; unions of tags for
numbers, functions, and tuples; and field/method membership checks for classes and
objects. Pallene uses tags alone [25]. Grace [34] and SafeTypeScript/Higgs [8, 33]
use object shapes alone and thereby benefit from decades of research on optimizing
compiler technology [5, 7, 10, 27, 51]. Pyret uses structural checks for fixed-size data
and tags for everything else, including lists and functions. Future work is needed to
systematically compare these alternatives and to weigh the need for new, or perhaps
programmer-controlled, strategies.

4.2 Representative Shape Checks

Shallow Racket uses shape checks to enforce all first-order aspects of type constructors.
This design generalizes the apparent policy in Reticulated. The following examples of
types 7 and their shape checks | 7| illustrate how Shallow enforces first-order aspects.

= T = (Listof Real) : lists of real numbers
7] = list?
Accepts any proper list, but not improper lists such as (cons 12) and circular chains.
The run-time cost depends on the size of input values in the worst case, but the
Racket predicate list? caches its results. This shape is the only one in Shallow Racket
that may traverse a value of arbitrary size.

A Transient Semantics for Typed Racket

B Table2 Deep Racket optimizations and whether Shallow can use them

Topic Shallow Ok? Description

apply v deforest map-reduce expressions
box v speed up box access.

dead-code X remove if and case-lambda branches
extflonum v rewrite math for extended floats
fixnum v rewrite math for fixnums
float-complex v unbox and rewrite complex float ops
float v rewrite math for normal floats

list v speed up list access and length
number v rewrite basic numeric operations
pair X speed up (nested) pair access
sequence v insert type hints for the runtime
string v speed up string operations

struct v speed up struct access

vector v speed up vector access

= 7 = (Vector Real Real) : vectors containing two numbers

| 7| = (A(v) (and (vector? v) (= 2 (vector-length v))))
Accepts any vector with exactly two elements. The length constraint lets the type op-
timizer remove run-time bounds checks when it can determine the size of the offset.

= 7 = (U Real String (Listof Boolean)) : the true union of the three types
7| = (A(v) (or (real? v) (string? v) (list? v)))
Accepts either a real number, or a string, or a list; does not check list elements.
Wider unions, with N types inside, have shape checks with N predicates.

= 1 =/(Class (field [a Natural]) (get-a (-> Natural))) : class w/ two members
| 7| = (contract-first-order (class/c (field a) get-a))
Uses the racket/contract library to check properties of a class because there is no
public API for these details.

= 1T =/(case->(-> Real Boolean) (-> String String Real)) : overloaded function
| 7| = (AMv) (and (arity-includes? v 1) (arity-includes? v 2)))
Enforces both function arities. In general, case-> accepts N function types.

4.2.2 Alternative Choices

Instead of checking all first-order properties of a type constructor, Shallow Racket
could have used weaker checks, such as (or/c null? pair?) for lists. Early experiments
suggest that simpler checks lead to better performance but noticeably worse error
situations; the lax checks make it harder to debug the cause of failures. Though more
work is needed to assess usability, we conjecture that full constructor checks are easier
to comprehend and to reason about.

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

4.2.3 Optimizations

Shallow Racket’s design enables thirteen of Deep Racket’s fifteen type-directed opti-
mization topics (table 2). The two remaining optimizations deal with dead function
branches and nested pairs. Some of the pair optimizations would, however, be pos-
sible if Shallow Racket used deeper checks for nested pair types. Anecdotally, the
gradual guarantees provided a helpful framework for reasoning about the correctness
of optimizations [36].

4.3 Where and How to Inject Shape Checks

Integrating the Transient semantics into an existing compiler requires non-trivial
implementation decisions. Many compilers elaborate code written in some surface
syntax into an internal kernel syntax [1, 31, 32]. In the specific case of Racket, elabo-
ration is implemented via its macro expander [15] and the type checker is a separate
pass behind expansion [11, 45]. The following subsections explain three of the major
challenges of integrating Transient into such an elaboration-based compiler.

4.3a Challenge: Expansion-Introduced Code

An elaboration-oriented compiler operates on the kernel-language representation of
the program, but models often formulate properties—such as the insertion of run-time
checks—at the source level. The two approaches must be reconciled.

Figure 2 illustrates the distortions of an elaboration with an example. The code at
the top-left is a source-level, typed function, which adds up a list of numbers using a
for/fold iterator. The code snippet below prescribes how shape checks can protect the
function and the loop body. The code on the right shows the kernel-language code
into which the check-insertion pass must insert the run-time checks. Instead of a for
loop, this kernel code employs explicit recursion; it also contains three elimination
forms that the check-insertion pass can ignore (underlined in the figure).®¢

Expansion poses challenges for both performance and correctness. The performance
issue is clear. Naively wrapping every expansion-introduced form with a check adds
unnecessary costs and can break tail recursion.

The correctness issue is rather surprising. It stems from odd cases in which types
underapproximate the behavior of generated code; the bottom line is that enforcing
such types causes spurious failures in correct programs. For readers interested in the
technical details, figure 3 presents an example.” The source code at the top-left asks
for every byte in a file and sums these numbers together. A check insertion pass must
reason about the expanded version of this source code (bottom-left), in which the
for loop has been replaced with a recursive function that interacts with a sequence
object. The constructor for the sequence object (make-seq) is overloaded to handle
several kinds of input. Unfortunately for the type checker, this constructor can return
two kinds of object:

® The figure is a simplified version of the actual expansion.
7 This figure is also simplified. The true expansion uses several functions, not an object.

A Transient Semantics for Typed Racket

Source code Expanded code
(define (sum-list (nums : (Listof Real))) : Reai\ (kdefine (sum-list nums) h
(for/fold ([acc 01]) (define (for-loop acc 1st)
([n (in-list nums)1) (if (pair? 1lst)
(+ acc n)))) (let* ((hd (car 1lst))
(tl (cdr 1st))
Source with checks (acc (+ acc hd)))
(kdefine (sum-list (nums : (Listof Real))) : Reai\ (for-loop acc tl))
(check! 1ist? nums) acc))
(for/fold ([acc 01]) L (for-1loop @ nums)))) y
([n (in-list nums)1)
(check! real? n)
L (raccn))))

M Figure2 Typed source code, candidate shape checks, and expanded source code

= For some inputs, the result object encapsulates a sequence of values where every
element has the same expected shape.

= For other inputs, the result object encapsulates a sequence with some bad values
that an iterator must skip. Files fall into the latter category because every read from
a file can return either a byte or an end-of-file token.

The skipping functionality is realized with a conventional Racket idiom. The use-val?
field is either #false, pointing to the first case, or a predicate that checks whether the
value should be skipped, pointing to the second case. Hence, the expansion in figure 3
works properly on all values, because the conditional inside the loop uses the value
retrieved with get-val only if the predicate exists and blesses it.

The existing type system cannot express this conditional reasoning concerning
use-val? and get-val.8 Instead, Typed Racket uses a base type for make-sequence,
shown on the right, that under-approximates this reasoning. Specifically, it acts as if
the function always returns a homogeneous collection of elements of type T. It is up
to the programmer to work around this weakness in the type system with proper uses
of use-val?, such as the ones generated by the expansion pass.

At this point, the correctness problem is easy to explain. A naive check-insertion
pass would perceive the underlined use of get-val as an elimination form and would
wrap it in a shape check. Sadly this check would fail for “skip values” even though the
loop body works around such values anyways. In short, the naively inserted check
would indicate an error where the expansion code works just fine.

Implementation The compiler passes preceding Shallow Racket’s check-insertion

pass leave annotations on the kernel-language syntax that differentiate pieces derived
from typed source syntax from those injected by the elaboration. Code derived from

8 To precisely type this behavior, the base type for make-seq should use a type-level conditional
based on the use-val? member.

10

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

Source code Type environment
(for/sum ([byte (open-input-file "w.md")1) (ﬁake—seq h
byte) : (A1l (T)
(=> (U Integer Input-Port
Expanded code (Listof T) (Vectorof T)
(kdefine seq h cee)
(make-seq (open-input-file "w.md"))) (Object
(define (for-loop result pos) [init
(if (not (seq.use-pos? pos)) : Integer]
result [use-pos?
(let ([byte (seqg.get-val pos)]) : (> Integer Boolean)]
(for-loop [next-pos
(if (or (not seq.use-val?) : (> Integer Integer)]
(seqg.use-val? byte)) [use-val?
(+ result byte) : (U False
result) (=> T Boolean))]
(seq.next-pos pos))))) [get-val
\Ffor—loop 0 seq.init) : (=> Integer T)1)))

AN J

B Figure3 Underapproximate base type for make-seq

typed syntax is dealt with according to the prescriptions of the Transient model; for
injected code, Shallow Racket does not insert a check. In addition, Shallow Racket
contains special-case patterns to insert correct checks for the sequences used in loops,
for typed subforms in object-oriented code, for exception handlers, and for functions
with optional and keyword arguments. A companion blog post reports the surprising
plumbing challenges of protecting functions.?

4.3.2 Challenge: Hidden Elimination Forms

Although Racket’s type system does not come with type Dynamic, it does have uni-
versal types and occurrence types, both of which create situations similar to implicit
downcasts from Dynamic. A universal type V a. 7 is eliminated with a type-level sub-
stitution. An occurrence type introduces type refinements in conditional branches.
For example, the conditional (if (string? x) eo e1) refines the type of x to String in the
eo branch.

Many of these type-level deductions require support from run-time checks. Figure 4
presents two examples that illustrate the issues in detail. Both examples are well-typed
but must evaluate to a shape error in Shallow Racket. On the left, typed code imports a
function with an extremely general universal type and instantiates the universal (inst)
to the incorrect String type. A shape check should notice that the identity function is
not a string. On the right, typed code imports a function with an incorrect type that
describes the behavior of the string? predicate. A shape check should ensure that x is
a string in the first branch of the conditional, indicated with a type annotation (ann).

9 prl.ccs.neu.edu/blog/2020/11/12/transient-for-optional-and-keyword-functions

1"

http://prl.ccs.neu.edu/blog/2020/11/12/transient-for-optional-and-keyword-functions

A Transient Semantics for Typed Racket

Universal Type

Occurrence Type

((require/typed racket/function\ ((require/typed racket/function)
(identity (A1l (A) A))) (identity (-> Any Boolean : String)))
(define fake-str : String (define x : Any 0)
(inst identity String))
(define fake-str : String
\(string—length fake-str)) (if (identity x)
(ann x String)
(error 'unreachable)))
&(string—length fake-str))

B Figure 4 Two programs that employ type-level reasoning

The challenge is that Racket’s elaboration and type checking passes hide source
expressions that have no run-time semantics. In the examples, both inst and ann disap-
pear. To properly check such forms, the check-insertion pass would need information
from the type checker.

Implementation To avoid changes to the type checker specific to Shallow Racket, the
implementation does not communicate type-level eliminations from the type checker
to the check-insertion pass. Instead, Shallow Racket takes an overly-conservative
approach to some programs. In terms of figure 4, Shallow raises an exception when
the identity function tries to enter typed code—at the require/typed form—rather
than waiting to see if a misbehavior arises. To be clear, this conservative behavior
is no more restrictive than standard Deep Racket, which raises similar exceptions
because it lacks contracts to enforce these particular types.

Shallow Racket does support shape checks for universal types whose bound variable
appears under a type constructor. For example, the type V a. a=a is supported
because a appears under the function type constructor. The supported types are a
superset of those currently supported by Deep Racket’s contracts.

4.3.3 Challenge: The Cost of Shape Checks

Shape checks can impose a significant run-time cost. Although some of this cost can be
reduced in the context of a just-in-time compiler [34, 49], an ahead-of-time compiler
such as Racket should take steps to avoid unnecessary checks.

Implementation As mentioned above (section 4.3.1), Shallow Racket is careful to
avoid checks around compiler-generated elimination forms. It also comes with a base
type environment that says whether a function needs a result check. For example,
the map function does not need a check because it always returns a list. The list-ref
function, by contrast, requires a check because it may return any kind of value. Though
simplistic, this form of reasoning helps reduce costs in an effective manner. More

12

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

improvements along these lines remain to be investigated. For instance, it may be
possible to omit result checks for certain user-defined functions from typed modules.

4.4 Transient Enforcement Lowers the Performance Cost

For some mixed-typed programs, the standard Deep Typed Racket runs into serious
performance bottlenecks. On the same bottleneck cases, Shallow Racket often exhibits
less-severe costs.

This conclusion is based on figure 5; the plots in this figure report the overhead of
runtime checks on the GTP benchmark suite version 6.0. Because each benchmark
program describes a set of mixed-typed configurations,© the curves on each plot
count the percentage (Y) of all configurations that run no more than X times slower
than the untyped configuration. The goal is that 100% of these configurations run
with low overhead. The x-axis ranges from 1x to 20x overhead relative to the untyped
configuration; vertical ticks appear at 1.2x, 1.4X, 1.6X, 1.8X, 4X, 6X, 8X, I0X, 12X, 14X,
16x, and 18x. The y-axis counts configurations. The way to interpret a point (X,Y) is
that Y% of all configurations run at most X times slower than untyped.

The large area under the curves for Shallow Racket suggests better overall per-
formance. Every configuration runs within a 6x overhead in Shallow Racket, and
the same configurations often exceed a 20x slowdown in Deep Racket. That said,
Shallow is worse than Deep in some configurations of the dungeon and jpeg bench-
marks. The reversal happens in configurations that contain a large amount of typed
code that infrequently passes values to untyped modules. In these scenarios, the
checks spread across typed code slow down Shallow Racket more than the infrequent
boundary-crossings hinder Deep Racket.

4.4 Experiment Protocol

The data is from a single-user Linux machine with 4 physical i7-4790 3.60GHz cores
and 16GB RAM. The machine used Racket v7.8.0.5 (7¢90387, before Chez [16]) and
a version of Shallow Racket (co74c93) that extends Typed Racket vi.12. Each data
point is the result of running one configuration nine times in a row and averaging the
speed of the final eight runs.

4.4.2 Cautions

The experimental protocol does not control for VM warmup in a rigorous manner; it
merely discards the first run. Warmup may add some noise to the measurements [16].
Such noise is unlikely to affect our conclusion that Shallow Racket is often several
seconds, and sometimes several minutes, faster than Deep Racket.

This comparison is biased against Deep Racket because the performance graphs
for Shallow Racket omit the cost of blame. Deep Racket automatically collects blame
information thanks to the contracts that it compiles types to [38]. A new implementa-
tion of these contracts is needed to measure the cost of Deep Racket without blame;

° There are 2V configurations for each program consisting of N modules.

13

https://github.com/racket/racket/commit/7c903871bd8cb4bd32ed7188c180b5124f9bc201
https://github.com/bennn/typed-racket/commit/c074c9333e467cb7cd2058511ac63a1d51b4948e

A Transient Semantics for Typed Racket

dungeon
100%

20x 1

acquire

gregor
100% -

50

100% ~

50 -

0-
1
synth
100%

2 20x

50

0

1
quadT
100%

50

Deep= @

20x

Shallow =

2 20x

B Figures Performance overhead of Deep and Shallow Racket

14

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

refer to prior work for an explanation of the overheads that correct blame entails [13,
20]. That said, we conjecture that a Deep Racket without blame would still fare worse
than Shallow because it must create wrappers and traverse large values at boundaries.

[} Bringing Transient Blame to Shallow Racket

Adding the Transient blame-assignment strategy to Shallow Racket comes with its own
severe challenges. The three most stringent ones concern the integration of existing
run-time libraries, the recording of entries in the blame map for complex constructs
in the language of types, and the reliance of blame filtering on types.

5.4 Adapting the Basics of Transient Blame

The Transient semantics maintains a global blame map to implement a blame assign-
ment strategy [50]. This blame map keeps a record of the type casts and checks that
occur at run-time. By implication, the map may store an arbitrarily long record for
every value in the program.

A blame map is organized as follows. Blame-map keys are heap addresses, which
uniquely identify program values. Blame-map values are are sets that may contain
two kinds of blame entry; namely, labeled types and pointers:

= A labeled type is information distilled from a cast, where the distillation merges a
source and target type into one type that is decorated with a source location.

= A pointer consists of a blame-map key (heap address) and a context tag. The enclosed
key refers to another blame-map value, a parent value, and the tag describes an
elimination form that was previously applied to the parent.

Consider the example of a typed function f that flows to untyped code. The boundary-
crossing is a cast, and the blame map links f to a labeled type. If f has the type (Int ->
Int), then the labeled type has the form (Int@A -> Int@-), where A is a source location
for the cast and the - states that the result position can never be blamed. Now suppose
the same function f gets applied to a value v in untyped code. The blame map gains
an association from v to a pointer, which contains both f and the context tag Arg,
to remember that v was an input to the function. Subsequent operations may add
labeled types and pointers to the sets associated with f and v in the global blame map.

When a Transient check fails, the blame strategy gathers a set of labeled types by
computing a transitive closure from the value that failed the check. Each labeled type
that is associated with this witness value goes into the set, and each parent pointer
starts a recursive search for all labeled types associated with the parent.

To reduce the false positives in these potentially-huge sets of labels, the original
Transient model employs a filtering pass [50]. Suppose that a string value v triggers
an error and has two parents: a function f that expects a string (matching v) and
a function g that expects a number (not matching v). Filtering uses context tags to
traverse labeled types, determines the shape of value that each label expects, and

15

A Transient Semantics for Typed Racket

checks whether the witness value matches. In this manner, filtering removes the label

for f and reports only the problematic g function.
In sum, the success of Transient blame depends on three factors:

1. every typed-untyped boundary in the program initializes an entry to the blame
map for each new value crossing;

2. every elimination form in typed code must update the map with a correct parent
pointer and a descriptive action; and

3. the blame strategy must filter the witness values via matching against the relevant
part of each labeled type.

5.4 Implementation Overview

SB Racket implements the collaborative blame strategy in a straightforward manner
with one significant improvement: it does not assume the correctness of types. When
a developer retroactively ascribes a type specification to an untyped function, say
via require/typed, SB Racket acknowledges that the type may be mistaken [22]. This
change in assumptions affects the construction of the blame map in a minor way, but
to highlight it, this paper uses a slightly different terminology for blame-map entries.
The SB Racket blame map associates heap addresses (keys) to sequences with two
kinds of entries:

1. A boundary entry is essentially a labeled type, but contains source locations for two
program components: an untyped client and a type specification. If an error arises,
the programmer gets a warning about a bad untyped value under the assumption
that the type is correct.

2. Alink entry is like a pointer entry. It combines a parent pointer with a parameterized
action structure (section 5.2.1) to handle a more expressive language of types.
Although SB Racket blames a sequence of boundaries when an error occurs, there
is no guarantee that the order has any significance for debugging. The order merely

enables reproducible experiments [28].

5.2 Engineering Accurate and Precise Blame

The effort of implementing a model for a full-fledged language poses major challenges.
Specifically, the above constraints are relatively easy to satisfy for small languages like
those used for models, but it is extremely difficult to modify an existing implementation
to match them. SB Racket deals with some of the constraints but leaves others for
future work.

5.241 Challenge: Advanced Types Need Advanced Actions
The original Transient model has two elimination forms and three corresponding
actions (context tags): Arg and Res actions for function applications, and a Deref action
for ref cell reads. The model’s elaboration pass has no trouble injecting the correct
actions because ref cell reads are syntactically distinct from function applications.

A larger language must support additional elimination forms and must take care
not to conflate similar-looking eliminations. If f is a user-defined function, then a

16

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

B Table3 Sample blame actions in SB Racket

Action Template Interpretation

(dom n) n-th argument to a function

(cod n) n-th result from a function

(case-dom (k n)) n-th argument (of k total) to an overloaded function
(object-method (m n)) n-th argument to method m of an object
list-elem element of a homogeneous list

list-rest tail of a list

(list-elem n) n-th element of a heterogeneous list
hash-key key of a hashtable

hash-value value of a hashtable

(struct-field n) n-th field of a structure

(object-field f) field f of an object type

noop no action; direct link to parent

call (f x y) requires two distinct argument actions and a link from the result to the f
function. If f is an alias for a vector-ref function, however, then the call requires no
argument actions and a link from result to the x vector. Clearly, the static type of an
identifier (f) should explain which actions are needed.

Implementation At a minimum, an implementation of Transient must look out for
special identifiers from the language’s run-time libraries, such as vector-ref, to create
proper actions in its link entries. SB Racket does so, but nothing more. A precise
handling of aliases is left to future work.

The sophisticated Typed Racket type system calls for much more than three atomic
actions. In order to render link entries reasonably pragmatic, SB Racket implements
sixteen atomic actions and seven forms of parameterized actions. Table 3 presents
a representative selection. Atomic actions disambiguate operationally-similar data
structures. Parameterized actions express a family of elimination forms. For example,
the dom action for a function domain is parameterized by a position to handle functions
that expect several arguments. The special noop action adds a direct link to track a
copied data structure or a user-defined wrapper.

5.2.2 Challenge: Trusted Libraries Prevent Initialization
Every language implementation comes with a run-time library, and the compiler
(writer) will trust that this untyped library matches its type specification. Deep Racket
is no different; it comes with a base type environment that trusts several untyped
identifiers. One example is the list-ref function, which comes from an untyped library.
Trusted libraries are problematic for the blame map because they avoid the normal
mechanism for initialization. Concretely, a trusted function such as list-ref enters
typed code through a back-channel instead of crossing a boundary and submitting
to a run-time check. The back-channel ought to initialize the blame map with an
entry for list-ref and its type. Performing the initialization is a challenge and may
have implications for performance.

17

A Transient Semantics for Typed Racket

Implementation SB Racket does not currently initialize the blame map for trusted
functions including list-ref, which means its blame is less expensive and less precise.
That said, calls to list-ref do create link entries as specified above (section 5.1). The
trouble is that these links may point to list-ref as their parent, especially if list-ref is
used in a higher-order manner (section 5.2.1). Such links are dead-ends in the blame
map because list-ref is not initialized with a boundary entry.

5.2.3 Challenge: Filtering Demands Full Types at Run-Time

The filtering of blame sequences relies on type information. Inspecting types at run-
time poses difficulties, though, in an implementation made for separate compilation.
Any attempt to serialize the type enviroment must find a way to communicate the
identity of generative types from the type checker to the run-time environment. Local
type definitions pose another problem; such types exist in a confined scope, which
the filtering routine must be able to access within its run-time predicate.

Implementation SB Racket implements filtering, but expects that the process can
fail. That is, filtering is understood as a conservative heuristic that, upon failure, does
not prune any of boundaries in the blame map.

Notably, the implementation of filtering builds on Typed Racket’s protocol for
separate compilation. A compiled Typed Racket module contains a serialized copy of
its type definitions. The type checker can evaluate such definitions at compile-time to
avoid re-checking the module. SB Racket reuses these serialized definitions at run-time
to build a type environment in which to do filtering. The reuse is not guaranteed to
succeed, but it works often enough to support a heuristic.

5.3 Transient Blame is Extremely Expensive

Table 4 presents the performance of SB Racket and compares it to both Shallow and
Deep Racket. The first column lists the benchmarks. The second column reports the
worst-case overhead of Shallow Racket across all configurations. The third column
reports the worst-case overhead of Deep Racket, also across all configurations. Lastly,
the fourth column reports the overhead of SB Racket on the fully-typed configuration—
because this configuration contains more blame-map updates than any other. A “TO”
entry indicates a time out after 10 minutes. The machine specs and experimental
protocol are the same as reported in section 4.4. SB Racket extends Typed Racket
v1.12 (49b1005).

The data shows that the collaborative blame strategy adds a huge overhead to
SB Racket. Six benchmarks fail to terminate within a generous 1o-minute limit. The
rest run far slower than the worst case of plain Shallow Racket. Indeed, blame costs
more than even the worst case of Deep Racket on seventeen benchmarks.

These bleak results should not come as a surprise. The collaborative blame strategy
creates a map of unbounded size and slows down almost every operation with an
update. These little slowdowns add up. Deep Racket is slowest only in benchmarks
that frequently send large higher-order values across boundaries. Collapsible con-
tracts address this issue for vectors and simple functions but not objects [13], which

18

https://github.com/bennn/typed-racket/commit/49b10058f223a7f5823abad35112543b796d72a9

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

B Table4 Blame performance

Name Shallow Deep SB
kcfa 1x 4x TO (>540x)
morsecode 3x 2x TO (>250%x)
sieve 4x 15x TO (>220x%)
snake 8x 12x TO (>1000x)
suffixtree 6x 31x TO (>190x%)
tetris 10x 12x TO (>720x%)
acquire 1x 4x 34x
dungeon 5x 15000x 75x
forth 6x 5800x 48x
fsm 2X 2X 230x
fsmoo 4x 420x 100x
gregor 2X 2X 23x
jpeg 2x 23x 38x
lnm 1x 1x 29x
mbta 2X 2X 37x
quadT 7X 25x 34x
quadu 8x 55x 320x
synth 4x 47x 220x
takes 3x 44x 33x
zombie 31x 46x 560x
zordoz 3x 3x 220x

explains the gap between the fsm and fsmoo benchmarks. The authors conjecture
that additional work on collapsible contracts can make Deep Racket run faster than
SB Racket on all of the benchmark programs.

5.31 Cautions

The SB Racket blame map stores full types and source locations. If Shallow instead
kept types and source locations in a separate data structure and stored pointers in
the blame map, memory overhead would decrease.

The blame map is currently implemented as a weak hash to correctly retain values
without inhibiting garbage collection for unreachable entries. This gives slightly better
performance than an earlier version that stored only hash codes to reduce the size of
each entry. A different implementation technique may further reduce overhead. The
fundamental problem, however, seems to be the unbounded space requirements of
the Transient collaborative blame strategy.

5.3.2 Comparison to Prior Work

These results are far less optimistic than results reported for Reticulated, which
state an average slowdown of 6.2x and worst-case slowdown of 17.2x on fully-typed

19

A Transient Semantics for Typed Racket

configurations [50]. For comparison, the average slowdown for SB Racket is 133x and
the worst-case is 560x, ignoring benchmarks that time out.

These differences are due to two factors: the nature of the benchmarks and the
expressive power of the type system. First, the Reticulated evaluation uses rather
small programs from the pyperformance suite. Three benchmarks focus on numeric
computations; since the blame map does not track primitive values, adding blame
adds almost no overhead. Four others have since been retired from the Python suite
because they are too small, unrealistic, and unstable.!! The remaining benchmarks
suggest that costs can grow without bound in larger programs. Indeed, a Reticulated
version of the sieve benchmark runs in 40 seconds normally and times out after 10
minutes with blame.

Second, as mentioned in section 2, Reticulated uses type Dynamic as a catch-all
to work around its lack of precise types for Python idioms. This catch-all can even
appear as the result of type inference. For example, if an object field begins with the
default value None and is later initialized to a string, the field must have type Dynamic.
Polymorphic functions such as range also require type Dynamic. These imprecisions
significantly reduce costs because interactions among dynamically-typed values do
not update the blame map.

K3 onward

The experience of constructing Shallow Racket suggests performance benefits yet
casts doubt on its potential as a debugging tool for impedance mismatches between
typed and untyped components. It thus points to three major pieces of future work.

First, the performance of Shallow Racket is still poor in an absolute sense. One
direction for improvement is to develop a static analysis that identifies redundant
run-time checks. The Reticulated team [49] reports promising results for one such
analysis under a closed-world assumption. Another direction is to equip Shallow
Racket with the Pycket just-in-time compiler [4]. The Grace and Reticulated teams
have also attributed improvements to tracing JIT compilation [34, 49]; however, the
former’s semantics does not seem to guarantee soundness and the latter may benefit
from the inexpressive Reticulated type system.

Second, the performance of Shallow Blame is clearly unacceptable, worse than
the contracts of Deep Racket in almost all cases. The problem seems due to heavy
memory usage; it calls for a thorough investigation of the trade-off between the
precision of blame and performance. An entirely different blame strategy may be
needed. Concurrent to this report, the authors have developed a framework that can
measure the usefulness of new strategies by simulating a rationally-acting programmer
who uses blame to debug a mutated program [28].

Third, the authors experience with programming in Shallow Racket reveals a
usability challenge; namely, programs that appear incorrect can run without error

I pyperformance.readthedocs.io/changelog.html

20

https://pyperformance.readthedocs.io/
https://pyperformance.readthedocs.io/changelog.html

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

because shape checks arise from local uses rather than type definitions. Consider a
typed module that declares three items: a class Animal, a subclass Bear, and a function
to-bear with the type (Integer -> (Instanceof Bear)). Suprisingly, there is no guarantee
that calls to to-bear return instances of the Bear class. If the function is defined in
untyped code, it all depends on where such calls appear. In untyped code, perhaps
via (map to-bear ns), the function may return any result. In typed code, an upcast
may weaken the result type to an instance of Animal and consequently weaken the
run-time check—because Shallow Racket does not wrap the function to enforce the
Bear annotation. Language designers must find a way to communicate these and other
surprising Transient behaviors [47] to programmers.

In sum, this paper should help other designers of gradually typed languages that
wish to adopt the Transient semantics to add some type integrity to a gradually typed
language. A good example would be TypeScript [30] whose type system is rather
close to Typed Racket’s. In contrast to Racket, a TypeScript implementation with its
underlying just-in-time compiler may not suffer much from shallow run-time checks.

Acknowledgements Felleisen and Greenman were partly supported by NSF grant
SHF 1763922. Greenman also received support from NSF grant 2030859 to the CRA
for the CIFellows project. Thanks to Robby Findler and Northwestern PLT for their
valuable feedback at various stages of this work. This paper was supported in part by
the NSF grant CNS-1823244.

References

[1] N.I. Adams, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead,
C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas,
G. L. Steele, G. J. Sussman, M. Wand, and H. Abelson. “Reviseds Report on the
Algorithmic Language Scheme”. In: SIGPLAN Not. 33.9 (1998), pages 26—76.

[2] Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and Matthias Felleisen.
“Typing the Numeric Tower”. In: PADL. 2012, pages 289—303.

[3] Andrew W. Appel. Compiling with Continuations. 1st. Cambridge University
Press, 1992.

[4] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-
Hochstadt. “Sound Gradual Typing: only Mostly Dead”. In: PACMPL 1.00PSLA
(2017), 54:1-54:24.

[s] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. “Storage strategies

for collections in dynamically typed languages”. In: OOPSLA. 2013, pages 167—
182.

[6] John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. “Mi-
grating Gradual Types”. In: PACMPL 2.POPL (2018), 15:1-15:29.

21

https://cifellows2020.org

A Transient Semantics for Typed Racket

[71 Craig Chambers, David M. Ungar, and Elgin Lee. “An Efficient Implementation
of SELF - a Dynamically-Typed Object-Oriented Language Based on Prototypes”.
In: OOPSLA. 1989, pages 49-70.

[8] Maxime Chevalier-Boisvert and Marc Feeley. “Simple and Effective Type Check
Removal through Lazy Basic Block Versioning”. In: ECOOP. 2015, pages 101-123.

[9] Benjamin W. Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. “KafKa:
Gradual Typing for Objects”. In: ECOOP. 2018, 12:1-12:23.

[10] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. “Memento
mori: dynamic allocation-site-based optimizations”. In: ISMM. 2015, pages 105—
I17.

[11] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. “Advanced Macrol-

ogy and the Implementation of Typed Scheme”. In: SFP. Université Laval, DIUL-
RT-0701. 2007, pages 1-14.

[12] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. “Complete
Monitors for Behavioral Contracts”. In: ESOP. 2012, pages 214—233.

[13] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler,
and Vincent St-Amour. “Collapsible Contracts: Fixing a Pathology of Gradual
Typing”. In: PACMPL 2.00PSLA (2018), 133:1-133:27.

[14] Robert Bruce Findler and Matthias Felleisen. “Contracts for Higher-Order Func-
tions”. In: ICFP. 2002, pages 48-59.
[15] Matthew Flatt. “Bindings as Sets of Scopes”. In: POPL. 2016, pages 705-717.

[16] Matthew Flatt, Caner Derici, R. Kent Dybvig, Andrew W. Keep, Gustavo E.
Massaccesi, Sarah Spall, Sam Tobin-Hochstadt, and Jon Zeppieri. “Rebuilding
Racket on Chez Scheme (experience report)”. In: PACMPL 3.ICFP (2019), 78:1—
78:15.

[17] Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. “Scheme with
Classes, Mixins, and Traits”. In: ASPLAS. 2006, pages 270—-289.

[18] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. “Classes and
Mixins”. In: POPL. 1998, pages 171-183.

[19] Matthew Flatt and PLT. Reference: Racket. Technical report PLT-TR-2010-1. PLT
Inc., 2010.

[20] Michael Greenberg. “Space-Efficient Manifest Contracts”. In: POPL. 2015, pages 181—
194.

[21] Ben Greenman and Matthias Felleisen. “A Spectrum of Type Soundness and
Performance”. In: PACMPL 2.ICFP (2018), 71:1—71:32.

[22] Ben Greenman, Matthias Felleisen, and Christos Dimoulas. “Complete Monitors
for Gradual Types”. In: PACMPL 3.00PSLA (2019), 122:1-122:29.

[23] Ben Greenman and Zeina Migeed. “On the Cost of Type-Tag Soundness”. In:
PEPM. 2018, pages 30—39.

22

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen

Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce
Findler, Jan Vitek, and Matthias Felleisen. “How to evaluate the performance
of gradual type systems”. In: JFP 29.e4 (2019), pages 1—45.

Hugo Musso Gualandi and Roberto Ierusalimschy. “Pallene: a companion
language for Lua”. In: Science of Computer Programming 189.102393 (2020),
pages 1-15.

Robert Harper. Practical Foundations for Programming Languages. Cambridge
University Press, 2013.

Urs Holzle, Craig Chambers, and David Ungar. “Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches”. In: ECOOP. 1991,
pages 21-38.

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas.
“How to Evaluate Blame for Gradual Types”. In: PACMPL 5.ICFP (2021), 68:1—
68:29.

Jacob Matthews and Robert Bruce Findler. “Operational Semantics for Multi-
Language Programs”. In: TOPLAS 31.3 (2009), pages 1—44.

Microsoft. TypeScript Language Specification. Technical report Version 1.8. Mi-
crosoft, 2016.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML: Revised. MIT Press, 1997.

Simon L. Peyton Jones and André L. M. Santos. “A Transformation-Based
Optimiser for Haskell”. In: Science of Computer Programming 32.1-3 (1998),
pages 3—47.

Gregor Richards, Ellen Arteca, and Alexi Turcotte. “The VM Already Knew
That: Leveraging Compile-Time Knowledge to Optimize Gradual Typing”. In:
PACMPL 1.00PSLA (2017), 55:1-55:27.

Richard Roberts, Stefan Marr, Michael Homer, and James Noble. “Transient
Typechecks are (Almost) Free”. In: ECOOP. 2019, 15:1-15:29.

Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Languages”.
In: SFP. University of Chicago, TR-2006-06. 2006, pages 81-92.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland.
“Refined Criteria for Gradual Typing”. In: SNAPL. 2015, pages 274—293.

T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen. “Practical
Variable-Arity Polymorphism”. In: ESOP. 2009, pages 32—46.

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew
Flatt. “Chaperones and Impersonators: Run-time Support for Reasonable Inter-
position”. In: OOPSLA. 2012, pages 943—962.

Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce Findler, Matthew
Flatt, Sam Tobin-Hochstadt, and Matthias Felleisen. “Towards Practical Gradual
Typing”. In: ECOOP. 2015, pages 4—27.

23

A Transient Semantics for Typed Racket

[40] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and
Matthias Felleisen. “Is Sound Gradual Typing Dead?” In: POPL. 2016, pages 456—
468.

[41] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt,
and Matthias Felleisen. “Gradual Typing for First-Class Classes”. In: OOPSLA.
2012, pages 793—-810.

[42] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. “Languages as Libraries”. In: PLDI. 2011, pages 132—14T.

[43] Sam Tobin-Hochstadt and Matthias Felleisen. “Interlanguage Migration: from
Scripts to Programs”. In: DLS. 2006, pages 964—974.

[44] Sam Tobin-Hochstadt and Matthias Felleisen. “Logical Types for Untyped
Languages”. In: ICFP. 2010, pages 117-128.

[45] Sam Tobin-Hochstadt and Matthias Felleisen. “The Design and Implementation
of Typed Scheme”. In: POPL. 2008, pages 395—406.

[46] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Ben Greenman, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland,
and Asumu Takikawa. “Migratory Typing: Ten years later”. In: SNAPL. 2017,
17:1-17:17.

[47] Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishna-
murthi. “The Behavior of Gradual Types: a User Study”. In: DLS. 2018, pages 1—
12.

[48] Michael M. Vitousek, Andrew Kent, Jeremy G. Siek, and Jim Baker. “Design
and Evaluation of Gradual Typing for Python”. In: DLS. 2014, pages 45-56.

[49] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. “Optimizing and
Evaluating Transient Gradual Typing”. In: DLS. 2019, pages 28—41.

[so] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. “Big Types in Little
Runtime: Open-World Soundness and Collaborative Blame for Gradual Type
Systems”. In: POPL. 2017, pages 762-774.

[s1] Thomas Wiirthinger, Christian Wimmer, Christian Humer, Andreas Wof3, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer.
“Practical partial evaluation for high-performance dynamic language runtimes”.
In: PLDI. 2017, pages 662—676.

24

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen
About the authors
Ben Greenman benjaminlgreenman@gmail.com
Lukas Lazarek lukas.lazarek@eecs.northwestern.edu

Christos Dimoulas chrdimo@northwestern.edu

Matthias Felleisen matthias@ccs.neu.edu

25

mailto:benjaminlgreenman@gmail.com
mailto:lukas.lazarek@eecs.northwestern.edu
mailto:chrdimo@northwestern.edu
mailto:matthias@ccs.neu.edu

	1 Two Designs, Two Semantics
	2 The Starting Point: Transient and Reticulated Python
	3 The Destination: Typed Racket
	4 Bringing Transient Type Integrity Checks to Typed Racket
	4.1 Basic Ideas
	4.2 From Tags to Shapes
	4.2.1 Representative Shape Checks
	4.2.2 Alternative Choices
	4.2.3 Optimizations

	4.3 Where and How to Inject Shape Checks
	4.3.1 Challenge: Expansion-Introduced Code
	4.3.2 Challenge: Hidden Elimination Forms
	4.3.3 Challenge: The Cost of Shape Checks

	4.4 Transient Enforcement Lowers the Performance Cost
	4.4.1 Experiment Protocol
	4.4.2 Cautions

	5 Bringing Transient Blame to Shallow Racket
	5.1 Adapting the Basics of Transient Blame
	5.1.1 Implementation Overview

	5.2 Engineering Accurate and Precise Blame
	5.2.1 Challenge: Advanced Types Need Advanced Actions
	5.2.2 Challenge: Trusted Libraries Prevent Initialization
	5.2.3 Challenge: Filtering Demands Full Types at Run-Time

	5.3 Transient Blame is Extremely Expensive
	5.3.1 Cautions
	5.3.2 Comparison to Prior Work

	6 Onward
	About the authors

