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Abstract The latter months of 2020 and 2021 were marked by two of the largest Antarctic ozone holes

on record. That such large ozone holes occurred despite ongoing ozone recovery raises questions about their
origins and climate impacts. Here we provide novel evidence that supports the hypothesis that the ozone

holes were influenced by two distinct and extraordinary events: the Australian wildfires of early 2020 and the
eruption of La Soufriere in 2021. We further reveal that both ozone holes were associated with widespread
changes in Southern Hemisphere climate that are consistent with the established climate impacts of Antarctic
ozone depletion, including a strengthening of the polar stratospheric vortex, enhanced surface westerlies over
the Southern Ocean, and surface temperature changes over Antarctica and Australia. The results thus provide
suggestive evidence that injections of both wildfire smoke and volcanic emissions into the stratosphere can lead
to hemispheric-scale changes in surface climate.

Plain Language Summary The Antarctic ozone hole is characterized by dramatic decreases in
stratospheric ozone during the austral spring months. The ozone hole is expected to recover over the next few
decades in response to the phasing out of ozone-depleting substances. However, the latter months of 2020

and 2021 were marked by two of the largest Antarctic ozone holes on record, which raises questions about
their origins and climate impacts. Here we provide novel evidence that supports the hypothesis that the ozone
holes were influenced by two extraordinary events: the Australian wildfires of early 2020 and the eruption

of La Soufriere in 2021. We further reveal that both ozone holes were associated with changes in Southern
Hemisphere surface climate consistent with the established climate impacts of Antarctic ozone depletion.
Together, the results provide suggestive evidence that injections of both wildfire smoke and volcanic emissions
into the stratosphere can lead to hemispheric-scale changes in surface climate.

1. Introduction

The Antarctic ozone hole has a pronounced effect on Southern Hemisphere surface climate (Fogt & Marshall, 2020;
Polvani et al., 2011; Thompson et al., 2011; Thompson & Solomon, 2002). The radiative effects of polar ozone
depletion act to cool and strengthen the stratospheric polar vortex (Randel & Wu, 1999; Waugh et al., 1999), and
dynamical coupling between the stratosphere and troposphere acts to connect the changes in the stratospheric
flow to the surface (Baldwin & Dunkerton, 2001; Thompson et al., 2005). At the surface, the changes in the flow
associated with the ozone hole project onto the southern annular mode (Shindell & Schmidt, 2004; Thompson &
Solomon, 2002). Thus the ozone hole has been linked to long-term changes in surface climate that span much of
the Southern Hemisphere mid and high latitudes.

The linkages between the Antarctic ozone hole and the SAM are important for the interpretation of South-
ern Hemisphere climate change. Over the 1970-1990s, the development of the ozone hole was associated with
widespread changes in Southern Hemisphere surface climate that are consistent with forcing by ozone depletion
(Thompson et al., 2011). Paleoclimate studies indicate that the resulting changes in the austral summer SAM
index are unprecedented over the last thousand years, pointing toward the remarkable role of the ozone hole in
Southern Hemisphere climate change (Fogt & Marshall, 2020).

In recent years, the Antarctic ozone hole has exhibited signs of healing consistent with recent decreases in anthro-
pogenic emissions of ozone-depleting substances (Solomon et al., 2016). The healing of the ozone hole is appar-
ent when viewed in the context of decades, especially during September when dynamic variability in the vortex is
modest (Abrahamsen et al., 2020; Hassler et al., 2011; Solomon et al., 2016; Strahan et al., 2019). Recent studies
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have correspondingly shown that trends in the SAM have paused or slightly reversed (Banerjee et al., 2020;
Zambri et al., 2021). Yet the ozone holes of late 2020 and 2021 rate amongst some of the largest on record during
October and later months, and they have obscured the overall trend toward recovery of the ozone hole (https://
ozonewatch.gsfc.nasa.gov; Stone et al., 2021).

Why were the ozone holes of 2020 and 2021 so large given the overall trend toward ozone recovery? One possi-
bility is internal dynamical variability. That is: the ozone hole forms due to chemical processes, but atmospheric
dynamics contribute to year-to-year variations in its size and strength, particularly during October and November
(Randel et al., 2002; Safieddine et al., 2020; Shindell et al., 1997; Wargan et al., 2020; Weber et al., 2011). Years
marked by anomalously weak extratropical stratospheric wave driving are associated with anomalously low polar
cap ozone concentrations due to both (a) dynamically induced changes in ozone transport and (b) feedbacks
between polar stratospheric temperatures and heterogeneous ozone chemistry. The Southern Hemisphere strat-
ospheric wave driving was unusually weak in late 2020 and 2021 (https://ozonewatch.gsfc.nasa.gov) and thus
dynamical processes likely contributed to the size of the 2020 and 2021 ozone holes.

Another possibility is that the 2020 and 2021 ozone holes were influenced by anomalously large stratospheric
aerosol loadings due to two episodic events: The catastrophic Australian bushfires of early 2020 and the April
2021 eruption of La Soufriere on Saint Vincent.

The Australian bushfires of early 2020 injected large amounts of particulate matter into the stratosphere (Ansmann
et al., 2022; Hirsch & Koren, 2021; Khaykin et al., 2020; Magaritz-Ronen & Raveh-Rubin, 2021; Ohneiser
et al., 2020; Peterson et al., 2021; Schwartz et al., 2020; Yu et al., 2021). Observations indicate that some of the
smoke settled into the Southern Hemisphere polar stratosphere in the latter part of 2020 (Ansmann et al., 2022;
Khaykin et al., 2020; Peterson et al., 2021; Yu et al., 2021). Wildfire smoke is theorized to contribute to ozone
depletion if the smoke particles become coated with sulfuric acid and water as they age, so that they behave
like liquid polar stratospheric cloud particles and thus provide a surface for heterogeneous chemistry (Ansmann
etal., 2021, 2022; Yu et al., 2021). Solomon et al. (2022) provide observational evidence supporting this view.

The April 2021 eruption of La Soufriere on Saint Vincent contributed to the stratospheric sulfate aerosol burden
in the tropics in mid-2021 (Babu et al., 2021) and—as suggested here—late-2021 as well. Previous work has argued
that volcanic eruptions can influence the stratospheric circulation through a variety of processes. The absorption
of longwave radiation by volcanic aerosols directly influences stratospheric temperatures and thus winds (e.g.,
DallaSanta et al., 2019; Kodera, 1994; Robock, 2000; Robock & Mao, 1995; Toohey et al., 2014); indirect mech-
anisms have also been proposed (e.g., Coupe & Robock, 2021). The resulting changes in stratospheric temper-
atures and winds can contribute to changes in ozone transport and temperature-dependent heterogeneous ozone
chemistry (Langematz et al., 2018; Weber et al., 2011). And volcanic sulfuric acid aerosols provide a surface
for heterogeneous ozone chemistry (Portmann et al., 1996; Solomon, 1999; Solomon et al., 2016; Tabazadeh
et al., 2002; Wilka et al., 2018).

Here we demonstrate that both the 2020 and 2021 Antarctic ozone holes were associated not only with large
stratospheric aerosol loadings but also pronounced changes in the Southern Hemisphere circulation that extended
from the stratosphere to the surface. Our goal is not to prove the specific physical mechanisms that drove the
unusual 2020 and 2021 Antarctic ozone holes. Rather, it is to document a series of physically consistent linkages
between the Australian bush fires in early 2020, the eruption of La Soufriere on Saint Vincent in April 2021,
the 2020 and 2021 ozone holes, and hemispheric-scale changes in the Southern Hemisphere tropospheric circu-
lation. The results are of interest irrespective of causal factors. If the 2020 and 2021 ozone holes arose due to
internal variability or dynamical forcing by particulate matter, then the results point to surprising effects of the
ozone hole on SH surface climate despite evidence for ozone recovery. If the unusually strong 2021 ozone hole
was influenced by the eruption of La Soufriere, then the results add to the already substantial body of evidence
that volcanoes influence surface climate over regions far removed from the eruption itself. And if the unusually
strong 2020 ozone hole was influenced by smoke from the Australian bush fires, then the results suggest that large
injections of wildfire smoke into the stratosphere can lead to widespread changes in surface climate that persist
long after the cessation of smoke production.

YOOK ET AL.

20f9


https://ozonewatch.gsfc.nasa.gov
https://ozonewatch.gsfc.nasa.gov
https://ozonewatch.gsfc.nasa.gov

| Yed )|
MM\I
ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters

10.1029/2022GL098064

A
30N

Extinction

EQ—

‘ul

La Soufrigre

!

J[FM]AM[J]J[A]SIOIN[D

JFMAM]J]ITASOIN]P

|330N Ozone concentrations
La Soufriere
[ ]
EQ-
30S—
PAus. Fires
60S—

JIFM[AM]JJ]AIS[OIN[D]J[F M]AM]J[J[A[S|OINID

C z
30N 100 :
La Soufriére
L]

EQ-

30S—
PAus. Fires

60S—

Figure 1. Time series of zonal-mean stratospheric aerosol extinction, ozone
concentrations, and geopotential height anomalies during 2020-2021. Results
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are shown at the 100 hPa level (Panels (a) and (b) are shown at the 70 hPa
level in Figure S1). The cross and dot indicate the Australian bushfires of

early 2020 and the April 2021 eruption of La Soufriere, respectively. Aerosol

extinction (A, 1073 km~') and ozone concentrations (B, ppmv) are derived

from the Ozone Mapping and Profiler Suite Limb Profiler instrument.
Geopotential heights (C, in geopotential meters; gpm) are derived from ERAS.
Anomalies are calculated with respect to the base period 2012-2019 (omitting

2015 due to the eruption of Calbuco). The results are smoothed with an
11-point (11-degree by 11-day) running mean filter.

2. Data and Methods

Ozone and extinction values for 2020 and 2021 are based on data from the
Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) instrument
(Taha et al., 2021; Zawada et al., 2018). OMPS-LP measurements have been
used in numerous studies of the Antarctic ozone hole (Kramarova et al., 2014;
Rieger et al., 2021; Yu et al., 2021). Aerosol extinction is retrieved at a single
wavelength channel of 745 nm and clouds are removed using the cloud detec-
tion algorithm (Chen et al., 2016). OMPS-LP ozone concentrations below
10 hPa are derived from visible wavelengths. OMPS-LP observations are
weighted for the number of samples when observations are available, and
area averages are weighted by pressure and the cosine of latitude as neces-
sary. Tropospheric aerosol extinction and ozone concentrations are neglected
in the calculations of all vertical averages.

Ozone values for the extended 1979-2021 period were obtained from the
NASA ozone watch and consist of Southern Hemisphere polar cap ozone
hole area and total column ozone values (http://ozonewatch.gsfc.nasa.gov).
Atmospheric temperatures, winds, and geopotential height are based on
the European Center for Medium-Range Weather Forecasts Re-Analysis 5
(ERAS; Hersbach et al., 2020).

All results are shown as anomalies with respect to the 2012-2019 mean
seasonal cycle (the OMPS-LP data are available starting 2012). We omit
2015 from the base climatology since it was marked by large stratospheric
aerosol loadings from the Calbuco eruption (Zhu et al., 2018).

3. Results and Discussion
3.1. Aerosol Burdens and Ozone Depletion in 2020 and 2021

Figures 1 and 2a summarize the aerosol loadings that occurred in the South-
ern Hemisphere over the 2020-2021 period. Figure 1a shows extinction at
100 hPa as a function of latitude and day of year; Figure 2a shows extinc-
tion averaged over the extratropics (30-90S) as a function of height and day.
As shown in previous studies (Ansmann et al., 2022; Khaykin et al., 2020;
Peterson et al., 2021; Yu et al., 2021), the SH lower stratosphere was marked
by enhanced extinction values throughout 2020. Extinction increased rapidly
following the Australian bush fires in January and persisted throughout the
SH middle and high latitudes until at least the end of the year (Figures la
and 2a; Ansmann et al., 2022; Khaykin et al., 2020; Peterson et al., 2021; Yu
et al., 2021). The lag between the fires in early 2020 and the emergence of
high extinction values in the lower polar stratosphere in late 2020 (Figure 1a)
is consistent with the lofting of material at low latitudes followed by the
poleward transport and descent of particles at polar latitudes (see also Rieger
et al., 2021, Figure 3). The signature of the fires is partially obscured by the
lack of data in polar night (Figure 1a) and below the tropopause (Figure 2a).
Nevertheless, the time evolution of extinction in 2020 strongly suggests that
the high polar values found in late 2020 originated from the Australian fires
that occurred earlier that year (Yu et al., 2021).

The SH lower stratosphere was also marked by enhanced extinction values
throughout 2021. In this case, the increases in extinction began soon after the

eruption of La Soufriere in the tropics (Figures la and 2a). Interestingly, the polar extinction anomalies in late
2021 are comparable to those in late 2020. It is noteworthy that the extinction values are shown with respect to

the OMPS climatology in years without major eruptions (Methods), and thus the high values at polar latitudes do
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Figure 2. Time series of area-mean stratospheric aerosol extinction, ozone
concentrations, and polar cap geopotential height anomalies. Ozone Mapping
and Profiler Suite Limb Profiler aerosol extinction data (A, 1073 km~') are
averaged over 30-90°, ozone concentrations (B, ppmv) are averaged over
50-90°, and geopotential anomalies (C, normalized) are averaged over 60-90°.
‘White contour lines are spaced at —0.6, —0.8, —1.0... ppmv for the ozone
anomalies and +2, 3, 4... gpm for the geopotential anomalies. Black lines

in the top panel mark the onset day of the Australian bushfires and the La
Soufriere eruption. Regions within the troposphere or with a relatively small
number (<200) of observations are masked out. The results are smoothed with
an 11-day running mean filter. Anomalies are calculated with respect to the
base period 2012-2019 (omitting 2015 due to the eruption of Calbuco).

The extension of the circulation anomalies to tropospheric levels is clearly
reflected in various changes in surface climate during late 2020 and 2021.
Tropospheric geopotential height exhibited anomalies that resemble the high
index polarity of the southern annular mode at tropospheric levels during
both the 2020 and 2021 late austral spring/early summer seasons (Figures 3a
and 3b). The attendant changes in the surface circulation include various
established regional climate impacts of the SAM, including anomalously
westerlies over much of the Southern Ocean (Figures 3¢ and 3d), anoma-
lously cool conditions over the Antarctic plateau juxtaposed against warm
conditions over the Antarctic peninsula (Figures 3¢ and 3d; Thompson &
Solomon, 2002), and anomalously cool conditions over much of Australia
(Figures 4e and 4f; Hendon et al., 2007).

Figure 4 shows SH polar ozone anomalies plotted against SH extratropi-
cal-mean extinction (Figure 4a), the SH large-scale stratospheric circulation
(Figure 4b), and the SH large-scale tropospheric circulation (Figure 4c). The

scatter plots highlight both (a) the robust nature of the linkages between the ozone hole and the SH circulation
and (b) the extraordinary nature of the 2020 and 2021 spring seasons. Note that the results in the left panel are
shown for the OMPS period of record only while results in the middle and right panels are shown for the period

starting 1979 (Methods).
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Figure 3. Surface climate anomalies during the 2020 and 2021 seasons. Monthly mean anomalies in (a, b) geopotential
height at 500 hPa (gpm) in the SH (c—f) 2m-air temperature and the 850 hPa flow over (c, d) the Antarctic and (e, f) Australia.
Results are shown for the periods of (a, ¢, ¢) December—January in 2020/21 and (b, d, f) November—January in 2021/22.
Anomalies are calculated with respect to the base period 2012-2019 (omitting 2015 due to the eruption of Calbuco).
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Figure 4. Scatter plots of total column ozone derived from the NASA Ozone Watch averaged over October to November (abscissa) versus (a) Ozone Mapping and
Profiler Suite total column stratospheric aerosol extinction averaged over October to November, ERAS5 polar cap geopotential height at (b) 100 hPa averaged over
November to December and (C) 500 hPa averaged over November to January. The aerosol extinction data are averaged 30°-90°; ozone concentrations are averaged
63°-90°; and geopotential heights are averaged 60°-90°. Selected years with high aerosol loadings are indicated by the top colorbar; other years are indicated by the
bottom colorbar. Anomalies are calculated with respect to the base period 2012-2019 (omitting 2015 due to the eruption of Calbuco).

The extinction anomalies during October-November of 2020 and 2021 (Figure 4a; blue and green dots) were
exceeded only by those found after the eruption of the Calbuco volcano in 2015 (black dot). All 3 years were
associated with extreme column ozone losses (left) and, in turn, anomalously low polar stratospheric geopotential
heights (middle). The outlier in Figure 4a, when ozone reached ~325DU but extinction was not extremely low,
was associated with the minor sudden stratospheric warming event in 2019 and is thus consistent with dynamic
variability (Safieddine et al., 2020; Shen et al., 2020; Wargan et al., 2020). Other years marked by low polar
ozone and stratospheric geopotential height anomalies include 2011, which coincides with the eruption of Cordon
Caulle (purple dot in the middle panel), and the late 1990s, which coincide with the period of largest stratospheric
chlorine loadings (dark orange dots). Apparently, extreme ozone losses and stratospheric geopotential height falls
are associated with large chlorine loadings and/or enhanced particulate matter.

The years 2011, 2015, 2020 and 2021 also standout in terms of the attendant anomalies in the tropospheric
circulation (right panel). All 4 years are associated with relatively low values of polar geopotential height at trop-
ospheric levels during the late spring months indicative of the positive index polarity of the SAM.

Taken together, the scatter plots in Figure 4 reveal that both 2020 and 2021 stand out in terms of extinction
(left ordinate), column ozone losses (abscissas), changes in the stratospheric circulation (middle ordinate), and
changes in the tropospheric circulation (right ordinate). Note that the fits in all three panels are highly significant
(p < 0.01) based on the t-statistic assuming one degree of freedom per calendar year, and that the associated
variances explained by the linear fits are extremely high (~60%, 70% and 26% for panels a—c, respectively). The
results are not sensitive to the latitudinal domain used to average the aerosol extinction values, that is, similar
results are derived using domains spanning 30°-90°S to 60°-90°S.

The uniqueness of the 2020 and 2021 seasons is further highlighted by the histograms in Figure 5. The gray bars
indicate histograms of daily values for all years in the record (Methods); the colored bars indicate histograms of
daily values during late 2020 (left) and 2021 (right). The histograms are normalized such that the largest value on
the ordinate axis is the same for 2020, 2021, and the historical periods; the number of days used to populate each
histogram is indicated on the figures. Again, it is clear that both late 2020 and 2021 were marked by unusually
high values of extinction (top), low concentrations of polar ozone (second from top), and low pressures in the
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Figure 5. Histograms of daily mean, Ozone Mapping and Profiler Suite total
column stratospheric aerosol extinction, NASA Ozone Watch total column
ozone, and ERAS geopotential height anomalies at indicated levels. Results
are derived from all days during October—November for aerosol extinction and
total column ozone, November—December for 100 hPa height, November—
January for 500 hPa height. The aerosol extinction data are averaged 30°-90°;
ozone concentrations are averaged 63°-90°; and geopotential heights are
averaged 60°-90°. Colored bars denote days during 2020 and 2021; gray

bars denote days during all other years in the available record. The PDFs are
normalized to the same height; the number of days used to construct the PDFs
is indicated on the plots. Anomalies are calculated with respect to the base
period 2012-2019 (omitting 2015 due to the eruption of Calbuco).

ry?keywords=OMPS_NPP_LP 1.2 AER_DAILY_2 and

polar atmosphere consistent with a strengthening of the circumpolar westerly
from the stratospheric levels to the surface (bottom two rows).

4. Conclusions

The 2020 and 2021 Antarctic ozone holes were among the largest on record
despite the overall trend toward ozone recovery (https://ozonewatch.gsfc.
nasa.gov; Stone et al., 2021). The results shown here reveal that both events
were associated with changes in Southern Hemisphere surface climate
consistent with the linkages between stratospheric ozone depletion and the
large-scale SH circulation.

The results thus attest to the continuing role of stratospheric ozone depletion
in surface climate change despite the onset of ozone recovery. They also indi-
cate potentially important linkages between enhanced stratospheric particu-
late matter, ozone depletion, and changes in the hemispheric scale circulation
from the stratosphere to the surface.

As discussed in the Introduction, the linkages between explosive volcanic
eruptions and stratospheric ozone depletion are well established, whereas the
linkages between wildfires and ozone depletion have only recently drawn
comparable attention. Various mechanisms have been proposed. For exam-
ples: Yu et al. (2021) indicate significant simulated decreases in polar ozone
following the 2020 Australian fires due to a combination of dynamical and
chemical mechanisms. Solomon et al. (2022) show evidence for mid-latitude
chemistry driving large observed nitrogen oxide changes following the fires.
Santee et al. (2022) and Bernath et al. (2022) show remarkable changes in
hydrochloric acid and chlorine nitrate at mid-latitudes after the Australian
fires, but the chemical mechanism causing those changes has not yet been
identified, nor has a clear link to polar chemistry been established. Wild-
fire soot may also contribute to dynamical changes in the strength of the
vortex through changes in radiative heating, but this mechanism has yet to
be explored.

The number of high aerosol loading events in the OMPS-LP record is limited
and thus internal variability cannot be completely ruled out. Nevertheless, the
results shown here are strongly suggestive of causal linkages between strat-
ospheric aerosol loadings and widespread changes in Southern Hemisphere
surface climate. Notably, the results highlight the intriguing possibility that
catastrophic wildfires may have a profound effect on the hemispheric-scale
circulation long after the cessation of smoke production.
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