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The presence of noise or the interaction with an environment can radically change the dynamics of
observables of an otherwise isolated quantum system. We derive a bound on the speed with which
observables of open quantum systems evolve. This speed limit is divided into Mandelstam and Tamm’s
original time-energy uncertainty relation and a time-information uncertainty relation recently derived for
classical systems, and both are generalized to open quantum systems. By isolating the coherent and
incoherent contributions to the system dynamics, we derive both lower and upper bounds on the speed of
evolution. We prove that the latter provide tighter limits on the speed of observables than previously known
quantum speed limits and that a preferred basis of speed operators serves to completely characterize the
observables that saturate the speed limits. We use this construction to bound the effect of incoherent
dynamics on the evolution of an observable and to find the Hamiltonian that gives the maximum coherent
speedup to the evolution of an observable.
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I. INTRODUCTION

How quickly can the expectation value hAi of an
observable change as a quantum system evolves in the
presence of an environment? What properties of the system
allow for fast evolution of a physical quantity? How
sensitive is the speed of an observable’s evolution to the
effects of an environment? We probe these questions by
deriving speed limits on observables, i.e., uncertainty
relations that bound the rate of change of hAi. Our main
results rely on discriminating the “quantumlike” coherent
contributions and the “classical-like” incoherent contribu-
tions to the evolution of an open quantum system. This
allows us to derive lower bounds on speed, as well as upper

bounds on speed, which are tighter than those previously
considered. In this way, we also unify—and improve
upon—previously known quantum and classical speed
limits on observables.
Mandelstam and Tamm first derived a bound on the

speed for quantum systems evolving unitarily under a
Hamiltonian H [1]. They proved that���� dhAidt

���� ≤ 2ΔAΔH; ð1Þ

where ΔA ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i − hAi2

p
and ΔH are the standard

deviations of the observable and the Hamiltonian, respec-
tively (units are such that ℏ ¼ 1). This result bounds the
speed of evolution of any physical quantity of an isolated
quantum system. Mandelstam and Tamm further consid-
ered the projection onto the initial state of the system,
A ≔ jψ0ihψ0j, as an observable of interest. Equation (1)
then implies a bound on how fast the state of the system
evolves. They proved that the minimum time τ⊥ for a
system to evolve between two orthogonal states satisfies
τ⊥ ≥ π=ð2ΔHÞ. This gives an ultimate limit to the speed of
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evolution in the system: A minimum time has to elapse for
the state of the system to evolve into a distinguishable
state, t ≥ τ⊥.
Since then, the focus on state distinguishability instead

of observables has been predominant, with most works
adopting a metric in Hilbert space and deriving bounds
on its rate of change. For instance, some studies have
focused on alternative bounds to that of Mandelstam
and Tamm [2–5], involving various metrics [6–17] and
covering more general dynamical regimes [18–21]. In this
way, quantum speed limits have found applications in a
range of topics, including quantum control [22–25],
limits to computation [2,26,27], parameter estimation
[28–30], quantum thermodynamics [31,32], quantum
annealing [33], quantum information theory [34–37],
and the dynamics of many-body [38,39] and open
quantum systems [40]. Quantum speed limits have even
been extended to classical settings by using metrics in the
space of probability distributions [41–44]. Some studies
have deviated from the focus on speed limits in Hilbert
space, deriving bounds on quantum thermodynamic
processes [45–47]. However, metric-based speed limits
remain prevalent [48].
Approaches based on metrics in Hilbert space have a

shortcoming: While any pair of orthogonal states are
distinguishable under some measurement, oftentimes rel-
evant observables remain unchanged. For example, con-
sider an ensemble of two-level systems that evolve from
state j↑↑↑ … ↑↑i to state j↑↑↑ … ↑↓i over a time τ⊥. All
distances between these states achieve their maximum
value, but interesting observables such as the magnetiza-
tions

P
j σ

z
j or

P
j σ

x
j barely change (here, σα are Pauli

matrices). Observables can be thought of as “filter func-
tions,” sensitive only to restricted parts of the dynamics of
the state. While bounds on τ⊥ provide information about
the fastest evolving Hermitian operators, they may not
reflect the dynamics of experimentally relevant physical
observables [49]. This situation is exacerbated by the fact
that the speed limits of different metrics can vary signifi-
cantly [10,13]. We see this as a prime example that
highlights the need for speed limits on physically grounded
quantities physically grounded quantities of direct rel-
evance of direct relevance to experimental measurements.
In this work, we address the shortcomings of derivations

of speed limits for distances in Hilbert space. We do so by
deriving limits on the evolution of arbitrary observables for
arbitrary differentiable dynamics. This extends the original
derivation by Mandelstam and Tamm, which was restricted
to isolated quantum systems. In doing so, we also general-
ize Mandelstam and Tamm’s version of the quantum time-
energy uncertainty relation to open quantum systems. This
result is the quantum analogue of a time-information
uncertainty relation recently introduced for stochastic
dynamics of classical systems [50], in which the maximal
rate of change of an observable depends on (classical)

fluctuations in the observable and fluctuations in the
surprisal rate of the system.
The remainder of the paper is organized as follows.

Section II shows a general bound on the rate of change of
observables for open quantum systems in terms of the
quantum Fisher information and discusses connections to
the quantum Cramér-Rao bound. The core results of this
paper are contained in Sec. III, where we derive strictly
tighter upper bounds than those in Sec. II by decom-
posing the dynamics of a quantum system in terms of
coherent and incoherent contributions. This technique
also allows us to derive, for the first time, lower bounds
on the speed of observables. We show in Sec. IV how to
connect these bounds to energy uncertainties of the
system and derive bounds on energy and entropy rates,
providing a simple proof of the “small incremental
entangling theorem.” Section V focuses on the tightness
of the speed limits obtained in Secs. II and III. We derive
limits to the total change of an observable in Sec. VI,
where we use them to bound the integrated effects from
incoherent dynamics on an open quantum system. In
Sec. VII, we provide conclusions and a discussion.
Finally, in the Appendixes, we present derivations of
these results.

II. SPEED LIMITS ON OBSERVABLES
IN OPEN QUANTUM SYSTEMS

Let ρt denote an arbitrary density matrix of a quantum
system, possibly characterizing a statistical mixture
over pure states. Its dynamics can be formally expressed
by the symmetric logarithmic derivative L, implicitly
defined by ðdρt=dtÞ≕ 1

2
fL; ρtg [28,51–53], where

fA; Bg ¼ ABþ BA denotes an anticommutator. Using this
equation of motion, we show (Appendix A) that the
expectation value hAi ¼ TrðAρtÞ evolves according to a
generalized form of the Ehrenfest equation,

dhAi
dt

¼ covðL; AÞ þ
�
dA
dt

�
≕ _aþ

�
dA
dt

�
; ð2Þ

where covðA; LÞ ≔ 1
2
TrðρtfA; LgÞ − hAihLi is the sym-

metrized covariance. Here, we distinguish between the term
hdA=dti, which stems from any explicit time dependence
of the observable, and _a ≔ Tr½Aðdρt=dtÞ� ¼ covðL; AÞ,
which depends on the rate of change of the state. Note
that for time-dependent observables, a is not a state
function but is instead defined through the path-dependent
integral a ≔

R
_adt. An analogy is that of heat and work in

thermodynamics, whose total changes are defined via the
infinitesimal changes of a given process and cannot
generally be defined only in terms of the initial and final
states. In fact, if A ¼ HðtÞ is the Hamiltonian of the system,
_a and h _Ai correspond to heat and work exchanges in
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quantum thermodynamics [54,55]. For observables without
explicit time dependence, one simply has _a ¼ dhAi=dt.
An equation of motion analogous to (2) has been proven

for classical stochastic systems [50] and is known as the
Price equation in evolutionary biology [56,57]. Applying
the Cauchy-Schwarz inequality, we can derive the follow-
ing upper bound on the change in the expectation value due
to state changes, _a ≔ Tr½Aðdρt=dtÞ� ¼ covðL; AÞ, which
generalizes the Mandelstam and Tamm speed limit on
observables:

j _aj ¼ jcovðL; AÞj ≤ ΔAΔL ¼ ΔA
ffiffiffiffiffiffi
IF

p
: ð3Þ

Here, IF ≔ ðΔLÞ2 is the quantum Fisher information.
For a density matrix with a spectral decomposition
ρt ¼

P
j pjjjihjj, it is given by [28,53,58]

IF ¼ ðΔLÞ2 ¼ 2
Xd
jk

jhjj ddt ρtjkij2
pj þ pk

: ð4Þ

The definition of IF and the proof of Eq. (3) assume
differentiable dynamics and that pj ≠ 0∀ j [59]. In order to
ease notation, we omit explicit time dependence of IF, pj,
fjjig, L, and A.
Equation (3) shows that the uncertainty of an observable

and the quantum Fisher information limit the speed with
which the mean of the observable evolves. The Fisher
information IF originates from parameter estimation theory,
where it bounds the uncertaintywithwhich a parameter—t in
this case—can be determined [51–53,58,60]. Speed limits in
Hilbert space [4,5,10,18,61] and speed limits for observables
in closed systems [28,46] have also been linked to bounds
from parameter estimation theory. In fact, when A has no
explicit time dependence, Eq. (3) can be derived from the
quantum Cramér-Rao bound by restricting to functions of
hAi as (typically suboptimal) estimators of the parameter t
(Appendix K). Note, though, that the quantum Cramér-Rao
bound encompasses arbitrary estimators constructed from all
possible measurements that can be performed on the system.
While an optimal choice of such an estimator saturates the
quantum Cramér-Rao bound, there can exist tighter bounds
for other given estimators. We will exploit this in the next
section to derive speed limits on hAi that are tighter than the
speed limit (3) implied by the quantum Cramér-Rao
bound [62].
For a given speed _a, the uncertainty bound (3) implies a

direct trade-off between how certain an observable is and
the Fisher information IF. Roughly speaking, IF is a
measure of stationarity in the system [63,64]: A small value
implies a weak change of ρt in time, which hinders the rate
of change of any observable. Similarly, ΔA ¼ 0 implies a
state ρt supported on the subspace spanned by eigenvectors
fjλlaig corresponding to a single eigenvalue λa of A. Then,
the function Trðρt

P
l jλlaihλlajÞ ¼ hAi=λa ¼ 1 is at a

maximum, implying a null rate of change, which translates
into _a ¼ 0. On the other extreme, fast observable dynamics
requires large fluctuations and large Fisher information.
Following Mandelstam and Tamm, we identify the

characteristic timescale τa ≔ ΔA=j _aj over which the
expectation value of an observable changes by a standard
deviation [1]. Combining this definition with the inequality
(1), Mandelstam and Tamm established the time-energy
uncertainty relation τAΔH ≥ 1=2, valid for isolated sys-
tems evolving with a constant Hamiltonian H [1,65]; see
Refs. [28,66,67] as well. For pure states, IF ¼ 4ðΔHÞ2,
and Mandelstam-Tamm’s time-energy uncertainty can be
reexpressed as τA

ffiffiffiffiffiffi
IF

p
≥ 1. Bound (3) extends this to states

following arbitrary differentiable dynamics,

τA
ffiffiffiffiffiffi
IF

p
≥ 1; ð5Þ

and constitutes a time-information uncertainty relation that
holds universally for quantum systems.
It is worth noting that uncertainty relations are not purely

a feature of quantum mechanics. In fact, Ref. [50] shows
that a bound analogous to Eq. (5) holds for classical
stochastic systems. How, then, does the interplay of
quantum and classical dynamics contribute to the speed
at which an observable can evolve?

III. SPEED LIMITS FOR COHERENT
AND INCOHERENT DYNAMICS

The state ρt of a quantum system evolving under
arbitrary differentiable trace-preserving dynamics can be
written as ρt ¼ UtχtU

†
t . The unitary operator Ut connects

the time-dependent eigenbasis of ρt to the eigenbasis fjji0g
of the initial state by jji ¼ Utjji0, and χt ≔

P
j pjjji00hjj

is a diagonal density matrix with the same eigenvalues as
ρt. Defining the Hermitian operator Ht ≔ iðdUt=dtÞU†

t as
the “Hamiltonian,” one can express the evolution of ρt
as [68–70]

d
dt

ρt ¼ −i½Ht; ρt� þUt
dχt
dt

U†
t : ð6Þ

This equation describes the dynamics of any quantum
system with a continuous physical evolution where prob-
ability is conserved, including non-Markovian dynamics
[71] and nonlinear dynamics stemming from continuous
monitoring [72] or balanced gain and loss [70]. In the
widely relevant case when the system obeys a Lindblad
equation for Lindblad operators Γα with rates γα that
cause incoherent dynamics, one has Utðdχt=dtÞU†

t ¼P
α γαðΓαρΓ

†
α − 1

2
fΓ†

αΓα; ρgÞ. (Note that Lindblad opera-
tors can also induce unitary dynamics, in which case they
would contribute to Ht [73,74].)
The first term in Eq. (6) represents coherent, entropy-

preserving evolution. The second is the incoherent term,
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which corresponds to changes in the state’s eigenvalues and
therefore in the entropy of the system. Note that the case
with no coherent contribution, Ht ¼ 0, gives rise to a
description equivalent to a probability distribution fpjg
following classical stochastic dynamics [75]. In contrast,
even if coherence is not a uniquely quantum trait [76],
coherent dynamics due to Ht ≠ 0 is characteristic of
quantum systems. In this sense, one could broadly identify
the coherent and incoherent terms to correspond to “quan-
tum” and “classical” contributions to the evolution, respec-
tively [10,69]. This identification is further supported by
the fact that, if the eigenstates jji involved in purely
incoherent dynamics are classical (e.g., bit strings repre-
senting product states of computational basis states of two-
level systems), the resulting incoherent dynamics is indeed
classical. At the same time, one should take the classical
label for incoherent dynamics with a grain of salt since
eigenstates jji can be highly nontrivial, in which case
incoherent dynamics can also be quantum—for instance,
driving product states into entangled ones [77].
To extend the coherent-incoherent separation to the

observable of interest A ≔ AC þ AI, we define the relevant
components to the evolution of the observable for a system
with purely coherent (_χt ¼ 0) or purely incoherent
(Ht ¼ 0) dynamics,

AC ≔
Xd
j≠k

Ajkjjihkj and AI ≔
Xd
j

Ajjjjihjj: ð7Þ

In this separation, we take the time-dependent basis fjjig
that diagonalizes state ρt. The coherent-incoherent division
is thus relative to the state of the system.
As a final ingredient to our construction, we define

Hermitian operators LC and LI, with L ¼ LC þ LI , which
will characterize the speed due to coherent and incoherent
dynamics:

LC ≔ −2i
Xd
j≠k

hjj½Ht; ρt�jki
ðpj þ pkÞ

jjihkj; ð8aÞ

LI ≔
Xd
j

d lnpj

dt
jjihjj: ð8bÞ

With these operators, one can separate the quantum Fisher
information into coherent and incoherent contributions
IF ¼ IC

F þ I I
F (Appendix C):

IC
F ≔ ðΔLCÞ2 ¼ 2

Xd
j≠k

jhjj½Ht; ρt�jkij2
pj þ pk

; ð9aÞ

I I
F ≔ ðΔLIÞ2 ¼

Xd
j

pj

�
d
dt

lnpj

�
2

: ð9bÞ

Note that I I
F is the classical Fisher information of the

probability distribution fpjg [78,79], which also admits an
interpretation in terms of the variance in the surprisal rate
fðLIÞj ¼ −ðd=dtÞ lnpjg associated with the eigenvalue
distribution fpjg [80]. Meanwhile, IC

F is the quantum
Fisher information for a system evolving unitarily. For pure
states, IC

F ¼ 4ðΔHtÞ2 [53].
This construction, which separates the change of an

observable A into coherent and incoherent contributions,
allows for the derivation of bounds that are tighter than the
speed limit (3). We prove in Appendix C that, for differ-
entiable dynamics, _aC ≔ Tr½ACðdρt=dtÞ� ¼ covðAC; LCÞ
and _aI ≔ Tr½AIðdρt=dtÞ� ¼ covðAI; LIÞ. Therefore,

j _aCj ¼ jcovðAC; LCÞj ≤ ΔAC

ffiffiffiffiffiffi
IC
F

q
; ð10aÞ

j _aIj ¼ jcovðAI; LIÞj ≤ ΔAI

ffiffiffiffiffiffi
I I
F

q
ð10bÞ

set bounds on the rate of change of an observable that
isolate the role played by coherent and incoherent dynam-
ics. Equation (10b) is identical to the one derived in
Ref. [50] for classical stochastic systems, where −ðLIÞj
corresponds to the surprisal rates. This coherent-incoherent
decomposition and the corresponding bounds constitute
one of the main results of the paper.
These results provide a foundation for a number

of speed limits on observables. The reverse triangle
inequality [81] yields a lower bound on the speed
_a ¼ Tr½Aðdρt=dtÞ� ¼ _aC þ _aI, i.e., a coherent-incoherent
lower speed limit

j _aj ≥ max
n
j _aCj − ΔAI

ffiffiffiffiffiffi
I I
F

q
; j _aIj − ΔAC

ffiffiffiffiffiffi
IC
F

q o
; ð11Þ

made possible by the division of the system dynamics into
two contributions. To the best of our knowledge, this is the
first derivation of general lower speed limits on the
evolution of open quantum systems.
Equation (10) also implies a new upper bound singling

out additive contributions from the uncertainties of the
coherent and incoherent parts AC and AI of the observable,

j _aj ≤ min
n
j _aCj þ ΔAI

ffiffiffiffiffiffi
I I
F

q
; j _aIj þ ΔAC

ffiffiffiffiffiffi
IC
F

q o
≤ ΔAC

ffiffiffiffiffiffi
IC
F

q
þ ΔAI

ffiffiffiffiffiffi
I I
F

q
: ð12Þ

This bound limits the speed of systems following coherent
quantum dynamics, as well as systems following incoher-
ent classical dynamics: a coherent-incoherent speed limit.
While the speed limit (3) is saturated by a properly
chosen observable (i.e., an optimal estimator in the context
of the quantum Cramér-Rao bound from parameter
estimation theory), we show in Sec. V below that the
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coherent-incoherent speed limit (12) is tighter for any fixed
A, imposing stricter constraints on the speed of evolution.
Two limiting cases demonstrate the scope of the upper

bound. For purely coherent evolution, constant probabil-
ities _pjðtÞ ¼ 0 imply IC

F ¼ 0, in which case the coherent-
incoherent speed limit recovers the Mandelstam-Tamm
bound for observables, generalized to allow for an explicit
time dependence in the Hamiltonian. In the opposite
extreme of purely incoherent dynamics,Ht ¼ 0, it recovers
the classical speed limit recently derived in Ref. [50] for
classical stochastic dynamics.
More generally, consider a system in state ρt with

dynamics that results in I I
F and IC

F. The coherent-incoher-
ent speed limits tell us that some observables evolve
following incoherent dynamics characterized by I I

F, while
others follow the coherent dynamics with IC

F. The evolu-

tion of observables with ΔAC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j≠k pjjAjkj2
q

¼ 0,

which commute with the state, is guided by the incoherent
contribution to the evolution. Meanwhile, observables with
ΔAI ¼ 0 are driven solely by the Hamiltonian.
The coherent-incoherent partition of an observable

motivates the definition of characteristic timescales τAC
≔

ΔAC=j _aCj and τAI
≔ ΔAI=j _aIj for AC and AI , respectively,

over which each of them change by their standard devia-
tions. From Eq. (10), their time-information uncertainty
bounds are

τAC

ffiffiffiffiffiffi
IC
F

q
≥ 1 and τAI

ffiffiffiffiffiffi
I I
F

q
≥ 1: ð13Þ

The first bound generalizes Mandelstam-Tamm’s time-
energy uncertainty relation to the coherent component of
the evolution. The second bound generalizes the classical
time-information uncertainty bound from Ref. [50] to the
incoherent contribution to the dynamics of an observable
for a quantum system with arbitrary differentiable dynam-
ics. Note, though, that these apply to general regimes in
which an open quantum system evolves under both
coherent and incoherent dynamics. They provide alternate
uncertainty relations to the quantum time-information
uncertainty bound (5) that single out coherent and incoher-
ent characteristic timescales.

IV. SPEED LIMITS IN TERMS
OF ENERGY VARIANCES

One may be interested in bounds that depend on physical
quantities that are experimentally more accessible than the
different contributions to the Fisher information central to
our results above. If we assume that the source of
nonunitary dynamics is entanglement with an environment
via a Hamiltonian Hint

t that includes all terms with support
on both the system and the environment, it holds that

IC
F ≤ 4ðΔHtÞ2 and I I

F ≤ 4ðΔHint
t Þ2: ð14Þ

The standard deviation ΔHint
t is calculated in the joint state

of the system and the environment. The bound in Eq. (14)
on IC

F was proven by Braunstein and Caves in Ref. [28].
We prove the new (loose) bound in Eq. (14) on I I

F in
Appendix D. When combined with the coherent-incoherent
speed limits (12) and (11), Eq. (14) implies upper and lower
bounds on j _aj in terms of energy uncertainties.
Certain physical quantities naturally evolve solely

under incoherent dynamics. The von Neumann entropy
S ≔ −Trðρt ln ρtÞ of a system is one example. Using
_S ¼ −Trðdρt=dt ln ρtÞ [82] and choosing AI ¼ − ln ρt in
Eq. (10) gives a bound

j _Sj ≤ ΔS
ffiffiffiffiffiffi
I I
F

q
≤ 2ΔSΔHint

t ; ð15Þ

set by the variance ðΔSÞ2 ≔ Tr(ρtðln ρtÞ2) − S2 of the
surprisal operator ½− ln ρt�, whose expectation value is
the von Neumann entropy. In other words, an uncertainty
relation bounds the change in entropy of any open quantum
system in terms of fluctuations in energy and in surprisal
½− ln ρt� (ΔS also plays the interesting role of determining
the possible transitions between states of a quantum
system [83]). Using ΔS ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( lnðd − 1Þ)2=4þ 1

p
[83,84]

and ΔHint
t ≤ kHint

t k, where kHint
t k is the operator norm, we

recover the small incremental entangling theorem [85,86],
j _Sj≲ ln dkHint

t k, in the case of no ancillary systems
(Appendix E).
Even though the Hamiltonian is generally not of the form

of AC, since it need not commute with ρt, a direct
calculation with Eq. (6) shows that the energy of the
system changes solely due to the time dependence of Ht or
under the incoherent contribution to the dynamics. Thus,
from Eqs. (10) and (14), it holds that����Tr

�
dρt
dt

Ht

����� ≤ ΔHC

ffiffiffiffiffiffi
IC
F

q
≤ ΔHtΔHint

t ; ð16Þ

where HC is the diagonal component of Ht as defined in
Eq. (7) and we use ΔHC ≤ ΔHt. This result sets bounds on
what is typically identified as the heat flux in the quantum
thermodynamics of open systems [54,55] [87]. This new
speed limit is a quantum analogue of the bound derived in
Ref. [50] for classical stochastic thermodynamics.

V. SATURATION AND TIGHTNESS
OF THE SPEED LIMITS

Here, we focus on the tightness of the main, new,
coherent-incoherent speed limit (12) and how it compares
to the speed limit (3). We find that the former provides a
strictly tighter constraint on the rate of change of observ-
ables than the speed limit implied by the quantum Cramér-
Rao bound. To see this, we use IF ¼ IC

F þ I I
F and

ðΔAÞ2 ¼ ðΔACÞ2 þ ðΔAIÞ2 to prove that (Appendix F)
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ΔA
ffiffiffiffiffiffi
IF

p

ΔAC

ffiffiffiffiffiffi
IC
F

p
þΔAI

ffiffiffiffiffiffi
I I
F

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΔAC

ffiffiffiffiffiffi
I I
F

p
−ΔAI

ffiffiffiffiffiffi
IC
F

p
Þ2

ðΔAC

ffiffiffiffiffiffi
IC
F

p
þΔAI

ffiffiffiffiffiffi
I I
F

p
Þ2

s
;

ð17Þ

which quantifies the improvement that the coherent-
incoherent speed limit provides. The two bounds coincide
when ΔAC

ffiffiffiffiffiffi
I I
F

p
¼ ΔAI

ffiffiffiffiffiffi
IC
F

p
. This condition occurs for

pure states ρt ¼ jkihkj with purely coherent dynamics
[ðΔAIÞ2 ¼

P
j pjA2

jj − ðPj pjAjjÞ2 ¼ 0 and I I
F ¼ 0], in

which case bounds (12) and (3) coincide with the one by
Mandelstam and Tamm [1]. It also occurs for diagonal
observables with purely incoherent dynamics (ΔAC ¼ 0

and IC
F ¼ 0), in which case, both bounds coincide with the

classical one derived in Ref. [50]. In contrast, whenever
ΔAC

ffiffiffiffiffiffi
I I
F

p
≠ ΔAI

ffiffiffiffiffiffi
IC
F

p
, our new coherent-incoherent speed

limit (12) is tighter.
Taking advantage of the fact that _a ¼ covðA;LÞ,

_aC ¼ covðAC; LCÞ, and _aI ¼ covðAI; LIÞ, one can identify
observables that evolve at the limiting speeds. The speed
limit (3) saturates when covðA;LÞ ¼ ΔAΔL, which is the
case for observables A ∝ L. Similarly, observables such
that AC ∝ LC and AI ∝ LI saturate the coherent and
incoherent speed limits (10) [89]. This property defines
the role of Hermitian operators LC and LI , evaluated at ρt,
as observables that evolve at their speed limits. We can also
see how saturation of the coherent-incoherent speed limit
can occur in cases when the speed limit (3) is looser: An
operator A ¼ αCLC þ αILI saturates the former but not the
latter except when αC ¼ αI .
In fact, the “fast” coherent and incoherent operators LC

and LQ are orthogonal to each other with respect to the
inner product defined by the symmetrized covariance,
covðLC; LIÞ ¼ 0. Thus, they form part of an orthogonal
basis of speed operators fLC; LI; L1

0;…; Ld2−2
0 g that spans

the space of Hermitian operators. Since evolution occurs
only under coherent or incoherent dynamics, and
covðLC; Ln

0Þ ¼ covðLI; Ln
0Þ ¼ 0 by construction, the “still”

operators fLn
0g do not evolve. Then, any observable

expressed in terms of the preferred basis as A ¼ αCLC þ
αILI þ

P
n αnL

n
0 evolves with a speed _a ¼ αCIC

F þ αII I
F.

We can use this construction to understand the situations
in which the reverse triangle inequality used to derive the
lower speed limit (11) saturates. The bound j _aj ≥ j _aCj −
ΔAI

ffiffiffiffiffiffi
I I
F

p
is saturated if AI ¼ −αILI with αI ≥ 0, while

j _aj ≥ j _aIj − ΔAC

ffiffiffiffiffiffi
IC
F

p
saturates for AC ¼ −αCLC with

αC ≥ 0. Once again, the preferred operator basis that
contains LC and LI serves to characterize the speed of
an observable and how far it is from saturating the upper
and lower speed limits.
The following example illustrates how to construct

observables that saturate the coherent and incoherent
bounds. Consider a qubit with a Hamiltonian H ¼
ðω=2Þσy and with incoherent dynamics driven by dephasing

along σz with a rate κ, described by Utðdχt=dtÞU†
t ¼

−κ½σz; ½σz; ρt�� in Eq. (6). Let us consider the case when
the qubit starts with y ¼ TrðρtσyÞ ¼ 0 (Fig. 1, left column).
The state of the qubit is parametrized as ρt ¼
ð1þ xσx þ zσzÞ=2, where x ¼ TrðρtσxÞ and z ¼ TrðρtσzÞ
are real numbers such that x2 þ z2 ≤ 1. Since the generators
of dynamics preserve y ¼ 0, we have that covðLC; σyÞ ¼
covðLI; σyÞ ¼ 0 (Appendix G). Then, fLC; LI; σy; 1g forms
a complete basis of Hermitian operators, and since observ-
ables σx and σy are orthogonal to 1 and σy, they can be

written as σfz;xg ¼ αfz;xgC LC þ αfz;xgI LI . This means that the
coherent and incoherent terms of observables σx and σz
evolve at the speed limits allowed by their respective bounds
(10). For the case of unitary dynamics (κ ¼ 0), this also
means that the speed limit (3) saturates. However, when

κ ≠ 0, the latter is loose except when αfz;xgQ ¼ αfz;xgC . Finally,
saturation of the coherent-incoherent speed limits (12) and

(11) depends on the relative signs of αfz;xgC and αfz;xgI .
Instead, if the system starts with y ≠ 0, the fast operators
have components on fσx; σy; σzg, which means that observ-
ables σfx;y;zg do not have expressions solely in terms of the
fast operators LC and LI . Thus, the coherent-incoherent
speed limits are typically not saturated in this case (Fig. 1,
right column).
These observable-dependent bounds can vary signifi-

cantly from one observable to another for a given system, as
shown by the bounds on the speeds of σx and σz that Fig. 1
depicts. This example illustrates the spirit of our initial aim:
to find bounds that better capture the speed of physical
observables than speed limits in Hilbert space. The bounds
obtained from the coherent-incoherent decomposition of
the dynamics capture the dynamics better than those
derivable from the quantum Cramér-Rao bound.

VI. BOUNDS ON INTEGRATED QUANTITIES

The Fisher information has interesting connections to the
geometry of the space of probability distributions and of
state space [18,53,61,67,90–93]. For small changes in t, the
quantum Fisher information is related to the Bures distance
DBðρt; ρtþδtÞ between neighboring states by

ds2 ¼ D2
Bðρt; ρtþdtÞ ¼

IF

4
dt2; ð18Þ

defining a metric in the space of density operators [91]. The
Bures distance between any two states ρ1 and ρ2 is defined

byDBðρ1; ρ2Þ ≔
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ1; ρ2Þ

pq
, where Fðρ1; ρ2Þ ≔

(Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2

p
ρ1

ffiffiffiffiffi
ρ2

pp Þ)2 is the Uhlmann fidelity. This con-
nection has been exploited in the literature to derive a lower
bound on the time needed for a system to evolve between
orthogonal states [18,94].
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Equations (3) and (18) lead to an integrated bound that
relates the change in the observable to the Bures length
Lðρi; ρfÞ of the path followed by the system:

Z
τ

0

j _aj
ΔA

dt ≤
Z

τ

0

ffiffiffiffiffiffi
IF

p
dt ¼ 2

Z
ρf

ρi

ds ¼ 2Lðρi; ρfÞ: ð19Þ

This new bound shows how the path taken by the system
in state space puts constraints on the corresponding
evolution of system observables. In particular, note that
A is not the Hamiltonian or the generator of evolution but
an arbitrary observable of interest. The geodesic is the path
that minimizes Lðρi; ρfÞ, and its length is given by the
Bures angle length Lminðρi; ρfÞ ¼ arccos½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðρi; ρfÞ
p �

[10,91]. Figure 2 illustrates the constraints that Eq. (19)
imposes on different paths taken by the system in state
space.
Along the lines similar to the previous integrated bound,

the change of an observable due to the change in the state
from ρi to ρf over a time τ satisfies (Appendix H)

FIG. 2. Constraints on evolution of observables. The integrated
speed limits (19) and (20) place constraints on the rate of change
of an observable, which depend on the path taken by the state of
the system in state space. The former bound says that the area
under the curve j _aj=ΔA of an arbitrary path is upper bounded by
the path length L, as

R j _aj=ΔAdt ≤ 2L. Geodesics put a more
stringent constraint on the dynamics of an observable: The area
under the curve j _aj=ΔA must satisfy

R j _aj=ΔAdt ≤ 2Lmin. Note
that A need not be related to the Hamiltonian or the generator of
the dynamics but is rather an arbitrary observable of interest.

(a) (b)

(c) (d)

FIG. 1. Speed limits for observables on a qubit. The speed limit (3), derivable from the Cramér-Rao bound, and the coherent-
incoherent speed limits (12) and (11) impose constraints on the rate _a at which observables evolve. We illustrate this on a qubit with a
state parametrized by ρ ¼ 1

2
ð1þ xσx þ yσy þ zσzÞ and driven by the Hamiltonian H ¼ ðω=2Þσy and dephasing along σz with a rate κ.

Black lines with circles denote the speeds j_xj and j_zj of observables σx and σz, and blue (red) lines denote the coherent-incoherent (lower)
speed limits. The grayed areas denote rates forbidden by the coherent-incoherent speed limits. In green, the looser speed limit (3) appears
inside the forbidden region. (a,c) The qubit is initialized in state z0 ¼ 1 and thus evolves in the y ¼ 0 plane on and inside the Bloch
sphere, which in turn implies that both observables σz and σx have coherent-incoherent decompositions that satisfy conditions for the

saturation of Eq. (10), with σfz;xg ¼ αfz;xgC LC þ αfz;xgI LI . For unitary dynamics [κ ¼ 0, (a)], this also means that the speed limit (3)
saturates, and the three curves coincide. For open-system dynamics [κ ≠ 0, (c)], the red and black curves coincide, but the speed limit (3)

is looser except when αfz;xgC ¼ αfz;xgI . Alternatively, whenever αfz;xgC and αfz;xgI have the same (different) sign, the coherent-incoherent
(lower) speed limits saturate. (b,d) The coherent-incoherent speed limits (12) and (11) are not tight for a qubit initialized in
x0 ¼ y0 ¼ z0 ¼ 1=

ffiffiffi
3

p
, when the state does not evolve within the y ¼ 0 plane, and the observables no longer have a decomposition

solely in terms of LC and LI . Nevertheless, these bounds serve to constrain observables’ dynamics more than the speed limit (3).
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jaðτÞj ¼
����
Z

τ

0

_adt

���� ≤ 2

Z
ρf

ρi

ΔAds

≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðρi; ρfÞ

1

τ

Z
τ

0

ðΔAÞ2dt:
s

ð20Þ

The total change is thus bounded by the integrated
fluctuations of the observable over the path through
Hilbert space. This, in turn, is bounded by the integrated
observable fluctuations and the divergence of the path
J ðρi; ρfÞ ≔ τ

R
τ
0 IFdt in state space [69,92,93].

The decomposition of dynamics into incoherent and
coherent terms also provides away to quantify the integrated
contribution of each of them to the change in an observable.
Often, quantum phenomena necessitate unitary dynamics in
order to benefit from quantum mechanical advantages. For
example, unavoidable incoherent effects stemming from
experimental imperfections in isolating, preparing, or driv-
ing a system amount to errors in the resulting dynamics,
hindering quantum cryptographic protocols [95] and
computing [96–98] or destroying quantum correlations
[99–101]. Integrating bound (10) on the incoherent con-
tribution to the change of an observable gives a bound on
how much the incoherent dynamics affects an observable:

jaðτÞ − aCðτÞj ¼ jaIðτÞj ¼
����
Z

τ

0

covðAI; LIÞdt
����

≤
Z

τ

0

ΔAI

ffiffiffiffiffiffi
I I
F

q
dt: ð21Þ

This bound can be interpreted as quantifying the error that
incoherent dynamics induces to the desired change aCðτÞ in
an observable A, had the system evolved according to an
ideal unitary evolution. An observable that cannot discrimi-
nate eigenstates of ρt along its evolution, in the sense of
hjjAjji ¼ hkjAjki∀ j; k, obeys ΔAI ¼ 0 and thus does not
accumulate an error due to incoherent evolution.
Alternatively,

jaðτÞ − aIðτÞj ¼
����
Z

τ

0

covðAC; LCÞdt
����

≤
Z

τ

0

ΔAC

ffiffiffiffiffiffi
IC
F

q
dt ð22Þ

bounds the maximum deviation that coherent dynamics
can induce to an incoherent process driving an
observable A. The looser bound jaðτÞ − aIðτÞj ≤
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J Cðρi; ρfÞð1=τÞ

R
τ
0 ðΔACÞ2dt

q
holds in terms of the

quantum divergence J Cðρi; ρfÞ ≔ τ
R
τ
0 I

C
Fdt of the path.

The maximum coherent speedup at any given time
occurs when the coherent speed limit is saturated, e.g.,
when LC ∝ AC (see Sec. V). Using Eq. (8a), we prove in
Appendix I that the Hamiltonian

Hspeedup
t ≔ −λt

i
2

Xd
j≠k

ðpj þ pkÞ
pj − pk

Ajkjjihkj ð23Þ

drives observable A at such a speed limit. Here, the
prefactor λt sets the energy scale and would typically be
determined by the available resources. The Hamiltonian
Hspeedup

t ¼ Hspeedup
t ðρt; AÞ is tailored to the state of the

system and the observable of interest, and makes optimal
use of the energetic resources to coherently drive the
observable at its speed limit and, as a result, change it
by a value jaCðτÞj ¼

R
τ
0 ΔAC

ffiffiffiffiffiffi
IC
F

p
dt ¼ R

τ
0 ðIC

F=λtÞdtwithin
a time τ.
In Appendix I, we illustrate how to exploit Hspeedup

t to
enhance an incoherent process that erases information
stored in a qubit. We consider a system initialized in state
jΨ0i ¼ aj0i þ bj1i, with a and b real, for simplicity, and
assume that it is critical to hide from an adversary the fact
that z0 ≔ hσzið0Þ ¼ a − b is not equal to zero. An inco-
herent dynamics, modeled by a Lindblad master equation
_ρt ¼ γ

P
l¼0;1 ðLlρtL

†
l −

1
2
fL†

l Ll; ρtgÞ with jump operators
L0 ¼ jrih1j and L1 ¼ jrih0j, drives the system to an
orthogonal state jri at a rate γ. Since hrjσzjri ¼ 0, this
dynamics incoherently erases z0 at a rate γ. We find that the
optimal Hamiltonian (23) that coherently enhances such a
process is given by Hspeedup

t ¼ ϵ½signðztÞ=signðxtÞ�σy,
where ϵ ≔ kHspeedup

t k is set by the available energetic
resources. While the purely incoherent dynamics hides
the fact that z0 ≠ 0 at a rate −_zincoht =zincoht ¼ γ, the unitarily
enhanced process leads to a faster rate of −_zt=zt ¼
γ þ 2ϵjxt=ztj.
In this way, the new speed limits (10), (12), and (11), and

the bounds (21) and (22), pave the way to a systematic
study of quantum speedups by identifying speed limits due
to (i) incoherent dynamics, (ii) unitary quantum dynamics,
and (iii) arbitrary quantum dynamics, and in doing so, to a
better understanding of the regimes in which enhancements
due to coherent dynamics occur.

VII. CONCLUSIONS

We derived speed limits on expectation values of
observables for a quantum system evolving under arbitrary
differentiable dynamics. These bounds distinguish between
classes of observables AQ driven solely by the Hamiltonian
of a system and classes of observables AC driven solely by
incoherent dynamics. An observable will typically have
coherent and incoherent contributions, A ¼ AC þ AI , and
its speed will be bounded by a linear combination of the
coherent Fisher information IC

F and the incoherent Fisher
information I I

F, weighted by associated fluctuations in the
contributions to the observable.
This division of dynamics in terms of coherent and

incoherent contributions was crucial to deriving upper
bounds on speed that are tighter than those implied by
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the quantum Cramér-Rao bound, where we exploited the
fact that the quantum Cramér-Rao bound is loose when
applied to a particular (nonoptimized) estimator. Our
framework also allowed us to (i) prove lower bounds on
the speed of evolution, (ii) quantify the effects from
nonunitary open dynamics of a quantum system, and
(iii) quantify the speedups that coherent dynamics can
provide to incoherent processes.
We expect these advances to broaden the field of

applications of quantum speed limits by better capturing
the timescales that are involved in the dynamics of different
physical system observables. Our work also takes a step
towards speed limits that correctly capture the dynamics of
many-body systems, where it is known that speed limits are
largely loose in estimating relevant timescales, e.g., for
thermalization of quantum systems [102,103]. A particu-
larly interesting avenue for future research is that of
incorporating constraints on the dynamics of physical
systems, such as locality [104], integrability [105], or those
imposed by limited controllability [106–109].
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APPENDIX A: EQUATION OF MOTION
FOR THE EXPECTATION VALUE

OF OBSERVABLES

In this appendix, we derive Eq. (2) of Sec. II in the main
text; i.e., we show that the change in the expectation value
of an observable is characterized by the covariance between
the observable and the symmetric logarithmic derivative.
Since the symmetric logarithmic derivative L is implic-

itly defined by the expression ðdρt=dtÞ≕ 1
2
fρt; Lg, where

fA; Bg ¼ ABþ BA denotes an anticommutator, we see
that the change in an observable due to changes in the state
satisfies

Tr

�
dρt
dt

A

�
¼ Tr

�
1

2
fρt; LgA

�

¼ 1

2
TrðρtfL; AgÞ

¼ 1

2
TrðρtfL; AgÞ − hLihAi

¼ covðL; AÞ≕ _a; ðA1Þ

where we use the facts that the trace is cyclic and that
hLi¼TrðρtLÞ¼ 1

2
Trðfρt;LgÞ¼Trðdρt=dtÞ¼0 for trace-

preserving dynamics. Here, covðA; LÞ ≔ 1
2
TrðρtfA;LgÞ −

hAihLi is the symmetrized covariance between operators L
and A.
The expectation value hAi ¼ TrðAρtÞ thus follows the

equation of motion

dhAi
dt

¼ Tr

�
dρt
dt

A

�
þ
�
dA
dt

�

¼ covðL; AÞ þ
�
dA
dt

�
≕ _aþ

�
dA
dt

�
; ðA2Þ

which is Eq. (2) of the main text.

APPENDIX B: ASSUMPTIONS ON THE SUPPORT
OF THE STATE

In this appendix, we study the effect that a change in the
rank of the state has on the speed of an observable.
Specifically, we show that bound (3) in the main text is
exact for states with constant support, and we obtain an
estimate of the error to the bound in cases when the rank of
the state changes and the incoherent Fisher information
diverges.
In deriving the first general bound [Eq. (3) in the main

text]

j _aj ≤ ΔA
ffiffiffiffiffiffi
IF

p
; ðB1Þ

we disregard the contribution of levels j such that pj ¼ 0.
Here, we quantify the error introduced by this and argue
that such an assumption gives a good approximation for
most times for differentiable continuous evolution.
Defining δA ≔ A − hAi, we find

j _aj ¼
����Tr

�
δA

dρt
dt

�����¼
����X

jk

δAjkhkj
dρt
dt

jji
����

¼
���� X
pj;pk≠0

δAjkhkj
dρt
dt

jjiþ
X

pj;pk¼0

δAjkhkj
dρt
dt

jji
����

≤
���� X
pj;pk≠0

δAjkhkj
dρt
dt

jji
����þ

���� X
pj;pk¼0

δAjkhkj
dρt
dt

jji
����; ðB2Þ
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where we set aside the sum of terms with pj ¼ 0 and
denote matrix elements by hkjδAjji ¼ δAjk. The first term
includes all contributions to the rate of change that satisfy
pj ≠ 0, as assumed in the main text, giving rise to Eq. (B1),
which is also Eq. (3) in the main text. The second term thus
contains all factors that are disregarded in the bound j _aj ≤
ΔA

ffiffiffiffiffiffi
IF

p
when states with pj ¼ 0 exist.

For the second term, using the fact that any trace-
preserving differentiable evolution can be expressed as

d
dt

ρt ¼ −i½Ht; ρt� þUt
dχt
dt

U†
t ; ðB3Þ

and that jji ¼ Utjji0 and χt ¼
P

j pjjji00hjj, we find that

X
pj;pk¼0

δAjkhkj
dρt
dt

jji ¼
X

pj;pk¼0

δAjkhkjUt
dχt
dt

U†
t jji

¼
X

pj;pk¼0

δAjkhkjUt

X
l

_pljli00hljU†
t jji

¼
X

pj;pk¼0

X
l

_plδAjkhkjlihljji

¼
X
pj¼0

_pjδAjj ¼
X

fpj¼0g
_pjAjj: ðB4Þ

This term, which would result in a correction to Eq. (10b) in
the main text, contributes very little to the rate of change of
_a for continuous evolutions because it is nonzero only for
infinitesimal moments in time in which a nonpopulated

state j acquires a nonzero probability pj. Whenever a state
has constant support, the error term is zero.

APPENDIX C: COHERENT AND INCOHERENT
CONTRIBUTIONS TO SPEED LIMITS ON

OBSERVABLES

In this appendix, we derive speed limits on the coherent
and incoherent contributions of an observable, proving
Eqs. (10a), (10b), and (12) of Sec. III in the main text.
The dynamics of any quantum system can be decom-

posed in terms of coherent and incoherent contributions as

d
dt

ρt ¼ −i½Ht; ρt� þUt
dχt
dt

U†
t ; ðC1Þ

where the Hamiltonian Ht ≔ iðdUt=dtÞU†
t drives the

coherent dynamics and where χt ¼
P

j pjðtÞjji00hjj,
the eigenvalues of ρt ¼

P
j pjjjihjj are fpjðtÞg, and

jji ¼ Utjji0.
Similarly, different components of an observable will

evolve under the coherent and incoherent contributions to
the dynamics. We define a coherent-incoherent separation
of the observable of interest A ≔ AC þ AI, with

AC ≔
X
j≠k

Ajkjjihkj; AI ≔
X
j

Ajjjjihjj: ðC2Þ

The change _aC ≔ Tr½ðdρt=dtÞAC� of the observable’s
coherent component is

_aC ¼
X
j≠k

Ajkhkj
dρt
dt

jji ¼ −i
X
j≠k

Ajkhkj½Ht; ρt�jji þ
X
j≠k

AjkhkjUt
dχt
dt

U†
t jji

¼ −i
X
j≠k

Ajk
hkj½Ht; ρt�jji
pj þ pk

ðpj þ pkÞ þ
X
j≠k

Ajk0hkj
�X

l

_plðtÞjli00hlj
�
jji0

¼ 1

2
TrðACLCρtÞ þ

1

2
TrðACρtLCÞ þ

X
j≠k

Ajk _pjðtÞδjk

¼ covðAC; LCÞ; ðC3Þ

where we used the fact that the diagonal components Ajj of
the coherent component AC of the observable are zero, and
that conservation of probability gives hLCi ¼ 0, where

LC ≔ −2i
X
j≠k

hjj½Ht; ρt�jki
ðpj þ pkÞ

jjihkj

¼ −2i
X
j≠k

hkj½Ht; ρt�jji
ðpj þ pkÞ

jkihjj: ðC4Þ

The speed limit follows from the Cauchy-Schwarz
inequality:

j _aCj ¼ jcovðAC;LCÞj ¼
1

2
jTrðρtδACδLCÞþTrðρtδLCδACÞj

≤
1

2

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ρtðδACÞ2�Tr½ρtðδLCÞ2�

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ρtðδACÞ2�Tr½ρtðδLCÞ2�

q o
¼ΔAΔLC; ðC5Þ

where we define δAC ≔ AC − hACi and δLC ≔ LC − hLCi.
A direct calculation further shows that

ΔLC ¼ TrðρtL2
CÞ ¼ IC

F ¼ 2
X
j≠k

jhjj½Ht; ρt�jkij2
pj þ pk

ðC6Þ
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is the coherent contribution to the quantum Fisher
information.
This then proves Eq. (10a) in the main text:

j _aCj ¼ jcovðA;LCÞj ≤ ΔAΔLC ¼ ΔAC

ffiffiffiffiffiffi
IC
F

q
: ðC7Þ

For the evolution of the incoherent part, we use the fact
that AI is diagonal in the basis of ρt, so that

_aI ¼
X
jk

δAjjhkj
dρt
dt

jji ¼
X
j

δAjjhjjUt
dχt
dt

U†
t jji

¼
X
j

δAjj0hjj
�X

l

_plðtÞjli00hlj
�
jji0 ¼

X
j

δAjj _pjðtÞ:

ðC8Þ
This becomes identical to the expression for the change in a
classical observable acting on a classical stochastic system.
It was shown in Ref. [50] that the dynamics of classical
observables under stochastic dynamics satisfies a speed
limit that depends on the classical Fisher informa-
tion I I

F ≔
P

j pj½ðd=dtÞ lnpj�2.
Defining

LI ≔
X
j

d lnpj

dt
jjihjj ðC9Þ

and disregarding states with pj ¼ 0 (see Appendix B for an
expression of the error introduced by this), we get

_aI ¼
X
j

_pjðtÞAjj ¼
X
j

pj
_pj

pj
Ajj ¼

X
j

pj
d
dt

lnðpjÞAjj

¼ TrðρtLIAÞ ¼ covðAI; LIÞ; ðC10Þ
where we used the fact that hLIi ¼ 0. The Cauchy-Schwarz
inequality then gives

j _aIj ¼ jcovðAI; LIÞj ≤ ΔAIΔLI ¼ ΔAI

ffiffiffiffiffiffi
I I
F

q
; ðC11Þ

which proves Eq. (10b) in the main text.
Combining the results gives

j _aj ≤ j _aCj þ j _aIj ≤ ΔAC

ffiffiffiffiffiffi
IC
F

q
þ ΔAI

ffiffiffiffiffiffi
I I
F

q
; ðC12Þ

proving the coherent-incoherent decomposition of the
central bound in the main text, Eq. (12).
The reverse triangle inequality [81] implies that

jxþ yj ≥ jxj − jyj. Combining this with the fact that _a ¼
_aC þ _aI and with bounds (C7) and (C12) gives

j _aj ¼ j _aC þ _aIj ≥ j _aCj − j _aIj ≥ j _aCj − ΔAI

ffiffiffiffiffiffi
I I
F

q
; ðC13Þ

j _aj ¼ j _aC þ _aIj ≥ j _aIj − j _aCj ≥ j _aIj − ΔAC

ffiffiffiffiffiffi
IC
F

q
: ðC14Þ

This proves the lower speed limit in Eq. (11) of the
main text.
Finally, we note that the quantum Fisher information

defined by Eq. (4) in the main text can be decomposed in
terms of the coherent and incoherent contributions to the
dynamics, IF ¼ IC

F þ I I
F, with

IC
F ≔ ΔLC ¼ 2

X
j≠k

jhjj½Ht; ρt�jkij2
pj þ pk

;

I I
F ≔ ΔLI ¼

X
j

pj

�
d
dt

lnpj

�
2

: ðC15Þ

APPENDIX D: UPPER BOUND ON THE
INCOHERENT FISHER INFORMATION

In this appendix, we derive an upper bound on the
incoherent Fisher information for a system interacting with
an environment. We prove the second part of Eq. (14) in
Sec. IV of the main text, and we prove that the bound
is loose.
The quantum Fisher information is IF ¼ IC

F þ I I
F,

where

IC
F ≔ 2

X
j≠k

jhjj½Ht; ρt�jkij2
pj þ pk

; I I
F ≔

X
j

pj

�
d
dt

lnpj

�
2

:

ðD1Þ
Braunstein and Caves proved an upper bound to the
coherent Fisher information,

IC
F ≤ 4ðΔHtÞ2; ðD2Þ

where Ht is the Hamiltonian of the system [53]. Equality
holds only if the state is pure or in the trivial case Ht ∝ 1.
Here, we prove an analogous bound for the incoherent

Fisher information,

I I
F ¼

X
j

pj

�
d
dt

lnpj

�
2

¼
X
j

ð _pjÞ2
pj

: ðD3Þ

Let us assume that the incoherent dynamics stems from the
interaction between the system and a second system, i.e., an
environment. The two interact via a Hamiltonian Hint

t .
Then, if Ht and HE

t represent the Hamiltonians of the
system of interest and the environment, the total system-
environment Hamiltonian is HSE

t ¼ Ht ⊗ 1E þ 1S ⊗
HE

t þHint
t . Note that self-Hamiltonians Ht and HE

t do
not change the eigenvalues of the state of the system, so
Hint

t is the only source of I I
F ≠ 0. We assume that Hint

t has
support on the Hilbert space of the system and the
environment and that it acts on the state causing incoherent
dynamics of the system. This excludes, for instance, cases
in which the system or the environment are in eigenstates
of Hint

t .
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Then, we have

_pj ¼ hjjdρt
dt

jji ¼ hjj − i½Ht; ρt� − iTrEð½Hint
t ; ρSEt �Þjji

¼ −i
X
e

hjjhej½Hint
t ; ρSEt �jeijji; ðD4Þ

where ρSEt is the joint state of the system S and the
environment E, ρt ≔ TrEðρSEt Þ ¼ P

ehejρSEt jei is the state
of the system, and fjeig denotes an arbitrary basis in the
Hilbert space of E. Defining the projector Xj ≔P

e jeijjihjjhej and the shifted Hamiltonian δHint
t ≔

Hint
t − TrðHint

t ρSEt Þ, we get

I I
F ¼

X
j

ð _pjÞ2
pj

¼
X
j

jPehjjhej½Hint
t ; ρSEt �jeijjij2
pj

¼
X
j

jTrðXj½δHint
t ; ρSEt �Þj2

pj

≤
X
j

j2TrðXjδHint
t ρSEt Þj2

pj
¼ 4

X
j

jTrðXjδHint
t

ffiffiffiffiffiffiffi
ρSEt

p ffiffiffiffiffiffiffi
ρSEt

p
XjÞj2

pj

≤ 4
X
j

TrðXjδHint
t ρSEt δHint

t XjÞTrðXjρ
SE
t XjÞ

pj
¼ 4

X
j

TrðXjδHint
t ρSEt δHint

t ÞTrðXjρ
SE
t Þ

pj

¼ 4
X
j

TrðPejeijjihjjhejδHint
t ρSEt δHint

t ÞTrðPe0 je0ijjihjjhe0jρSEt Þ
pj

¼ 4
X
j

hjjTrEðδHint
t ρSEt δHint

t ÞjjihjjTrEðρSEt Þjji
pj

¼ 4
X
j

hjjTrEðδHint
t ρSEt δHint

t Þjjihjjρtjji
pj

¼ 4
X
j

hjjTrEðδHint
t ρSEt δHint

t Þjji ¼ 4TrððδHint
t Þ2ρSEt Þ ¼ 4ðΔHint

t Þ2: ðD5Þ

We used the fact that jTrðABCÞj ¼ jTrðACBÞj holds for
Hermitian operators in the third line. We also used the facts
that Xj is a projector and ρSEt is positive to apply the
Cauchy-Schwarz inequality on line four. The variance of
the interaction Hamiltonian between the system and the
environment is ðΔHint

t Þ2 ≔ Tr(ðδHint
t Þ2ρSEt ). Then, we get

the second part of Eq. (14) in the main text:

I I
F ≤ 4ðΔHint

t Þ2; ðD6Þ
mirroring the bound on the coherent Fisher information in
terms of the variance of the system Hamiltonian, i.e., the
first part of Eq. (14) in the main text.
The proof of Eq. (D5) involves the Cauchy-Schwarz

inequality between the operators Vj ≔ XjδHint
t

ffiffiffiffiffiffiffi
ρSEt

p
and

Wj ≔ Xj

ffiffiffiffiffiffiffi
ρSEt

p
, which is tight if and only if Vj ¼

½TrðVjW
†
jÞ=TrðWjW

†
jÞ�Wj or, in the trivial case, when

one of the operators is null. We now prove that the former
is never the case. We have that

X
j

Tr
�
Vj

ffiffiffiffiffiffiffi
ρSEt

q 	
¼

X
j

TrðXjδHint
t ρSEt Þ

¼ TrðδHint
t ρSEt Þ ¼ 0; ðD7Þ

X
j

Tr
�
Wj

ffiffiffiffiffiffiffi
ρSEt

q 	
¼

X
j

TrðXjρ
SE
t Þ ¼ TrðρSEt Þ ¼ 1; ðD8Þ

where we used δHint
t ≔ Hint

t − TrðHint
t ρSEt Þ. This proves

that one cannot have Vj ∝ Wj and that the bound in
Eq. (D5) is loose except in the trivial case when both
sides of the inequality are null, as stated after Eq. (14) in
Sec. IV of the main text.

APPENDIX E: A COROLLARY—SMALL
INCREMENTAL ENTANGLING THEOREM

WITHOUT ANCILLAS

In this appendix, we focus on speed limits for the von
Neumann entropy, which result in a simple proof of the
small incremental entangling theorem in the ancilla-
free case stated below Eq. (15) in the main text:
j _Sj≲ ln dkHint

t k.
The von Neumann entropy can be expressed as the

expectation value of the surprisal operator ½− ln ρt�,
S ¼ h− ln ρti ¼ −Trðρt ln ρtÞ. Following Refs. [83,84],
the variance of the surprisal operator satisfies
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ðΔSÞ2 ≔ Tr(ρtðln ρtÞ2) − S2

¼ ( lnð2Þ)2½Tr(ρtðlog ρtÞ2) − (Trðρt log ρtÞ)2�

≤ ( lnð2Þ)2


( logðd − 1Þ)2

4
þ 1

( lnð2Þ)2
�

¼ ( lnðd − 1Þ)2
4

þ 1; ðE1Þ

where we used the fact that lnðxÞ ¼ lnð2Þ logðxÞ, with
logðxÞ ≔ log2ðxÞ. Combined with Eqs. (14) and (15), this
gives

j _Sj ≤ ΔS
ffiffiffiffiffiffi
I I
F

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( lnðd − 1Þ)2 þ 4

q
ΔHint

t ; ðE2Þ

where d is the dimension of the Hilbert space of the system.
In the limit d ≫ 1, this is

j _Sj≲ lnðdÞΔHint
t ≤ lnðdÞkHint

t k; ðE3Þ

where the spectral norm kHint
t k is given by the largest

eigenvalue of Hint
t . The last inequality recovers the scaling

of the small entangling theorem in the ancilla-free
case [85,86].

APPENDIX F: COMPARISON OF THE
COHERENT-INCOHERENT
BOUND (12) AND BOUND (3)

Here, we compare the novel bound (12) with bound (3),
derivable from the Cramér-Rao inequality. We show that
the former is tighter than the latter, and we prove Eq. (17) of
Sec. V in the main text.

Equation (3) in the main text reads

j _aj ≤ ΔA
ffiffiffiffiffiffi
IF

p
: ðF1Þ

We now prove that this speed limit is looser than the
coherent-incoherent upper bound [Eq. (12) in the main
text], which reads

j _aj ≤ j _aCj þ j _aIj ≤ ΔAC

ffiffiffiffiffiffi
IC
F

q
þ ΔAI

ffiffiffiffiffiffi
I I
F

q
; ðF2Þ

where IF ¼ IC
F þ I I

F. To do this, we first note that
A ¼ AC þ AI , with

AC ≔
X
j≠k

Ajkjjihkj; AI ≔
X
j

Ajjjjihjj; ðF3Þ

which implies that TrðρtAÞ ¼ TrðρtAIÞ and TrðρtACÞ ¼ 0.
Then,

ðΔAÞ2¼Tr(ρtðACþAIÞ2)− ½Tr(ρtðACþAIÞ)�2
¼TrðρtA2

CÞþTrðρtA2
I Þþ2TrðρtACAIÞ− ½TrðρtAIÞ�2

¼ðΔACÞ2þðΔAIÞ2; ðF4Þ

where, in the last line, we used the fact that TrðρtACAIÞ ¼P
jk pjðACÞjkðAIÞkj ¼ 0 since AC has zero diagonal ele-

ments while AI is nonzero only on the diagonal.
Dividing the right-hand side of Eq. (F1) by the right-

hand side of Eq. (F2) gives

ΔA
ffiffiffiffiffiffi
IF

p

ΔAC

ffiffiffiffiffiffi
IC
F

p
þ ΔAI

ffiffiffiffiffiffi
I I
F

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΔACÞ2 þ ðΔAIÞ2�ðIC

F þ I I
FÞ

ΔAC

ffiffiffiffiffiffi
IC
F

p
þ ΔAI

ffiffiffiffiffiffi
I I
F

p
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΔACÞ2 þ ðΔAIÞ2�ðIC

F þ I I
FÞ

ðΔAC

ffiffiffiffiffiffi
IC
F

p
þ ΔAI

ffiffiffiffiffiffi
I I
F

p
Þ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔACÞ2IC

F þ ðΔAIÞ2I I
F þ ðΔACÞ2I I

F þ ðΔAIÞ2IC
F

ðΔAC

ffiffiffiffiffiffi
IC
F

p
þ ΔAI

ffiffiffiffiffiffi
I I
F

p
Þ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔAC

ffiffiffiffiffiffi
IC
F

p
þ ΔAI

ffiffiffiffiffiffi
I I
F

p
Þ2 − 2ΔACΔAI

ffiffiffiffiffiffiffiffiffiffiffiffi
IC
FI

I
F

p
þ ðΔACÞ2I I

F þ ðΔAIÞ2IC
F

ðΔAC

ffiffiffiffiffiffi
IC
F

p
þ ΔAI

ffiffiffiffiffiffi
I I
F

p
Þ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΔAC

ffiffiffiffiffiffi
I I
F

p
− ΔAI

ffiffiffiffiffiffi
IC
F

p
Þ2

ðΔAC

ffiffiffiffiffiffi
IC
F

p
þ ΔAI

ffiffiffiffiffiffi
I I
F

p
Þ2

s
≥ 1; ðF5Þ

proving Eq. (17) in the main text. This shows
that the coherent-incoherent bound (F2) is tighter than
Eq. (F1) [bound (12) is tighter than Eq. (3) in the
main text]. The bounds coincide only when
ΔAC

ffiffiffiffiffiffi
I I
F

p
¼ ΔAI

ffiffiffiffiffiffi
IC
F

p
.

APPENDIX G: COMPARING THE BOUNDS
ON A QUBIT

In this appendix, we present detailed derivations for the
last two paragraphs of Sec. Vand for Fig. 1 in the main text.
Specifically, we construct operators that saturate the
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coherent and incoherent bounds for a qubit suffering
dephasing and use these results to compare bounds (3),
(10), and (12) in the main text.
Let us consider a qubit with Hamiltonian

H ¼ ω

2
σy ðG1Þ

and state

ρt ¼
1þ xσx þ zσz

2
; ðG2Þ

constrained to the y ¼ TrðρσyÞ ¼ 0 plane, with x ¼
TrðρσxÞ and z ¼ TrðρσzÞ.
We have

½H; ρt� ¼
ω

2

�
x
2
½σy; σx� þ

z
2
½σy; σz�

�
¼ i

ω

2
ð−xσz þ zσxÞ;

ðG3Þ

which means that

LC ¼ −2i
X
j≠k

hjj½Ht; ρt�jki
ðpj þ pkÞ

jjihkj ¼ ω
X
j≠k

hjjð−xσz þ zσxÞjki
ðpj þ pkÞ

jjihkj ¼ ω
X
j≠k

hjjð−xσz þ zσxÞjkijjihkj

¼ ω
X
jk

hjjð−xσz þ zσxÞjkijjihkj − ω
X
j

hjjð−xσz þ zσxÞjjijjihjj

¼ ωð−xσz þ zσxÞ − ω
X
j

hjjð−xσz þ zσxÞjjijjihjj; ðG4Þ

where we used the fact that, for a two-level system,
p1 þ p2 ¼ 1.
Then, the operator σy satisfies

covðLC; σyÞ ¼
1

2
ωTrðρtf−xσz þ zσx; σygÞ

−
1

2
ω
X
j

hjjð−xσz þ zσxÞjjiTrðρtfjjihjj; σygÞ

¼ 0; ðG5Þ

where we used the fact that fσx; σyg ¼ fσz; σyg ¼ 0 and
that the eigenvectors fjjig of ρt belong to the y ¼ 0 plane,
which implies that Trðρtfjjihjj; σygÞ ¼ 0. Note that this
can also be concluded directly from the fact that, under
unitary dynamics, _y ¼ covðLC; σyÞ and that, for the chosen
initial state and Hamiltonian, we have _y ¼ 0.
Now, consider a nonunitary term in the dynamics

causing dephasing along σz with a rate κ, modeled by
Utðdχt=dtÞU†

t ¼ −κ½σz; ½σz; ρt�� in Eq. (6) in the main text.
This leaves the qubit to be constrained to the y ¼ 0 plane as
well. The operator σy then satisfies

covðLI; σyÞ ¼
X
j

pj
_pj

pj
hjjσyjji ¼

X
j

_pjhjjσyjji ¼ 0:

ðG6Þ

Given that covðLC; 1Þ ¼ covðLI; 1Þ ¼ 0, this implies
that the set fLC; LI; σy; 1g forms a complete basis of
orthogonal operators. The operators 1 and σy are thus

“still”; i.e., they evolve neither under the Hamiltonian nor
under the dephasing. Moreover, since σx and σz are
orthogonal to σy and 1, the former two can be written
solely in terms of the preferred “speed” operators as

σz ¼ αzCLC þ αzILI; σx ¼ αxCLC þ αxILI: ðG7Þ

Observables σz and σx thus saturate the coherent and
incoherent bounds (10) in the main text. In the case of
unitary dynamics (κ ¼ 0), we have LI ¼ 0 and L ¼ LC,
which means that the upper bound (3) in the main text is
also saturated. Finally, saturation of the upper bound (12)
depends on the relative signs of αC and αI: When
signðαCÞ ≠ signðαIÞ, Eq. (12) is not saturated.

APPENDIX H: BOUND IN TERMS OF PATH
DIVERGENCES

In this appendix, we derive bounds on integrated changes
in an observable in terms of path divergences. We prove
Eq. (20) of Sec. VI in the main text and show how to upper
bound Eqs. (21) and (22) in terms of coherent and
incoherent path divergences.
The divergence of a path is defined by [69,92,93]

J ðρi; ρfÞ ≔ τ

Z
τ

0

IFdt ðH1Þ

and is related to the energy of a path, J =2τ. Note that the
square of the length of a path is upper bounded by the
path’s divergence:
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Lðρi;ρfÞ ¼
Z

τ

0

ffiffiffiffiffiffi
IF

p
dt¼ τ

1

τ

Z
τ

0

ffiffiffiffiffiffi
IF

p
dt≤ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ

Z
τ

0

IFdt

s

¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ2
J ðρi;ρfÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðρi;ρfÞ

q
: ðH2Þ

Equations (3) and (18), and the Cauchy-Schwarz
inequality lead to an integrated bound

jaðτÞj ¼
����
Z

τ

0

_adt

���� ≤ 2

Z
τ

0

ffiffiffiffiffiffi
IF

p
ΔAdt

¼ 2τ
1

τ

Z
τ

0

ffiffiffiffiffiffi
IF

p
ΔAdt

≤ 2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ

Z
τ

0

IFdt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ

Z
τ

0

ðΔAÞ2dt
s

: ðH3Þ

Then, the total change in an observable is bounded by the
divergence of the path in Hilbert space and the integrated
fluctuations in the observable:

jaðτÞj2 ≤ 4τ2
�
1

τ

Z
τ

0

IFdt

��
1

τ

Z
τ

0

ðΔAÞ2dt0
�

¼ 4J ðρi; ρfÞ
1

τ

Z
τ

0

ðΔAÞ2dt: ðH4Þ

This proves Eq. (20) in the main text.
The divergence of a path can be decomposed into

coherent and incoherent terms, J ðρi; ρfÞ ¼ J Cðρi; ρfÞþ
J Iðρi; ρfÞ, with

J Cðρi; ρfÞ ≔ τ

Z
τ

0

IC
Fdt and J Iðρi; ρfÞ ≔ τ

Z
τ

0

I I
Fdt:

ðH5Þ

The total changes in the observable due to coherent and
incoherent dynamics are bounded by

jaðτÞ − aIðτÞj ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J Cðρi; ρfÞ

1

τ

Z
τ

0

ðΔACÞ2
s

dt; ðH6Þ

jaðτÞ − aCðτÞj ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J Iðρi; ρfÞ

1

τ

Z
τ

0

ðΔAIÞ2
s

dt: ðH7Þ

This shows how to upper bound Eqs. (21) and (22) in the
main text in terms of coherent and incoherent path
divergences.

APPENDIX I: COHERENT SPEEDUP OF
INCOHERENT PROCESSES

In this appendix, we derive the Hamiltonian in Eq. (23)
of Sec. VI in the main text, which drives an observable at

the maximum allowed speed. We then use this Hamiltonian
to enhance an incoherent process on a qubit, presenting
detailed derivations for the two paragraphs follow-
ing Eq. (23).
What Hamiltonian induces the fastest change to an

observableA? The speedwithwhich the observable changes
due to coherent drive satisfies _aC ¼ covðLC; ACÞ ≤
ΔLCΔAC. Thus, any Hamiltonian that leads to a symmetric
logarithmic derivative for which LC ∝ AC will saturate the
speed limit and drive the observable as fast as allowed by
nature. Using Eq. (8a), a direct calculation shows that the
Hamiltonian [Eq. (23) in the main text]

Hspeedup
t ≔ −λt

i
2

X
j≠k

ðpj þ pkÞ
pj − pk

Ajkjjihkj ðI1Þ

leads to

Lspeedup
C ¼ λtAC: ðI2Þ

This Hamiltonian thus induces dynamics for which the
coherent bound for observable A saturates. The prefactor λt
sets the energy scale of the Hamiltonian and would typically
be constrained by the available resources. Note that the
Hamiltonian Hspeedup

t that leads the observable to evolve at
the speed limit is state and observable dependent—it is a
Hamiltonian tailored to drive the expectation value of the
observable as rapidly as possible given the available
resources.
The observable evolves according to

_aC ¼ covðAC; LCÞ ¼ ΔACΔL
speedup
C ¼ λtðΔACÞ2 ¼

IC
F

λt
;

ðI3Þ

and the integrated change in the observable due to coherent
dynamics becomes

jaðτÞ − aIðτÞj ¼ jaCðτÞj ¼
����
Z

τ

0

covðAC; L
speedup
C Þdt

����
¼

Z
τ

0

λtðΔACÞ2dt ¼
Z

τ

0

IC
F

λt
dt: ðI4Þ

This coherent drive can be used to enhance incoherent
processes, up to an amount characterized by the integrated
coherent Fisher information weighed by the scaling pre-
factor λt.
We consider a toy model of an incoherent erasure

process of a qubit [110]. In an auxiliary reset state jri,
the expectation value of all qubit observables is null, e.g.,
hσxi ¼ hσyi ¼ hσzi ¼ 0. Incoherent dynamics drives the
system to such an erased state with a rate γ. We model this
incoherent dynamics by a Lindblad master equation with
jump operators L0 ≔ jrih0j and L1 ≔ jrih1j,
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_ρt ¼ γ
X
j¼0;1

�
LjρtL

†
j −

1

2
fL†

jLj; ρtg
�

¼ γ

�
TrðρtΠ2Þjrihrj −

1

2
fΠ2; ρtg

�
; ðI5Þ

where we define the projector Π2 ≔ j0ih0j þ j1ih1j onto
the subspace of the two-level system.
For illustration purposes, we suppose that it is more

critical to erase certain aspects of the information stored in
the initial state jΨ0i ¼ aj0i þ bj1i of the two-level system.
For instance, this could be because it is expected that an
adversary will attempt to acquire information about the
initial value z0 ≔ hσzið0Þ ¼ a − b, by measuring σz on an
ensemble of such effective qubits, each one initially
prepared in jΨ0i. We wish to hide the fact that z0 ≠ 0.
Under the incoherent erasure process, information of z0

is exponentially erased at a rate γ,

_zincoht ¼ Trðσz _ρtÞ

¼ γ

�
TrðρtΠ2Þhrjσzjri −

1

2
Trðfσz;Π2gρtÞ

�
¼ −γTrðσzρtÞ ¼ −γzincoht ; ðI6Þ

where we used hrjσzjri ¼ 0.
We can take advantage of a coherent drive to enhance the

process of hiding the fact that z0 ≠ 0 from the adversary.
Hamiltonian Hspeedup

t in Eq. (I1) [Eq. (23) in the main text]
defines the fastest time-local way to do this. Given that
σzjri ¼ 0, at time t ¼ 0 the HamiltonianHspeedup

t in Eq. (I1)
does not connect the reset state jri to states j0i and j1i. This
implies that jri remains an eigenstate of ρt under the action
of the incoherent dynamics as well as the coherent
dynamics. Moreover, since dynamics is coherent within
the qubit subspace, we can denote the remaining eigen-
states of the evolved state by jΨti and jΨ⊥

t i with eigen-
values pΨ and 0. The state then takes the form
ρt ¼ pΨðtÞjΨtihΨtj þ (1 − pΨðtÞ)jrihrj. Therefore, the
speedup Hamiltonian becomes

Hspeedup
t ≔ signðztÞλt

i
2

X
j≠k

ðpj þ pkÞ
pj − pk

Ajkjjihkj

¼ signðztÞλt
i
2

�
pΨ þ 0

pΨ − 0
hΨtjσzjΨ⊥

t ijΨtihΨ⊥
t j þ

0þ pΨ

0 − pΨ
hΨ⊥

t jσzjΨtijΨ⊥
t ihΨtj

�

¼ signðztÞλt
i
2
ðhΨtjσzjΨ⊥

t ijΨtihΨ⊥
t j − hΨ⊥

t jσzjΨtijΨ⊥
t ihΨtjÞ; ðI7Þ

where A ¼ σz, and we have chosen the sign relative to
Eq. (I1) to ensure that the coherent dynamics drives the
system with _zt=zt ≤ 0, i.e., helps hide the fact that z0 ≠ 0
by driving hσzi towards 0. Indeed, with the chosen sign in
Eq. (I7), we have Lspeedup

C ¼ −signðztÞλtσðz;CÞ, and the
incoherent drive enforces

_zC ¼ covðσðz;CÞ; Lspeedup
C Þ ¼ −signðztÞ

IC
F

λt
: ðI8Þ

Expressing the qubit states as jΨti ¼ atj0i þ btj1i and
jΨ⊥

t i ¼ btj0i − atj1i, we have

xt ≔ hΨtjσxjΨti ¼ 2atbt; ðI9Þ

hΨ⊥
t jσzjΨti ¼ hΨtjσzjΨ⊥

t i ¼ −2atbt ¼ −xt: ðI10Þ

Then,

Hspeedup
t ¼ signðztÞλt

i
2
ð−xtjΨtihΨ⊥

t j þ xtjΨ⊥
t ihΨtjÞ ¼ −signðztÞλt

i
2
xtðjΨtihΨ⊥

t j − jΨ⊥
t ihΨtjÞ

¼ −signðztÞλt
i
2
xtð−ða2t þ b2t Þj0ih1j þ ða2t þ b2t Þj1ih0jÞ ¼ −signðztÞλt

xt
2
ð−ij0ih1j þ ij1ih0jÞ

¼ signðztÞλt
xt
2
σy: ðI11Þ
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The coefficient λt is to be defined by the resources available
to drive our coherent dynamics. If, for instance, we set the
spectral norm of the Hamiltonian to satisfy kHspeedup

t k ¼ ϵ,
we obtain λt ¼ ð2ϵ=jxtjÞ. Then, we find that the normalized
optimal Hamiltonian becomes

Hspeedup
t ¼ ϵsignðztÞ

xt
jxtj

σy ¼ ϵ
signðztÞ
signðxtÞ

σy: ðI12Þ

At any time, this Hamiltonian enhances the hiding process
as much as allowed by coherent dynamics.
With this result, we can compare the rates of erasure of

the incoherent and the coherently enhanced dynamics. At
any time t, the coherently enhanced state evolves following

_ρt ¼ −i½Hspeedup
t ; ρt� þ γ

�
TrðρtΠ2Þjrihrj −

1

2
fΠ2; ρtg

�
:

ðI13Þ

Thus, the rate of change in zt satisfies

_zt ¼ −iTrð½σz; Hspeedup
t �ρtÞ − γzt

¼ −iϵ
signðztÞ
signðxtÞ

Trð½σz; σy�ρtÞ − γzt

¼ −2ϵ
signðztÞ
signðxtÞ

hσxi − γzt; ðI14Þ

which means that

_zt=zt ¼ −γ − 2ϵ

���� xtzt
����: ðI15Þ

This process is faster than the one from the purely
incoherent erasure process in Eq. (I6), _zincoht ¼ −γzincoht .
This proves the claim in the two paragraphs following
Eq. (23) of Sec. VI in the main text.

APPENDIX J: LIMITS TO SPEED IN
HILBERT SPACE

In this appendix, we derive speed limits in state space
from the coherent-incoherent bounds on observables,
placing upper bounds on the rate of change of the quantum
fidelity Fðρt; ρ0Þ between the initial and evolved states,
referred to after Eq. (18) in the main text and Ref. [94].
We assume a pure initial state, ρ20 ¼ ρ0 ¼ χ0. In this case,

the fidelity between the initial and evolved states becomes
Ft ≔ Fðρt; ρ0Þ ≔ (Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρt
p

ρ0
ffiffiffiffi
ρt

pp Þ)2 ¼ Trðρ0ρtÞ. Taking
A ¼ ρ0 in Eqs. (10) and (12), Ft satisfies

���� ddt Ft

���� ¼
����Tr

�
ρ0

d
dt

ρt

�����
¼ jcovðρC; LCÞ þ covðρI; LIÞj
≤ ΔρC

ffiffiffiffiffiffi
IC
F

q
þ ΔρI

ffiffiffiffiffiffi
I I
F

q
; ðJ1Þ

where

ρC ¼
X
j≠k

ρ0;jkjjihkj; ρI ¼
X
j

ρ0;jjjihjj ðJ2Þ

are the coherent and incoherent components of the initial
state ρ0 in the eigenbasis of the evolved state ρt.
From Appendix F, we also have���� ddt Ft

���� ≤ ΔρC
ffiffiffiffiffiffi
IC
F

q
þ ΔρI

ffiffiffiffiffiffi
I I
F

q
≤ Δρ0

ffiffiffiffiffiffi
IF

p
; ðJ3Þ

with a weaker bound in terms of the Fisher information IF.
Using

ðΔρCÞ2 ¼ ðΔρ0Þ2 − ðΔρIÞ2; ðJ4Þ

ðΔρ0Þ2 ¼ Trðρtρ20Þ − (Trðρtρ0Þ)2 ¼ Ft − F2
t ; ðJ5Þ

we obtain

j ddtFtjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ft−F2

t

p ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ðΔρIÞ2
Ft−F2

t

s ffiffiffiffiffiffi
IC
F

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔρIÞ2
Ft−F2

t

s ffiffiffiffiffiffi
IC
F

q
≤

ffiffiffiffiffiffi
IF

p
:

ðJ6Þ

Upon integration, this gives a bound on the total change in
fidelity:

arccosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρτ; ρ0Þ

p
Þ ≤

Z
τ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðΔρIÞ2
Ft − F2

t

s ffiffiffiffiffiffi
IC
F

4

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔρIÞ2
Ft − F2

t

s ffiffiffiffiffiffi
IC
F

4

r
dt

≤
Z

τ

0

ffiffiffiffiffiffi
IF

4

r
dt: ðJ7Þ

The rightmost bound is the one derived in Ref. [18]. The
tighter intermediate bound is made possible by singling out
the coherent and incoherent effects on the change in the
fidelity. The two bounds coincide only for purely coherent
dynamics of a quantum system.

APPENDIX K: COMPARISON TO BOUNDS
FROM PARAMETER ESTIMATION THEORY

In this appendix, we compare Eq. (12) in Sec. III of the
main text to the speed limits that can be derived from the
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quantum Cramér-Rao bound. We also show how to recover
Eq. (3) in Sec. II from the quantum Cramér-Rao bound.

1. Quantum Cramér-Rao bound

The quantum Cramér-Rao bound generalizes the
Cramér-Rao bound from classical estimation theory to
quantum systems [51–53,111]. When estimating a param-
eter λ on a system in state ρðλÞ, the standard deviation of
any estimator λ̂ of the parameter λ satisfies [53]

Δλ̂
j d
dλ hλ̂ij

≥
1ffiffiffiffiffiffi
IF

p : ðK1Þ

The quantum Fisher information is

IF ≔ 2
X
jk

jhjj ∂ρðλÞ∂λ jkij2
pj þ pk

; ðK2Þ

with a summation over indices such that pj þ pk ≠ 0. The
bound is achievable for the optimal estimator [53]. Note
that the bound assumes that the estimator λ̂ is independent
of the parameter λ to be estimated [53,58,60] (we discuss
this further in Appendix K 2 below).
The quantum parameter estimation problem involves two

optimizations: (i) optimizing over all possible observables
that can be measured—more generally, optimizing over all
possible positive operator valued measures (POVMs) that
can be performed—and (ii) optimizing over all possible
estimators λ̂ that can be constructed from the measurement
outcomes. Optimization (ii) is accounted for by the
classical Cramér-Rao bound, but (i) entails a purely
quantum aspect to the problem.

2. Restricting the estimator to functions of hAi
In this paper, we focus on speed limits, i.e., on the rate of

change of the expectation value of an observable A. The
Cramér-Rao bound can also be cast as a bound on this rate
of change.
Focusing on the case of time as the parameter λ ¼ t to be

estimated, Eq. (K1) imposes a bound on the rate of change
of the mean of any estimator t̂ of t. If one restricts to a time-
independent observable t̂ ¼ A, the Cramér-Rao bound
implies ���� ddt hAi

���� ≤ ffiffiffiffiffiffi
IF

p
ΔA: ðK3Þ

For the case of operators without explicit time depend-
ence, bound (3) in the main text coincides with bound (K3)
implied by the quantum Cramér-Rao theorem. The Cramér-
Rao bound assumes no time parameter dependence in the
estimators [53] though, so it does not directly recover (3)
for time-dependent operators. However, the following

procedure allows time-dependent operators. We wish to
find a speed limit at time t ¼ t0 for the expectation value
Tr(ρtAðtÞ) of an operator AðtÞ (to avoid confusion, we
write the explicit time dependence for the proof that
follows). Bound (K3) applies to any operator—in particu-
lar, to Aðt0Þ—and implies���� ddtTr(ρtAðt0Þ)

���� ≤ ffiffiffiffiffiffiffiffiffiffiffi
IFðtÞ

p
ΔAðt0Þ: ðK4Þ

Evaluating this bound at t ¼ t0 recovers bound (3) in the
main text.

3. Identifying coherent and incoherent
contributions to the dynamics

The restriction to a specific observable and the specifi-
cation of the evolution of the state that singles out
contributions from unitary and incoherent dynamics enable
the main bounds in this article: upper bounds (10) and (12).
As we prove in Appendix F, the latter bound is tighter than
the speed limit (K3) derivable from the quantum Cramér-
Rao bound.
Moreover, we stress that the lower speed bounds (11) are

not accounted for by Cramér-Rao bounds but are instead
made possible by the separation of the dynamics into two
terms, which in turn allows for applying the reverse triangle
inequality.

4. An alternative bound with basis-dependent
classical Fisher information

A possible classical parameter estimation problem is to
forego optimization (i) in the quantum Cramér-Rao bound
above and instead restrict to a specific measurement basis
[see discussion after Eq. (K1)]. Then, for measurements
performed in a fixed basis fΠα ¼ jϕαihϕαjg with outcome
probabilities qΠα ¼ TrðρΠαÞ, this recovers a classical
parameter estimation problem. One can obtain classical
Fisher information from the probabilities fqΠα g:

FΠ ≔
X
α

qΠα

�
d
dt

ln qΠα

�
2

: ðK5Þ

The classical Cramér-Rao bound thus says that, for any
estimator t̂ constructed from outcomes of the POVM fΠαg,
it holds that [112–114]���� ddt ht̂i

���� ≤ ffiffiffiffiffiffi
FΠ

p
Δt̂: ðK6Þ

If measurements are performed solely in the restricted
measurement basis, this bound is tighter than the quantum
Cramér-Rao bound (K1) since the latter is valid for any
measurement basis. Bound (K5) involves optimization
(ii) over all possible estimators, given the restricted
measurement basis fΠαg.
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Further restricting to t̂ ¼ A ¼ P
α aαΠα gives���� ddt hAi

���� ≤ ffiffiffiffiffiffi
FΠ

p
ΔA; ðK7Þ

which is in fact tighter than (K3) since FΠ ≤ IF. In general,
this bound will still be loose given that one is not performing
optimization (ii) over all possible estimators.
The speed limit (K7) is distinct from our main new upper

bound, Eq. (12) in the main text: There are cases in which
Eq. (K7) is tighter than Eq. (12) and vice versa. In
particular, if the measurement basis fΠαg coincides with
the optimal basis fΠoptimal

α g that saturates the quantum
Cramér-Rao bound, then FΠ ¼ IF and Eq. (K7) coincides
with Eq. (K3). In this case, Eq. (12) is tighter than Eq. (K7)
(Appendix F). In contrast, there are also cases when
Eq. (K7) is saturated while Eq. (12) is loose. For example,
consider unitary dynamics under a Hamiltonian such that
½H;Πα� ¼ 0, in which case dhAi=dt ¼ 0 and dqΠα =dt ¼
Trðdρ=dtΠαÞ ¼ −iTrðρ½Πα; H�Þ ¼ 0. From Eq. (K5), we
have that FΠ ¼ 0, and Eq. (K7) is trivially saturated while
Eq. (12) is loose.
We emphasize, however, that the classical Fisher infor-

mation (K5) explicitly depends on the measurement
basis. In general, then, calculating FΠ is more intricate
and dependent on the system dynamics, the state, and a
reference measurement basis. In contrast, IF (as well as IC

F
and I I

F) are functions only of the state of the system and the
dynamics that govern it.
When the measurement basis is chosen as the eigenbasis

of the state of the system, fΠαg≡ fjjihjjg, one obtains
fqΠα g≡ fpjg, so the classical basis-dependent Fisher
information FΠ coincides with I I

F:

FΠ ¼
X
j

pj

�
d
dt

lnpj

�
2

¼ I I
F: ðK8Þ

Then, if the estimator for t is taken to be t̂ ¼ AI ¼P
j Ajjjjihjj, the classical Cramér-Rao bound (K7) recov-

ers the bound on the incoherent term in Eq. (10) of the main
text: ���� ddt hAIi

���� ≤
ffiffiffiffiffiffi
I I
F

q
ΔAI; ðK9Þ

for time-independent operators (which can be extended to
time-dependent operators as was shown in Appendix K 2).
However, a similar trick to restrict the basis does not

work on the bound for the coherent term AC since the
eigenbasis of AC does not commute with that of ρ. A
classical parameter estimation bound on AC would then
yield basis-dependent classical Fisher information.
This discussion results in a set of bounds that depend on

the level of optimization involved in them. The main upper
bounds in this article—Eqs. (10) and (12)—are tailored to

the problem of the speed of evolution of an observable, and
they give a provably tighter upper speed limit than the one
implied by the quantum Cramér-Rao bound. In contrast, the
quantum Cramér-Rao bound focuses on a different ques-
tion that, in the context of parameter estimation theory,
involves an optimization over all possible estimators of a
parameter. As such, the quantum Cramér-Rao bound
implies a looser speed limit on hAi as a result. Adding
further ingredients to the problem, such as information of
the outcome probabilities in the eigenbasis of the observ-
able of interest [Eq. (K5)], can result in distinct (potentially
tighter) bounds. The trade-off is that more information may
be needed to evaluate the bounds, as in the case of Eq. (K7).
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