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Abstract

We consider a nonlinear stochastic heat equation in spatial dimension d = 2, forced by a white-in-time
multiplicative Gaussian noise with spatial correlation length & > 0 but divided by a factor of y/loge~!.
We impose a condition on the Lipschitz constant of the nonlinearity so that the problem is in the “weak
noise” regime. We show that, as & | 0, the one-point distribution of the solution converges, with the limit
characterized in terms of the solution to a forward-backward stochastic differential equation (FBSDE).
We also characterize the limiting multipoint statistics of the solution, when the points are chosen on
appropriate scales, in similar terms. Our approach is new even for the linear case, in which the FBSDE

can be solved explicitly and we recover results of Caravenna, Sun, and Zygouras (Ann. Appl. Probab.
27(5):3050-3112, 2017).

1 Introduction

Fix a Lipschitz function o : [0,00) — [0, 0) with o-(0) = 0. Define 8 = Lip(c-). We are interested in the
following two-dimensional stochastic heat equation with colored noise of spatial correlation length £ > 0,
started at constant initial condition a € Rx¢:

1
dug q(t,x) = EAug,a(t,x)dt + (logs_l)_%(r(ug,a(t,x))dW‘g(t,x), t>0,x € R% (1.1)
Ue q(0,x) =a. (1.2)
Here we define W® = G .2/, * W, where G, (x) = ﬁe"x‘z/ (21) is the two-dimensional heat kernel, dW is a
spacetime white noise, and * denotes convolution in space. The choice of mollifier is not essential, and we

restrict to this choice only to simplify some of the computations. The covariance operator of dW € is formally
given by

EdW* (1,x)dW*(1',.x") = 6(t = 1')G 2 (x —x") = 6(t —1') 5 G (52). (1.3)

&

For € > 0, the well-posedness of the initial value problem (1.1)—(1.2) is well-known (see e.g. [40]), and we
consider the mild formulation

Uga(l,X)=a+ Gios(x =)0 (tg,a(s,y) AW (s,y). (1.4)
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General properties of solutions to the nonlinear stochastic heat equation have previously been studied in
general spatial dimensions by many authors. We mention the non-exhaustive list of works [17, 18, 13, 12, 14].

We are interested in taking & | 0 and identifying nontrivial limiting behavior for the solutions of (1.1)-
(1.2). The linear problem, in which o (x) = Bx, is a particularly important special case. Here it is known
that the attenuating factor (loge™! )‘% in (1.1) is required, and that there is phase transition at 8 = V2x. The
subcritical linear problem (8 < V27) was previously studied in [7] (which we will discuss in more detail
shortly), while the critical linear problem (8 = \/ﬁ) has been studied in [3, 8, 26, 10]. It is worth mentioning
that the notion of “criticality” here is different from the one in [28, Section 8]. In the linear case, the equation
is related by the Cole—Hopf transform to the two-dimensional KPZ equation, as considered in [11, 9, 24]. The
linear problem also admits a Feynman—Kac formula [2] and thus a connection to directed polymers, with the
solution to the SPDE interpreted as the partition function of directed polymers in random environment. The
Feynman—Kac representation has proved to be very useful in analyzing properties of the solutions, but is not
available in the nonlinear case. In [7], Caravenna, Sun, and Zygouras showed that if o(x) = Bx, 8 € (0, \/ﬂ),
then for any fixed T > 0 and X € R?, u, (T, X) converges in distribution as & | 0 to a log-normal random
variable. Their proof used the Feynman—Kac formula to connect the problem to directed polymers, and then
worked to understand a polynomial chaos expansion in great detail.

The goal of the present paper is to study the nonlinear case in which many previously-used tools are
not available. We will show in Theorem 1.2 below that if o is S-Lipschitz, 8 € (0,V2x), then u (T, X)
converges in distribution as € | 0. The limit depends on ¢ and is obtained through the solution of a forward-
backward stochastic differential equation. Our method is also new in the linear case. In the nonlinear case,
the limit does not seem to be log-normal in general.

Part of the reason we are interested in such a problem comes from the recent progress in proving the
Edwards-Wilkinson limit of the KPZ equation [11, 9, 24, 37, 22, 33, 15] in d > 2. Most of these results rely
on the Cole-Hopf transformation which, in some sense, linearizes the problem so that one can focus on
studying the linear stochastic heat equation (as in [19, 42, 39, 27, 21, 33, 15]) and how its solution behaves
after the logarithmic transformation. For general Hamilton—Jacobi type equations, this linearization does not
exist and there are no results of this type. (See a conjecture in [30, p. 5] and some related directions for the
anisotropic KPZ equation in [4, 5, 6].) We hope that working on the nonlinear stochastic heat equation can
help bridge the difficulty and shed light on other nonlinear problems such as the Hamilton—Jacobi equation.
A similar effort in d > 3 was carried out in [25]. The convergence to Edwards-Wilkinson equation in d > 2 is
as random Schwartz distributions, which, in our case, corresponds to the convergence in distribution of the

random variable
Jioge [ luea(T0) - algayas

for Schwartz test function g. The limiting marginal distributions of u . , play an important role in passing to
the limit of the above random variable, which we will discuss in more detail below in Remark 8.1.

In order to state our main result (Theorem 1.2 below) precisely, we first have to define the limit object.
Let {B(g)}4>0 be a 1D standard Brownian motion with the natural filtration {G,},>0. We consider the
following system of equations, satisfied by {Z,,0(-)}4,0, With the parameters a > 0 and Q € [0,2]:

d=4,0(q) =J(Q - q.Ea,0(q))dB(q), q€(0,0]; (1.5)

Ea.0(0) = a; (1.6)
1

J(q,b) = ﬁ[Eoz(Eb,q(q»]”z. (1.7)

The parameter a plays the role of initial data, Q is the terminal time, and the above equation can be interpreted
as follows: for the process started at a with the terminal time Q, to determine the diffusion coefficient
at any time ¢ € [0,Q], we run an independent process, starting from the current position b = Z, o(q)



and with terminal time Q —¢q. The new process at time Q — ¢ is distributed like 2, o_,(Q —¢g). Then
the square of the diffusion coefficient for the original process, at time ¢, is given by the expectation of
L(J'Z(EI,,Q_CI(Q —¢q)). We emphasize that a solution to (1.5)—(1.7) consists of both a family of random
processes {E4,0(+)}a>0,0¢[0,2] and also a deterministic function J : [0,2] X R — Ryq. That is, J is not
given as part of the data of the problem but is rather found as part of the solution. Probabilistically, the
processes E, o are not coupled in any particular way across various choices of a and Q: each £, o could
be taken to live on a different probability space. However, their laws are related through the deterministic
function J.
We note that another, equivalent, way to write the system (1.5)—(1.7) is as

dZa.0(9) =3 I( [02(E0,0(0)) | G41) ?dB(q), ¢ < (0,0]; (1.8)
Ea.0(0) = a. (1.9)

The formulation (1.8)—(1.9) is essentially a forward-backward stochastic differential equation (FBSDE).
Fixing a > 0 and Q € [0,2], we consider the process {(X(q),Y(q),Z(q))}4e[0,0]. With all components
adapted to the filtration {G, }, >0, satisfying the coupled forward-backward stochastic differential equation

dX(q) =Y (q)dB(q), X(0) =a, (1.10)
d¥(q) =Z(q)dB(q),  Y(Q)= —UZ(X(Q)) (1.11)

Here the equation for X(-) is forward since the initial condition is given, and the equation for Y (-) is
backward since the terminal condition is given. Because Y is supposed to be a martingale with terminal value

L 02(X(Q)), we actually have Y (g) = Af—lﬂE[O'Z(X(Q)) | G4]. As aresult, X(-) solves the same equation as
Ea,0 ().

In the FBSDE formulation, the auxiliary function J (called a “decoupling function” in the FBSDE
literature [34, 35, 23]) is not required, although it can be recovered from (1.8) by (1.7). The formulations (1.8)—
(1.9) and (1.5)—(1.7) are equivalent because the law of 2, o (Q) conditional on E,, o (q) = b is the same as the
law of Ep 9—4(Q — ). We similarly note that a solution to (1.10)=(1.11) will satisfy Y (¢) = J*(Q — ¢, X(q)).
The formulation (1.5)—(1.7) turns out to be easier to work with, since one can first solve for the deterministic
decoupling function J, and once J is known the problem (1.5)—(1.6) becomes a standard stochastic differential
equation. We refer the reader to, for example, [36] for background on FBSDEs. We also point out that the
function J?(gq, b) is a viscosity solution to the quasilinear heat equation

1
0yJ* = 5Jzabbﬁ; (1.12)

1
J*(0,b) = Eaz(b), (1.13)

as can be seen by an argument similar to that of [36, Section 8.2], using the moment bound in Remark 2.1
below.

The non-Lipschitz dependence of (1.10) on Y, as well as the potentially quadratic growth of -2 at infinity,
exclude the system (1.10)—(1.11) from the established well-posedness theories for FBSDEs, discussed in
[36, 35]. Nonetheless, we can prove the following well-posedness result.

Theorem 1.1. If 8 < V2, then there is a unique continuous function J : [0,2] X Rsg — Rysq satisfying the
following conditions:

1. Foreach q € [0,2], J(q,-) is Lipschitz,
J(gq,0)=0, (1.14)



and

LipJ(q.") < (4n/B*—q)'/%. (1.15)

2. For each a > 0 and Q € [0,2], the solution {E,4,0(q)}o<q<o to the problem (1.5)—(1.6) (with this
choice of J) satisfies #;(EO'(EQ,Q(Q))Z)I/2 =J(Q,a). In other words, (1.7) is satisfied with g = Q
and b =a.

The proof of Theorem 1.1 is given in Section 2. Now that we have established existence and uniqueness
of solutions to (1.5)—(1.7), in the sense of Theorem 1.1, we can state our main theorem.

Theorem 1.2. If 8 < \V2n, then for any Q € [0,2] and X € R%, we have

_ IF: —_
Ueq(e272,X) f:ﬂa,Q(Q), (1.16)

where E, o comes from the solution to (1.5)—(1.7). For any fixed T > 0 and X € R? we have
o.a(T, X) o By (2). (1.17)
10

The constant 2 appearing (twice) in (1.17) comes from the fact that, for fixed 7 > 0, the time variables ¢
and ¢, corresponding to the ODE (1.5) and the PDE (1.1) respectively, are (informally) related by

t=T-¢19.

This is related to the fact that the noise contributes to the solution on this e-dependent exponential scale, as
we discuss more in Sections 1.1 and 1.2 below. The terminal time 2 corresponds to the G . in the correlation
function (1.3) for the noise: the mollification cuts off the dynamics below this scale.

Of course, even deterministic ODEs are not generally integrable in elementary terms, so we do not expect
to be able to solve the system (1.5)—(1.7) explicitly for general o-. However, in the linear case o (1) = Bu, the
system can indeed be solved explicitly. In that case, we recover the log-normal fluctuations proved in [7]. We
show how to do this in Section 1.3 below.

The work [7] also dealt with limiting multipoint statistics of solutions to (1.1)—(1.2) with o (x) = Bx. It
turns out that u . 4(#1,x1) and u . 4(22,x,) are asymptotically independent if

d((11,x1), (12,x2)) = max{[t; —12|'/%, |x1 —x2[} (1.18)

is of order 1. To see a nontrivial correlation structure, we must put #, = t; + &% and x, = x; + &8 for some
a, 8 > 0. This situation persists in the nonlinear case, and we can express the limiting joint laws of multiple
points separated on these scales by a branching version of the ODE (1.5)—(1.6), as we state in the following
theorem. Note that once J has been obtained from the single-point problem (1.5)—(1.7), it is no longer
necessary to consider (1.7) in the multipoint problem: J is then simply a fixed deterministic function,
depending only on o.

Theorem 1.3. Suppose that § < V2r. Let N € N and fix N space-time points (Tg 1,Xg.1)s---»(Te.N:Xe,N) €
R.o xR?, depending on &. Define the metric d as in (1.18). Suppose that

dij = l—lgiﬁ;logg d((Te,i:X6,0), (Te,j2Xs,5)) (1.19)
exists for all i, j, and suppose that
Q:=2- li%log‘9 Te,j (1.20)
&

4



exists, is independent of j, and is at most 2. Define
ig(j)=min{i € {1,...,N} : d;; <q}. (1.21)

Let J be as in the solution to (1.5)—(1.7). Let By,...,Bn be a family of N independent standard Brownian
motions. For a € R, let (I'y o, J-)j.\]: | Solve the family of SDEs

dla,0,j(q9) =J(Q-4q.Ta,0,;(9)dBi,_, ,(H(@),  je{l,....N} (1.22)
Ta0.;(0) =a. (1.23)
Then we have |
aw
(te,a(Te,jsxe, )iy — (Ta0,; Q)L (1.24)
10

The quantity d;; represents the distance between (7 ;,X5 ;) and (7, j,X¢ ;) on the exponential scale. Of
particular note here is the ultrametricity property

di < max{d;;.d i} (1.25)

for all i,j,k € {1,...,N}. If one restricts to a single point (N = 1) then it is of course clear that (1.22)—
(1.23) agrees with (1.5)—(1.6). For two points, if we consider 7.1 = 7.2 =7 > 0 independent of & and
[xg1 —Xxg 2| =&% withsome @ € [0,1],then Q =2, dj1 =dy =—00,djp=1-a, and it is clear that 5, o 1 is
driven by B in [0,2], while E, o> is driven by By in [0,2a] and by B> in [2a,2]. Two extreme cases are
a=0and a =1, in which &, o1 and &, ¢ > are independent and identical respectively. In the general case,
we note that the set {i(g-4)/2(j) : j € {1,...,N}} only grows larger as ¢ increases. Therefore, the members
of the family of SDEs (1.22)—(1.23) will generally start stuck together and then branch apart at times g such
that 1 — % =d;j for some i, j € {1,...,N}. Thus we obtain a multiscale correlation structure generalizing the
one obtained for the linear case in [7, Theorem 2.15 and (2.18)]. In Section 1.3 we show how to recover [7,
(2.18)] from Theorem 1.3 in the linear case.

1.1 The exponential time scale

A key feature of the SPDE (1.1)—(1.2) is that, in the subcritical regime S < V2, it evolves on an exponential
time scale, with respect to the strength of the random noise. To see this, consider the following equation in
microscopic variables:

1
dug(t,x) = 5Aua(t,x)dz+50(ua(z,x))dwl (t,%), uqa(0,-) = a,

with dW! the Gaussian noise that is white in time and smooth in space (the spatial covariance function
being G by (1.3)), and ¢ > 0 a fixed small parameter. We are interested in determining the scales on which
nontrivial effects from the random noise can be observed. As expected, it depends on the dimension through
the integrability of the heat kernel.

In d =1, the correct scale turns out to be (¢,x) = (%, %), where (7T, X) are the corresponding macroscopic
variables as discussed for directed polymers in [1] and for SPDEs in [2, 29]. In d > 3, if 68 is small enough
so that the problem is in the weak disorder regime, one can consider an “arbitrarily long” diffusive scale
(t,x) = (%, %) with € — 0 independent of 6. The d =2 case is very special. As observed in [7] for the linear
case o (x) = Bx, the second moment f,(t) := Eu,(t,x)* satisfies a closed-form equation

62 2 t (s
fa)=d+ 4f /! ( )lds.
ot S+2




This is a Volterra equation, and one can easily analyze the asymptotic behavior of f,(¢) for large ¢ and small
0:

2 202
a 0B
fa(t) = . 62’84210@ , if in logr < 1.
Ve

Due to the dependence on logt, to see a nontrivial evolution, one should consider an exponential time scale
and let t = e2/%° with Q <2 (we used Q rather than 7 as the macroscopic variable here, to emphasize this
is on the exponential scale). For ¢ = (log s‘l)‘%, this leads to r = £~2. On the other hand, by the scaling
property of the white noise, one can easily check that, in d =2, we have

law . . NN

Uea() = ta(Z5.5), if § = (loge™!) 2.

Thus, u. (72 0) = 1, (e72,0), and from this perspective, it is natural to consider the scaling used in
(1.16), which says that for any macroscopic variable Q € [0,2], we have

_ 1 —_
1a(£72,0) = B,.0(0).
10

1.2 Sketch of the proof

The proof of Theorem 1.2 begins with a series of approximations of the SPDE (1.1)~(1.2). Fix T > 0, X € R?.
The underlying phenomenology behind these approximations is that the contribution of the noise dW ¢ on
an interval [T —£9,T — £9*7] to the L? norm of the solution u . (7, X) can be bounded from above by /2.
Therefore, we can “turn off” the noise on intervals [T —%,T —g%*Y],i=1,...,M, and as long as My'/?> < 1,
this will not change u . (7, X) in the limit. (We describe precisely how we choose these increments at the
beginning of Section 6.) For any A C [0, c0), we define ug"a as the solution to

1r\a ()

Aaltix)= —AuA ()t + ——Z0 (uh ,(t,x))dW* (1,x); (1.26)

loge~!
uf ,(0,x)=a. (1.27)

This comes from the problem (1.1)—(1.2) by “turning off” the noise on the set A. Section 4 is devoted to
bounding the error incurred by turning off the noise on an interval.

Letiizq=uf ., with A= UM [T —&%,T - £9*7], denote the solution with the noise turned off in this
way. Fix any i =1,...,M. Since we expect the problem to have a diffusive scaling, i, ,(T — %%, x)
should contribute to u 4 (T, X) only for those x such that [x — X| < £(@*¥)/2_ We further choose vy so that
&” < 1. The noise is turned off on the interval [T — &%, T —%*Y], so i1 o ,(T —&%*7,-) has been subject to
the deterministic heat equation (with no noise) for the last 7 — £4*” — (T —g%') = 9 (1 — 7)) ~ &9 amount of
time, and thus is essentially constant on spatial scales much smaller than £%/2. Thus, since £” < 1 and thus
gl@i+)/2 « £4i/2 the main contribution of noise up until time 7 — £9*” on ug q(T,X) is via the constant
ieq(T—e%*Y X). Section 5 is devoted to bounding the error incurred by replacing the field by a (random)
constant after the solution has been subject to the deterministic heat equation for some time. In Section 6, we
define the time discretization that we use, and then iterate the results of Sections 4 and 5 to bound the total
error incurred by this approximation scheme.

Our approximation scheme approximates the solution u. (7, X) in terms of a scalar-valued Markov
chain whose ith value is i ;. o (T — €%*7, X). (Since the equation starts from constant initial data and we are
interested in the marginal distribution, by space-stationarity, the choice of X is arbitrary and plays no role.)
This Markov chain, which is also a discrete martingale, will approximate the solution to (1.5)—(1.7). To see
why, we note that step (i + 1) of the Markov chain is given by solving the original equation (1.1)—(1.2) with



the initial condition a equaling to the current value of the Markov chain, which is iz o (7T —€%*7,X), on an
interval of length £9*Y — g9i+1 ~ g9*Y and then letting the solution evolve according to the heat equation
for time g%i+1 — g4i+1*Y ~ g4i+1, Although it only represents one step of the Markov chain, approximating the
solution on these time scales require running another instance of the Markov chain for M —i steps. This is
a consequence of the mild solution formula; see Lemma 7.7 below. This corresponds to the Q — g in the
argument of J in (1.5). On the other hand, since this only represents one step of the Markov chain, one
only needs to understand the variance rather than the complete law in order to compute the diffusivity of the
limiting diffusion. Accounting for the averaging from the heat equation (which gives us a factor of g; — g;_1),
it turns out that this variance is approximated by the expression on the right side of (1.7) in the limit. In
particular, the fact that only the variance is important is reflected in the fact that an expectation is taken on the
right side of (1.7). Making these ideas precise is the main task of Section 7.

The fact that the diffusion coefficient of the limiting SDE can be represented in terms of statistics of
the chain itself is of course critical to proving the existence of the limit. The fact that the self-similar
structure characterizes the limit is reflected in the fact that the problem (1.5)—(1.7) is well-posed, as stated in
Theorem 1.1. This well-posedness allows us to construct the limiting diffusion coefficient and then show that
the Markov chain converges to the diffusion using standard techniques. This is the content of Section 8.

We address multipoint statistics, and prove Theorem 1.3, in Section 9. At this stage, since the problem
(1.5)—(1.7) has been solved, the function J has been identified. The Markov chains corresponding to multiple
points stay together at earlier times, but then eventually branch apart from each other as the remaining
time scale approaches the spatial separation of the points. It turns out that once they branch apart, they are
completely independent in the limit. This yields the branching diffusion structure (1.22)—(1.23).

1.3 The linear case

In this subsection, we consider the linear case o-(#) = Bu and show that solutions to (1.5)—(1.7) have
log-normal one-point statistics, and moreover that we recover the limiting variance [7, (2.18)] obtained
in [7, Theorem 2.15]. In this case, the linearity of the problem (1.5)—(1.7) allows us to make the ansatz
J(gq,b)=bJ(q), with J(q) = J(q,1). Then the problem becomes

dZq,0(q) =J(Q —q)Ea,0(q)dB(q), q €10,0]; (1.28)
E00(0) = a; (1.29)
I(q) = %(Eal,q(cnz)”z. (130)

We can already see that (up to a time-change determined by J) the problem (1.28)—(1.29) is solved by a
geometric Brownian motion. It turns out that we can compute J explicitly. By It6’s formula applied to (1.28)
we have

1
d(logZ4,0)(q) = J(Q - 9)dB(g) ~ 54(Q - )*dg, (1.31)
and hence

0 0
Ea,Q(Q)=anp{/0 Z(Q—q)dB(q)—%/O l(Q—q)qu}~ (1.32)

Taking a = 1, substituting (1.32) into (1.30), and computing the expectation, we obtain

2 Qo
207 =5eo| [ s02aq).



Differentiating this expression gives us the differential equation %1 (0)? = J(Q)*. Combining this with the

initial condition J(0) = %, which is evident from (1.6) and (1.7), we obtain
J(Q) = (4n/B-0)"'. (1.33)
Note that the resulting J, given by
b
J(q.b) = (1.34)

saturates the bound (1.15). Substituting (1.33) into (1.32), we have

Ea.0(0) = aex /Q ! dB()_l/Qd—q
STV Ve o-g U 2 B9

: 1
faw aexp {S— EESZ},

(1.35)

where S ~ N(0,log 4"/52 ). In the case Q =2 and a = 1, this agrees with the expression [7, (2.12)].
4r/B*-0

Now we address the multipoint statistics, i.e. the problem (1.22)—(1.23). As in (1.31), but now knowing
(1.33), we have

dBio_y) () (9) B dg
An/pi—(Q-q) 87/B*-2(0-q)

From this linear SDE we see that the family (logI'y, o, j(Q))j.V: | 1s jointly Gaussian. All of the means are
equal as

d(logla,0,/)(q) =

) 1 re dg ~ 1 4r /B>
E[logra,Q,j(Q)] —loga—z‘/o m —loga—zlog 47T/ﬂ2_Q

as in (1.35). The covariance structure is given by

Cov(logly 0,i(Q),logly 0,;(Q))

dg
</{q€[0,Q] : i(qu)/z(l.):i(qu)/Z(j)} 4ﬂ/ﬁ2 - (Q - CI) (136)
) / dg o 4nIB = (dy v 0) A0
[0.0-2d;,v0] 47/ 8% = (Q —q) 4r/B*-Q '

The second equality is by the ultrametricity property (1.25) of the d;s. For Q =2, (1.36) is the same as the
covariance structure [7, (2.18)] obtained in [7, Theorem 2.15].

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1, establishing the well-posedness of the limiting problem. The analysis
here is essentially independent of the rest of the paper.

Proof of Theorem 1.1. 1If g : [0,0] X Rsg — Ry is continuous, is Lipschitz in the second variable, and

satisfies g(-,0) =0, then for each @ > 0 and Q € [0,2] we let Ef; 0 solve the problem

d=} ,(q) =2(0-4.E} ,(9))dB(q); 2.1)
E; »(0)=a. (2.2)



It is standard that (2.1)—(2.2) has a unique strong solution with continuous sample paths almost surely, and
that this solution is positive with probability 1. (For the last property see e.g. [38, Lemma 2.1].) We write
(2.1)—(2.2) in the mild formulation

q
By 0(@) = a+/0 8(0-5,E% ,(5))dB;.

Define

Qs(Q.a) = ﬁ(EﬂEa,Q(Q))Z)”Z.

We note that J satisfies the condition 2 in the statement of the theorem if and only if QJ = J. We will show
that there is a unique such fixed point J under the additional assumption that condition 1 in the statement of
the theorem is satisfied.

To this end, let X be the Banach space of continuous functions f : R>o — R such that £(0) =0 and the

norm
|/ (a)]

I f1lx = sup

a>0
is finite. Let Y be the Banach space of continuous functions g : [0,2] X Rsg — R such that g(g,0) = 0 for all

g € [0,2] and the norm
-R(B)q 18(q.a)|

llglly = sup e (2.3)

q€[0.2] a

a>0
is finite, where we have defined
3
47r/,82

R(B) =28*| —2—| . 2.4
B=28 (| @4

Finally, let Z c Y be the closed subset defined by
Z= {g ey : in%g(q,a) >0and Lipg(q,-) < (4n/B>—q)~"/? for all g € [0, 2]} .
a>
Thus, we are done if we can show that the map Q has a unique fixed point in Z, and we will do this by

showing that @ maps Z into itself and moreover is a contraction on Z.
Step 1: L? bound. If g € Z, by the fact that g(g,0) = 0 we have g(g,x) < Lipg(g,-)x for any x > 0, so

EE} ,(p)?

q q

—_ 2 2 — 2 2
) =a*+ | Eg(Q-p.E dp<a’+ | —==—dp.

wol@) " =a _/0 g(Q-p.E, »,(p))dp=<a /O mip—0+pF

By Gronwall’s inequality, this means that
a 1 4r/B* -
EEﬁQ(q)23a2eXp{/ z—dp}=a2-M. 2.5)
’ 0o 4n/B*-Q+p dn/B*-Q

Step 2: Q maps Z to itself. Let g € Z. Itis clear that Qg(g,0) =0 for all g € [0,2]. It remains to check
that Qg is continuous and Lip(Qg(g,-)) < (47/B8*—q)~"/? for all ¢ € [0,2]. For the Lipschitz property, we
have

1Qg(0.a)~Qg(0.b)| = % (B (82 5(0)2)' ~ (B (=, (0)))'?
B - _ 1/2
<57 (BIE 0@ -8 HOP) . (2.6)



Now we note that, for any ¢ < O, we have
q
BIZS 0(0) =5, o(@) = 0=+ [ El2(@-p.Z5 o () ~£(0=p. 5 o(p) P dp
q
< (@=b7+ [ Lin(e(Q=p.)BIES o (1) -5 o (P4

By Gronwall’s inequality, this means that

q
E[Ef ,(9) -5} ,(9)]* < (a—b)2e><p{/O Lip(g(Q—p,-))zdS}-

Using this in (2.6), we have

o
f Lip(g(Q—p,-»de}

1
Q4(0.0)-Qe(0.0) < ol bieso 1 |

\/_

_ Q . 2
_Fla b|exp{ /0 Lip(g(p.-)) dp},

SO

[0}
Lip(Qs (0. )L%exp{ / Lip(g(p,-)>2dp}.

Therefore, since
Lip(g(p,-) < (4n/p*—p)~'/%,

we also have

Lip(Qg(0.)) < -2 {1 / Q;dp}=(47r//32—Q)“/2-
\/_ 2Jo 4n/B?-p

Next we show that for each a > 0, Qg (-, a) is continuous on [0,2]. The argument is rather standard and
similar to the above discussion, so we do not provide all details. Taking 0 < Q; < Q> < 2, we have

Qg(01,0) - ag(Qz,a>|<7(E|~aQ1(Ql) = o, (0F)

For any g < O, we write the difference as

=S 0, (01 —E5 5.(02) =ES , (01)—E5 (0 +ES , (1) -5 . (02).

and the first term can be estimated as follows: for any ¢ < O,
g g ! g ! g
=0, (00,0 = [ 801=5.5 0, (DB~ [ 501555 ,(9) dB,
which yields
IS ,(0) -0, (@) <2 [ BIg(01 5.2 g, (9) - (02 5.5 , () ds

q
#2 [ Blg(02-5.55 g, () ~§(Q25.55 o, (D Pds

=L+

10



The term I, can be bounded from above by

q
> /O Lip(g(Q2— 5. E[ES , (5) —E5 () ds.

For I, the integrand
E[g(Q1-5.ES , () -8(Q2-5.E5 , (5))]

is bounded, and converges to zero as Q, — Q; for each s, by the dominated convergence theorem, (2.5) and
the fact that g is continuous in the first variable and g(q,x) < Cx for all x > 0,q € [0,2]. Therefore, invoking
Gronwall’s inequality again, we obtain

EIE , (0D -8 , (0D =0,  as0>— 0.

A simpler argument shows that

EES , (02)-ES 5, (QD)P =0,  asQ»— Q.

Therefore, Qg (-,a) is continuous, so Q@ maps Z to itself.
Step 3: contraction. Let g1,g, € Z. Then we have

q
Ef,[Q(q)—EifQ(qF/O [g1(Q-p.E! () —82(Q - p.ES , (p))]dB(p),

SO
q
E[28',~E%,1(9) = /E[gl(Q—p,EﬁiQ(p))—gz(Q—p,Eij(p))]zd

q
<2 /O (161 8@ P IZEZE (5 +Lin(e2(@ p. ) PEIES -5, 1(07) dp

! - e AT/ —Q+p E[E] 5~ Eaol(P)’
<2 (n(gl @)(Q-p et TEZEL sl e0 gy,

with the last inequality by (2.5). By Gronwall’s inequality, this means that

E[E‘ﬁiQ - E‘sz] (Q)2

q 4 2 e 2
S2a2(/0 ||<g1—gﬁ(Q—n-)Hi%dP)exp{/o Mdl’}
Y ( e )/0 (1 -0~ p. ) I3 2 /ﬁz dp.

In particular, we have

4r/B?

3 pr0
2
47r//32—Q) ‘/0‘ 1(81—82)(p, ")l dp.

L=, - =500 <20 |
Then we have

(Qg1-Qg2) (4.0)” = [(Ecr (B, ())* ~ (Bor (2, (9)2) "]
ZE[:fth(Q) —Effq(CI)]z

4r /B>

20 e B A2
<2a*B 5= Jo I(g1—g2)(p,)llxdp.

11



This implies that, as long as 8 < V2, for all g € [0,2] we have

4 /B>

3 q
812
4,r/’32_q)/0 l(g1—g2)(p,)llxdp.

1(Qg1 - Qg2) (g, )1} <28 (
Therefore,

Qg1 - Qgall% = sup e 2R (Qg1 - Qg2) (g, II%
q€lv,

3
4”/,32 ) -2R 4 2
< su 2,32(— e (ﬁ)q/ I(g1—g2)(p,)lxdp
qE[OI,)Z] 4r/B? -2 0 X

4n/p? |’ !
<p (4n/ﬁ2_2) RB) g1 = g2y = 51 = gally-

Recall that R(8) was defined in (2.4). Therefore, Q is a contraction on Z (equipped with the norm inherited
from V) and so Q admits a unique fixed point in Z, which is what we needed to show. O

Remark 2.1. By the stochastic comparison principle for SDEs [16] and the fact that the geometric Brownian
motion (i.e. a log-normal random variable) has finite positive moments of all orders, we see that EE, o () <
oo for all k € [0, 00) as well.

3 Moment bounds

The next several sections will work towards a proof of Theorem 1.2. In order to carry out our analysis, we
will need some bounds on the moments of the solutions to (1.1)—(1.2). We establish these in this section.
Moment bounds depend crucially on the subcriticality of the problem, which for us means 8 < V2. We
will assume throughout the paper that this is true without further comment. We also now fix a time horizon
Tp € [ 1, 00) which will also remain fixed throughout the paper. Furthermore, fix &9 € (0, 1] so that

2 Jog(1+2&2T,
B~ log(1+2677Th)

1
4r loge™! ©-1)

for all € € (0,&p]. The condition that 8 < V27 means that such an g exists. As we are ultimately interested in
the limit & | 0, the condition (3.1) is simply a convenience so that various quantities are finite. In Definition 3.5
below, we fix a constant Ky < oo, which depends on 3, &9, and Tp, and will appear in upper bounds throughout
the paper.

Proposition 3.1. There exist constants p > 2 and K < oo (depending on Ty and B) so that, for all € € (0, &g],
alla>0,and all t € [0,Ty],x € R2, we have

Eug o(t,x)P < KPaP. 3.2)

Proof. Let v, 4 solve the linear problem given by (1.1)—(1.2) with o-(u) = Bu. By [9, (5.11)], for any p €
[1,27/%+1) we have a constant K so that Ev . ,(¢,x)? < K”aP. Using the stochastic comparison principle
proved in [14, (E-4)], since o (u) < Bu for all u € [0,0) we have Eu. ,(7,x)? < Evg ,(t,x)? < KPaP. By
the assumption that 8 < V27, we have 27/8%+1 > 2, so we can choose p > 2 as required. O

Remark 3.2. The case p =2 in (3.2) is much simpler than the case p > 2. Indeed, the p =2 case is a special
case of Proposition 3.3 below. On the other hand, the proof of the moment bound for p > 2 in [9] for the
linear case uses hypercontractivity, and the stochastic comparison principle [14] takes a substantial amount of
analysis to prove. Most of the analysis in this paper will be in the L? setting, so we will mostly use the p =2
case. However, we will rely on some tightness statements that require a higher moment bound.

12



The following proposition gives an L? bound on the difference of two solutions started at different initial
conditions. Recall that u?’a solves the problem (1.26)—(1.27), with the noise turned off on the set of times A.
The problem (1.26)—(1.27) has the mild formulation

ug‘,a(t,x) =a+ /G,_s(x—y)a'(u'g’a(s,y))de(s,y). (3.3)

g
loge~! J[o,r\A

Here and henceforth, when we do not specify the domain of integration for an integral we mean that the
integral is taken over all of R.

Proposition 3.3. There exists a constant K < oo (depending on Ty and 8) so that, for all € € (0,&¢], ai,az =0,
T € [0,Ty], x € R?, and measurable A C [0,0), we have

1/2
(Bl oy (1.0) k0, (6001) T < Klaz = . (3.4)
In particular, for any a > 0,
A 2\1/?
(Bud o (1,0)?) " < Ka. 3.5)

In fact, (3.4) and (3.5) hold with

2 2\ ~1/2
K:(l_ﬁ_.w) . (3.6)

4r loge™!

Of course, a very important special case is when A = (). Then the bounds (3.4) and (3.5) just involve u . 4.
(In the latter case this of course is a special case of Proposition 3.1.)

Proof. Since (3.5) is just (3.4) with a» = a and a; =0, it suffices to prove (3.4). Subtracting two copies of
(3.3) (with a = a; and a = a;) and taking second moments, we obtain

Ew? (t,x)-u? (1,x))?

£,a2 £€,d]

=(az—a1)?

HOglg_l /[0 ]\A//Eﬁ([a(u?,az(s,y,-))—a(ug"al(s,yi))](;z_s(x_yl_))
! i=1

G 2(y1 —y2)dydy>ds

ﬁz /t E|ué,a2(sex) _ug,a] (s,x)|2 ds
2rloge=! Jo 2(t—s)+&2 '

< (ay—ar)*+

Then (3.4) follows from Lemma 3.4 below. O

It remains to prove the lemma used above, which will also be useful in the future.

Lemma 3.4. Forall e € (0,&9], alla >0, and all T € [0,Ty], the following holds. Let f : [0,T] — [0, 00) be

such that ,82 . )
) s
f@t) <a + /0

2rloge™! 2(t—s)+&2

forallt € [0,T]. Then, forall t € [0,T], we have

a2

_ B log(1+2&7%1) ’
dn log &~!

f() <

13



Proof. Define [O,t]i ={(s1,...,5;) € [0,¢]/ | s < -+~ < 5;}. Then we have
AN B ! 1 dsi-d
i =a Zé (4rloge1)J /w ﬂsk+1—sk+s2/2 R

) j J
1
<a —  dri---dr:
Z: (47rlog8 1yJ ./o t]jl_[rj+82/2 & &

k=1

a J t 1 J
= Z / dr

= (47r10g8 Ni\Jo r+&2/2

a2 g a’
- Z (4“() -log(1+2& r)) RIS (3.7)
4n log &1
where we used (3.1) for the last identity. O

To avoid having to constantly quantify constants, we now fix our essential constant once and for all.

Definition 3.5. Fix

2 ) 1/2
B 2+10g(l+28 t)) 39)

Ko> sup (1——
£€(0, 5] 4 10g &

large enough so that Propositions 3.1 and 3.3 hold with K = Kj.

By (3.6) and the proof of [9, (5.11)], we see that we could take

Ko= sup (1 B 2+log(l +2g—2t)) 12
£€(0,&0] 4n loge !
for some f € (B, V2r). The precise form of K, will not be important for us (although at one point we will
directly use the explicit expression (3.6)). The extra summand of 2 in the lower limit condition (3.8) for K
(compared to (3.6)) is to allow Kj to also suffice for bounds in later sections. (See the proofs of Lemmas 4.3
and 5.2 below.)
Now we can bootstrap Proposition 3.3 to obtain a stronger bound on the variance of the solution.

Proposition 3.6. Ifa > 0, € € [0,&), and A C [0, o0) is measurable, then

-2
(Bl o (1.2) —a]z)l/2 < /; ‘i/l;), /log(kl);jj 2 (3.9)

Of course, for 7 of order 1, the bound (3.9) is redundant to (3.5). It will be used when ¢ is chosen small so
that log(1+&72t) < loge™!

Proof. Similar to the computation in Proposition 3.3, we have

E[”?,a(t’x) - a]2

B> / Euf ,(s,x)? )
0

" 2rloge! 2(t—s)+&2

and then (3.9) follows from (3.5). O
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4 Turning off the noise on an interval

As discussed in the introduction, an important part of our argument will be turning off the noise in the
equation (1.1)—(1.2) for a certain set of times, and comparing the resulting solution to the original solution.
In this section we bound the error incurred by this noise shutoff procedure when the noise is shut off on a
single interval. In Section 6, we will iterate this procedure to turn off the noise on multiple intervals. For now
our goal is to prove the following proposition.

Proposition 4.1. Let A C [0,00) and suppose that supA < 11 < 1 < Ty. Then for any t € [12,Ty] and any
x € R? we have

> KMPA [ t-m+e2)2
B (it -l 00) £ 0 (l0g =k

4rloge~! r—-m+e2/2 )

Proof. Subtracting two copies of the mild formulation (3.3) (with the sets A and A U [11, 2] respectively),
we have

4.(,x) - u;‘i"‘”(z,m

Gios(x =)0 (s 4 (5,7)) AW (s, y)

- \/logs‘l v/[O,tJ\A-/
: /
ViogeT J[0.1\(AU[71.72])
1 ~ A &£
=— Gis(x=y)o(ug ,(s,y)dW (s, y)
\/logs‘l

\/log el

In the second “=" we used that u* a(tX) =ug, a[T' 72l (t,x) whenever t < 7. Taking the second moment, we
have for all r > 1, that

/ Gy (x = Y)W (5, 3)) AW (s, y)

/ / Gy (=) [0 o (s.3) = (@207 (5,3))] AW 5. 7).

E( 4 (tx) = uAU Tl x))

:log%‘/TTz‘//ng()’l—yz)Eﬁ(G,_s(x—yi)a(u‘g’a(s,yi))) dy; dy,ds
logs‘l/ // El_[ Gy (r =) [0 o (5,90) = @l ™™ (s5,3))] )

gZ(yl —y2)dyidy2ds
Sy PO Sy UM S
" 2nloge™! J. 2(t-s)+é€2 2rloge™! J,, 2(t—s)+&2

< :326121(8 1 t—T1+82/2 :32 / [ (S y)— MAU[Tl TZ](S»)’)]z

t—s+&2/2

ds

ds. (4.1)

< 0
4rloge! gt—‘l’2 +&2/2  4mloge™!

In the last inequality we used (3.5). Now if we put

f(t):E( Ul (T +1,x) et TZ](T2+t,x))2, t>0, (4.2)

15



then (4.1) can be rewritten as

2 252

f(r) < p %-lo

4rloge

t+1 -1 +&2/2 B? /’ f(s)

t+&2/2 drloge=t Jy t—s+&%/2

Now we apply Lemma 4.3 below with M = (4x)~! ﬁzang and r = 7 — 71. (The requirement that f has a
bounded supremum on compact intervals is satisfied by applying Proposition 3.1.) This gives us

K,p*a* t+1 -1 +2/2
f s 0 (o MR
4rloge™! t+&2/2
Recalling the definition (4.2) completes the proof. O

We will prove Lemma 4.3, which we used in the above proof, shortly. First we need a preliminary lemma.

Lemma 4.2. Forany t,r,e > 0 we have

t+r+e /2

tlog —=24= t 29
/ L/zdss(2+log(l+23_2t)) | +log HFE/2)
0o t—s+&%/2 t+&2/2
Proof. We write
t+r+e2/2 t+r+&*/2
/ log ° ste?/2 /t/2 / log ° s+e?/2 ds
0 t—s+82/2 02 t—s+82/2
ot 22 t 202\ ! 1
s—/ log THES2 4y (1og EEFE S / ds. (4.3)
tJo s+&2/2 t/2+&2/2 ) Jo t—s+&%/2
Now we have
/t t+r+82/2d , 821 l‘+82/2+t t+r+g?/2
og————ds=t——1lo og———
0 B Tire)2 2 %o 8 a2
t+r+g?/2
<t|{l+log—————]. 4.4
( o8 t+&2/2 ) 9
Also, we have
t+r+82/2 2t +2r + &2 t+r+e?/2
<log2+log—————. 4.5
t/2+ £2/2 TR 0gsTio8 +&2/2 (4.5)
Using (4.4) and (4.5) in (4.3), we have
t log S /2 2 2
/2 t+r+e°/2 t+r+e°/2 o
—d <2+42log———— +|log2+log ———— | log(1+2&™ "¢
[; t—s+&2/2 g & t+&%/2 ( & & t+&%/2 g(1+2&771)
2
t+r+e°/2
< (2+1og(1+2 —Zt) l+log ——2 1= 4.6
(2:+10g( s)(og +52/2) 4.6)
which was the claim. O
Lemma 4.3. Let € € (0,&9] and M,r > 0, suppose that f satisfies the bound
M t+r+e?/2 2 d (5)
f(t)s1 — log o+ A —1/ / 5 4.7)
oge t+&%/2  A4dmloge™! Jy t—s+&%/2
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forall't € [0,To], and sup, (o 1,1 | f (1)| < 00. Then we have

2 2
f) < hiffl ’::28/2/2 +K? 4.8)
forallt € [0,Tp].
Proof. Suppose that
F(t) < By 1og%+32. 4.9)

By assumption, this inequality holds with By =0 and By = sup,¢[o 7, |/ (#)|. Substituting (4.9) into the r.h.s.
of (4.7), we have

s+r+&%/2
M t+r+e?/2 B> t Bilog Ys:;/z + B,
f@) < log + ds
loge™! t+&2/2  4rloge™! Jy t—s+&%/2
s+r+&%/2
.M 0c t+r+g?/2 . B’B /t log =37 +ﬁ2leog(1 +2&72Ty) @.10)
~ loge™! t+&2/2  dmloge™!Jy t—s+&2/2 4rloge! ) ’
For the middle term of the above inequality, we have
2 2
/ 10g s+r+e°/2 ‘ IOg t+r+e°/2 ; ) )
/ e g s/ S—”mdss(2+1og(1+2g—2t)) | 4log HIHE)2 4.11)
0o t—s+&2/2 0o t—s+&%/2 t+&%/2

by Lemma 4.2. Substituting (4.11) into (4.10), we have

M t+r+g2/2 B%B, ) t+r+e?/2
f) < + (2+1 142 z) l+log 2 *2 /2
F loge™! ©8 t+&2/2  4mloge! og(1+2&71) ©2 t+&2)2
N B2Bslog(1+2&72Tp)
4rloge!
1 BB ( 5 t+r+&2/2
= 2+log(1+2 t)+M log————
loge~! ( Ar og(1+2&71) °8 t+&%/2
’B 2By log(1+2£72T,
_BBi (2+1og(1+2s—2t))+ﬁ 2log(1+2& 1)
4rloge! 4rloge!

t+r+s2/2
t+&2/2

M
< ((1 ~K;%)By + logs_l)lo +B1+(1-K;%)Ba,

where in the last inequality we used (3.8). Define B§O) =0 and B;O) = sup,¢o.11 1/ ()], so for each n > 0,
(4.9) holds with

_pm _ -2y p(n=1)
Bl—Bl _(1_K0 )Bl +10g?, (412)
By=B" =B" "V +(1-k;%)B"". (4.13)
From (4.12) we conclude that
K2M
B < 0 (4.14)
loge™!
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for all n. Then we have from (4.13) that

KM
(n) 0 -2y p(n=1)
B < ——+(-K; )By",

loge~
SO
m _ KoM
limsupB,” < ———. 4.15)
n—oo logs
Using (4.14) and (4.15) in (4.9), we obtain (4.8). O

5 Replacing a smoothed field with a constant

In Section 4, we estimated the effect on the solution of turning off the noise on a given time interval. In this
section we seek a further simplification. After an interval of time in which the noise has been turned off,
the resulting solution will have been undergoing nothing more than the deterministic heat equation on that
interval. Therefore, it will have been smoothed, with a strength depending on the length of the interval. By
restricting our attention to a comparatively small spatial region, we would expect that the solution may be
replaced by a constant at the end of this interval. The following proposition is to quantify the induced error
when we replace the solution by a (random) constant at the end of each “quiet” interval.

Proposition 5.1. Let A C [0,00) be measurable and let ) < 7p < T be such that 7, = sup A and [11,12] C A.
Fix X € R? and let v solve the problem

dv(t,x) = —Av(t x)dt+(loge ) 2o (v(1,x))dWe(t,x),  t> 1, x € R%; (5.1)
v(T,x) = ug’u(n,X). (5.2)
Then we have, for all t € [12,T] and € < e_Kg, that

K4 2 3(t—1)+|x— X|2
T —T

E(v-uf ) (t,x)* <

(5.3)

Proof. We first note that u? ,(1,X) = f G oy, (X = y)u? ,(71,y)dy, since uﬁ, 4 solves the deterministic
heat equation in the time 1nterva1 [71,72]. Then, we have for any t > 1 that

O =tea) (0:) = / [Gryry (X =3) = Gror, (x = )]t o (71,7) dy
+\/$/‘T:/Gt—s(x_y)[O_(V(S,y))—U(u‘g’a(s,y))]dws(s,y)‘

Taking the second moment, we obtain

E(v—u? )(tx)2

< [/EH ([G‘rz—‘rl (X-yi))—Gi—r, (x—yi)]ug,a(ﬂ,yz')) dyidy»

10%8‘1/ _[/ 201= yZ)En(Gt (=YDl (s.y0) = ug o (s, y,)l)dyldyzds

= I +1,. (5.4)
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For the first term, we estimate by the Cauchy—Schwarz inequality (on the probability space) that

A A2\
B2 ([ 16nn(X=3)=Gin -0l (B o (r12)

< K3 ||Gryry (X =) =G gy (x = (5.5)

)HLI(RZ)’

where the second inequality is by (3.5). By Pinsker’s inequality (see e.g. [31, Lemma 1.5.3 and Theorem
1.5.4]), we have

||G7'2—T1 (X_')_Gt—ﬁ (-x )”LI(RZ) —2DKL(G1‘ T1 (X ) || GTz—T] (X_))’ (56)

where Dk, denotes the Kullback-Leibler divergence (also known as the relative entropy). We recall that for
two continuous probability distributions F; and F> on R?, the Kullback-Leibler divergence is defined as

1(x)
S (x )

Then we can compute explicitly (see e.g. [31, Theorem 1.8.2]) that

Du(Fy || F2) = / Fi (%) log

H—T t—1 X —x/|?
Dit(Grery (8= | Gy (X =) =log 2 -1 4 X
t—1 -1 2(2—T71)
1 2
I—-m+5X—x
G mnralX ol (5.7)
T —T
Substituting (5.7) into (5.6) and then into (5.5), we have
2,2
I < [2(t—12) +|X —x]?]. (5.8)
T —T

Considering the second term of (5.4), we apply the inequality |ab| < %(a2 +b?) and use the symmetry in
¥1, Y2 to derive

2log8_12/// 2 (1 =y2)Elv(s,y;) —ug (sy,)lzl_[Gt s(x=yi)dyidyads

i=1

/ [ G e G e DBl 3) ~u a9y,

logs‘1
Recalling the simple fact that in d = 2,
1
G, ()G, () = 1) ]Hz('), (5.9
for any #1,1; > 0, we further obtain
e [ rrapOe
< — ————————G (—o (o5t E dyds. 5.10
47r10g8_1 o t—S+82/2 (2(:(5)%22) (x=y)E[v(s,y) - u (s y)] ydas ( )

Using (5.8) and (5.10) in (5.4), we obtain

E(V - u?,a)(t’x)z

2
K0a2 5
< [2(t—1) +|X —x|*]
T —T
B ! 1
+ P t-s)(t—s+& E d d .
4rloge™! [2/;_S+82/2 W(x VE[v(s,y) —ui (s, y)1*dyds
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Thus the hypotheses of Lemma 5.2 below are satisfied with

f— K2a?
f(t,x) =E@—ul ) (1,%)?, Ay =2K2a®—=, Ay=—20—,
T T
from which we obtain
2t - K5 (t—1 - X2
E(v—u? )(t,x)* < Kja? (t=m), FKy (1) = X ,
’ -1 2n(n—-1)loge™!  m-T1
hence (5.3), since we have Kg < loge™! by assumption. O

It remains to prove the lemma we used above.

Lemma 5.2. Suppose that 0 < v < T < Ty, Sup,¢[, 1] xer? |/ (1,X)| < 0o, and there exist constants Ay, Az
such that

=l e T
1,x) <A+ A x - X4 ——— ——————G () tosie - ,y)dyd 5.11
Ft.0) 1+ Azl = X| drloge! J; r—s+82/2 2(,):;);,822) (x=2)f(s.y)dyds G-I
forallt € [t,T] and all x € R%. Then, for all t € [t,T] and all x € R?, we have
B(1-71)

T——— KAy + Agx - X|*|. (5.12)
2rloge~

f(t,x) <K} (A1 FRER AR
Proof. Suppose that
f(t,y) < Bi+Boly—X|? (5.13)

forall t € [,T] and all y € R?, where B;, B, > 0 are constants. Of course this holds for

B = sup |f(t,x)|, B, =0.
te[r,T],xeR?

Assuming (5.13), we compute from (5.11) that

132 t 1
f(t.x) <A +A2|X—X|2+W m(}mgmﬁgz) (x=y)[Bi+Baly—X|*]dyds. (5.14)
T

2(t—s)+s2

Now we can evaluate the spatial integral by noting that

2(t—5)(t—s+&%)

/Gm)(,mz) (x=y)ly-XPdy= +lx-XP <i-s+&+x-X|.

2(t-s)+&2 2(t—s)+ &2
This implies that
G(t s) (1— Y+F2) ('x y) t
Bi+By(t—s+&%) +By|x - X|?
2(t-s) 2 1 2 2
B1+Bs|y—X|"]dyds < ds
/ / l—S+82/2 [Bi+Boly = X" dy /T t—s+&2/2

t—T+&%/2
£2/2

Substituting this back into (5.14) and rearranging (also recalling (3.8)), we obtain

< (31 +lex—X|2) log +2By(1-7) < (31 +Bylx—X]| )1og(1 +2672T) +2By (1 — 7).

2
F(6.x) < Aj+Aslx— XP+ —P— [(B1 +lex—X|2)log(l+2s_2T) +2By(1—7)
4rloge!
2 {—
<(a+0-k2)8+ 2D g, +(A2+(1—K52)Bz) - X[, (5.15)
2rloge™!
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0 0
Let Bi ) = SUP;e[7.11,xer? S (£, X)], B§ ) = 0, and

2
() _ 2 1) BIE=T) Hnen)
Bl —A1+(1—KO )Bl +Wg8_132 , (516)

B = Ay +(1-K;?) BV (5.17)

for each n > 1. By (5.15) and induction, (5.13) holds with B; = B\" and B, = B\ for all n. From (5.17) we
see that
(n) 2
B, <KjA,

for all n, and thus from (5.16) we obtain

2(1 -7)
limsupB™ < K2 (A, + 2 "D 24,
n_wlip 1 o {1 2rloge! 0472
Using the last two displays in (5.13), we obtain (5.12). O

6 The time discretization and the approximating functions

In this section, we will iterate Propositions 4.1 and Proposition 5.1 on many subintervals of time to construct
a discrete Markov chain which approximates the marginal distribution of the solution to the SPDE. First we
construct these intervals, which will correspond to our time-discretization scheme.

6.1 The time discretization

Our approximation scheme will ultimately be focused on approximating the distribution of u . , at a single
space-time point (7, X). The time intervals of interest thus depend on the terminal time 7.
For € € (0,&¢], define 6, v, {s, and A, such that

(loge H <y, <62 <1, <1, (6.1)
67ler”s <« 1, (6.2)
(loge N '« ¢, < 1, (6.3)

where the notation f (&) < g(&) means that f(g) < g(&) for all &£ and li% {; ((z)) =0. To avoid introducing
&

further constants later on, we further assume that
max{sys,s‘sb‘/z} <1/2 (6.4)

for all € > 0. The choices of the parameters will become more clear later; see the discussion at the end of this
subsection.

Now we define, for T > g2~ 1,
Sy = €M% and s, =gmndetye (6.5)
and
tm=T—5n, and t,=T-s,,. (6.6)

Note that these quantities all depend on &, and t,,, and ¢,, also depend on 7', but we suppress this to simplify
notations. We note that the time of interest 7', unlike the time horizon Ty, is not fixed throughout the paper.
However, whenever we use ¢, and t,,, the T of current interest will be clear from the context.
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Define
My(e,T) =[6."og, T 1, (6.7)
My(e) = 65" (2-¢s)]. (6.8)

Thus M (&,T) +1 is the least integer m so that 1, > 0, and M, (&) is the greatest integer m so that s,, > £>~%¢.
For example, for fixed T > 0 independent of &, we have for sufficiently small & that

-1, ifT>1,

Mi(e.T) = { 0, ifTe(0,1).

For the discrete time Markov chain to be constructed, the starting point in time will be given by M| (g,T),
and the ending point will be given by M;(&). We note for future use that

My(g)—Mi(e,T)+1 <6, (2-log,.T). (6.9)
Note that by the assumption of 6, > v and £¥¢ < 1, we have

tmp1 =T —M0e%08 S T gMetye —y!

t) =T —gm0*Ve > T —gMoe =y,

Thus we can write

M, (&) M, (&)-1
[tMl(.s,T)HJ;WZ(S)] =hLulh, withl;= U [tm.ty,], D= U [t tms1 ]
m=M(&,T)+1 m=M(&,T)+1

To approximate u . ,(T,X), we will turn off the noise in /;, which consists of the “quiet” intervals. For
each m, we first solve the deterministic heat equation in the interval [#,,,,,]. Then we replace the solution at
(#7,,-) by its value at (¢,,, X). In the next “noisy” interval [¢,,,#,+1], we solve the stochastic heat equation
with the corresponding “constant” initial data. The error incurred in those “quiet” intervals will be quantified
by Proposition 4.1, and is negligible as € — 0 by the assumption y. < 62. The error incurred by modifying
the initial data for those “noisy” intervals will be quantified by Proposition 5.1, and goes to zero by the
assumption of § ;18%78 < 1. The role of £ is in (6.8) to provide a small amount of extra separation between
the final ¢, and the time 7', which will be needed for the last step of the approximation; see the proof of
Proposition 7.1 below.

In the inequality (6.9), we need log,. T < 2 for all & << 1 so that the above construction makes sense with
M, (g) > M, (g,T), and this prevents us from considering those T of order O(&?). From Proposition 3.6, we
already know that, if T is chosen so that log(1+2£72T) < loge™!, the random noise plays no role in the short
interval [0,7], and we have u, ,(T,x) — a as € — 0. Therefore, those small 7 can be treated separately
without constructing the Markov chain. To unify the notations, we use the following conventions:

1. IfT > g*%=, we have 2—log, T > &, and M;(&,T), M>(&) are defined as above.

2. If T € [0,6%71¢], we have log(1 +2&72T) < loge~! and hence u . (T) — a as € — 0, and we simply
define M(e,T) = M,(e) = 1.
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6.2 The approximating functions

As we have mentioned, our approximation will be focused on a particular terminal space-time point (7, X).
So in this section we fix T > 0, X € R2. To define our approximation, we introduce a sequence of functions
{w(m)}m:Ml(g,T) ,,,,, M (&) as follows. Define

wMED) (1 ) =u, o(tx),  t>0,x R (6.10)

Form € {M,(g,T)+1,...,M>(¢)}, we then inductively define {w"™ (¢,x) : t >/ ,x € R?} to be the solution
to

1
dw™ (1,x) = EAw<"">(t,x)dz+ (loge™) 2o (w™ (1,0))dWe(t,x),  t>1,,x € R%, (6.11)
w™ (i) = / Gyt X =)W (1, y)dy,  xeR%. (6.12)

Therefore, w(™ solves (1.1)—(1.2) but with constant initial condition at time ¢,,. Recall that X is fixed which
is our reference spatial point. We note (recalling (6.6) and (6.7)) that (whenever m > tps, () + 1) we have
t, 2ty > 2t M, (e.T)+1 2 > Iy, (s,7)+1 = 0 and so the initial conditions (6.12) are inductively well-defined.
We also emphasize that the function w™ depends on the parameters €,a,T, X, and the simplified notation

wm) = w(m r.x Will be used when there is no confusion. We will make the dependence explicit when

needed. It is worth mentioning that for those T < £2~1¢, we only have one element in the chain which is
w) =u, .

To compare u, , with w™ it turns out to be convenient to introduce another sequence of functions
{w(m Ym=M, (&,T),....M(&)- Define wim (1,x) > t,,Xx € R?} as the solution to

1 - (1)
@) (1,y) = S (1, )dr + IR 1D om0 oy aw e (), £ > ¢ oxeR: (6.13)
loge™
wm (1) x) = / Gyt (X =)W (1, 9)dy,  xeR%m>M(e,T)+1, (6.14)
wM(ED) (0 x) = a. (6.15)

For each m > M (¢,T) + 1, we note that since w"~!) satisfies the unforced heat equation on the time interval
[#m.t,,], the initial condition (6.14) can be rewritten as

W (t7,,%) = WD (17, X). (6.16)
We also have the following lemma relating ™ to w (™.

Lemma 6.1. For all m € {M,(&,T),...,M>(g)}, we have w'™ (t,x) = w\"™ (t,x) for all t € (2, VO, 141]
and all x € R?.

Proof. The proof is by induction on m. For m = M|(&,T), by (6.13), (6.15), and (6.10), we see that
wMi(eT)) =y =y Mi(eT)) gp (0,101, (e,17)+1] x RZ. For the inductive step, if m = M(g,T) — 1 and we
assume that w(’" D(t,x) =w™mD(z,x) for all (r,x) € (2,1 VO,1] x RZ, then this in particular means that
w0 (1,,.) =w=D(z,,.-). This means that the initial conditions (6.12) for w™ and (6.14) for w"™ (both
imposed at time ¢,,) agree. Since the evolution equations (6.11) and (6.13) also agree on the “noisy” time
interval [?,,,,+1], this implies that w(m =15 (m) on the time interval (2, tm+1] as well. O
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By Lemma 6.1 and (6.16), we see that the initial condition (6.12) is equivalent to
w™ (¢ x)=wm D! X). (6.17)

Thus, for each m > M, (e, T), we initiate w™ and w" with the same data at ¢ = t,,, with w (™ solving
the original stochastic heat equation for 7 > ¢,, and w (™ solving the equation with the noise turned off in
[tm+1at;n+1]'

Our goal in this section is to estimate the approximation error |w ™ (z,x) — Ugq(t,x)| fort>1),,xe€
R?, and m € {M,(&,T),...,M>(g)}. By definition, we have wM1(&T) =y _ . thus by applying triangle
inequality it suffices to estimate w"™ —w("~Dfor each m. We briefly explain below how it will be achieved,
by applying the results from Sections 4 and 5. First, through w ("~ we can write the difference as

w™ (£,x) —w ™V (1,x) = [w™ (£,x) ="V (1,01 + "V (6,0) —w ™V (2,x)], t>1,,xeR%
We bound the two terms separately:

1. For the first error term w™ (¢,x) —w "~ (¢,x), we recall three facts (i) w(’")(t’ )= W(’"‘l)(t’ ,X);
(i) w1 solves the deterministic heat equation in the interval [t,,,t/,]; (iii) for ¢t > ¢,,, w(m)
and w1 solve the same stochastic heat equation. Therefore, the difference of w™ (,x) from
w1 (z,x) only comes from replacing the initial data w "~ (¢/ ,-) by its value at X, which can be
quantified by Proposition 5.1.

2. For the second error term w1V (£, x) —w ™=V (1, x), we have

W(m—l)(t’/n_l’_) ZW(m_l)(t’ ) W(m 2)(Z X)

m—1°

The equations satisfied by w1 and "~V in ¢ > ¢/ _, are the same except that the noise is turned
off in [#,,,1,,] for w (=1 Therefore, the error only comes from turning off the noise in [z,,,?’ +.]. This
can be quantified by Proposition 4.1.

The following proposition is the main result of the section.

Proposition 6.2. Suppose that (C)z~¢ is an arbitrary sequence of numbers such that C. — o as € | 0, and
that ¢ € [0,1) is a fixed constant. Define the set

Sem.c ={(T,a,k,t,x): T €[0,Ty]l,a>0, Mi(e,T)+] <k < Ma(e), 1 € [T —ce*®*= T],x e R*}.

Then we have

1/2
k

(E(”&“ - Wi,fz,T,X)(t’x)z)
lim sup

=0. (6.18)
el (TakixveSen. @(1+Ceek0e2x—X])

In order to prove Proposition 6.2, we need the following second moment bound.

Lemma 6.3. There is a constant K| < oo so that if T € [0,Ty], € € (0,&0], m € {M,(¢&,T),...,Mz(g)}, a >0,
then we have for all x € R? that
Ew!" . (th,.x)* < Kid®, (6.19)

Proof. Throughout the proof, we will again use the simplified notation w ™ (™ Consider a fixed m. For
allt >t _, by the mild formulation of the equation satisfied by w1 and (6.16), we have

1
] _1/ //Gt s(X=y1)Gi—s(X = y2)G 2 (y1 —y2)
oge ()t I\ [t ]

-E[G(W(’"‘”(s,yl))(f(W(”"”(s,yz)) dy;dy, ds

2 E ~(m—1) X 2
X)2+’8—1 / v G, 2) I gs. (6.20)
2rrloge RN 2(t—s)+e&

Ei" Y (,X)* =Ew "2 (1], . X)*+

<Ew" 2

m—1°
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Here we used the fact that w ("~ is stationary in the spatial variable. In particular, we have

2 ' - (m—1 2
Ev" D (1, X)? <EF" 2 (11 X)2+ B 1/ E[w(" >(s,?§) ]ds
T m-l 2nloge™! J, 2(t—s)+e ’

which by Lemma 3.4 (taking there f(s) = Ew (D (t _ +s5,X )2, and also using Definition 3.5), implies that

Ew " (1, X)? < KZEw "2 (1!, X)%

m—1°

Substituting this back into (6.20), taking ¢ = ¢/, and recalling (6.17), we have

232
4o /tm L
4rloge! t,—s+&%/2

ft
K2 2 o
0f log =—m-1 ) . (6.21)

thy—tm

Ew'™ (1, X)* =Ew""V (17,. X)?

<En" (" X)?

m—1°

<Ew" 2 X)?

m—1°

1+

4rloge!

The logarithm can be estimated as
t —t g(m_l) Setye _ 8””58“'78 878_68 —gs
log = ';1_1 =log =

’
tm_m

gMmbs _ gmbs+ys
Ye

<6zloge™,

S(5(910g¢>3_1+logl(9 e =
—gYe

where the last inequality is by (6.4). Substituting this back into (6.21), we have

Ew™ () . X)?=Ex"™ V() X)? <Ew"™ 2, X)?

el 1+

K2pB*6
7 .
Iterating this and recalling (6.9), we have for all x € R?,

-M(&,T)
K2 25 m 1
Ew(m)(ty/n’x)2=Ewm(t,'n,X)2 SK§a2(1+£)

T

2
< Kjaexp {4—K§68(m - M, (e,T))}
T

2—-log,.T
< Kjaexp {%ﬂzlﬁ}
n

for all m < M,(¢). The exponential on the right-hand side is uniformly bounded over all 7 < Ty and all
g € (0,g¢], so we obtain (6.19). O

Now we can prove Proposition 6.2.

Proof of Proposition 6.2. For any t € [T —cg™%*Y= T], we clearly have ¢ > t/,. By Proposition 5.1 and
Lemma 6.3, we have

3(t—t),)+x—X|?

E(w™ —5m D) (1,x)? < Kg( )Ew<m‘”(r;n_1,X)2

1 —tm
3(t—t)) +|x - X|?
< kix2gr [PVt =X (6.22)
0t tr/n_tm
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We have 1], —t,,, = "% (1 -&7¢) € [ 6™, ™% by (6.4), and t 1], < T — 1], = £™%=*V= by (6.6), 50 (6.22)
yields

E(w™ —wm D) (1,x)? < K{K?a* (6875 +2&7M0% |x — X|2) . (6.23)

On the other hand, by Proposition 4.1 and Lemma 6.3, we have for all # > ¢, that

2 4 2
E(W(m_l) _w(m—l))(t X)Z < B KO I—tpmte /2+K2 EW(m—Z)(t/ X)2
7 7 4nloge! t—t),+e22 0 m=1>
- B*K K a? t—tm+&2/2 5 6.24)
" 4nloge! r—t, +&2/2 O ’
We have t —t,, < T —t,, = ™% and t—t], > T —c&™0=*V= —t! = (1-c)e™%*7= 50 (6.24) gives us
2 log &= + K?
EWw™ D —wm=Dy( x)? < ’B—KgKlzaz yﬁm . (6.25)
4 loge™!

Iterating (6.23) and (6.25) and using the triangle inequality, we get

(B —uz ) (15?)

k 1 2
log—+K
§K§K1a Z \/8878/2+\/§8_m68/2|x—X|+—B yL/2+ —gll_c_l 0
m=M(&,T)+1 PAVS oge
12 \Jlog i + Ko
SKgKla (2-log, T)5,! \/6578/2+’878 + ‘ +232|x = X|e7k0</2] |

2\m Vloge!

where in the last inequality we used (6.9) and (6.4). Therefore, we have (with C, as in the statement of the

proposition, an arbitrary sequence so that C, — oo as € | 0)
12 flog-+K
+'8y£ + 8170 +232¢;.

2\m yloge™!

The first summand in the square brackets goes to 0 as £ | 0 by (6.1) and (6.2), and since we assumed that
C . — oo, we obtain (6.18). O

12
(E(us a —w(k))(t,x)z) ) 1
: <K:Ki|(2-log_.T)6- \/887/‘9/2
a(l+Cge*0:/2|x — X|) oK ( g:T)0.

7 The discrete martingale

The key advantage of the approximation carried out in Proposition 6.2 is that we now have an essentially
one-dimensional problem. Note from the definitions (6.11)—(6.14), and also (6.17) and the white-in-time
nature of the noise, that if we (fix once and for all X € R? and) define

Year(Mi(eT))=a;

Year(m)=w™ o (. X)=w"") (t5.X),  Mi(e.T)+1<m< My(e),

then the process {Y o,1 (1) }m=m, (&,T),....M> (&) 1S @ Markov chain and a martingale (both with respect to its

.....
m

own filtration). The key point is that w "/

evolves with spatially-constant initial condition Y. , 7 (m),
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driven by the noise that is independent of the past. Thus Y, , 7 (m+1) depends on the past only via Y, 4 1 (m).
Moreover the expectation of Y. , 7 (m+1) conditional on Y. , 7 (m) is simply Y. , 7 (m) due to the fact that,
when starting from constant initial data, the stochastic heat equation (with the noise either on or off) preserves
expectations. Recall that in the case of (very small) T € [0,° <], we have defined M, (&,T) = M, (&) = 1,
and in this case we simply let Y. o 7 (M1(&,T)) =Yz.a17 (M2(€)) =g o(T,X).

7.1 Approximating the one-point SPDE solution by the Markov chain

In this section we show that Y, , 7 (M2 (¢)), atits terminal time M (&), is a good approximation for u o 4 (7, X)
(in fact, for u . ,(T,x) if x is close to X). Most of the work has already been done in Proposition 6.2.

Proposition 7.1. We have

(E(Ye.ar (Ma(8)) —tte a(T,x))2) "

lim sup =0. (7.1)
£10 Te[0,Ty] a(l+ex-X])
a>0,xeR?
Proof. By Proposition 6.2 (choosing C,. = €%/ — oo by (6.3)), we have
12
(E(u £.a —wg‘{f(TgQ (T, x)z)
lim sup =0. (7.2)
10 T €0, TO] a(1+8 2(M2(8)5£+Cs)|x Xl)
a>0,xeR?
By (6.8), we have %(Mz(a;)(i9 +{¢) < 1. Therefore, (7.2) implies that
(EGuea - w20 x2)
lim sup =0. (7.3)
10 7¢[0,19] a(l+e x—X|)
a>0,xeR?

Moreover, by Proposition 3.6, Lemma 6.3 and the fact that 7 — ¢, <Spy(s) S g27¢:7% we have

Ms(s) ~ Mz(e)
1 1/2
(BB (T Yo (M2(2)))?)

K. 172 (log(1+2& (T ~t ))
< BKo (EW(Mz(a))(tI/WZ(g),X ) ( M(s)

T 2avnm s.a.T.X loge™!

< BKoK; log(l +28_§8_68)

- 2m loge™!
and the quantity on the right side goes to 0 uniformly in 7', a,x by (6.1) and (6.3). This, along with (7.3),
implies (7.1). O

The following spatial regularity statement for u . ,(7,-) is a consequence of Proposition 7.1, so we record
it here for future use.

Corollary 7.2. We have

(E(us a(T,x1) = Ug, a(T,x2)) )1/2
lim  sup

el07 e[0.1y],a>0 a(l+&7x —xz])
x1,x2€R?

=0.
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Proof. By spatial homogeneity, we can assume that x; = X. Then the result follows immediately by writing

(BleaTox) =e.aTa)?) € 3 (Bt To) = Voair (M2(e)?)

2
i=1

and applying Proposition 7.1 to both terms. O

7.2 The martingale differences

The approximation result in Proposition 7.1 motivates us to study the discrete martingale {Y 4.7 (m)},,. Our
ultimate goal will be to show that it approximates a continuous martingale (coming from a solution to (1.5)—
(1.7)) as € | 0. We will use the martingale problem approach as explained in [41, Section 11.2], and en route
it will be important to understand some statistical properties of the increments Yz o 7(m) =Yg o7 (m—1)
conditional on Y , 7 (m — 1), a task to which we now set ourselves. The first observation is that, due to the
independence of dW# on disjoint time intervals, if we define

Zeam= / Gsm—s,’ﬂ (X_Z)Ma,a(s;n_l —Sm,2)dz, My (e, T)+1 <m < Ms(e), (7.4)

(with sy, s;c defined as in (6.5)) then
LaW[Ys,a,T (m) | Ys,a,T (m - 1) = b] = Lawzs,b,m- (7.5)

This can be seen by noting that the evolution equations for u, , and W™ are the same, and that wm s
started with constant initial condition equal to Y. o 7 (m —1).

7.2.1 Martingale difference variances

Our first interest is in the conditional variance Var[Y. 47 (m) | Yo qr(m—1) =b] = VarZ, ., and we
proceed to study this quantity. The first step is to approximate it by a simpler quantity using the regularity
established in Corollary 7.2. An important role will be played by the function J : (—c0,2+log -1 To] XR 9 —
R defined by

1 -
Je(4:@) = 5= (B (e 3%, (7.6)
As u 4 is stationary in the spatial variable, the r.h.s. of (7.6) does not depend on x. Here
q € (—00,2+log -1 Tp] corresponds to 1 ¢ (0,Ty],

i.e., we parameterize J. in time on the exponential scale discussed in Section 1.1. This section has two main
results. First, we show how to use J to approximate VarZ p,_n:

Proposition 7.3. We have

lim sup a6, VarZ, g m—Jo(2— (m—1)8,,a)*| =0. (1.7)
el0 T €[0,Ty],a>0,
M (e, T)+1<m<M; (&)
Also, we will prove the following compactness result for the family {J.} ., which will help us in our
limit procedure:

Proposition 7.4. For any sequence & | 0, there is a subsequence &y, | 0 and a continuous function
J :10,2] xR0 — Ry so that
gli_,n(}ojgkl' [[0,2]xRs0 = (7.8)

uniformly on compact subsets of [0,2] X Rxo.
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As we assumed that Ty > 1, each J . is indeed defined on [0,2]xR5o. We will prove Proposition 7.4 first,
since the intermediate results will be useful in the proof of Proposition 7.3. We need two preparatory lemmas,
addressing the regularity of J. in ¢ and in a. First we address the regularity in g.

Lemma 7.5. Forall e,a >0 and q1,q> € (—,2+log_-1 Tp], we have

2 2
0 (qu—ql|”2+Ko(10g8‘1)‘”2). (7.9)

ap
[Ve(gq2,a) = Js(q1,a)| <
Proof. Assume g < q5. Define I, = [0,£%>~% — £2791]. We can write

101,00 = ()] = 52 (ol (62,0 P = (B a2, 0)%) )

) ) 2 1/2
< B E( Igsa 0 x)—u, (8270, ) ) )
\/_( ug,(e X)—Ugq(e X)

In the first equality we used the fact that
_ 1 _
ule (72, x) B ug (6779, x),

where u{; « 18 defined as in (1.26)—(1.27), i.e., the noise is turned off in /.. Now we apply Proposition 4.1
witht=&>%, A=0, 1 =0, and 7, = 2792 — £2791 {0 obtain

ap’K;? / a2+ g2/2
J ,a)—J ,a)| < 1 + K 7.10
|V e(q1,a) —J&(q2,a)l 47{\/@ 0g82—cn +&2/2 0 710

aB2K2
47

as claimed. O

> (la2= 11"+ Ko(logs™)™"72), (7.11)

Now we address the regularity of J. in a. Later on, we will also use the following result to prove that
(1.15) is satisfied for the limits of {J.} . as € | 0. Thus we need the explicit constant in the middle expression
of (7.12).

Lemma 7.6. For all € € (0,&¢], g € (—0,2+1log -1 Tp], and ay,az > 0, we have

4 log(1+2&79)\"/?
e(q,a2) —Je(g,a1)| < ([?_logT laz—ai| < Flaz—al (7.12)
In particular, for all a > 0, we have
ClKO
Vetaa)l <5 i (7.13)

Proof. We have

e(g.a1) =T e(g.a2)] = % (B (. (6279,00)) 2 = (B (115,05 (64, 20))

L (Bl (679,20 = .y () 2)

2\/_
B ~ ~ 1/2
< ﬁ (E[ug,a1 (¥, x) —Uga, (& q,x)]2) ,
and then the first inequality in (7.12) follows from (3.4) with the explicit constant (3.6). The second inequality
in (7.12) is then just (3.8). The bound (7.13) comes from (7.12) with a; = a and a; = 0. O
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Given the regularity results in Lemmas 7.5 and 7.6, the compactness of the family (J) is straightforward.

Proof of Proposition 7.4. By Lemmas 7.5 and 7.6, along with a simple modification of the Arzela—Ascoli
theorem to account for the second term on the r.h.s. of (7.9) (see e.g. [20, Lemma A.4]), we can extract a
suitable subsequence and pass to the limit on any rectangular subset of [0,2] X R of the form [0,2] x [0, M],
with M > 0. Sending M — oo so that the rectangles exhaust [0, 2] X R and using a diagonalization argument,
we obtain the desired limit and convergence (7.8). O

Now we turn to the proof of Proposition 7.3. We first prove the following intermediate result.

Lemma 7.7. Define

1 Sme175m - J (2 —log, s, a)?
Vs,a,m = —/ 8( 08.7 a) ds
loge=! Jo S =S —s+&)2 (7.14)
1 /s;anm Eo(us.4(s,X))? 4 '
=— 5.
2rloge! Jo 2(s! | =S —8)+&?
Then we have, for any fixed Ty < oo, that
\% —VarZ
lim sup Ve.am s eaml _o (7.15)
£10 T €[0,T)] a=0g

M (e, T)+1<m<M;(&)

Proof. We can first write (recalling (7.4))

1 a1~ Sm
Zeam=0+——— / G, —s,, (X =2) / / Gs;n_l_sm_s(z =)o (e q(s,y))dWe(s,y)dz
Vloge™! 0

1 s;n_ —Sm
:a+—/ 1 /Gsf ]_S;H_S(X—y)o-(ug,a(s,y))dW‘g(s,y). (7.16)
yloge=1 Jo "

Therefore, we have

;o 2
1 Sin—1"5m
Varzs,u,m = ] 1 / //ng(yl _yZ)El—[ (Gs’ _I—s;,,—s(X_yi)o-(us,a(s,yi))) d)’1 dyst‘
0ge " Jo =1

(7.17)
Now we have, by spatial homogeneity, that

Eo_(us,a(syyl))o_(us,a(s’ y2)) = EO—(”S,a(Sa X))O_(us,a(s,X"'YI -y2))-
We also have (using the Cauchy—Schwarz inequality) that

|E0-(u£,a(s’y1))0-(ua,a(s’ yZ)) _Ea-(ua,a(s’))l))zl

< ECT(Ma,a(S,yl))|0(us,a(&)’1)) _U(us,a(s’yZ)”
1/2 1/2
Sﬂz (Eus,a(seyl)z) (E[us,a(s’yl)_us,a(s’yZ)]z) 5

so by (3.5) and Corollary 7.2 we have a function f satisfying liﬁ)l f(g)=0and
&

S[up | B0 (us.a(5,51))0 (t,a(5,52)) =B (e a(s,y1))*| < a*(1+87 |y1 = y2]) £ (£) (7.18)
se O,To

yi.y2€R?
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for all y1,y» € R? and all @ > 0. Now we note that

17 5m
/ ] G rsms X316, s (X =316 (3 =3 VB (a5 dydy s

logs 1
ml —Sm
: / [ Gopmsams X=3)Gy s (X 3B () 2y ds
logs m-1
—Sm E X 2
—_1/ B 7 (it z,a(s, X)) ~ds =V am. (7.19)
2rloge 2(s), _ —Sm—S)te

where in the second-to-last identity we used spatial homogeneity. Subtracting (7.17) and (7.19) and applying
(7.18), we have

|V£,a,m - Varzs,a,ml
2

(e)a? [ Sm-175m B (7.20)
S{ )_1 ]_[Gsf_,_sfm_s(X—yi) G 2 (y1=y2)(1+&7 [y1 —yal) dyr dya ds.
0ge = Jo =1
2
If we define h(r) = (2m)~'e== (1+7) for r > 0, then the last double integral is equal to
2
JTTT60, s |20 - yahavr v
i=1
T h(lyl)dy
< /8 2h(s”yl) dy /G ' mses (X =) dy / —,
-1 " 4n (s = Sm—S5)
where the inequality is Young’s convolution inequality. Substituting this back into (7.20), we have
f(&)a® [ h(lyhdy [smi=sm 1
|Vg,a,m—Vang,a,m| 4 / 1 / ,—ds
nmloge 0 Sl " Sm—S
(8)a2/h(|yl)dy St = Sm J‘(«S)az/h(lyl)dy1 gYe7% —gVe
4rloge! Sm—Sm 4rloge! l-gve
From this and (6.1) we obtain (7.15). O

In Lemma 7.5 we derived the regularity of J in time (where time is taken on an exponential scale). Since
log,. s varies slowly on most of the interval [0,s/ _, —s;], it should be plausible that we could approximate
Je(2-log, s,a)? by

Je(2=log, s ,a)? =Jc(2—=(m=1)8c—yea)? 2 Jo(2—(m—1)5¢,a)*
in (7.14). Indeed we can, and that is how we will prove Proposition 7.3.
Proof of Proposition 7.3. In light of (7.15), Lemma 7.5 and (7.13), it suffices to show that
lim sup a2 1e(2= (m=1)6o~y6.0)* =65 Veam| =0
£l0 T €[0,Tp]

M (e, T)+1<m<M; (&)

We will compare both J (2 — (m —1)§ s~y ¢,a)? and 6! Ve 4 m to the intermediate quantity

\% o J8(2_(m_1)68_78,a)2 /'s;/nﬁsm 1

= ds
g,a,m —
loge~! S 1= Sm s+&2/2

Je2-(m=1)6,-vs,a)* Io gYe708 — g¥e g2z [
B loge™! 1 —g¥e +g2mée |2
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First, we have

|Js(2 - (m - 1)68_7& a)Z - 6;1 Va,a,ml
1 gYe0s _ gVe 4 g2-mbe /2

=Je(2=(m=1)65—ye,a)*|1-
o2~ (m=1Dc=ye.a) dcloge™! o8 1 —g¥e +g2mds |2

B

and from this, (7.13) of Lemma 7.6, (6.1), and (6.8) we have

lim sup a2 [Jo(2=(m=1)65~y5,a)* =6, Vs am| = 0. (7.21)
£10 T €[0,Tp]
M (&, T)+1<m<M; (&)

On the other hand, we have by (7.13) and (7.10) that

5;1 |V£,a,m_va,a,m|
1 ‘/S;n—l_sm |Jg(2— (m=1)8c—ye,a)?—J(2-log, s,a)2| d
\)
0

’

, L +ER2
. azﬁ3K8 [/sm_]—sm IOgﬁ
T 4n328 . (loge )3 Lo s —Sm—s+&?]2

~ S.loge! s —Sm—s+e?]2
sho_+E2
K /s;n_l—sm log =257~ + Ko ]
< s
47T3/25g(10g8_1)% 0 S =S -s+&2/2

ds+(1+Ko)(log2+6.loge™)|. (7.22)
m—1

In the last inequality we used the elementary inequality v/a < 1+a for all a > 0 as well as the explicit integral
computation

[ 2 —
S 1=Sm ds 1o S;n—l —s,'n+g /2 o s;n—l _s”n o gm=1)6+ys _ cmbs+ys
4 —_ ¢ _ 29 =log s 2/y = g _ g Mog _ oMOe+ye
0 S~ Sm—s+e&*/ Sm—Syu+e*/ Sm—Sm € g

gYe" s _ e

=log S10g2+6510g8_1,

1-¢g7e

with the last inequality by (6.4).
For the first term in brackets on the right side of (7.22), we have by Lemma 4.2 (applied witht =57 _, —s,,
and r = s,,) that

’ 2
s te)2

S-1"Sm log s+&2/2 -2/ ’
/ - - 55 ds < (2+10g(1 +2e7°(s,,_4 —sm))) 1 +log —
0 S~ Sm—S+e*[2 s

S:n_1+82/2
-5 +&2/2

1
< (2+1og(1 +2g—2+<m—1)5s+78)) 1+log .
1 —g%

The second bracketed factor goes to 1 as & | 0 (recalling (6.1)) while the first factor is bounded by a constant
times loge~!. Using this in (7.22), we see that there is a constant C < oo so that

21|77 C
a 26.91 |V€,a,m_Vs,a,m| < —1(1+68)’
d:(loge=1)2

and the right side goes to 0 as € | O (uniformly in @ and in T € [0,Tp]) by (6.1). This and (7.21) imply
(7.7). O
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7.2.2 Higher moments

For tightness purposes, we will also need an upper bound on a higher moment of Z ;, ,,,. Let p > 2 be as in
Proposition 3.1.

Proposition 7.8. We have

E|Z p
limsup sup lg—ar;l' < oo, (7.23)
&l0 a0 ars?!
M, (&,T)+1<m<M;(&)

Proof. Fix €, m and define the martingale

Z(r):a+ l—s;,,—s(X—Y)O'(Ms,a(S,y))de(S,y), r=0,

1 r
o=k [o
loge=! Jo "

soby (7.16) we have Z, ;. ,n =7 (s;n_1 —sm). The quadratic variation process is

@) == [ [ Gati-r ﬁ[ (G -spms (X =30 (a5, 3)) dyr dyadis,

By the Burkholder—Davis—Gundy inequality (see e.g. [32, Proposition 4.4]), we have a constant C, < o0 s0
that

E|Zc.aml? < CLE[(Z) (5!, —sm)]P/>. (7.24)
By the inequality

2
o (tg,a(5,y1))0 (e,a(s,y2))| < %(”e,a(s>y1)2+u£,a(s’y2)2)’

we can estimate the quadratic variation as

,82 r
(Z)(r) < ] Gy _ —sﬁ,,—s(X_y)Gs’ L —Sh—s+&2 (X—y)ug,a(s,y)zdyds
loge™" Jo m-1 m-1
= G s’ —sho-s)(s! -sl -s+e X- u s, d dsa
4rloge™! Jo s/ | —sp—s+&2/2 ('m—lz’(",l ~)(~7n71)>m2» 2) (X =y)uza(s,y) dy
“‘m,lismris +&

where we used (5.9) for the above “=". By Jensen’s inequality we have

2 BP d 1 P
(Z)(r)P" < / as|
(4nloge~1)p/2 s;n_l—s;n—s+82/2

Gy o —ors’ st —srety (X = WMg o (s,y)P dyds
_ 2 (Am_ Sm _s)(sm_ Spp—S+&%) &,a
/ / sm §t+e /2 12(s;n_1—x;n—£')+82
B o Spu—1 = Sm Pl
< .
" (4rloge1)p/2 o8 ;n_l —Sm—T
/ / S _s+82/2G(S;rkl7s;,17s)(s;n717s;nﬁv+£2) (X_y)ua,a(S, y)p dy dS.
m

2(.v;n717s;n7s)+£2
Taking expectations and using spatial homogeneity, we have

ﬁp

<
E(Z)(r)? < Grloge )72

S =S p/2
(log P ) sup Eug o(s,y)P.
r

m—1 " Sm ™ s€[0,r]
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Substituting r =5/ | — s, and recalling (7.24) and Proposition 3.1, we have

-1

b e PICRE (s s\ PO R ( pree e P
S (47r loge~1)p/2 Sm — Sin (4rloge=1)P/2 1—ere :
From this and (6.1) we see (7.23). O

8 Proof of Theorem 1.2

In this section we complete the proof of Theorem 1.2. The key remaining step is to show the convergence of
the Markov chain defined in Section 7 to a continuous diffusion. The technology for doing this is well-known,
through the martingale problem of Stroock and Varadhan. We will essentially use [41, Theorem 11.2.3] as a
black box, but we state a special case in a form convenient for us in Appendix A.

Proof of Theorem 1.2. Suppose that & | 0 and J : [0,2] X R59 — R are such that

Jel[0.2]xRzp = J (8.1)

uniformly on compact subsets of [0,2] X R>(. (These are the subsequential limits that are guaranteed to exist
by Proposition 7.4.) By Lemma 7.6, this implies in particular that J is uniformly Lipschitz in its second
argument. For O € [0,2] and a > 0, we consider the stochastic differential equation

d&) 5 (@) =J(2-4.E] ,(9))dB(q), g€ (2-0,2]; (8.2)
g o(2-0)=a, (8.3)

where B is a standard Brownian motion. Since J is Lipschitz in the spatial variable, the problem (8.2)—(8.3)
has a unique strong solution (given Q and J). For the moment, the limit J may depend on the sequence {&},
as may the solution to (8.3).

Suppose that {Q . € [0,2]} >0 is such that

=1l 8.4
. 2-Q¢, .
exists. Define T, =&, ~ . We claim that
1
teya(Toe X) — 8] 5(2). (8.5)
By Proposition 7.1, it suffices to show that
Yak a,Te (MZ(gk)) —> Q(z) (86)

We now explain how (8.6) follows from Theorem A.1 with A =2-Q, A, =2, and L(g,b) =J(2—q,b). From
(6.7)-(6.8) and (8.4) we have 6, M (ex, T, ) — 2—Q and 6, M>(ex) — 2 as k — oo. The condition (A.1)
is verified by Proposition 7.3, while the condition (A.2) is verified by Proposition 7.8. Thus Theorem A.1
applies and we obtain (8.6) and thus (8.5).

We note that the family of random variables {0 (¢, (T, , X))*}x>1 is uniformly integrable by the p > 2
moment bound in Proposition 3.1, so from (8.5) we can derive

1

- 12
N (Eo-(.:a’Q(Z))) @8

. . 1 1/2
J(Q,Cl) = klgr(}o‘lsk(Q’a) = klgroloﬁ (Eo—(ué‘k,a(Tsk9X))2) =
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The problem (8.2), (8.3), (8.7) agrees with the problem (1.5)—(1.7) by the change of variables

Ba0(q) =8} »,(q+2-0). (8.8)
Note also that

J(0.0) = lim J5,(0.0) =0,
for all Q € [0, 2], and that

k—o0

4r  log(1+2g,7) “i2

n

LipJ(Q,-) < hmsulepJgk(Q -) < limsup (— - 1—_1]{) = (4n/B*>—q)"/?
k— oge,

by Lemma 7.6. Therefore, J satisfies both conditions of Theorem 1.1, and thus J is uniquely characterized by
the properties we have established for it. By Proposition 7.4, this means that in fact

limJ =J
81% £1[0,2]xRx0

uniformly on compact subsets of [0,2] X R, so the limiting procedure above does not depend on the specific
choice of {e;}. By the same argument as that leading to (8.5), we have

_ 1 = 1
e.a(67790.X) — 8] 5(2) ¥ Ea0(Q)-

(8.9)
In particular, for any 7" independent of ¢, taking Q. =2-log, T — Q =2, we have
1
te.a(T,X) — Ea2(2),
&—0
as claimed. O

Remark 8.1. Now we are able to prove the convergence of the variance of the random variable

Upar (8) = Afloge! / [to.0(T.x) — alg (x)dx,

where T > 0 and a Schwartz function g are fixed. By the mild formulation (1.4), recalling that * denotes the
spatial convolution, we have

Eﬂs,a,T (8)2

T
E /0 / G-y *8(3)0 (g a(s,y))dW

_ / // Gy % 8(y)Gr—s *8(y2)G s2(y1 — y2) o (t.a(5:y1)) 0 (1t .0 (5, y2)) dyrdyads
0

—/0 ﬂGT—s*g(yl)GT—s*g(yl+8y2)G1(yZ)EO—(us,a(S,yl))o-(usa(s y1+&y2))dyidy,ds

(8.10)
By Theorem 1.2, Corollary 7.2, and Proposition 3.1, we have, for any s € (0,7),y1,y2 € R

EO—(Mg,a(sey1)>o_(us,a(s9yl +‘9y2)) = EO—(Ea,Z(z))za as € — 0.
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Then we pass to the limit in (8.10) to derive

T
EU. o 7(8)* = Eo(242(2)? / / |Gr—s % g(y)*dyds, (8.11)
0

so the variance of U, , 7(g) converges as € — 0. By adopting the approach in [25], one should be able to
further prove the convergence

Uar(€) 2 Usr () = / Ua(T.1)g (x)dx, 8.12)

with the random distribution U, solving the Edwards-Wilkinson equation

1
dU, = 5AUadH,/Ea(aa,z(2))2dW(t,x), U,(0,x) = 0. (8.13)

To avoid further lengthening the paper we do not pursue this direction here.

9 Multipoint statistics

Now we turn our attention to multipoint statistics and work towards proving Theorem 1.3.

9.1 Local-in-space dependence of the solution on the noise

We can interpret Proposition 4.1 of Section 4 as a form of local-in-time dependence of the solution # . , on
the noise. In particular, we can turn off the noise in an area temporally distant from where we evaluate the
solution without affecting the solution much. To discuss multipoint statistics, we will need a similar property
when we turn off the noise in a spatial region that is distant from our point of interest.

For B c R?, let v& , solve the problem

1
dvB ,(1,x) = EAvga(t,x)dH (loge™) 2o (vE ,(1,%))dW 5B (1,x); 9.1)
vE (0,x) =a. 9.2)

Here, W% = G 2y * (Wlp). Note that W& = W*8 +W#B | and moreover that W% and W#5° are
independent. Define

R0 = [ Goaple=G e~y 93)
B
so that, formally,
EdW® B (1,x)dW=B(¢',x") =6(t—1")R®B (x,x").

Note that R®#(x,x’) < G 2(x —x’) for all x,x” € R%. We note that vZ , has nothing to do with the v 4
considered in Section 5.

Our first goal will be an estimate on what happens if we turn off the noise in a half-plane, which we
do in Lemma 9.2 below. We then consider complements of rectangles by taking unions of half-planes in
Proposition 9.3. First we record a simple moment bound.

Lemma 9.1. Forany T € [0,Ty] and any B C R2, we have

12
sup (Evg’a(t,x)z) < Koa. 9.4)

x€R?
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Proof. By the mild solution formula and Young’s inequality, we have

1 t
1 —1/ //Gz—s(x—)’1)Gz—s(x—yz)Rg’B()’l,yz)'
oge 0
E[oc(vE ,(t.y1)o(vE ,(1,y2))]dy1dy,ds

E\/ga(t,)c)2 =a’+

2 t
<a’+ SlogeT ;/0 // Gr—s(x=y1)G s (x = y2)RB (y1,y2)Eo (vE ,(2,y:))* dy1 dy, ds.
This means that
B 2 2 1 !
sup Evy ,(1,x)" <a”+ " Gis(x=y1)Gi-s(x = y2)G 2 (y1 — y2)-
cR? 2loge 0
- sup Eo-(vg’a(t,x))zdyl dy,ds
x€R?
2, 1 /t sup, g Ec(vE (¢, x))2
2rloge™! 2(t—s)+z~:2 ’
and (9.4) then follows from Lemma 3.4 (and (3.8)). O

Lemma 9.2. Let B C R? and let H be a half-plane in R?. Then we have, for all x ¢ H, that

k
B? log(1+2&7%1)
E(Vs a —vf\f)(t x)2 < 5a ZKZZ (47TIOgT (G%[Hkgz] * 1) (x). 9.5)

Proof. From (9.1)—(9.2) we write the mild solution formula

vB (tx)=a+ Gros(x =)o (vE ,(5,y))dW= B (s, ).

=l
loge~! Jo
Subtracting the corresponding expression for v’j}f , We obtain

W —vE (1,x)

'—logS—I/ /Gl s(x y) O-(Vg a(s y)) O-(VB\H(S y))] WS,B\H(S’y)

+\/1—1 /0 / Gios(x=Y)T(vE ,(5,3)) dW &P (s, ).
oge~

Taking second moments in this expression, using the independence of W&8\H and W#-B"H | we have

EGE, —vé‘\f )(1,x)?

12
= loge- 1/ [/Rg BV (yy, yz)l—[(Gt s(x=yi) (E(vga—vg\f)(s,yi)z) )dyldyzds
B &.BNH 5 12
+10gs—1 A R® (Y1,y2)l_[ Gi_s(x—y;) (Evg’a(s,yi) ) dy; dy,ds
i=1

=1 +1. (96)
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For the first term we can estimate

1/2
fi< 1 —1/ //Gz s(X=y1)Gi—s(x=y2)G 2(y1 M)H(E(vsa—vB\H)(s yl)) dy; dy, ds
oge
= ]Ogg—l/ /Gt s(x— yl)Gt s+52(x y])E(vga_vga ) (s, yl)zdylds
G(z 5)(t— s+£2) (X y)
2(1-s)+&2 i B B\H 9 ) 2
47T10gs 1/ / t—s+82)2 (IHL()’)E(V,S“ Vea )(8,y) +4Kja IH(y)) dyds, (9.7

where in the last inequality we used (5.9) and Lemma 9.1. For the second term of (9.6) we can estimate

ﬂZ 2K2
10g8 / “//G, s(x=y1)Gi_s(x— yZ)RanH(yl’yZ)dyldyzds

_ Bk Ji (G yprmsrery * 1) ()

t—s+&2/2

< ds, 9.8
4rloge~! * ©8)

where in the second inequality we used (5.9). Using (9.7) and (9.8) in (9.6), we have
E(E , —vid) ()

(t ) (= s+£2) (x-y)

2(t— \)+z~: B\H 2
Lie(ME(Weq - .y)?dyd
47r10ga 1/ / t—s+&2/2 He(Y) (vga Vea )(s,y) dyds ©9)
pa: /r([“"‘W*G'v st *1H)<">d
+ .
4rloge=! Jy t—s+&2)2 §

Now we note that for all x ¢ H, and all r > 0, if we let w > 0 be the distance between x and H, then we
have

i(Gr>x<lH)(x) = d / (2nr)” 1/2 —é: /(2r) d¢ = / (Zﬂr)—l/Ze—_fz/(Zr) dé
dr dr 352 ©.10)

——(Zﬂr)_l/ze_f /(2r) = (27rr)_1/22€_w2/(2r) > 0.
r

E=w
This means that for all s € [0,¢], we have

(G jrosreryoy * 1)) S (G * 1) ()

and similarly
(G(z —s) (t— A+s2) 1) (x) < (G t(t+.=;2) 1) (x) < (G L(t+82) * 1) (x).

2(t— .s)+s 2t+82

Using these estimates in (9.9), we see that if we put f(#,x) = E(v‘9 P vg\f)(t,x)z, then for all x € H® we

have
(r s)(1— v+52) ()C y)

2(t-. s)+s
t,x) < 15 ,y)dyd

f(t,x) < 47110g8‘1,/ / Py e () f(s,y)dyds ©.11)

5 500 log(1+2&7%¢)

+E a KO (G%[H_SZ]*IH) (X)IOgT

Define
b® (1) = 5+k8—2. 9.12)
2 2
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‘We note that

2 2
r— r— 2
= sup s 8 (=8 s+f/)
sefo0] 12 2 2(t—s)+&%/2 (9.13)
Sb(k+l)(t)

(k) (t—S)(t—S+82/2)]
) L A TP vy

for all s € [0,7] and all £ > 1. Define

NN
B;k) 5q ZKZ('B log(1+2¢ 2t)) .

4 loge~!
Suppose that
F(t,x) < B+ 3 B (G )+ 10) () (9.14)
k=1

for all x € H®. This is automatically true for n = 0 with Bio) =1 fllL=([0.r)xr2)- Then we have from (9.11)
that, for all x € H®,

(t s) (21— .s+£2) ('x y)
2(t-s) +&2
tL,x) L —— 1y
F(t,x) 47rlogs‘l / / t—s+&2/2 He(y)

log(1+2&7%t)
loge™!

(n) _
ﬁzB log(1+2&721) 50
1 d
ST logs 4ﬂ10g8—1z //t—s+s2/2 b(k)(s)er* H)(x) N

2(t— v)+s

n
k
B+ B (Gpw () # 11) (v) | dyds
k=1

5
+ —,82a2K§ (Gl [t+£2] * IH) ()C)

log(1+2£7%1)

S 2 242
+ B e Ky (Gb(l)(t)*lH) (x) Toge—]

ﬂzB( " log(1+2&72) , Brlog(1+2e~

21‘) n ® 0
> B (G gy +1 +B (G 1 )
87 loge™! drloget 472 (Gpasn 1y * 1) (X) + B, |G ) * 1 ) (%)

BB log(1+2e
Y loge™!

_21‘) n+l 5
+ 2 B (G g+ 1a) ().
k=1

In the third inequality we used (9.13) and (9.10). By induction, this means that (9.14) holds for all n > 0,

_ n
with Bi”) = 1f Nl e [0,01xR2) (g . logfolg%%)) — 0 as n — oo. Therefore, we in fact have
S k
B% log(1+2&721)
ft,x) < 56121{32 (ElogT (Gpw () *1r) (%),
k=1
which (recalling (9.12)) is (9.5). O

Now we apply Lemma 9.2 four times to bound the effect of turning off the noise outside of a square.

Proposition 9.3. Suppose that

£ [1/2
lim2£ =1lim £ =0. 9.15)
el0Ng €l0 Ng
and
limsup?, < oo. 9.16)
0
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Let Og = [-1g,1£]% Then we have for all x € [—€,,&.]? that

11%1«:(“5 a V2 ) (te,x)? = 9.17)

Proof. Using Lemma 9.2 four times, we have

4 o
E(tte,q—v35,) (1e,%)? < SaZKZZZc’;(G% ke * 1) (1), (9.18)
i=1 k=1
where Hy,...,Hy are four half-planes so that O, = ﬂl | H;. Here we have also defined

ﬁz log(1+¢ 2t8)
. —o\ ° &)
T 4x loge™!

We note that (9.16) and the subcriticality assumption S < V2r that

limsupce < 1. 9.19)
0

Now if limsupe~2t, < oo, then ¢, — 0 as £ | 0, so using the trivial bound (G1 [1otke?] * 14,)(x) <1in(9.18)

£l0
we get (9.17). Therefore, we can assume that

limsupe™2t, = co. (9.20)
10

We break the inner sum in (9.18) into two pieces. First we estimate

C
Z C];(G%[ts+ks2] * lHi)(-x) < E clfg = 1‘9_6 5 0
k:I_S—Zng k:LS_Zth e

as € | 0 by (9.19) and (9.20). Then we estimate

|_872t£J =S}
D G ke 1) () < (Gry 5 1) (1) ) k= #1,) (%),
k=1 k=1

using the fact that 7, /2+ ke?/2 < t, whenever k < £7%t,.. Now we have, for x € [, &), that

1 00 cx2 l (77(-; gé‘)
G, 1) (x) < / ex {‘_}do‘s CX{
(G, 1) (%) V2nt g Jye-é. P12, V2nrte Jno-é. b 2ts

_ Vzts/ﬂexp{ (ne— é:a) } -0
ns_é:s 2t

as € | 0 by (9.15). Combining the last three displays and (9.18) gives us (9.17). O

&

9.2 Proof of Theorem 1.3

We now have the tools we need to prove Theorem 1.3. Throughout this section, our setup is as in the statement
of Theorem 1.3. We note in particular that (1.19) implies (with d as in (1.18)) that

d((Té‘,i’xg,i), (Tgsj,xs’j)) = gl_di.i+‘)(1) .
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and (1.20) implies that

75, =g 2o 9.21)
as ¢ | 0. Let k. be such that k. — 0 and
1
108170 < d((Te,15X0.0), (e X)) < & 7070 (9.22)
and
26770 e < 1, < g2TQ7He, (9.23)

Our first step will apply Proposition 9.3 to show that the values of the solution u . , at distant space-time
points are asymptotically independent.

Proposition 9.4. Let Py,..., PR be a partition of [N] so that

dij>Q/2 & i€Py,jEPyn+m. 9.24)
Then there is an €1 € (0,&q] so that if € € [0, &) then there are independent processes u(sl,)a, ... ,u(glz so that
uffﬂl faw Ugq(k=1,....R), and foreach j € Py (k=1,...,R), we have

i B (o (T, X ) = te,a(Te. e ) =0 (9.25)

Proof. Foreach k=1,...,R, leti; be an arbitrary element of Pj. Define

Dy = max dij < Q/2, (9.26)

i,j€Py
with the inequality by (9.24). Define the sets S, x ¢ RxR? by

Ser= (T&ik + [_82—Q+2Kg+2§g,82—Q+2K8+2g8]) v (xg’ik + [_gl—Q/2+Kg’81—Q/2+KS]2) .

Here k. is as in (9.22)—(9.23) and . is as in (6.3).
If k| # ko, then we have by (9.24) that d,-kI i, = Q/2,so by (1.18) and (9.22) we have

172 1-Q/2
maX{|Tg,[~kl _TS,ikzl / ’|x8,ikl _XS,ikzl} > 10s o/ +e

This means that {S. 1,...,Ss r} forms a pairwise-disjoint family of sets.
Let Ax = [0,74,i,, — g2 C**e+4e ] Define u'g”‘a as in (1.26)—(1.27). By Proposition 4.1, we have, for all
J € Py, that

12
(E(ue,a - u?,ka)(Ts,ﬁx&j)z)

,BaKg © | T, j+&2
< ——2C | Ko+4[log
2y/rloge! Te,j = Teip +E7 OHHet0e 4 g2

) 9.27)

We note (still assuming j € Py) that

2-2Dy, 2-Q+2K+2L &

1
7o Tein] < g7 <o and 7, <8O (9.28)

by (9.22), (9.23), and (9.26). Thus from (9.27) we obtain a constant C so that
1/2 CBak?
Bt~ ) (e pore)?) | < oot Ky Jloge 22 2
( (”e,a ”a,a)(Te,]axs,]) =3 nlogs‘l 0t++/loge -0 (9.29)

41



as € | Osince kg, s — 0.
Define 7r; : Rx R? — R be given by 7 (f,x) =t and 7, : Rx R? — R? be given by 75 (#,x) = x. Let zlfgkz
solve the problem

1
dit'®) (1,x) = EAag’fg(t,x)dH (loge™ ) T 1g, (s, 1) (Do (@) (1,x))dW =) (1, x); (9.30)
i) (0,x) = a. 9.31)

This turns off some temporal part of the noise as in (1.26)—(1.27) but also a spatial part of the noise as in
(9.1)—=(9.2). Since {Sz.1,...,Ss.r} is pairwise-disjoint, the processes ufel)a e ufg are independent. We now

want to apply (a translated version of) Proposition 9.3 with

P e ne = &l"Q/2e 2-0+2k42Ls

te :Ta,j_Ts,ikl + &

Note that b
e k—Kg

limZE = lim S JimgQ/2-Dk-2s _ )
sl0ne  el0 =22k 0

since Dy < Q/2 and k. — 0, and also that (using these facts along with (6.3) and (9.28)) that

limi—/z < limM +1im81_Q/2+K£+§E <lim i +lime% =0
£l0 N &l el-0Q/2+k,s £l0 gl=Q/2+ke T g0 gl=Q/2%ks )0 .

Therefore, (9.15) is verified, so Proposition 9.3 applies, and we have (combining the result with (9.29)) that

(1,0 = 0) (T Xeiy)* =0 (9.32)
&
for all j € Py. Now let ufgkzl solve the problem

1
i (1.2) = 5 Ay (1. 2)dr 9.33)
+(loge™) Ly (5,0 (N0 (Wl (£.0))A[W S 520 (1) 4 W #7250

1 S 143
+(log ™) 2Ry (5, ) (DT (e (£,)) AW (£, %)
Ue q(0,x) =a, (9.34)

where W is an independent copy of W (different and independent across different choices of k). Note

that ufsl,)c,, e, u(gl’?l are independent since the family {S. 1,...,S¢ r} is disjoint. The pairs (u, 4, ﬁfgkz) and

(ugfz,, il (gkzl) have the same joint laws because to go from u . , to u(gkzl we simply replaced a part of the noise

(on Si ) that is independent of 7 fgkz (for which the noise on Si « 1s turned off). Therefore, (9.32) also means

that

g?gE(ué’fL ~ a8 (e %00, =0, (9.35)
and combining this with (9.32) yields (9.25). O

Now we can prove Theorem 1.3.

Proof of Theorem 1.3. We use induction on N. The base case, (1.24) with N =1, is simply an application of
(8.9). Now suppose that N > 2 and that (1.24) holds for all strictly smaller N. Let

qo=2-2 max d; ;. (9.36)
i,jE[N]
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Then we have
qg<Q-2+q0 = ip-¢)2([N]) ={1} 9.37)
by the definition (1.21). Define

me(qo) = max{Mi(&,7c1), L (g0 = 26 =2y.)55' |}, (9.38)

recalling the definition (6.7), and also recall the definition (6.11)—(6.12) of wgrz 7 x- In the case m «(qo) =
My(e,74,1), we have
Ug,a (T.s,jaxa,j) = errjlaﬁgrio’??xg,l 9.39)

by the definition (6.10). Otherwise, we note using (9.22) that
Tej = Tol— %82_2d1j_2’<8 > Ty — %8%—2/«9 > Tgq - %8m8(qo) Sotye (9.40)

Thus we can apply Proposition 6.2 with C, = g2 (recalling (6.1)) and ¢ = 1/2, and by (9.40) take T = 7 1,
k=mg(qo), and t = 7. ; in the supremum in (6.18), to obtain

(me(a0)) 2\'/?
(E(Ma,a_Ws,a,-rg,l,xg’l)(Ts,j,xs,j) )

lim =0. 9.41

el0 a(l+eme(@0)0e/2ve/2|x, i — x4 1) O40

Note that (9.39) implies (9.41) as well, so in fact (9.41) holds unconditionally. On the other hand, we also
have, using (9.38), (9.22), (9.36), and (6.1), that

lime e @)8e/27e 2 x| < Limgvelaozsi-dy < Ly e _
€0 ’ ’ 2 &l0 2 £l0

Combined with (9.41), this means that

o V 1/2
lima™ (E(ue.a w0, ) (7 oxe)’) =0, 9.42)
Now define
lo=Te, — gM=(q0)Se+ye (9.43)
and
(me(qo))

w(t,x) = Wi to1,Xe.l (t+Le,xe1).

Note that if 7 = 7 ; then t;ng(qo) =Tg1—{e, 50 w(0,-) is constant in space and w(0, x) faw Ye a,r.,(me(qo)).

Thus, by applying Theorem A.1 as in the proof of (8.6) (recalling (8.8) and (9.37)), we see that
1
w(0.%) =5 Ta0.1(Q = (2= q0). (9.44)

Moreover, w is equal in law to u . ,, where b = w(0, x) is taken to be independent of the noise driving u . p.
Recall the definition (1.21) and let

Pr=ir!, (k) ={j € [N] : i1_gy2(j) = k}.

Note that Py,...,Py form a partition of [N], and by (9.36) this partition is nontrivial. If ij_g,/2(j1) =
i1—qo/2(J2) then d;, ;, < 1—go/2 by the strong triangle inequality (1.25). On the other hand, if ij_4,/2(j1) #
i1-gy/2(j2) and d}, j, < 1-¢qo/2, then we have by (1.25) and (9.36) that

dis_go 2 G)sirgo () S MaX{diy (1), 1> djijos Djosig, (i)} < 1= q0/2,
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contradicting the definition (1.21). Therefore, we have

I1-qo/2(J1) =l1-gy2(J2) &= dj, j, <1-q0/2. (9.45)

Furthermore, we note that, for all j € Py, we have 2d; x <2 - qo, which means that (recalling (9.43), (9.22),
and (9.36)) we have
2—11?(}10g‘9 (Ts’j —58) =2—qo. (9.46)
&

Comparing this with (1.20), we see that the collection {(7,; —{¢,X¢ ;) }je[n] Of space-time points satisfies
the hypotheses of the theorem with the same d; ;s but with Q replaced by 2 — g¢. Thus by (9.45), Proposi-
tion 9.4 applies and we obtain independent processes w(!), ..., w™)  each distributed identically to w, so
that, whenever j € Py, we have

li%E(w(k) ~w)(te.j—Llerxe,)? =0. (9.47)
E

By the nontriviality of the partition {Py,..., Py} we have |Py| < N for each k. Therefore, by the inductive

hypothesis, we have
law
WO (1o —Cerxe))jep, s—lO> (Tb,2-40,/ (2= q0)) jePy»

with b = w(0,x) independent of the randomness in the processes on the right side. Here we also used that
i(2-go-q)/2(j) does not change when the minimum in (1.21) is restricted to elements of Py, since P was
defined so that this minimum will be an element of P anyway. But since the family (w %)) 11<V=1 is independent,
as is the family ((T'p,0-g,.7(Q —40))jep, )1, this means that in fact

law

(W(k) (Ts,j' - fs,xs,j));'vel s—,LO> (Fb,2—qo,j (2- CIO));'V:p (9.48)

again with b = w(0,x) independent of the randomness in the processes on the right side. Combining (9.42),
(9.44), (9.47), (9.48), and the continuity of the SDE (1.22)—(1.23) with respect to the initial condition, we
obtain (1.24). O

A Convergence of discrete Markov martingales to continuous diffusions

For the convenience of readers, we recall in this section a classical result on the convergence of Markov
chains to diffusions that is used in the paper. We use the formulation and results given in [41, Section 11.2].

Theorem A.1. Suppose that we have a sequence of numbers 6y | 0, a sequence of discrete Markov martingales
(Y (M) Ym=a, (k).,....As (k) gy and a continuous function L : [Ay, A2] xR — R satisfying the following
conditions:

1. The sequence of random variables (Y. (A1(k))) converges in law to a random variable X as k — oo.

2. For each g € [Ay,Az], the function L(q,-) is Lipschitz with the Lipschitz constant bounded above
independent of q.

3. We have 6;ym € [Ay,Az] forall k > 1 and m = A (k),...,Ax(k), and

klim (5kA1(k) = A1 and klim (5kA2(k) = Az.
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4. For each R < oo, we have

lim sup |67 Var[Yi(m+1) | Yi(m) =x] — L(6xm,x)| =0. (A.1)
k—o0 |x|<R
Al (k);m<A2(k)

5. Thereis a p > 2 so that, for each R < oo, we have

sup 6 PPE[(Yi(m+1) = Yi(m))P | Ye(m) =x] < co. (A.2)
k<oo,|x|<R
A (k) <m<A, (k)

Let (Y(q))ge[A,,A,] Solve the stochastic differential equation

dY¥(q) = L(q,Y(q))dB(q), q>Ar; (A3)
Y(A) =X, (A.4)

where B(q) is a standard Brownian motion. Then we have
law
Y (Az(k)) P Y (Az). (A.5)

Proof. This is essentially an application of [41, Theorem 11.2.3]. Since that theorem is stated in a general
form, we provide some details on how to check the conditions. First we note that although [41, Theorem
11.2.3] is stated for time-independent diffusions, it is trivial to add the time-dependence simply by considering
the space-time processes of the form {(Yx(m),0xm)}m=a,(k),...,A,k)- Applying [41, Theorem 11.2.3]
requires also knowing that the limiting martingale problem corresponding for (A.3)—(A.4) is well-posed.
The SDE (A.3)-(A.4) has pathwise unique solutions by the standard theory and condition 2 in the statement
of theorem. This implies that there are unique solutions for the martingale problem by results [44, 43] of
Watanabe and Yamada; see [41, Corollary 8.1.6]. Finally, [41, Theorem 11.2.3] is stated for diffusions
starting at time O and lasting for all time; this can be adapted to our setting (a finite time interval with arbitrary
starting time) by shifting time and extending the Markov chains to later times in some arbitrary way.

The quantitative conditions for [41, Theorem 11.2.3] are [41, (11.2.4)—(11.2.6)]. In our setting, [41,
(11.2.4)] is a consequence of (A.1) (and the fact that there is no diffusion for the time process). The fact that
we have assumed that each Y (-) is a martingale means that there is no drift for the space process, and of
course the drift condition is satisfied trivially for the time process, so [41, (11.2.5)] is trivial in our setting.
Finally, [41, (11.2.6] holds because, by (A.2) and Markov’s inequality, we have for any fixed « > O that

E[|Yk(m+1) =Y, (m)|” | Yi(m) =x]
OrkP

1
aP“Yk(m"'l)_Yk(m” 2 k[ Yi(m)=x) <
SC&Z/%]K_I’

for a constant C < oo, and the last quantity goes to 0 as k — oo since p > 2 and 6 | 0.
Now condition 1 and the proof of [41, Theorem 11.2.3] show that, if we define

Yi(A1+8k[m—Ai(k)]) =Y (m), m=Ay(k),...,Az(k),

and extend Y to [A},A>] by linear interpolation (possibly extending it by a constant on the small interval
[A1+6x(A2(k)—A(k)),As]), then Y converges to Y in distribution with respect to the uniform topology
on continuous functions on [A1, A;]. Then (A.5) follows. O
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