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Abstract

We consider a nonlinear stochastic heat equation in spatial dimension 𝑑 = 2, forced by a white-in-time
multiplicative Gaussian noise with spatial correlation length 𝜀 > 0 but divided by a factor of

√︁
log𝜀−1.

We impose a condition on the Lipschitz constant of the nonlinearity so that the problem is in the “weak
noise” regime. We show that, as 𝜀 ↓ 0, the one-point distribution of the solution converges, with the limit
characterized in terms of the solution to a forward-backward stochastic differential equation (FBSDE).
We also characterize the limiting multipoint statistics of the solution, when the points are chosen on
appropriate scales, in similar terms. Our approach is new even for the linear case, in which the FBSDE
can be solved explicitly and we recover results of Caravenna, Sun, and Zygouras (Ann. Appl. Probab.
27(5):3050–3112, 2017).

1 Introduction

Fix a Lipschitz function 𝜎 : [0,∞) → [0,∞) with 𝜎(0) = 0. Define 𝛽 = Lip(𝜎). We are interested in the
following two-dimensional stochastic heat equation with colored noise of spatial correlation length 𝜀 > 0,
started at constant initial condition 𝑎 ∈ R≥0:

d𝑢𝜀,𝑎 (𝑡, 𝑥) =
1
2
Δ𝑢𝜀,𝑎 (𝑡, 𝑥)d𝑡 + (log𝜀−1)− 1

2𝜎(𝑢𝜀,𝑎 (𝑡, 𝑥))d𝑊 𝜀 (𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ R2; (1.1)

𝑢𝜀,𝑎 (0, 𝑥) = 𝑎. (1.2)

Here we define 𝑊 𝜀 = 𝐺 𝜀2/2 ∗𝑊 , where 𝐺𝑡 (𝑥) = 1
2𝜋𝑡 e

−|𝑥 |2/(2𝑡) is the two-dimensional heat kernel, d𝑊 is a
spacetime white noise, and ∗ denotes convolution in space. The choice of mollifier is not essential, and we
restrict to this choice only to simplify some of the computations. The covariance operator of d𝑊 𝜀 is formally
given by

Ed𝑊 𝜀 (𝑡, 𝑥)d𝑊 𝜀 (𝑡 ′, 𝑥 ′) = 𝛿(𝑡 − 𝑡 ′)𝐺 𝜀2 (𝑥− 𝑥 ′) = 𝛿(𝑡 − 𝑡 ′) 1
𝜀2𝐺1( 𝑥−𝑥

′

𝜀
). (1.3)

For 𝜀 > 0, the well-posedness of the initial value problem (1.1)–(1.2) is well-known (see e.g. [40]), and we
consider the mild formulation

𝑢𝜀,𝑎 (𝑡, 𝑥) = 𝑎 +
1√︁

log𝜀−1

∫ 𝑡

0

∫
𝐺𝑡−𝑠 (𝑥− 𝑦)𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦). (1.4)
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General properties of solutions to the nonlinear stochastic heat equation have previously been studied in
general spatial dimensions by many authors. We mention the non-exhaustive list of works [17, 18, 13, 12, 14].

We are interested in taking 𝜀 ↓ 0 and identifying nontrivial limiting behavior for the solutions of (1.1)–
(1.2). The linear problem, in which 𝜎(𝑥) = 𝛽𝑥, is a particularly important special case. Here it is known
that the attenuating factor (log𝜀−1)− 1

2 in (1.1) is required, and that there is phase transition at 𝛽 =
√

2𝜋. The
subcritical linear problem (𝛽 <

√
2𝜋) was previously studied in [7] (which we will discuss in more detail

shortly), while the critical linear problem (𝛽 ≈
√

2𝜋) has been studied in [3, 8, 26, 10]. It is worth mentioning
that the notion of “criticality” here is different from the one in [28, Section 8]. In the linear case, the equation
is related by the Cole–Hopf transform to the two-dimensional KPZ equation, as considered in [11, 9, 24]. The
linear problem also admits a Feynman–Kac formula [2] and thus a connection to directed polymers, with the
solution to the SPDE interpreted as the partition function of directed polymers in random environment. The
Feynman–Kac representation has proved to be very useful in analyzing properties of the solutions, but is not
available in the nonlinear case. In [7], Caravenna, Sun, and Zygouras showed that if 𝜎(𝑥) = 𝛽𝑥, 𝛽 ∈ (0,

√
2𝜋),

then for any fixed 𝑇 > 0 and 𝑋 ∈ R2, 𝑢𝜀,𝑎 (𝑇, 𝑋) converges in distribution as 𝜀 ↓ 0 to a log-normal random
variable. Their proof used the Feynman–Kac formula to connect the problem to directed polymers, and then
worked to understand a polynomial chaos expansion in great detail.

The goal of the present paper is to study the nonlinear case in which many previously-used tools are
not available. We will show in Theorem 1.2 below that if 𝜎 is 𝛽-Lipschitz, 𝛽 ∈ (0,

√
2𝜋), then 𝑢𝜀,𝑎 (𝑇, 𝑋)

converges in distribution as 𝜀 ↓ 0. The limit depends on 𝜎 and is obtained through the solution of a forward-
backward stochastic differential equation. Our method is also new in the linear case. In the nonlinear case,
the limit does not seem to be log-normal in general.

Part of the reason we are interested in such a problem comes from the recent progress in proving the
Edwards-Wilkinson limit of the KPZ equation [11, 9, 24, 37, 22, 33, 15] in 𝑑 ≥ 2. Most of these results rely
on the Cole–Hopf transformation which, in some sense, linearizes the problem so that one can focus on
studying the linear stochastic heat equation (as in [19, 42, 39, 27, 21, 33, 15]) and how its solution behaves
after the logarithmic transformation. For general Hamilton–Jacobi type equations, this linearization does not
exist and there are no results of this type. (See a conjecture in [30, p. 5] and some related directions for the
anisotropic KPZ equation in [4, 5, 6].) We hope that working on the nonlinear stochastic heat equation can
help bridge the difficulty and shed light on other nonlinear problems such as the Hamilton–Jacobi equation.
A similar effort in 𝑑 ≥ 3 was carried out in [25]. The convergence to Edwards-Wilkinson equation in 𝑑 ≥ 2 is
as random Schwartz distributions, which, in our case, corresponds to the convergence in distribution of the
random variable √︃

log𝜀−1
∫

[𝑢𝜀,𝑎 (𝑇,𝑥) − 𝑎]𝑔(𝑥)d𝑥

for Schwartz test function 𝑔. The limiting marginal distributions of 𝑢𝜀,𝑎 play an important role in passing to
the limit of the above random variable, which we will discuss in more detail below in Remark 8.1.

In order to state our main result (Theorem 1.2 below) precisely, we first have to define the limit object.
Let {𝐵(𝑞)}𝑞≥0 be a 1D standard Brownian motion with the natural filtration {G𝑞}𝑞≥0. We consider the
following system of equations, satisfied by {Ξ𝑎,𝑄 (·)}𝑎,𝑄, with the parameters 𝑎 ≥ 0 and 𝑄 ∈ [0,2]:

dΞ𝑎,𝑄 (𝑞) = 𝐽 (𝑄− 𝑞,Ξ𝑎,𝑄 (𝑞))d𝐵(𝑞), 𝑞 ∈ (0,𝑄]; (1.5)

Ξ𝑎,𝑄 (0) = 𝑎; (1.6)

𝐽 (𝑞, 𝑏) = 1
2
√
𝜋
[E𝜎2(Ξ𝑏,𝑞 (𝑞))]1/2. (1.7)

The parameter 𝑎 plays the role of initial data, 𝑄 is the terminal time, and the above equation can be interpreted
as follows: for the process started at 𝑎 with the terminal time 𝑄, to determine the diffusion coefficient
at any time 𝑞 ∈ [0,𝑄], we run an independent process, starting from the current position 𝑏 = Ξ𝑎,𝑄 (𝑞)
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and with terminal time 𝑄 − 𝑞. The new process at time 𝑄 − 𝑞 is distributed like Ξ𝑏,𝑄−𝑞 (𝑄 − 𝑞). Then
the square of the diffusion coefficient for the original process, at time 𝑞, is given by the expectation of
1

4𝜋𝜎
2(Ξ𝑏,𝑄−𝑞 (𝑄 − 𝑞)). We emphasize that a solution to (1.5)–(1.7) consists of both a family of random

processes {Ξ𝑎,𝑄 (·)}𝑎≥0,𝑄∈[0,2] and also a deterministic function 𝐽 : [0,2] ×R≥0 → R≥0. That is, 𝐽 is not
given as part of the data of the problem but is rather found as part of the solution. Probabilistically, the
processes Ξ𝑎,𝑄 are not coupled in any particular way across various choices of 𝑎 and 𝑄: each Ξ𝑎,𝑄 could
be taken to live on a different probability space. However, their laws are related through the deterministic
function 𝐽.

We note that another, equivalent, way to write the system (1.5)–(1.7) is as

dΞ𝑎,𝑄 (𝑞) =
1

2
√
𝜋

(
E[𝜎2(Ξ𝑎,𝑄 (𝑄)) | G𝑞]

)1/2d𝐵(𝑞), 𝑞 ∈ (0,𝑄]; (1.8)

Ξ𝑎,𝑄 (0) = 𝑎. (1.9)

The formulation (1.8)–(1.9) is essentially a forward-backward stochastic differential equation (FBSDE).
Fixing 𝑎 ≥ 0 and 𝑄 ∈ [0,2], we consider the process {(𝑋 (𝑞),𝑌 (𝑞), 𝑍 (𝑞))}𝑞∈[0,𝑄] , with all components
adapted to the filtration {G𝑞}𝑞≥0, satisfying the coupled forward-backward stochastic differential equation

d𝑋 (𝑞) =
√︁
𝑌 (𝑞)d𝐵(𝑞), 𝑋 (0) = 𝑎, (1.10)

d𝑌 (𝑞) = 𝑍 (𝑞)d𝐵(𝑞), 𝑌 (𝑄) = 1
4𝜋
𝜎2(𝑋 (𝑄)). (1.11)

Here the equation for 𝑋 (·) is forward since the initial condition is given, and the equation for 𝑌 (·) is
backward since the terminal condition is given. Because 𝑌 is supposed to be a martingale with terminal value
1

4𝜋𝜎
2(𝑋 (𝑄)), we actually have 𝑌 (𝑞) = 1

4𝜋E[𝜎2(𝑋 (𝑄)) | G𝑞]. As a result, 𝑋 (·) solves the same equation as
Ξ𝑎,𝑄 (·).

In the FBSDE formulation, the auxiliary function 𝐽 (called a “decoupling function” in the FBSDE
literature [34, 35, 23]) is not required, although it can be recovered from (1.8) by (1.7). The formulations (1.8)–
(1.9) and (1.5)–(1.7) are equivalent because the law of Ξ𝑎,𝑄 (𝑄) conditional on Ξ𝑎,𝑄 (𝑞) = 𝑏 is the same as the
law of Ξ𝑏,𝑄−𝑞 (𝑄− 𝑞). We similarly note that a solution to (1.10)–(1.11) will satisfy 𝑌 (𝑞) = 𝐽2(𝑄− 𝑞, 𝑋 (𝑞)).
The formulation (1.5)–(1.7) turns out to be easier to work with, since one can first solve for the deterministic
decoupling function 𝐽, and once 𝐽 is known the problem (1.5)–(1.6) becomes a standard stochastic differential
equation. We refer the reader to, for example, [36] for background on FBSDEs. We also point out that the
function 𝐽2(𝑞, 𝑏) is a viscosity solution to the quasilinear heat equation

𝜕𝑞𝐽
2 =

1
2
𝐽2𝜕𝑏𝑏𝐽

2; (1.12)

𝐽2(0, 𝑏) = 1
4𝜋
𝜎2(𝑏), (1.13)

as can be seen by an argument similar to that of [36, Section 8.2], using the moment bound in Remark 2.1
below.

The non-Lipschitz dependence of (1.10) on 𝑌 , as well as the potentially quadratic growth of 𝜎2 at infinity,
exclude the system (1.10)–(1.11) from the established well-posedness theories for FBSDEs, discussed in
[36, 35]. Nonetheless, we can prove the following well-posedness result.

Theorem 1.1. If 𝛽 <
√

2𝜋, then there is a unique continuous function 𝐽 : [0,2] ×R≥0 → R≥0 satisfying the
following conditions:

1. For each 𝑞 ∈ [0,2], 𝐽 (𝑞, ·) is Lipschitz,
𝐽 (𝑞,0) = 0, (1.14)
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and
Lip 𝐽 (𝑞, ·) ≤ (4𝜋/𝛽2 − 𝑞)−1/2. (1.15)

2. For each 𝑎 ≥ 0 and 𝑄 ∈ [0,2], the solution {Ξ𝑎,𝑄 (𝑞)}0≤𝑞≤𝑄 to the problem (1.5)–(1.6) (with this
choice of 𝐽) satisfies 1

2
√
𝜋
(E𝜎(Ξ𝑎,𝑄 (𝑄))2)1/2 = 𝐽 (𝑄,𝑎). In other words, (1.7) is satisfied with 𝑞 =𝑄

and 𝑏 = 𝑎.

The proof of Theorem 1.1 is given in Section 2. Now that we have established existence and uniqueness
of solutions to (1.5)–(1.7), in the sense of Theorem 1.1, we can state our main theorem.

Theorem 1.2. If 𝛽 <
√

2𝜋, then for any 𝑄 ∈ [0,2] and 𝑋 ∈ R2, we have

𝑢𝜀,𝑎 (𝜀2−𝑄, 𝑋) law−−−→
𝜀↓0

Ξ𝑎,𝑄 (𝑄), (1.16)

where Ξ𝑎,𝑄 comes from the solution to (1.5)–(1.7). For any fixed 𝑇 > 0 and 𝑋 ∈ R2 we have

𝑢𝜀,𝑎 (𝑇, 𝑋)
law−−−→
𝜀↓0

Ξ𝑎,2(2). (1.17)

The constant 2 appearing (twice) in (1.17) comes from the fact that, for fixed 𝑇 > 0, the time variables 𝑞
and 𝑡, corresponding to the ODE (1.5) and the PDE (1.1) respectively, are (informally) related by

𝑡 = 𝑇 − 𝜀𝑞 .

This is related to the fact that the noise contributes to the solution on this 𝜀-dependent exponential scale, as
we discuss more in Sections 1.1 and 1.2 below. The terminal time 2 corresponds to the 𝐺 𝜀2 in the correlation
function (1.3) for the noise: the mollification cuts off the dynamics below this scale.

Of course, even deterministic ODEs are not generally integrable in elementary terms, so we do not expect
to be able to solve the system (1.5)–(1.7) explicitly for general 𝜎. However, in the linear case 𝜎(𝑢) = 𝛽𝑢, the
system can indeed be solved explicitly. In that case, we recover the log-normal fluctuations proved in [7]. We
show how to do this in Section 1.3 below.

The work [7] also dealt with limiting multipoint statistics of solutions to (1.1)–(1.2) with 𝜎(𝑥) = 𝛽𝑥. It
turns out that 𝑢𝜀,𝑎 (𝑡1, 𝑥1) and 𝑢𝜀,𝑎 (𝑡2, 𝑥2) are asymptotically independent if

𝑑 ((𝜏1, 𝑥1), (𝜏2, 𝑥2)) B max{|𝑡1 − 𝑡2 |1/2, |𝑥1 − 𝑥2 |} (1.18)

is of order 1. To see a nontrivial correlation structure, we must put 𝑡2 = 𝑡1 + 𝜀𝛼 and 𝑥2 = 𝑥1 + 𝜀𝛽 for some
𝛼, 𝛽 > 0. This situation persists in the nonlinear case, and we can express the limiting joint laws of multiple
points separated on these scales by a branching version of the ODE (1.5)–(1.6), as we state in the following
theorem. Note that once 𝐽 has been obtained from the single-point problem (1.5)–(1.7), it is no longer
necessary to consider (1.7) in the multipoint problem: 𝐽 is then simply a fixed deterministic function,
depending only on 𝜎.

Theorem 1.3. Suppose that 𝛽 <
√

2𝜋. Let 𝑁 ∈ N and fix 𝑁 space-time points (𝜏𝜀,1, 𝑥𝜀,1), . . . , (𝜏𝜀,𝑁 , 𝑥𝜀,𝑁 ) ∈
R>0 ×R2, depending on 𝜀. Define the metric 𝑑 as in (1.18). Suppose that

𝑑𝑖 𝑗 B 1− lim
𝜀↓0

log𝜀 𝑑 ((𝜏𝜀,𝑖 , 𝑥𝜀,𝑖), (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗)) (1.19)

exists for all 𝑖, 𝑗 , and suppose that
𝑄 B 2− lim

𝜀↓0
log𝜀 𝜏𝜀, 𝑗 (1.20)
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exists, is independent of 𝑗 , and is at most 2. Define

𝑖𝑞 ( 𝑗) = min{𝑖 ∈ {1, . . . , 𝑁} : 𝑑𝑖 𝑗 < 𝑞}. (1.21)

Let 𝐽 be as in the solution to (1.5)–(1.7). Let 𝐵1, . . . , 𝐵𝑁 be a family of 𝑁 independent standard Brownian
motions. For 𝑎 ∈ R, let (Γ𝑎,𝑄, 𝑗)𝑁𝑗=1 solve the family of SDEs

dΓ𝑎,𝑄, 𝑗 (𝑞) = 𝐽 (𝑄− 𝑞,Γ𝑎,𝑄, 𝑗 (𝑞))d𝐵𝑖(𝑄−𝑞)/2 ( 𝑗) (𝑞), 𝑗 ∈ {1, . . . , 𝑁}; (1.22)

Γ𝑎,𝑄, 𝑗 (0) = 𝑎. (1.23)

Then we have
(𝑢𝜀,𝑎 (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗))𝑁𝑗=1

law−−−→
𝜀↓0

(Γ𝑎,𝑄, 𝑗 (𝑄))𝑁𝑗=1. (1.24)

The quantity 𝑑𝑖 𝑗 represents the distance between (𝜏𝜀,𝑖 , 𝑥𝜀,𝑖) and (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗) on the exponential scale. Of
particular note here is the ultrametricity property

𝑑𝑖𝑘 ≤ max{𝑑𝑖 𝑗 , 𝑑 𝑗𝑘 } (1.25)

for all 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝑁}. If one restricts to a single point (𝑁 = 1) then it is of course clear that (1.22)–
(1.23) agrees with (1.5)–(1.6). For two points, if we consider 𝜏𝜀,1 = 𝜏𝜀,2 = 𝑇 > 0 independent of 𝜀 and
|𝑥𝜀,1 −𝑥𝜀,2 | = 𝜀𝛼 with some 𝛼 ∈ [0,1], then 𝑄 = 2, 𝑑11 = 𝑑22 = −∞ , 𝑑12 = 1−𝛼, and it is clear that Ξ𝑎,𝑄,1 is
driven by 𝐵1 in [0,2], while Ξ𝑎,𝑄,2 is driven by 𝐵1 in [0,2𝛼] and by 𝐵2 in [2𝛼,2]. Two extreme cases are
𝛼 = 0 and 𝛼 = 1, in which Ξ𝑎,𝑄,1 and Ξ𝑎,𝑄,2 are independent and identical respectively. In the general case,
we note that the set {𝑖 (𝑄−𝑞)/2( 𝑗) : 𝑗 ∈ {1, . . . , 𝑁}} only grows larger as 𝑞 increases. Therefore, the members
of the family of SDEs (1.22)–(1.23) will generally start stuck together and then branch apart at times 𝑞 such
that 1− 𝑞

2 = 𝑑𝑖 𝑗 for some 𝑖, 𝑗 ∈ {1, . . . , 𝑁}. Thus we obtain a multiscale correlation structure generalizing the
one obtained for the linear case in [7, Theorem 2.15 and (2.18)]. In Section 1.3 we show how to recover [7,
(2.18)] from Theorem 1.3 in the linear case.

1.1 The exponential time scale

A key feature of the SPDE (1.1)–(1.2) is that, in the subcritical regime 𝛽 <
√

2𝜋, it evolves on an exponential
time scale, with respect to the strength of the random noise. To see this, consider the following equation in
microscopic variables:

d𝑢𝑎 (𝑡, 𝑥) =
1
2
Δ𝑢𝑎 (𝑡, 𝑥)d𝑡 + 𝛿𝜎(𝑢𝑎 (𝑡, 𝑥))d𝑊1(𝑡, 𝑥), 𝑢𝑎 (0, ·) ≡ 𝑎,

with d𝑊1 the Gaussian noise that is white in time and smooth in space (the spatial covariance function
being 𝐺1 by (1.3)), and 𝛿 > 0 a fixed small parameter. We are interested in determining the scales on which
nontrivial effects from the random noise can be observed. As expected, it depends on the dimension through
the integrability of the heat kernel.

In 𝑑 = 1, the correct scale turns out to be (𝑡, 𝑥) = ( 𝑇
𝛿4 ,

𝑋

𝛿2 ), where (𝑇, 𝑋) are the corresponding macroscopic
variables as discussed for directed polymers in [1] and for SPDEs in [2, 29]. In 𝑑 ≥ 3, if 𝛿𝛽 is small enough
so that the problem is in the weak disorder regime, one can consider an “arbitrarily long” diffusive scale
(𝑡, 𝑥) = ( 𝑇

𝜀2 ,
𝑋
𝜀
) with 𝜀→ 0 independent of 𝛿. The 𝑑 = 2 case is very special. As observed in [7] for the linear

case 𝜎(𝑥) = 𝛽𝑥, the second moment 𝑓𝑎 (𝑡) := E𝑢𝑎 (𝑡, 𝑥)2 satisfies a closed-form equation

𝑓𝑎 (𝑡) = 𝑎2 + 𝛿
2𝛽2

4𝜋

∫ 𝑡

0

𝑓𝑎 (𝑠)
𝑡 − 𝑠+ 1

2
𝑑𝑠.
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This is a Volterra equation, and one can easily analyze the asymptotic behavior of 𝑓𝑎 (𝑡) for large 𝑡 and small
𝛿:

𝑓𝑎 (𝑡) ≈
𝑎2

1− 𝛿2𝛽2 log 𝑡
4𝜋

, if
𝛿2𝛽2

4𝜋
log 𝑡 < 1.

Due to the dependence on log 𝑡, to see a nontrivial evolution, one should consider an exponential time scale
and let 𝑡 = e𝑄/𝛿2

with 𝑄 ≤ 2 (we used 𝑄 rather than 𝑇 as the macroscopic variable here, to emphasize this
is on the exponential scale). For 𝛿 = (log𝜀−1)− 1

2 , this leads to 𝑡 = 𝜀−𝑄. On the other hand, by the scaling
property of the white noise, one can easily check that, in 𝑑 = 2, we have

𝑢𝜀,𝑎 (·, ·)
law
= 𝑢𝑎 ( ·

𝜀2 ,
·
𝜀
), if 𝛿 = (log𝜀−1)− 1

2 .

Thus, 𝑢𝜀,𝑎 (𝜀2−𝑄,0) law
= 𝑢𝑎 (𝜀−𝑄,0), and from this perspective, it is natural to consider the scaling used in

(1.16), which says that for any macroscopic variable 𝑄 ∈ [0,2], we have

𝑢𝑎 (𝜀−𝑄,0)
law−−−→
𝜀↓0

Ξ𝑎,𝑄 (𝑄).

1.2 Sketch of the proof

The proof of Theorem 1.2 begins with a series of approximations of the SPDE (1.1)–(1.2). Fix 𝑇 > 0, 𝑋 ∈ R2.
The underlying phenomenology behind these approximations is that the contribution of the noise d𝑊 𝜀 on
an interval [𝑇 − 𝜀𝑞,𝑇 − 𝜀𝑞+𝛾] to the 𝐿2 norm of the solution 𝑢𝜀,𝑎 (𝑇, 𝑋) can be bounded from above by 𝛾1/2.
Therefore, we can “turn off” the noise on intervals [𝑇 −𝜀𝑞𝑖 ,𝑇 −𝜀𝑞𝑖+𝛾], 𝑖 = 1, . . . , 𝑀 , and as long as 𝑀𝛾1/2 � 1,
this will not change 𝑢𝜀,𝑎 (𝑇, 𝑋) in the limit. (We describe precisely how we choose these increments at the
beginning of Section 6.) For any 𝐴 ⊂ [0,∞), we define 𝑢𝐴𝜀,𝑎 as the solution to

d𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) =
1
2
Δ𝑢𝐴𝜀,𝑎 (𝑡, 𝑥)d𝑡 +

1R\𝐴(𝑡)√︁
log𝜀−1

𝜎(𝑢𝐴𝜀,𝑎 (𝑡, 𝑥))d𝑊 𝜀 (𝑡, 𝑥); (1.26)

𝑢𝐴𝜀,𝑎 (0, 𝑥) = 𝑎. (1.27)

This comes from the problem (1.1)–(1.2) by “turning off” the noise on the set 𝐴. Section 4 is devoted to
bounding the error incurred by turning off the noise on an interval.

Let 𝑢̃𝜀,𝑎 = 𝑢𝐴𝜀,𝑎, with 𝐴 =
⋃𝑀
𝑖=1 [𝑇 − 𝜀𝑞𝑖 ,𝑇 − 𝜀𝑞𝑖+𝛾], denote the solution with the noise turned off in this

way. Fix any 𝑖 = 1, . . . , 𝑀. Since we expect the problem to have a diffusive scaling, 𝑢̃𝜀,𝑎 (𝑇 − 𝜀𝑞𝑖+𝛾 , 𝑥)
should contribute to 𝑢𝜀,𝑎 (𝑇, 𝑋) only for those 𝑥 such that |𝑥 − 𝑋 | . 𝜀 (𝑞𝑖+𝛾)/2. We further choose 𝛾 so that
𝜀𝛾 � 1. The noise is turned off on the interval [𝑇 − 𝜀𝑞𝑖 ,𝑇 − 𝜀𝑞𝑖+𝛾], so 𝑢̃𝜀,𝑎 (𝑇 − 𝜀𝑞𝑖+𝛾 , ·) has been subject to
the deterministic heat equation (with no noise) for the last 𝑇 −𝜀𝑞𝑖+𝛾 − (𝑇 −𝜀𝑞𝑖 ) = 𝜀𝑞𝑖 (1−𝜀𝛾) ≈ 𝜀𝑞𝑖 amount of
time, and thus is essentially constant on spatial scales much smaller than 𝜀𝑞𝑖/2. Thus, since 𝜀𝛾 � 1 and thus
𝜀 (𝑞𝑖+𝛾)/2 � 𝜀𝑞𝑖/2, the main contribution of noise up until time 𝑇 − 𝜀𝑞𝑖+𝛾 on 𝑢𝜀,𝑎 (𝑇, 𝑋) is via the constant
𝑢̃𝜀,𝑎 (𝑇 − 𝜀𝑞𝑖+𝛾 , 𝑋). Section 5 is devoted to bounding the error incurred by replacing the field by a (random)
constant after the solution has been subject to the deterministic heat equation for some time. In Section 6, we
define the time discretization that we use, and then iterate the results of Sections 4 and 5 to bound the total
error incurred by this approximation scheme.

Our approximation scheme approximates the solution 𝑢𝜀,𝑎 (𝑇, 𝑋) in terms of a scalar-valued Markov
chain whose 𝑖th value is 𝑢̃𝜀,𝑎 (𝑇 − 𝜀𝑞𝑖+𝛾 , 𝑋). (Since the equation starts from constant initial data and we are
interested in the marginal distribution, by space-stationarity, the choice of 𝑋 is arbitrary and plays no role.)
This Markov chain, which is also a discrete martingale, will approximate the solution to (1.5)–(1.7). To see
why, we note that step (𝑖 +1) of the Markov chain is given by solving the original equation (1.1)–(1.2) with

6



the initial condition 𝑎 equaling to the current value of the Markov chain, which is 𝑢̃𝜀,𝑎 (𝑇 − 𝜀𝑞𝑖+𝛾 , 𝑋), on an
interval of length 𝜀𝑞𝑖+𝛾 − 𝜀𝑞𝑖+1 ≈ 𝜀𝑞𝑖+𝛾 , and then letting the solution evolve according to the heat equation
for time 𝜀𝑞𝑖+1 − 𝜀𝑞𝑖+1+𝛾 ≈ 𝜀𝑞𝑖+1 . Although it only represents one step of the Markov chain, approximating the
solution on these time scales require running another instance of the Markov chain for 𝑀 − 𝑖 steps. This is
a consequence of the mild solution formula; see Lemma 7.7 below. This corresponds to the 𝑄 − 𝑞 in the
argument of 𝐽 in (1.5). On the other hand, since this only represents one step of the Markov chain, one
only needs to understand the variance rather than the complete law in order to compute the diffusivity of the
limiting diffusion. Accounting for the averaging from the heat equation (which gives us a factor of 𝑞𝑖 − 𝑞𝑖−1),
it turns out that this variance is approximated by the expression on the right side of (1.7) in the limit. In
particular, the fact that only the variance is important is reflected in the fact that an expectation is taken on the
right side of (1.7). Making these ideas precise is the main task of Section 7.

The fact that the diffusion coefficient of the limiting SDE can be represented in terms of statistics of
the chain itself is of course critical to proving the existence of the limit. The fact that the self-similar
structure characterizes the limit is reflected in the fact that the problem (1.5)–(1.7) is well-posed, as stated in
Theorem 1.1. This well-posedness allows us to construct the limiting diffusion coefficient and then show that
the Markov chain converges to the diffusion using standard techniques. This is the content of Section 8.

We address multipoint statistics, and prove Theorem 1.3, in Section 9. At this stage, since the problem
(1.5)–(1.7) has been solved, the function 𝐽 has been identified. The Markov chains corresponding to multiple
points stay together at earlier times, but then eventually branch apart from each other as the remaining
time scale approaches the spatial separation of the points. It turns out that once they branch apart, they are
completely independent in the limit. This yields the branching diffusion structure (1.22)–(1.23).

1.3 The linear case

In this subsection, we consider the linear case 𝜎(𝑢) = 𝛽𝑢 and show that solutions to (1.5)–(1.7) have
log-normal one-point statistics, and moreover that we recover the limiting variance [7, (2.18)] obtained
in [7, Theorem 2.15]. In this case, the linearity of the problem (1.5)–(1.7) allows us to make the ansatz
𝐽 (𝑞, 𝑏) = 𝑏𝐽 (𝑞), with 𝐽 (𝑞) = 𝐽 (𝑞,1). Then the problem becomes

dΞ𝑎,𝑄 (𝑞) = 𝐽 (𝑄− 𝑞)Ξ𝑎,𝑄 (𝑞)d𝐵(𝑞), 𝑞 ∈ [0,𝑄]; (1.28)

Ξ𝑎,𝑄 (0) = 𝑎; (1.29)

𝐽 (𝑞) = 𝛽

2
√
𝜋
(EΞ1,𝑞 (𝑞)2)1/2. (1.30)

We can already see that (up to a time-change determined by 𝐽) the problem (1.28)–(1.29) is solved by a
geometric Brownian motion. It turns out that we can compute 𝐽 explicitly. By Itô’s formula applied to (1.28)
we have

d(logΞ𝑎,𝑄) (𝑞) = 𝐽 (𝑄− 𝑞)d𝐵(𝑞) − 1
2
𝐽 (𝑄− 𝑞)2d𝑞, (1.31)

and hence

Ξ𝑎,𝑄 (𝑄) = 𝑎 exp
{∫ 𝑄

0
𝐽 (𝑄− 𝑞) d𝐵(𝑞) − 1

2

∫ 𝑄

0
𝐽 (𝑄− 𝑞)2 d𝑞

}
. (1.32)

Taking 𝑎 = 1, substituting (1.32) into (1.30), and computing the expectation, we obtain

𝐽 (𝑄)2 =
𝛽2

4𝜋
exp

{∫ 𝑄

0
𝐽 (𝑞)2 d𝑞

}
.
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Differentiating this expression gives us the differential equation d
d𝑄 𝐽 (𝑄)

2 = 𝐽 (𝑄)4. Combining this with the

initial condition 𝐽 (0) = 𝛽

2
√
𝜋

, which is evident from (1.6) and (1.7), we obtain

𝐽 (𝑄) = (4𝜋/𝛽2 −𝑄)−1/2. (1.33)

Note that the resulting 𝐽, given by

𝐽 (𝑞, 𝑏) = 𝑏√︁
4𝜋/𝛽2 − 𝑞

, (1.34)

saturates the bound (1.15). Substituting (1.33) into (1.32), we have

Ξ𝑎,𝑄 (𝑄) = 𝑎 exp

{∫ 𝑄

0

1√︁
4𝜋/𝛽2 − (𝑄− 𝑞)

d𝐵(𝑞) − 1
2

∫ 𝑄

0

d𝑞
4𝜋/𝛽2 − (𝑄− 𝑞)

}
law
= 𝑎 exp

{
𝑆− 1

2
E𝑆2

}
,

(1.35)

where 𝑆 ∼ 𝑁 (0, log 4𝜋/𝛽2

4𝜋/𝛽2−𝑄 ). In the case 𝑄 = 2 and 𝑎 = 1, this agrees with the expression [7, (2.12)].
Now we address the multipoint statistics, i.e. the problem (1.22)–(1.23). As in (1.31), but now knowing

(1.33), we have

d(logΓ𝑎,𝑄, 𝑗) (𝑞) =
d𝐵𝑖(𝑄−𝑞)/2 ( 𝑗) (𝑞)√︁
4𝜋/𝛽2 − (𝑄− 𝑞)

− d𝑞
8𝜋/𝛽2 −2(𝑄− 𝑞)

.

From this linear SDE we see that the family (logΓ𝑎,𝑄, 𝑗 (𝑄))𝑁𝑗=1 is jointly Gaussian. All of the means are
equal as

E[logΓ𝑎,𝑄, 𝑗 (𝑄)] = log𝑎− 1
2

∫ 𝑄

0

d𝑞
4𝜋/𝛽2 − (𝑄− 𝑞)

= log𝑎− 1
2

log
4𝜋/𝛽2

4𝜋/𝛽2 −𝑄
as in (1.35). The covariance structure is given by

Cov(logΓ𝑎,𝑄,𝑖 (𝑄), logΓ𝑎,𝑄, 𝑗 (𝑄))

=

∫
{𝑞∈[0,𝑄] : 𝑖(𝑄−𝑞)/2 (𝑖)=𝑖(𝑄−𝑞)/2 ( 𝑗) }

d𝑞
4𝜋/𝛽2 − (𝑄− 𝑞)

=

∫
[0,𝑄−2𝑑𝑖 𝑗∨0]

d𝑞
4𝜋/𝛽2 − (𝑄− 𝑞)

= log
4𝜋/𝛽2 − (2𝑑𝑖 𝑗 ∨0) ∧𝑄

4𝜋/𝛽2 −𝑄
.

(1.36)

The second equality is by the ultrametricity property (1.25) of the 𝑑𝑖 𝑗s. For 𝑄 = 2, (1.36) is the same as the
covariance structure [7, (2.18)] obtained in [7, Theorem 2.15].

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1, establishing the well-posedness of the limiting problem. The analysis
here is essentially independent of the rest of the paper.

Proof of Theorem 1.1. If 𝑔 : [0,𝑄] ×R≥0 → R≥0 is continuous, is Lipschitz in the second variable, and
satisfies 𝑔(·,0) ≡ 0, then for each 𝑎 ≥ 0 and 𝑄 ∈ [0,2] we let Ξ𝑔

𝑎,𝑄
solve the problem

dΞ𝑔
𝑎,𝑄

(𝑞) = 𝑔(𝑄− 𝑞,Ξ𝑔
𝑎,𝑄

(𝑞))d𝐵(𝑞); (2.1)

Ξ
𝑔

𝑎,𝑄
(0) = 𝑎. (2.2)
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It is standard that (2.1)–(2.2) has a unique strong solution with continuous sample paths almost surely, and
that this solution is positive with probability 1. (For the last property see e.g. [38, Lemma 2.1].) We write
(2.1)–(2.2) in the mild formulation

Ξ
𝑔

𝑎,𝑄
(𝑞) = 𝑎 +

∫ 𝑞

0
𝑔(𝑄− 𝑠,Ξ𝑔

𝑎,𝑄
(𝑠)) d𝐵𝑠 .

Define
Q𝑔(𝑄,𝑎) = 1

2
√
𝜋
(E𝜎(Ξ𝑔

𝑎,𝑄
(𝑄))2)1/2.

We note that 𝐽 satisfies the condition 2 in the statement of the theorem if and only if Q𝐽 = 𝐽. We will show
that there is a unique such fixed point 𝐽 under the additional assumption that condition 1 in the statement of
the theorem is satisfied.

To this end, let X be the Banach space of continuous functions 𝑓 : R≥0 → R such that 𝑓 (0) = 0 and the
norm

‖ 𝑓 ‖X = sup
𝑎>0

| 𝑓 (𝑎) |
𝑎

is finite. Let Y be the Banach space of continuous functions 𝑔 : [0,2] ×R≥0 → R such that 𝑔(𝑞,0) = 0 for all
𝑞 ∈ [0,2] and the norm

‖𝑔‖Y = sup
𝑞∈[0,2]
𝑎>0

e−𝑅 (𝛽)𝑞
|𝑔(𝑞, 𝑎) |

𝑎
(2.3)

is finite, where we have defined

𝑅(𝛽) = 2𝛽2
(

4𝜋/𝛽2

4𝜋/𝛽2 −2

)3

. (2.4)

Finally, let Z ⊂ Y be the closed subset defined by

Z =

{
𝑔 ∈ Y : inf

𝑎≥0
𝑔(𝑞, 𝑎) ≥ 0 and Lip𝑔(𝑞, ·) ≤ (4𝜋/𝛽2 − 𝑞)−1/2 for all 𝑞 ∈ [0,2]

}
.

Thus, we are done if we can show that the map Q has a unique fixed point in Z, and we will do this by
showing that Q maps Z into itself and moreover is a contraction on Z.

Step 1: 𝐿2 bound. If 𝑔 ∈ Z, by the fact that 𝑔(𝑞,0) = 0 we have 𝑔(𝑞,𝑥) ≤ Lip𝑔(𝑞, ·)𝑥 for any 𝑥 > 0, so

EΞ𝑔
𝑎,𝑄

(𝑞)2 = 𝑎2 +
∫ 𝑞

0
E𝑔(𝑄− 𝑝,Ξ𝑔

𝑎,𝑄
(𝑝))2 d𝑝 ≤ 𝑎2 +

∫ 𝑞

0

EΞ𝑔
𝑎,𝑄

(𝑝)2

4𝜋/𝛽2 −𝑄 + 𝑝
d𝑝.

By Grönwall’s inequality, this means that

EΞ𝑔
𝑎,𝑄

(𝑞)2 ≤ 𝑎2 exp
{∫ 𝑞

0

1
4𝜋/𝛽2 −𝑄 + 𝑝

d𝑝
}
= 𝑎2 · 4𝜋/𝛽2 −𝑄 + 𝑞

4𝜋/𝛽2 −𝑄
. (2.5)

Step 2: Q maps Z to itself. Let 𝑔 ∈ Z. It is clear that Q𝑔(𝑞,0) = 0 for all 𝑞 ∈ [0,2]. It remains to check
that Q𝑔 is continuous and Lip(Q𝑔(𝑞, ·)) ≤ (4𝜋/𝛽2 − 𝑞)−1/2 for all 𝑞 ∈ [0,2]. For the Lipschitz property, we
have

|Q𝑔(𝑄,𝑎) −Q𝑔(𝑄,𝑏) | = 1
2
√
𝜋

���(E𝜎(Ξ𝑔
𝑎,𝑄

(𝑄))2)1/2 − (E𝜎(Ξ𝑔
𝑏,𝑄

(𝑄))2)1/2
���

≤ 𝛽

2
√
𝜋

(
E[Ξ𝑔

𝑎,𝑄
(𝑄) −Ξ

𝑔

𝑏,𝑄
(𝑄)]2

)1/2
. (2.6)
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Now we note that, for any 𝑞 ≤ 𝑄, we have

E[Ξ𝑔
𝑎,𝑄

(𝑞) −Ξ
𝑔

𝑏,𝑄
(𝑞)]2 = (𝑎− 𝑏)2 +

∫ 𝑞

0
E[𝑔(𝑄− 𝑝,Ξ𝑔

𝑎,𝑄
(𝑝)) −𝑔(𝑄− 𝑝,Ξ𝑔

𝑏,𝑄
(𝑝))]2 d𝑝

≤ (𝑎− 𝑏)2 +
∫ 𝑞

0
Lip(𝑔(𝑄− 𝑝, ·))2E[Ξ𝑔

𝑎,𝑄
(𝑝) −Ξ

𝑔

𝑏,𝑄
(𝑝)]2 d𝑝.

By Grönwall’s inequality, this means that

E[Ξ𝑔
𝑎,𝑄

(𝑞) −Ξ
𝑔

𝑏,𝑄
(𝑞)]2 ≤ (𝑎− 𝑏)2 exp

{∫ 𝑞

0
Lip(𝑔(𝑄− 𝑝, ·))2 d𝑠

}
.

Using this in (2.6), we have

|Q𝑔(𝑄,𝑎) −Q𝑔(𝑄,𝑏) | ≤ 𝛽

2
√
𝜋
|𝑎− 𝑏 | exp

{
1
2

∫ 𝑄

0
Lip(𝑔(𝑄− 𝑝, ·))2 d𝑝

}
=

𝛽

2
√
𝜋
|𝑎− 𝑏 | exp

{
1
2

∫ 𝑄

0
Lip(𝑔(𝑝, ·))2 d𝑝

}
,

so

Lip(Q𝑔(𝑄, ·)) ≤ 𝛽

2
√
𝜋

exp
{

1
2

∫ 𝑄

0
Lip(𝑔(𝑝, ·))2 d𝑝

}
.

Therefore, since
Lip(𝑔(𝑝, ·)) ≤ (4𝜋/𝛽2 − 𝑝)−1/2,

we also have

Lip(Q𝑔(𝑄, ·)) ≤ 𝛽

2
√
𝜋

exp
{

1
2

∫ 𝑄

0

1
4𝜋/𝛽2 − 𝑝

d𝑝
}
= (4𝜋/𝛽2 −𝑄)−1/2.

Next we show that for each 𝑎 > 0, Q𝑔(·, 𝑎) is continuous on [0,2]. The argument is rather standard and
similar to the above discussion, so we do not provide all details. Taking 0 ≤ 𝑄1 < 𝑄2 ≤ 2, we have

|Q𝑔(𝑄1, 𝑎) −Q𝑔(𝑄2, 𝑎) | ≤
𝛽

2
√
𝜋

(
E|Ξ𝑔

𝑎,𝑄1
(𝑄1) −Ξ

𝑔

𝑎,𝑄2
(𝑄2) |2

)1/2
.

For any 𝑞 ≤ 𝑄1, we write the difference as

Ξ
𝑔

𝑎,𝑄1
(𝑄1) −Ξ

𝑔

𝑎,𝑄2
(𝑄2) = Ξ

𝑔

𝑎,𝑄1
(𝑄1) −Ξ

𝑔

𝑎,𝑄2
(𝑄1) +Ξ𝑔𝑎,𝑄2

(𝑄1) −Ξ
𝑔

𝑎,𝑄2
(𝑄2),

and the first term can be estimated as follows: for any 𝑞 ≤ 𝑄1,

Ξ
𝑔

𝑎,𝑄1
(𝑞) −Ξ

𝑔

𝑎,𝑄2
(𝑞) =

∫ 𝑞

0
𝑔(𝑄1 − 𝑠,Ξ𝑔𝑎,𝑄1

(𝑠)) d𝐵𝑠 −
∫ 𝑞

0
𝑔(𝑄2 − 𝑠,Ξ𝑔𝑎,𝑄2

(𝑠)) d𝐵𝑠,

which yields

E|Ξ𝑔
𝑎,𝑄1

(𝑞) −Ξ
𝑔

𝑎,𝑄2
(𝑞) |2 ≤ 2

∫ 𝑞

0
E|𝑔(𝑄1 − 𝑠,Ξ𝑔𝑎,𝑄1

(𝑠)) −𝑔(𝑄2 − 𝑠,Ξ𝑔𝑎,𝑄1
(𝑠)) |2 d𝑠

+2
∫ 𝑞

0
E|𝑔(𝑄2 − 𝑠,Ξ𝑔𝑎,𝑄1

(𝑠)) −𝑔(𝑄2 − 𝑠,Ξ𝑔𝑎,𝑄2
(𝑠)) |2 d𝑠

=: 𝐼1 + 𝐼2.
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The term 𝐼2 can be bounded from above by

2
∫ 𝑞

0
Lip(𝑔(𝑄2 − 𝑠, ·)2E|Ξ𝑔

𝑎,𝑄1
(𝑠) −Ξ

𝑔

𝑎,𝑄2
(𝑠) |2 d𝑠.

For 𝐼1, the integrand
E[|𝑔(𝑄1 − 𝑠,Ξ𝑔𝑎,𝑄1

(𝑠)) −𝑔(𝑄2 − 𝑠,Ξ𝑔𝑎,𝑄1
(𝑠)) |2]

is bounded, and converges to zero as 𝑄2 →𝑄1 for each 𝑠, by the dominated convergence theorem, (2.5) and
the fact that 𝑔 is continuous in the first variable and 𝑔(𝑞,𝑥) ≤ 𝐶𝑥 for all 𝑥 ≥ 0, 𝑞 ∈ [0,2]. Therefore, invoking
Grönwall’s inequality again, we obtain

E|Ξ𝑔
𝑎,𝑄1

(𝑄1) −Ξ
𝑔

𝑎,𝑄2
(𝑄1) |2 → 0, as 𝑄2 →𝑄1.

A simpler argument shows that

E|Ξ𝑔
𝑎,𝑄2

(𝑄2) −Ξ
𝑔

𝑎,𝑄2
(𝑄1) |2 → 0, as 𝑄2 →𝑄1.

Therefore, Q𝑔(·, 𝑎) is continuous, so Q maps Z to itself.
Step 3: contraction. Let 𝑔1, 𝑔2 ∈ Z. Then we have

Ξ
𝑔1
𝑎,𝑄

(𝑞) −Ξ
𝑔2
𝑎,𝑄

(𝑞) =
∫ 𝑞

0
[𝑔1(𝑄− 𝑝,Ξ𝑔1

𝑎,𝑄
(𝑝)) −𝑔2(𝑄− 𝑝,Ξ𝑔2

𝑎,𝑄
(𝑝))] d𝐵(𝑝),

so

E[Ξ𝑔1
𝑎,𝑄

−Ξ
𝑔2
𝑎,𝑄

] (𝑞)2 =

∫ 𝑞

0
E[𝑔1(𝑄− 𝑝,Ξ𝑔1

𝑎,𝑄
(𝑝)) −𝑔2(𝑄− 𝑝,Ξ𝑔2

𝑎,𝑄
(𝑝))]2 d𝑝

≤ 2
∫ 𝑞

0

(
‖(𝑔1 −𝑔2) (𝑄− 𝑝, ·)‖2

XEΞ𝑔1
𝑎,𝑄

(𝑝)2 +Lip(𝑔2(𝑄− 𝑝, ·))2E[Ξ𝑔1
𝑎,𝑄

−Ξ
𝑔2
𝑎,𝑄

] (𝑝)2
)

d𝑝

≤ 2
∫ 𝑞

0

(
‖(𝑔1 −𝑔2) (𝑄− 𝑝, ·)‖2

X𝑎
2 · 4𝜋/𝛽2 −𝑄 + 𝑝

4𝜋/𝛽2 −𝑄
+

E[Ξ𝑔1
𝑎,𝑄

−Ξ
𝑔2
𝑎,𝑄

] (𝑝)2

4𝜋/𝛽2 −𝑄 + 𝑝

)
d𝑝,

with the last inequality by (2.5). By Grönwall’s inequality, this means that

E[Ξ𝑔1
𝑎,𝑄

−Ξ
𝑔2
𝑎,𝑄

] (𝑞)2

≤ 2𝑎2
(∫ 𝑞

0
‖(𝑔1 −𝑔2) (𝑄− 𝑝, ·)‖2

X
4𝜋/𝛽2 −𝑄 + 𝑝

4𝜋/𝛽2 −𝑄
d𝑝

)
exp

{∫ 𝑞

0

2
4𝜋/𝛽2 −𝑄 + 𝑝

d𝑝
}

= 2𝑎2 ·
(
4𝜋/𝛽2 −𝑄 + 𝑞

4𝜋/𝛽2 −𝑄

)2 ∫ 𝑞

0
‖(𝑔1 −𝑔2) (𝑄− 𝑝, ·)‖2

X
4𝜋/𝛽2 −𝑄 + 𝑝

4𝜋/𝛽2 −𝑄
d𝑝.

In particular, we have

E[Ξ𝑔1
𝑎,𝑄

−Ξ
𝑔2
𝑎,𝑄

] (𝑄)2 ≤ 2𝑎2 ·
(

4𝜋/𝛽2

4𝜋/𝛽2 −𝑄

)3 ∫ 𝑄

0
‖(𝑔1 −𝑔2) (𝑝, ·)‖2

X d𝑝.

Then we have

(Q𝑔1 −Q𝑔2) (𝑞, 𝑎)2 =
���(E𝜎(Ξ𝑔1

𝑎,𝑞 (𝑞))2)1/2 − (E𝜎(Ξ𝑔2
𝑎,𝑞 (𝑞))2)1/2

���2
≤ 𝛽2E[Ξ𝑔1

𝑎,𝑞 (𝑞) −Ξ
𝑔2
𝑎,𝑞 (𝑞)]2

≤ 2𝑎2𝛽2
(

4𝜋/𝛽2

4𝜋/𝛽2 − 𝑞

)3 ∫ 𝑞

0
‖(𝑔1 −𝑔2) (𝑝, ·)‖2

X d𝑝.
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This implies that, as long as 𝛽 <
√

2𝜋, for all 𝑞 ∈ [0,2] we have

‖(Q𝑔1 −Q𝑔2) (𝑞, ·)‖2
X ≤ 2𝛽2

(
4𝜋/𝛽2

4𝜋/𝛽2 − 𝑞

)3 ∫ 𝑞

0
‖(𝑔1 −𝑔2) (𝑝, ·)‖2

X d𝑝.

Therefore,

‖Q𝑔1 −Q𝑔2‖2
Y = sup

𝑞∈[0,2]
e−2𝑅 (𝛽)𝑞 ‖(Q𝑔1 −Q𝑔2) (𝑞, ·)‖2

X

≤ sup
𝑞∈[0,2]

2𝛽2
(

4𝜋/𝛽2

4𝜋/𝛽2 −2

)3

𝑒−2𝑅 (𝛽)𝑞
∫ 𝑞

0
‖(𝑔1 −𝑔2) (𝑝, ·)‖2

X d𝑝

≤ 𝛽2
(

4𝜋/𝛽2

4𝜋/𝛽2 −2

)3 1
𝑅(𝛽) ‖𝑔1 −𝑔2‖2

Y =
1
2
‖𝑔1 −𝑔2‖2

Y .

Recall that 𝑅(𝛽) was defined in (2.4). Therefore, Q is a contraction on Z (equipped with the norm inherited
from Y) and so Q admits a unique fixed point in Z, which is what we needed to show. �

Remark 2.1. By the stochastic comparison principle for SDEs [16] and the fact that the geometric Brownian
motion (i.e. a log-normal random variable) has finite positive moments of all orders, we see that EΞ𝑎,𝑄 (𝑞)𝑘 <
∞ for all 𝑘 ∈ [0,∞) as well.

3 Moment bounds

The next several sections will work towards a proof of Theorem 1.2. In order to carry out our analysis, we
will need some bounds on the moments of the solutions to (1.1)–(1.2). We establish these in this section.
Moment bounds depend crucially on the subcriticality of the problem, which for us means 𝛽 <

√
2𝜋. We

will assume throughout the paper that this is true without further comment. We also now fix a time horizon
𝑇0 ∈ [1,∞) which will also remain fixed throughout the paper. Furthermore, fix 𝜀0 ∈ (0,1] so that

𝛽2

4𝜋
· log(1+2𝜀−2𝑇0)

log𝜀−1 < 1 (3.1)

for all 𝜀 ∈ (0, 𝜀0]. The condition that 𝛽 <
√

2𝜋 means that such an 𝜀0 exists. As we are ultimately interested in
the limit 𝜀 ↓ 0, the condition (3.1) is simply a convenience so that various quantities are finite. In Definition 3.5
below, we fix a constant 𝐾0 <∞, which depends on 𝛽, 𝜀0, and 𝑇0, and will appear in upper bounds throughout
the paper.

Proposition 3.1. There exist constants 𝑝 > 2 and 𝐾 <∞ (depending on 𝑇0 and 𝛽) so that, for all 𝜀 ∈ (0, 𝜀0],
all 𝑎 ≥ 0, and all 𝑡 ∈ [0,𝑇0], 𝑥 ∈ R2, we have

E𝑢𝜀,𝑎 (𝑡, 𝑥) 𝑝 ≤ 𝐾 𝑝𝑎𝑝 . (3.2)

Proof. Let 𝑣𝜀,𝑎 solve the linear problem given by (1.1)–(1.2) with 𝜎(𝑢) = 𝛽𝑢. By [9, (5.11)], for any 𝑝 ∈
[1,2𝜋/𝛽2 +1) we have a constant 𝐾 so that E𝑣𝜀,𝑎 (𝑡, 𝑥) 𝑝 ≤ 𝐾 𝑝𝑎𝑝. Using the stochastic comparison principle
proved in [14, (E-4)], since 𝜎(𝑢) ≤ 𝛽𝑢 for all 𝑢 ∈ [0,∞) we have E𝑢𝜀,𝑎 (𝑡, 𝑥) 𝑝 ≤ E𝑣𝜀,𝑎 (𝑡, 𝑥) 𝑝 ≤ 𝐾 𝑝𝑎𝑝. By
the assumption that 𝛽 <

√
2𝜋, we have 2𝜋/𝛽2 +1 > 2, so we can choose 𝑝 > 2 as required. �

Remark 3.2. The case 𝑝 = 2 in (3.2) is much simpler than the case 𝑝 > 2. Indeed, the 𝑝 = 2 case is a special
case of Proposition 3.3 below. On the other hand, the proof of the moment bound for 𝑝 > 2 in [9] for the
linear case uses hypercontractivity, and the stochastic comparison principle [14] takes a substantial amount of
analysis to prove. Most of the analysis in this paper will be in the 𝐿2 setting, so we will mostly use the 𝑝 = 2
case. However, we will rely on some tightness statements that require a higher moment bound.
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The following proposition gives an 𝐿2 bound on the difference of two solutions started at different initial
conditions. Recall that 𝑢𝐴𝜀,𝑎 solves the problem (1.26)–(1.27), with the noise turned off on the set of times 𝐴.
The problem (1.26)–(1.27) has the mild formulation

𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) = 𝑎 +
1√︁

log𝜀−1

∫
[0,𝑡 ]\𝐴

∫
𝐺𝑡−𝑠 (𝑥− 𝑦)𝜎(𝑢𝐴𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦). (3.3)

Here and henceforth, when we do not specify the domain of integration for an integral we mean that the
integral is taken over all of R2.

Proposition 3.3. There exists a constant 𝐾 <∞ (depending on 𝑇0 and 𝛽) so that, for all 𝜀 ∈ (0, 𝜀0], 𝑎1, 𝑎2 ≥ 0,
𝑇 ∈ [0,𝑇0], 𝑥 ∈ R2, and measurable 𝐴 ⊂ [0,∞), we have(

E[𝑢𝐴𝜀,𝑎2 (𝑡, 𝑥) −𝑢
𝐴
𝜀,𝑎1 (𝑡, 𝑥)]

2
)1/2

≤ 𝐾 |𝑎2 − 𝑎1 |. (3.4)

In particular, for any 𝑎 > 0, (
E𝑢𝐴𝜀,𝑎 (𝑡, 𝑥)2

)1/2
≤ 𝐾𝑎. (3.5)

In fact, (3.4) and (3.5) hold with

𝐾 =

(
1− 𝛽2

4𝜋
· log(1+2𝜀−2𝑡)

log𝜀−1

)−1/2
. (3.6)

Of course, a very important special case is when 𝐴 = ∅. Then the bounds (3.4) and (3.5) just involve 𝑢𝜀,𝑎.
(In the latter case this of course is a special case of Proposition 3.1.)

Proof. Since (3.5) is just (3.4) with 𝑎2 = 𝑎 and 𝑎1 = 0, it suffices to prove (3.4). Subtracting two copies of
(3.3) (with 𝑎 = 𝑎1 and 𝑎 = 𝑎2) and taking second moments, we obtain

E(𝑢𝐴𝜀,𝑎2 (𝑡, 𝑥) −𝑢
𝐴
𝜀,𝑎1 (𝑡, 𝑥))

2

= (𝑎2 − 𝑎1)2

+ 1
log𝜀−1

∫
[0,𝑡 ]\𝐴

∬
E

2∏
𝑖=1

(
[𝜎(𝑢𝐴𝜀,𝑎2 (𝑠, 𝑦𝑖)) −𝜎(𝑢

𝐴
𝜀,𝑎1 (𝑠, 𝑦𝑖))]𝐺𝑡−𝑠 (𝑥− 𝑦𝑖)

)
·𝐺 𝜀2 (𝑦1 − 𝑦2) d𝑦1 d𝑦2 d𝑠

≤ (𝑎2 − 𝑎1)2 + 𝛽2

2𝜋 log𝜀−1

∫ 𝑡

0

E|𝑢𝐴𝜀,𝑎2 (𝑠, 𝑥) −𝑢
𝐴
𝜀,𝑎1 (𝑠, 𝑥) |

2

2(𝑡 − 𝑠) + 𝜀2 d𝑠.

Then (3.4) follows from Lemma 3.4 below. �

It remains to prove the lemma used above, which will also be useful in the future.

Lemma 3.4. For all 𝜀 ∈ (0, 𝜀0], all 𝑎 ≥ 0, and all 𝑇 ∈ [0,𝑇0], the following holds. Let 𝑓 : [0,𝑇] → [0,∞) be
such that

𝑓 (𝑡) ≤ 𝑎2 + 𝛽2

2𝜋 log𝜀−1

∫ 𝑡

0

𝑓 (𝑠)
2(𝑡 − 𝑠) + 𝜀2 d𝑠

for all 𝑡 ∈ [0,𝑇]. Then, for all 𝑡 ∈ [0,𝑇], we have

𝑓 (𝑡) ≤ 𝑎2

1− 𝛽2

4𝜋 ·
log(1+2𝜀−2𝑡)

log 𝜀−1

.
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Proof. Define [0, 𝑡] 𝑗< = {(𝑠1, . . . , 𝑠 𝑗) ∈ [0, 𝑡] 𝑗 | 𝑠1 ≤ · · · ≤ 𝑠 𝑗}. Then we have

𝑓 (𝑡) ≤ 𝑎2
∞∑︁
𝑗=0

𝛽2 𝑗

(4𝜋 log𝜀−1) 𝑗

∫
[0,𝑡 ] 𝑗<

𝑗∏
𝑘=1

1
𝑠𝑘+1 − 𝑠𝑘 + 𝜀2/2

d𝑠1 · · ·d𝑠 𝑗

≤ 𝑎2
∞∑︁
𝑗=0

𝛽2 𝑗

(4𝜋 log𝜀−1) 𝑗

∫
[0,𝑡 ] 𝑗

𝑗∏
𝑘=1

1
𝑟 𝑗 + 𝜀2/2

d𝑟1 · · ·d𝑟 𝑗

= 𝑎2
∞∑︁
𝑗=0

𝛽2 𝑗

(4𝜋 log𝜀−1) 𝑗

(∫ 𝑡

0

1
𝑟 + 𝜀2/2

d𝑟
) 𝑗

= 𝑎2
∞∑︁
𝑗=0

(
𝛽2

4𝜋 log𝜀−1 log(1+2𝜀−2𝑡)
) 𝑗

=
𝑎2

1− 𝛽2

4𝜋 ·
log(1+2𝜀−2𝑡)

log 𝜀−1

, (3.7)

where we used (3.1) for the last identity. �

To avoid having to constantly quantify constants, we now fix our essential constant once and for all.

Definition 3.5. Fix

𝐾0 ≥ sup
𝜀∈(0, 𝜀0 ]

(
1− 𝛽2

4𝜋
· 2+ log(1+2𝜀−2𝑡)

log𝜀−1

)−1/2
(3.8)

large enough so that Propositions 3.1 and 3.3 hold with 𝐾 = 𝐾0.

By (3.6) and the proof of [9, (5.11)], we see that we could take

𝐾0 = sup
𝜀∈(0, 𝜀0 ]

(
1− 𝛽2

4𝜋
· 2+ log(1+2𝜀−2𝑡)

log𝜀−1

)−1/2

for some 𝛽 ∈ (𝛽,
√

2𝜋). The precise form of 𝐾0 will not be important for us (although at one point we will
directly use the explicit expression (3.6)). The extra summand of 2 in the lower limit condition (3.8) for 𝐾0
(compared to (3.6)) is to allow 𝐾0 to also suffice for bounds in later sections. (See the proofs of Lemmas 4.3
and 5.2 below.)

Now we can bootstrap Proposition 3.3 to obtain a stronger bound on the variance of the solution.

Proposition 3.6. If 𝑎 > 0, 𝜀 ∈ [0, 𝜀0), and 𝐴 ⊂ [0,∞) is measurable, then(
E[𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) − 𝑎]2

)1/2
≤ 𝛽𝑎𝐾0

2
√
𝜋

√︄
log(1+2𝜀−2𝑡)

log𝜀−1 . (3.9)

Of course, for 𝑡 of order 1, the bound (3.9) is redundant to (3.5). It will be used when 𝑡 is chosen small so
that log(1+ 𝜀−2𝑡) � log𝜀−1.

Proof. Similar to the computation in Proposition 3.3, we have

E[𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) − 𝑎]2 ≤ 𝛽2

2𝜋 log𝜀−1

∫ 𝑡

0

E𝑢𝐴𝜀,𝑎 (𝑠, 𝑥)2

2(𝑡 − 𝑠) + 𝜀2 d𝑠,

and then (3.9) follows from (3.5). �
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4 Turning off the noise on an interval

As discussed in the introduction, an important part of our argument will be turning off the noise in the
equation (1.1)–(1.2) for a certain set of times, and comparing the resulting solution to the original solution.
In this section we bound the error incurred by this noise shutoff procedure when the noise is shut off on a
single interval. In Section 6, we will iterate this procedure to turn off the noise on multiple intervals. For now
our goal is to prove the following proposition.

Proposition 4.1. Let 𝐴 ⊂ [0,∞) and suppose that sup 𝐴 ≤ 𝜏1 ≤ 𝜏2 ≤ 𝑇0. Then for any 𝑡 ∈ [𝜏2,𝑇0] and any
𝑥 ∈ R2 we have

E
(
𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) −𝑢

𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑡, 𝑥)

)2
≤

𝐾4
0 𝛽

2𝑎2

4𝜋 log𝜀−1

(
log

𝑡 − 𝜏1 + 𝜀2/2
𝑡 − 𝜏2 + 𝜀2/2

+𝐾2
0

)
.

Proof. Subtracting two copies of the mild formulation (3.3) (with the sets 𝐴 and 𝐴∪ [𝜏1, 𝜏2] respectively),
we have

𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) −𝑢
𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑡, 𝑥)

=
1√︁

log𝜀−1

∫
[0,𝑡 ]\𝐴

∫
𝐺𝑡−𝑠 (𝑥− 𝑦)𝜎(𝑢𝐴𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦)

− 1√︁
log𝜀−1

∫
[0,𝑡 ]\(𝐴∪[𝜏1,𝜏2 ])

∫
𝐺𝑡−𝑠 (𝑥− 𝑦)𝜎(𝑢𝐴∪[𝜏1,𝜏2 ]

𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦)

=
1√︁

log𝜀−1

∫ 𝜏2

𝜏1

∫
𝐺𝑡−𝑠 (𝑥− 𝑦)𝜎(𝑢𝐴𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦)

+ 1√︁
log𝜀−1

∫ 𝑡

𝜏2

∫
𝐺𝑡−𝑠 (𝑥− 𝑦) [𝜎(𝑢𝐴𝜀,𝑎 (𝑠, 𝑦)) −𝜎(𝑢

𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑠, 𝑦))] d𝑊 𝜀 (𝑠, 𝑦).

In the second “=” we used that 𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) = 𝑢
𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑡, 𝑥) whenever 𝑡 ≤ 𝜏1. Taking the second moment, we

have for all 𝑡 ≥ 𝜏2 that

E
(
𝑢𝐴𝜀,𝑎 (𝑡, 𝑥) −𝑢

𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑡, 𝑥)

)2

=
1

log𝜀−1

∫ 𝜏2

𝜏1

∬
𝐺 𝜀2 (𝑦1 − 𝑦2)E

2∏
𝑖=1

(
𝐺𝑡−𝑠 (𝑥− 𝑦𝑖)𝜎(𝑢𝐴𝜀,𝑎 (𝑠, 𝑦𝑖))

)
d𝑦1 d𝑦2 d𝑠

+ 1
log𝜀−1

∫ 𝑡

𝜏2

∬
E

2∏
𝑖=1

(
𝐺𝑡−𝑠 (𝑥− 𝑦𝑖) [𝜎(𝑢𝐴𝜀,𝑎 (𝑠, 𝑦𝑖)) −𝜎(𝑢

𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑠, 𝑦𝑖))]

)
·𝐺 𝜀2 (𝑦1 − 𝑦2) d𝑦1 d𝑦2 d𝑠

≤ 𝛽2

2𝜋 log𝜀−1

∫ 𝜏2

𝜏1

E𝑢𝐴𝜀,𝑎 (𝑠, 𝑦)2

2(𝑡 − 𝑠) + 𝜀2 d𝑠+ 𝛽2

2𝜋 log𝜀−1

∫ 𝑡

𝜏2

E[𝑢𝐴𝜀,𝑎 (𝑠, 𝑦) −𝑢
𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑠, 𝑦)]2

2(𝑡 − 𝑠) + 𝜀2 d𝑠

≤
𝛽2𝑎2𝐾2

0
4𝜋 log𝜀−1 log

𝑡 − 𝜏1 + 𝜀2/2
𝑡 − 𝜏2 + 𝜀2/2

+ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

𝜏2

E[𝑢𝐴𝜀,𝑎 (𝑠, 𝑦) −𝑢
𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝑠, 𝑦)]2

𝑡 − 𝑠+ 𝜀2/2
d𝑠. (4.1)

In the last inequality we used (3.5). Now if we put

𝑓 (𝑡) = E
(
𝑢𝐴𝜀,𝑎 (𝜏2 + 𝑡, 𝑥) −𝑢

𝐴∪[𝜏1,𝜏2 ]
𝜀,𝑎 (𝜏2 + 𝑡, 𝑥)

)2
, 𝑡 ≥ 0, (4.2)
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then (4.1) can be rewritten as

𝑓 (𝑡) ≤
𝛽2𝑎2𝐾2

0
4𝜋 log𝜀−1 log

𝑡 + 𝜏2 − 𝜏1 + 𝜀2/2
𝑡 + 𝜀2/2

+ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

0

𝑓 (𝑠)
𝑡 − 𝑠+ 𝜀2/2

d𝑠.

Now we apply Lemma 4.3 below with 𝑀 = (4𝜋)−1𝛽2𝑎2𝐾2
0 and 𝑟 = 𝜏2 − 𝜏1. (The requirement that 𝑓 has a

bounded supremum on compact intervals is satisfied by applying Proposition 3.1.) This gives us

𝑓 (𝑡) ≤
𝐾4

0 𝛽
2𝑎2

4𝜋 log𝜀−1

(
log

𝑡 + 𝜏2 − 𝜏1 + 𝜀2/2
𝑡 + 𝜀2/2

+𝐾2
0

)
.

Recalling the definition (4.2) completes the proof. �

We will prove Lemma 4.3, which we used in the above proof, shortly. First we need a preliminary lemma.

Lemma 4.2. For any 𝑡, 𝑟, 𝜀 > 0 we have∫ 𝑡

0

log 𝑡+𝑟+𝜀
2/2

𝑠+𝜀2/2

𝑡 − 𝑠+ 𝜀2/2
d𝑠 ≤

(
2+ log(1+2𝜀−2𝑡)

) (
1+ log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

)
.

Proof. We write∫ 𝑡

0

log 𝑡+𝑟+𝜀
2/2

𝑠+𝜀2/2

𝑡 − 𝑠+ 𝜀2/2
d𝑠 =

(∫ 𝑡/2

0
+
∫ 𝑡

𝑡/2

) log 𝑡+𝑟+𝜀
2/2

𝑠+𝜀2/2

𝑡 − 𝑠+ 𝜀2/2
d𝑠

≤ 2
𝑡

∫ 𝑡

0
log

𝑡 + 𝑟 + 𝜀2/2
𝑠+ 𝜀2/2

d𝑠+
(
log

𝑡 + 𝑟 + 𝜀2/2
𝑡/2+ 𝜀2/2

) ∫ 𝑡

0

1
𝑡 − 𝑠+ 𝜀2/2

d𝑠. (4.3)

Now we have ∫ 𝑡

0
log

𝑡 + 𝑟 + 𝜀2/2
𝑠+ 𝜀2/2

d𝑠 = 𝑡 − 𝜀
2

2
log

𝑡 + 𝜀2/2
𝜀2/2

+ 𝑡 log
𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

≤ 𝑡
(
1+ log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

)
. (4.4)

Also, we have

log
𝑡 + 𝑟 + 𝜀2/2
𝑡/2+ 𝜀2/2

= log
2𝑡 +2𝑟 + 𝜀2

𝑡 + 𝜀2 ≤ log2+ log
𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

. (4.5)

Using (4.4) and (4.5) in (4.3), we have∫ 𝑡

0

log 𝑡+𝑟+𝜀
2/2

𝑠+𝜀2/2

𝑡 − 𝑠+ 𝜀2/2
d𝑠 ≤ 2+2log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+
(
log2+ log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

)
log(1+2𝜀−2𝑡)

≤
(
2+ log(1+2𝜀−2𝑡)

) (
1+ log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

)
, (4.6)

which was the claim. �

Lemma 4.3. Let 𝜀 ∈ (0, 𝜀0] and 𝑀,𝑟 > 0, suppose that 𝑓 satisfies the bound

𝑓 (𝑡) ≤ 𝑀

log𝜀−1 log
𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

0

𝑓 (𝑠)
𝑡 − 𝑠+ 𝜀2/2

d𝑠 (4.7)
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for all 𝑡 ∈ [0,𝑇0], and sup𝑡 ∈[0,𝑇0 ] | 𝑓 (𝑡) | <∞. Then we have

𝑓 (𝑡) ≤
𝐾2

0𝑀

log𝜀−1

(
log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+𝐾2
0

)
(4.8)

for all 𝑡 ∈ [0,𝑇0].

Proof. Suppose that

𝑓 (𝑡) ≤ 𝐵1 log
𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+𝐵2. (4.9)

By assumption, this inequality holds with 𝐵1 = 0 and 𝐵2 = sup𝑡 ∈[0,𝑇0 ] | 𝑓 (𝑡) |. Substituting (4.9) into the r.h.s.
of (4.7), we have

𝑓 (𝑡) ≤ 𝑀

log𝜀−1 log
𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

0

𝐵1 log 𝑠+𝑟+𝜀
2/2

𝑠+𝜀2/2 +𝐵2

𝑡 − 𝑠+ 𝜀2/2
d𝑠

≤ 𝑀

log𝜀−1 log
𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+ 𝛽2𝐵1

4𝜋 log𝜀−1

∫ 𝑡

0

log 𝑠+𝑟+𝜀
2/2

𝑠+𝜀2/2

𝑡 − 𝑠+ 𝜀2/2
d𝑠+ 𝛽

2𝐵2 log(1+2𝜀−2𝑇0)
4𝜋 log𝜀−1 . (4.10)

For the middle term of the above inequality, we have∫ 𝑡

0

log 𝑠+𝑟+𝜀
2/2

𝑠+𝜀2/2

𝑡 − 𝑠+ 𝜀2/2
d𝑠 ≤

∫ 𝑡

0

log 𝑡+𝑟+𝜀
2/2

𝑠+𝜀2/2

𝑡 − 𝑠+ 𝜀2/2
d𝑠 ≤

(
2+ log(1+2𝜀−2𝑡)

) (
1+ log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

)
(4.11)

by Lemma 4.2. Substituting (4.11) into (4.10), we have

𝑓 (𝑡) ≤ 𝑀

log𝜀−1 log
𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+ 𝛽2𝐵1

4𝜋 log𝜀−1

(
2+ log(1+2𝜀−2𝑡)

) (
1+ log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

)
+ 𝛽

2𝐵2 log(1+2𝜀−2𝑇0)
4𝜋 log𝜀−1

=
1

log𝜀−1

(
𝛽2𝐵1
4𝜋

(
2+ log(1+2𝜀−2𝑡)

)
+𝑀

)
log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+ 𝛽2𝐵1

4𝜋 log𝜀−1

(
2+ log(1+2𝜀−2𝑡)

)
+ 𝛽

2𝐵2 log(1+2𝜀−2𝑇0)
4𝜋 log𝜀−1

≤
(
(1−𝐾−2

0 )𝐵1 +
𝑀

log𝜀−1

)
log

𝑡 + 𝑟 + 𝜀2/2
𝑡 + 𝜀2/2

+𝐵1 + (1−𝐾−2
0 )𝐵2,

where in the last inequality we used (3.8). Define 𝐵 (0)
1 = 0 and 𝐵 (0)

2 = sup𝑡 ∈[0,𝑇0 ] | 𝑓 (𝑡) |, so for each 𝑛 ≥ 0,
(4.9) holds with

𝐵1 = 𝐵
(𝑛)
1 = (1−𝐾−2

0 )𝐵 (𝑛−1)
1 + 𝑀

log𝜀−1 , (4.12)

𝐵2 = 𝐵
(𝑛)
2 = 𝐵

(𝑛−1)
1 + (1−𝐾−2

0 )𝐵 (𝑛−1)
2 . (4.13)

From (4.12) we conclude that

𝐵
(𝑛)
1 ≤

𝐾2
0𝑀

log𝜀−1 (4.14)
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for all 𝑛. Then we have from (4.13) that

𝐵
(𝑛)
2 ≤

𝐾2
0𝑀

log𝜀−1 + (1−𝐾−2
0 )𝐵 (𝑛−1)

2 ,

so

limsup
𝑛→∞

𝐵
(𝑛)
2 ≤

𝐾4
0𝑀

log𝜀−1 . (4.15)

Using (4.14) and (4.15) in (4.9), we obtain (4.8). �

5 Replacing a smoothed field with a constant

In Section 4, we estimated the effect on the solution of turning off the noise on a given time interval. In this
section we seek a further simplification. After an interval of time in which the noise has been turned off,
the resulting solution will have been undergoing nothing more than the deterministic heat equation on that
interval. Therefore, it will have been smoothed, with a strength depending on the length of the interval. By
restricting our attention to a comparatively small spatial region, we would expect that the solution may be
replaced by a constant at the end of this interval. The following proposition is to quantify the induced error
when we replace the solution by a (random) constant at the end of each “quiet” interval.

Proposition 5.1. Let 𝐴 ⊂ [0,∞) be measurable and let 𝜏1 < 𝜏2 < 𝑇 be such that 𝜏2 = sup 𝐴 and [𝜏1, 𝜏2] ⊂ 𝐴.
Fix 𝑋 ∈ R2 and let 𝑣 solve the problem

d𝑣(𝑡, 𝑥) = 1
2
Δ𝑣(𝑡, 𝑥)d𝑡 + (log𝜀−1)− 1

2𝜎(𝑣(𝑡, 𝑥))d𝑊 𝜀 (𝑡, 𝑥), 𝑡 > 𝜏2, 𝑥 ∈ R2; (5.1)

𝑣(𝜏2, 𝑥) = 𝑢𝐴𝜀,𝑎 (𝜏2, 𝑋). (5.2)

Then we have, for all 𝑡 ∈ [𝜏2,𝑇] and 𝜀 ≤ 𝑒−𝐾 2
0 , that

E(𝑣−𝑢𝐴𝜀,𝑎) (𝑡, 𝑥)2 ≤ 𝐾4
0𝑎

2 3(𝑡 − 𝜏2) + |𝑥− 𝑋 |2
𝜏2 − 𝜏1

. (5.3)

Proof. We first note that 𝑢𝐴𝜀,𝑎 (𝜏2, 𝑋) =
∫
𝐺𝜏2−𝜏1 (𝑋 − 𝑦)𝑢𝐴𝜀,𝑎 (𝜏1, 𝑦)d𝑦, since 𝑢𝐴𝜀,𝑎 solves the deterministic

heat equation in the time interval [𝜏1, 𝜏2]. Then, we have for any 𝑡 > 𝜏2 that

(𝑣−𝑢𝐴𝜀,𝑎) (𝑡, 𝑥) =
∫

[𝐺𝜏2−𝜏1 (𝑋 − 𝑦) −𝐺𝑡−𝜏1 (𝑥− 𝑦)]𝑢𝐴𝜀,𝑎 (𝜏1, 𝑦) d𝑦

+ 1√︁
log𝜀−1

∫ 𝑡

𝜏2

∫
𝐺𝑡−𝑠 (𝑥− 𝑦) [𝜎(𝑣(𝑠, 𝑦)) −𝜎(𝑢𝐴𝜀,𝑎 (𝑠, 𝑦))] d𝑊 𝜀 (𝑠, 𝑦).

Taking the second moment, we obtain

E(𝑣−𝑢𝐴𝜀,𝑎) (𝑡, 𝑥)2

≤
∬

E
2∏
𝑖=1

(
[𝐺𝜏2−𝜏1 (𝑋 − 𝑦𝑖) −𝐺𝑡−𝜏1 (𝑥− 𝑦𝑖)]𝑢𝐴𝜀,𝑎 (𝜏1, 𝑦𝑖)

)
d𝑦1 d𝑦2

+ 𝛽2

log𝜀−1

∫ 𝑡

𝜏2

∬
𝐺 𝜀2 (𝑦1 − 𝑦2)E

2∏
𝑖=1

(
𝐺𝑡−𝑠 (𝑥− 𝑦𝑖) |𝑣(𝑠, 𝑦𝑖) −𝑢𝐴𝜀,𝑎 (𝑠, 𝑦𝑖) |

)
d𝑦1 d𝑦2 d𝑠

C 𝐼1 + 𝐼2. (5.4)
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For the first term, we estimate by the Cauchy–Schwarz inequality (on the probability space) that

𝐼1 ≤
(∫

|𝐺𝜏2−𝜏1 (𝑋 − 𝑦) −𝐺𝑡−𝜏1 (𝑥− 𝑦) |
(
E𝑢𝐴𝜀,𝑎 (𝜏1, 𝑦)2

)1/2
d𝑦

)2

≤ 𝐾2
0𝑎

2‖𝐺𝜏2−𝜏1 (𝑋 − ·) −𝐺𝑡−𝜏1 (𝑥− ·)‖2
𝐿1 (R2) , (5.5)

where the second inequality is by (3.5). By Pinsker’s inequality (see e.g. [31, Lemma 1.5.3 and Theorem
1.5.4]), we have

‖𝐺𝜏2−𝜏1 (𝑋 − ·) −𝐺𝑡−𝜏1 (𝑥− ·)‖2
𝐿1 (R2) ≤ 2𝐷KL(𝐺𝑡−𝜏1 (𝑥− ·) ‖ 𝐺𝜏2−𝜏1 (𝑋 − ·)), (5.6)

where 𝐷KL denotes the Kullback–Leibler divergence (also known as the relative entropy). We recall that for
two continuous probability distributions 𝐹1 and 𝐹2 on R2, the Kullback–Leibler divergence is defined as

𝐷KL(𝐹1 ‖ 𝐹2) =
∫
𝐹1(𝑥) log

𝐹1(𝑥)
𝐹2(𝑥)

d𝑥.

Then we can compute explicitly (see e.g. [31, Theorem 1.8.2]) that

𝐷KL(𝐺𝑡−𝜏1 (𝑥− ·) ‖ 𝐺𝜏2−𝜏1 (𝑋 − ·)) = log
𝜏2 − 𝜏1
𝑡 − 𝜏1

−1+ 𝑡 − 𝜏1
𝜏2 − 𝜏1

+ |𝑋 − 𝑥 |2
2(𝜏2 − 𝜏1)

≤
𝑡 − 𝜏2 + 1

2 |𝑋 − 𝑥 |2

𝜏2 − 𝜏1
. (5.7)

Substituting (5.7) into (5.6) and then into (5.5), we have

𝐼1 ≤
𝐾2

0𝑎
2

𝜏2 − 𝜏1
[2(𝑡 − 𝜏2) + |𝑋 − 𝑥 |2] . (5.8)

Considering the second term of (5.4), we apply the inequality |𝑎𝑏 | ≤ 1
2 (𝑎

2 + 𝑏2) and use the symmetry in
𝑦1, 𝑦2 to derive

𝐼2 ≤
𝛽2

2log𝜀−1

2∑︁
𝑗=1

∫ 𝑡

𝜏2

∬
𝐺 𝜀2 (𝑦1 − 𝑦2)E|𝑣(𝑠, 𝑦 𝑗) −𝑢𝐴𝜀,𝑎 (𝑠, 𝑦 𝑗) |2

2∏
𝑖=1
𝐺𝑡−𝑠 (𝑥− 𝑦𝑖) d𝑦1 d𝑦2 d𝑠

=
𝛽2

log𝜀−1

∫ 𝑡

𝜏2

∫
𝐺𝑡−𝑠+𝜀2 (𝑥− 𝑦)𝐺𝑡−𝑠 (𝑥− 𝑦)E|𝑣(𝑠, 𝑦) −𝑢𝐴𝜀,𝑎 (𝑠, 𝑦) |2 d𝑦d𝑠.

Recalling the simple fact that in 𝑑 = 2,

𝐺𝑡1 (·)𝐺𝑡2 (·) =
1

2𝜋(𝑡1 + 𝑡2)
𝐺 𝑡1𝑡2

𝑡1+𝑡2
(·), (5.9)

for any 𝑡1, 𝑡2 > 0, we further obtain

𝐼2 ≤
𝛽2

4𝜋 log𝜀−1

∫ 𝑡

𝜏2

∫
1

𝑡 − 𝑠+ 𝜀2/2
𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )

2(𝑡−𝑠)+𝜀2
(𝑥− 𝑦)E[𝑣(𝑠, 𝑦) −𝑢𝐴𝜀,𝑎 (𝑠, 𝑦)]2 d𝑦d𝑠. (5.10)

Using (5.8) and (5.10) in (5.4), we obtain

E(𝑣−𝑢𝐴𝜀,𝑎) (𝑡, 𝑥)2

≤
𝐾2

0𝑎
2

𝜏2 − 𝜏1
[2(𝑡 − 𝜏2) + |𝑋 − 𝑥 |2]

+ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

𝜏2

∫
1

𝑡 − 𝑠+ 𝜀2/2
𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )

2(𝑡−𝑠)+𝜀2
(𝑥− 𝑦)E[𝑣(𝑠, 𝑦) −𝑢𝐴𝜀,𝑎 (𝑠, 𝑦)]2 d𝑦d𝑠.
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Thus the hypotheses of Lemma 5.2 below are satisfied with

𝑓 (𝑡, 𝑥) = E(𝑣−𝑢𝐴𝜀,𝑎) (𝑡, 𝑥)2, 𝐴1 = 2𝐾2
0𝑎

2 𝑡 − 𝜏2
𝜏2 − 𝜏1

, 𝐴2 =
𝐾2

0𝑎
2

𝜏2 − 𝜏1
,

from which we obtain

E(𝑣−𝑢𝐴𝜀,𝑎) (𝑡, 𝑥)2 ≤ 𝐾4
0𝑎

2

(
2(𝑡 − 𝜏2)
𝜏2 − 𝜏1

+
𝛽2𝐾2

0 (𝑡 − 𝜏2)
2𝜋(𝜏2 − 𝜏1) log𝜀−1 +

|𝑥− 𝑋 |2
𝜏2 − 𝜏1

)
,

hence (5.3), since we have 𝐾2
0 < log𝜀−1 by assumption. �

It remains to prove the lemma we used above.

Lemma 5.2. Suppose that 0 ≤ 𝜏 ≤ 𝑇 ≤ 𝑇0, sup𝑡 ∈[𝜏,𝑇 ],𝑥∈R2 | 𝑓 (𝑡, 𝑥) | < ∞, and there exist constants 𝐴1, 𝐴2
such that

𝑓 (𝑡, 𝑥) ≤ 𝐴1 + 𝐴2 |𝑥− 𝑋 |2 +
𝛽2

4𝜋 log𝜀−1

∫ 𝑡

𝜏

∫
1

𝑡 − 𝑠+ 𝜀2/2
𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )

2(𝑡−𝑠)+𝜀2
(𝑥− 𝑦) 𝑓 (𝑠, 𝑦) d𝑦d𝑠 (5.11)

for all 𝑡 ∈ [𝜏,𝑇] and all 𝑥 ∈ R2. Then, for all 𝑡 ∈ [𝜏,𝑇] and all 𝑥 ∈ R2, we have

𝑓 (𝑡, 𝑥) ≤ 𝐾2
0

(
𝐴1 +

𝛽2(𝑡 − 𝜏)
2𝜋 log𝜀−1𝐾

2
0𝐴2 + 𝐴2 |𝑥− 𝑋 |2

)
. (5.12)

Proof. Suppose that
𝑓 (𝑡, 𝑦) ≤ 𝐵1 +𝐵2 |𝑦− 𝑋 |2 (5.13)

for all 𝑡 ∈ [𝜏,𝑇] and all 𝑦 ∈ R2, where 𝐵1, 𝐵2 ≥ 0 are constants. Of course this holds for

𝐵1 = sup
𝑡 ∈[𝜏,𝑇 ],𝑥∈R2

| 𝑓 (𝑡, 𝑥) |, 𝐵2 = 0.

Assuming (5.13), we compute from (5.11) that

𝑓 (𝑡, 𝑥) ≤ 𝐴1+ 𝐴2 |𝑥−𝑋 |2+
𝛽2

4𝜋 log𝜀−1

∫ 𝑡

𝜏

∫
1

𝑡 − 𝑠+ 𝜀2/2
𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )

2(𝑡−𝑠)+𝜀2
(𝑥− 𝑦) [𝐵1+𝐵2 |𝑦−𝑋 |2] d𝑦d𝑠. (5.14)

Now we can evaluate the spatial integral by noting that∫
𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )

2(𝑡−𝑠)+𝜀2
(𝑥− 𝑦) |𝑦− 𝑋 |2 d𝑦 =

2(𝑡 − 𝑠) (𝑡 − 𝑠+ 𝜀2)
2(𝑡 − 𝑠) + 𝜀2 + |𝑥− 𝑋 |2 ≤ 𝑡 − 𝑠+ 𝜀2 + |𝑥− 𝑋 |2.

This implies that∫ 𝑡

𝜏

∫ 𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )
2(𝑡−𝑠)+𝜀2

(𝑥− 𝑦)

𝑡 − 𝑠+ 𝜀2/2
[𝐵1 +𝐵2 |𝑦− 𝑋 |2] d𝑦d𝑠 ≤

∫ 𝑡

𝜏

𝐵1 +𝐵2(𝑡 − 𝑠+ 𝜀2) +𝐵2 |𝑥− 𝑋 |2
𝑡 − 𝑠+ 𝜀2/2

d𝑠

≤
(
𝐵1 +𝐵2 |𝑥− 𝑋 |2

)
log

𝑡 − 𝜏 + 𝜀2/2
𝜀2/2

+2𝐵2(𝑡 − 𝜏) ≤
(
𝐵1 +𝐵2 |𝑥− 𝑋 |2

)
log(1+2𝜀−2𝑇) +2𝐵2(𝑡 − 𝜏).

Substituting this back into (5.14) and rearranging (also recalling (3.8)), we obtain

𝑓 (𝑡, 𝑥) ≤ 𝐴1 + 𝐴2 |𝑥− 𝑋 |2 +
𝛽2

4𝜋 log𝜀−1

[(
𝐵1 +𝐵2 |𝑥− 𝑋 |2

)
log(1+2𝜀−2𝑇) +2𝐵2(𝑡 − 𝜏)

]
≤

(
𝐴1 + (1−𝐾−2

0 )𝐵1 +
𝛽2(𝑡 − 𝜏)
2𝜋 log𝜀−1 𝐵2

)
+

(
𝐴2 + (1−𝐾−2

0 )𝐵2

)
|𝑥− 𝑋 |2. (5.15)
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Let 𝐵 (0)
1 = sup𝑡 ∈[𝜏,𝑇 ],𝑥∈R2 | 𝑓 (𝑡, 𝑥) |, 𝐵 (0)

2 = 0, and

𝐵
(𝑛)
1 = 𝐴1 + (1−𝐾−2

0 )𝐵 (𝑛−1)
1 + 𝛽2(𝑡 − 𝜏)

2𝜋 log𝜀−1 𝐵
(𝑛−1)
2 , (5.16)

𝐵
(𝑛)
2 = 𝐴2 + (1−𝐾−2

0 )𝐵 (𝑛−1)
2 (5.17)

for each 𝑛 ≥ 1. By (5.15) and induction, (5.13) holds with 𝐵1 = 𝐵
(𝑛)
1 and 𝐵2 = 𝐵

(𝑛)
2 for all 𝑛. From (5.17) we

see that
𝐵
(𝑛)
2 ≤ 𝐾2

0𝐴2

for all 𝑛, and thus from (5.16) we obtain

limsup
𝑛→∞

𝐵
(𝑛)
1 ≤ 𝐾2

0

(
𝐴1 +

𝛽2(𝑡 − 𝜏)
2𝜋 log𝜀−1𝐾

2
0𝐴2

)
.

Using the last two displays in (5.13), we obtain (5.12). �

6 The time discretization and the approximating functions

In this section, we will iterate Propositions 4.1 and Proposition 5.1 on many subintervals of time to construct
a discrete Markov chain which approximates the marginal distribution of the solution to the SPDE. First we
construct these intervals, which will correspond to our time-discretization scheme.

6.1 The time discretization

Our approximation scheme will ultimately be focused on approximating the distribution of 𝑢𝜀,𝑎 at a single
space-time point (𝑇, 𝑋). The time intervals of interest thus depend on the terminal time 𝑇 .

For 𝜀 ∈ (0, 𝜀0], define 𝛿𝜀 , 𝛾𝜀 , 𝜁𝜀 , and 𝜆𝜀 such that

(log𝜀−1)−1 � 𝛾𝜀 � 𝛿2
𝜀 � 𝜆𝜀 � 1, (6.1)

𝛿−1
𝜀 𝜀

1
2 𝛾𝜀 � 1, (6.2)

(log𝜀−1)−1 � 𝜁𝜀 � 1, (6.3)

where the notation 𝑓 (𝜀) � 𝑔(𝜀) means that 𝑓 (𝜀) ≤ 𝑔(𝜀) for all 𝜀 and lim
𝜀↓0

𝑓 (𝜀)
𝑔 (𝜀) = 0. To avoid introducing

further constants later on, we further assume that

max{𝜀𝛾𝜀 , 𝜀𝛿𝜀/2} ≤ 1/2 (6.4)

for all 𝜀 > 0. The choices of the parameters will become more clear later; see the discussion at the end of this
subsection.

Now we define, for 𝑇 > 𝜀2−𝜆𝜀 ,

𝑠𝑚 = 𝜀𝑚𝛿𝜀 and 𝑠′𝑚 = 𝜀𝑚𝛿𝜀+𝛾𝜀 (6.5)

and
𝑡𝑚 = 𝑇 − 𝑠𝑚 and 𝑡 ′𝑚 = 𝑇 − 𝑠′𝑚. (6.6)

Note that these quantities all depend on 𝜀, and 𝑡𝑚 and 𝑡 ′𝑚 also depend on 𝑇 , but we suppress this to simplify
notations. We note that the time of interest 𝑇 , unlike the time horizon 𝑇0, is not fixed throughout the paper.
However, whenever we use 𝑡𝑚 and 𝑡 ′𝑚, the 𝑇 of current interest will be clear from the context.
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Define

𝑀1(𝜀,𝑇) = d𝛿−1
𝜀 log𝜀𝑇e −1, (6.7)

𝑀2(𝜀) = b𝛿−1
𝜀 (2− 𝜁𝜀)c . (6.8)

Thus 𝑀1(𝜀,𝑇) +1 is the least integer 𝑚 so that 𝑡𝑚 ≥ 0, and 𝑀2(𝜀) is the greatest integer 𝑚 so that 𝑠𝑚 ≥ 𝜀2−𝜁𝜀 .
For example, for fixed 𝑇 > 0 independent of 𝜀, we have for sufficiently small 𝜀 that

𝑀1(𝜀,𝑇) =
{
−1, if 𝑇 ≥ 1,
0, if 𝑇 ∈ (0,1).

For the discrete time Markov chain to be constructed, the starting point in time will be given by 𝑀1(𝜀,𝑇),
and the ending point will be given by 𝑀2(𝜀). We note for future use that

𝑀2(𝜀) −𝑀1(𝜀,𝑇) +1 ≤ 𝛿−1
𝜀 (2− log𝜀𝑇). (6.9)

Note that by the assumption of 𝛿𝜀 > 𝛾𝜀 and 𝜀𝛾𝜀 < 1, we have

𝑡𝑚+1 = 𝑇 − 𝜀𝑚𝛿𝜀+𝛿𝜀 > 𝑇 − 𝜀𝑚𝛿𝜀+𝛾𝜀 = 𝑡 ′𝑚,
𝑡 ′𝑚 = 𝑇 − 𝜀𝑚𝛿𝜀+𝛾𝜀 > 𝑇 − 𝜀𝑚𝛿𝜀 = 𝑡𝑚.

Thus we can write

[𝑡𝑀1 (𝜀,𝑇 )+1, 𝑡
′
𝑀2 (𝜀) ] = 𝐼1 ∪ 𝐼2, with 𝐼1 =

𝑀2 (𝜀)⋃
𝑚=𝑀1 (𝜀,𝑇 )+1

[𝑡𝑚, 𝑡 ′𝑚], 𝐼2 =

𝑀2 (𝜀)−1⋃
𝑚=𝑀1 (𝜀,𝑇 )+1

[𝑡 ′𝑚, 𝑡𝑚+1] .

To approximate 𝑢𝜀,𝑎 (𝑇, 𝑋), we will turn off the noise in 𝐼1, which consists of the “quiet” intervals. For
each 𝑚, we first solve the deterministic heat equation in the interval [𝑡𝑚, 𝑡 ′𝑚]. Then we replace the solution at
(𝑡 ′𝑚, ·) by its value at (𝑡 ′𝑚, 𝑋). In the next “noisy” interval [𝑡 ′𝑚, 𝑡𝑚+1], we solve the stochastic heat equation
with the corresponding “constant” initial data. The error incurred in those “quiet” intervals will be quantified
by Proposition 4.1, and is negligible as 𝜀→ 0 by the assumption 𝛾𝜀 � 𝛿2

𝜀 . The error incurred by modifying
the initial data for those “noisy” intervals will be quantified by Proposition 5.1, and goes to zero by the
assumption of 𝛿−1

𝜀 𝜀
1
2 𝛾𝜀 � 1. The role of 𝜁𝜀 is in (6.8) to provide a small amount of extra separation between

the final 𝑡𝑚 and the time 𝑇 , which will be needed for the last step of the approximation; see the proof of
Proposition 7.1 below.

In the inequality (6.9), we need log𝜀𝑇 < 2 for all 𝜀� 1 so that the above construction makes sense with
𝑀2(𝜀) ≥ 𝑀1(𝜀,𝑇), and this prevents us from considering those 𝑇 of order 𝑂 (𝜀2). From Proposition 3.6, we
already know that, if 𝑇 is chosen so that log(1+2𝜀−2𝑇) � log𝜀−1, the random noise plays no role in the short
interval [0,𝑇], and we have 𝑢𝜀,𝑎 (𝑇,𝑥) → 𝑎 as 𝜀→ 0. Therefore, those small 𝑇 can be treated separately
without constructing the Markov chain. To unify the notations, we use the following conventions:

1. If 𝑇 > 𝜀2−𝜆𝜀 , we have 2− log𝜀𝑇 � 𝛿𝜀 , and 𝑀1(𝜀,𝑇), 𝑀2(𝜀) are defined as above.

2. If 𝑇 ∈ [0, 𝜀2−𝜆𝜀 ], we have log(1+2𝜀−2𝑇) � log𝜀−1 and hence 𝑢𝜀,𝑎 (𝑇) → 𝑎 as 𝜀→ 0, and we simply
define 𝑀1(𝜀,𝑇) = 𝑀2(𝜀) = 1.
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6.2 The approximating functions

As we have mentioned, our approximation will be focused on a particular terminal space-time point (𝑇, 𝑋).
So in this section we fix 𝑇 ≥ 0, 𝑋 ∈ R2. To define our approximation, we introduce a sequence of functions
{𝑤 (𝑚) }𝑚=𝑀1 (𝜀,𝑇 ) ,...,𝑀2 (𝜀) as follows. Define

𝑤 (𝑀1 (𝜀,𝑇 )) (𝑡, 𝑥) = 𝑢𝜀,𝑎 (𝑡, 𝑥), 𝑡 ≥ 0, 𝑥 ∈ R2. (6.10)

For 𝑚 ∈ {𝑀1(𝜀,𝑇) +1, . . . , 𝑀2(𝜀)}, we then inductively define {𝑤 (𝑚) (𝑡, 𝑥) : 𝑡 ≥ 𝑡 ′𝑚, 𝑥 ∈ R2} to be the solution
to

d𝑤 (𝑚) (𝑡, 𝑥) = 1
2
Δ𝑤 (𝑚) (𝑡, 𝑥)d𝑡 + (log𝜀−1)− 1

2𝜎(𝑤 (𝑚) (𝑡, 𝑥))d𝑊 𝜀 (𝑡, 𝑥), 𝑡 > 𝑡 ′𝑚, 𝑥 ∈ R2, (6.11)

𝑤 (𝑚) (𝑡 ′𝑚, 𝑥) =
∫
𝐺𝑡′𝑚−𝑡𝑚 (𝑋 − 𝑦)𝑤 (𝑚−1) (𝑡𝑚, 𝑦) d𝑦, 𝑥 ∈ R2. (6.12)

Therefore, 𝑤 (𝑚) solves (1.1)–(1.2) but with constant initial condition at time 𝑡 ′𝑚. Recall that 𝑋 is fixed which
is our reference spatial point. We note (recalling (6.6) and (6.7)) that (whenever 𝑚 ≥ 𝑡𝑀1 (𝜀,𝑇 ) +1) we have
𝑡 ′𝑚 ≥ 𝑡𝑚 ≥ · · · ≥ 𝑡 ′

𝑀1 (𝜀,𝑇 )+1 ≥ 𝑡𝑀1 (𝜀,𝑇 )+1 ≥ 0 and so the initial conditions (6.12) are inductively well-defined.
We also emphasize that the function 𝑤 (𝑚) depends on the parameters 𝜀, 𝑎,𝑇, 𝑋 , and the simplified notation
𝑤 (𝑚) = 𝑤 (𝑚)

𝜀,𝑎,𝑇 ,𝑋
will be used when there is no confusion. We will make the dependence explicit when

needed. It is worth mentioning that for those 𝑇 ≤ 𝜀2−𝜆𝜀 , we only have one element in the chain which is
𝑤 (1) = 𝑢𝜀,𝑎.

To compare 𝑢𝜀,𝑎 with 𝑤 (𝑚) , it turns out to be convenient to introduce another sequence of functions
{𝑤̃ (𝑚) }𝑚=𝑀1 (𝜀,𝑇 ) ,...,𝑀2 (𝜀) . Define {𝑤̃ (𝑚) (𝑡, 𝑥) : 𝑡 ≥ 𝑡 ′𝑚, 𝑥 ∈ R2} as the solution to

d𝑤̃ (𝑚) (𝑡, 𝑦) = 1
2
Δ𝑤̃ (𝑚) (𝑡, 𝑥)d𝑡 +

1R\[𝑡𝑚+1,𝑡
′
𝑚+1 ] (𝑡)√︁

log𝜀−1
𝜎(𝑤̃ (𝑚) (𝑡, 𝑥))d𝑊 𝜀 (𝑡, 𝑥), 𝑡 > 𝑡 ′𝑚, 𝑥 ∈ R2, (6.13)

𝑤̃ (𝑚) (𝑡 ′𝑚, 𝑥) =
∫
𝐺𝑡′𝑚−𝑡𝑚 (𝑋 − 𝑦)𝑤̃ (𝑚−1) (𝑡𝑚, 𝑦) d𝑦, 𝑥 ∈ R2,𝑚 ≥ 𝑀1(𝜀,𝑇) +1, (6.14)

𝑤̃ (𝑀1 (𝜀,𝑇 )) (0, 𝑥) = 𝑎. (6.15)

For each 𝑚 ≥ 𝑀1(𝜀,𝑇) +1, we note that since 𝑤̃ (𝑚−1) satisfies the unforced heat equation on the time interval
[𝑡𝑚, 𝑡 ′𝑚], the initial condition (6.14) can be rewritten as

𝑤̃ (𝑚) (𝑡 ′𝑚, 𝑥) = 𝑤̃ (𝑚−1) (𝑡 ′𝑚, 𝑋). (6.16)

We also have the following lemma relating 𝑤̃ (𝑚) to 𝑤 (𝑚) .

Lemma 6.1. For all 𝑚 ∈ {𝑀1(𝜀,𝑇), . . . , 𝑀2(𝜀)}, we have 𝑤 (𝑚) (𝑡, 𝑥) = 𝑤̃ (𝑚) (𝑡, 𝑥) for all 𝑡 ∈ [𝑡 ′𝑚 ∨ 0, 𝑡𝑚+1]
and all 𝑥 ∈ R2.

Proof. The proof is by induction on 𝑚. For 𝑚 = 𝑀1(𝜀,𝑇), by (6.13), (6.15), and (6.10), we see that
𝑤̃ (𝑀1 (𝜀,𝑇 )) = 𝑢𝜀,𝑎 = 𝑤 (𝑀1 (𝜀,𝑇 )) on [0, 𝑡𝑀1 (𝜀,𝑇 )+1] ×R2. For the inductive step, if 𝑚 ≥ 𝑀1(𝜀,𝑇) −1 and we
assume that 𝑤 (𝑚−1) (𝑡, 𝑥) = 𝑤̃ (𝑚−1) (𝑡, 𝑥) for all (𝑡, 𝑥) ∈ [𝑡 ′

𝑚−1 ∨0, 𝑡𝑚] ×R2, then this in particular means that
𝑤 (𝑚−1) (𝑡𝑚, ·) = 𝑤̃ (𝑚−1) (𝑡𝑚, ·). This means that the initial conditions (6.12) for 𝑤 (𝑚) and (6.14) for 𝑤̃ (𝑚) (both
imposed at time 𝑡 ′𝑚) agree. Since the evolution equations (6.11) and (6.13) also agree on the “noisy” time
interval [𝑡 ′𝑚, 𝑡𝑚+1], this implies that 𝑤 (𝑚) = 𝑤̃ (𝑚) on the time interval [𝑡 ′𝑚, 𝑡𝑚+1] as well. �
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By Lemma 6.1 and (6.16), we see that the initial condition (6.12) is equivalent to

𝑤 (𝑚) (𝑡 ′𝑚, 𝑥) = 𝑤̃ (𝑚−1) (𝑡 ′𝑚, 𝑋). (6.17)

Thus, for each 𝑚 ≥ 𝑀1(𝜀,𝑇), we initiate 𝑤 (𝑚) and 𝑤̃ (𝑚) with the same data at 𝑡 = 𝑡 ′𝑚, with 𝑤 (𝑚) solving
the original stochastic heat equation for 𝑡 > 𝑡 ′𝑚 and 𝑤̃ (𝑚) solving the equation with the noise turned off in
[𝑡𝑚+1, 𝑡

′
𝑚+1].

Our goal in this section is to estimate the approximation error |𝑤 (𝑚) (𝑡, 𝑥) − 𝑢𝜀,𝑎 (𝑡, 𝑥) | for 𝑡 ≥ 𝑡 ′𝑚, 𝑥 ∈
R2, and 𝑚 ∈ {𝑀1(𝜀,𝑇), . . . , 𝑀2(𝜀)}. By definition, we have 𝑤 (𝑀1 (𝜀,𝑇 )) = 𝑢𝜀,𝑎, thus by applying triangle
inequality it suffices to estimate 𝑤 (𝑚) −𝑤 (𝑚−1) for each 𝑚. We briefly explain below how it will be achieved,
by applying the results from Sections 4 and 5. First, through 𝑤̃ (𝑚−1) we can write the difference as

𝑤 (𝑚) (𝑡, 𝑥) −𝑤 (𝑚−1) (𝑡, 𝑥) = [𝑤 (𝑚) (𝑡, 𝑥) − 𝑤̃ (𝑚−1) (𝑡, 𝑥)] + [𝑤̃ (𝑚−1) (𝑡, 𝑥) −𝑤 (𝑚−1) (𝑡, 𝑥)], 𝑡 ≥ 𝑡 ′𝑚, 𝑥 ∈ R2.

We bound the two terms separately:

1. For the first error term 𝑤 (𝑚) (𝑡, 𝑥) − 𝑤̃ (𝑚−1) (𝑡, 𝑥), we recall three facts (i) 𝑤 (𝑚) (𝑡 ′𝑚, ·) = 𝑤̃ (𝑚−1) (𝑡 ′𝑚, 𝑋);
(ii) 𝑤̃ (𝑚−1) solves the deterministic heat equation in the interval [𝑡𝑚, 𝑡 ′𝑚]; (iii) for 𝑡 > 𝑡 ′𝑚, 𝑤 (𝑚)

and 𝑤̃ (𝑚−1) solve the same stochastic heat equation. Therefore, the difference of 𝑤 (𝑚) (𝑡, 𝑥) from
𝑤̃ (𝑚−1) (𝑡, 𝑥) only comes from replacing the initial data 𝑤̃ (𝑚−1) (𝑡 ′𝑚, ·) by its value at 𝑋 , which can be
quantified by Proposition 5.1.

2. For the second error term 𝑤̃ (𝑚−1) (𝑡, 𝑥) −𝑤 (𝑚−1) (𝑡, 𝑥), we have

𝑤 (𝑚−1) (𝑡 ′𝑚−1, ·) = 𝑤̃
(𝑚−1) (𝑡 ′𝑚−1, ·) = 𝑤̃

(𝑚−2) (𝑡 ′𝑚−1, 𝑋).

The equations satisfied by 𝑤 (𝑚−1) and 𝑤̃ (𝑚−1) in 𝑡 > 𝑡 ′
𝑚−1 are the same except that the noise is turned

off in [𝑡𝑚, 𝑡 ′𝑚] for 𝑤̃ (𝑚−1) . Therefore, the error only comes from turning off the noise in [𝑡𝑚, 𝑡 ′𝑚]. This
can be quantified by Proposition 4.1.

The following proposition is the main result of the section.

Proposition 6.2. Suppose that (𝐶𝜀)𝜀>0 is an arbitrary sequence of numbers such that 𝐶𝜀 →∞ as 𝜀 ↓ 0, and
that 𝑐 ∈ [0,1) is a fixed constant. Define the set

𝑆𝜀,𝑇0,𝑐 :=
{
(𝑇,𝑎, 𝑘, 𝑡, 𝑥) : 𝑇 ∈ [0,𝑇0], 𝑎 > 0, 𝑀1(𝜀,𝑇)+1 ≤ 𝑘 ≤ 𝑀2(𝜀), 𝑡 ∈ [𝑇 − 𝑐𝜀𝑘 𝛿𝜀+𝛾𝜀 ,𝑇], 𝑥 ∈ R2} .

Then we have

lim
𝜀↓0

sup
(𝑇 ,𝑎,𝑘,𝑡 ,𝑥) ∈𝑆𝜀,𝑇0 ,𝑐

(
E(𝑢𝜀,𝑎 −𝑤 (𝑘)

𝜀,𝑎,𝑇 ,𝑋
) (𝑡, 𝑥)2

)1/2

𝑎(1+𝐶𝜀𝜀−𝑘 𝛿𝜀/2 |𝑥− 𝑋 |)
= 0. (6.18)

In order to prove Proposition 6.2, we need the following second moment bound.

Lemma 6.3. There is a constant 𝐾1 <∞ so that if 𝑇 ∈ [0,𝑇0], 𝜀 ∈ (0, 𝜀0], 𝑚 ∈ {𝑀1(𝜀,𝑇), . . . , 𝑀2(𝜀)}, 𝑎 > 0,
then we have for all 𝑥 ∈ R2 that

E𝑤 (𝑚)
𝜀,𝑎,𝑇 ,𝑋

(𝑡 ′𝑚, 𝑥)2 ≤ 𝐾2
1𝑎

2. (6.19)

Proof. Throughout the proof, we will again use the simplified notation 𝑤 (𝑚) , 𝑤̃ (𝑚) . Consider a fixed 𝑚. For
all 𝑡 ≥ 𝑡 ′

𝑚−1, by the mild formulation of the equation satisfied by 𝑤̃ (𝑚−1) and (6.16), we have

E𝑤̃ (𝑚−1) (𝑡, 𝑋)2 = E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)
2 + 1

log𝜀−1

∫
[𝑡′
𝑚−1,𝑡 ]\[𝑡𝑚,𝑡

′
𝑚 ]

∬
𝐺𝑡−𝑠 (𝑋 − 𝑦1)𝐺𝑡−𝑠 (𝑋 − 𝑦2)𝐺 𝜀2 (𝑦1 − 𝑦2)

·E
[
𝜎(𝑤̃ (𝑚−1) (𝑠, 𝑦1))𝜎(𝑤̃ (𝑚−1) (𝑠, 𝑦2))

]
d𝑦1 d𝑦2 d𝑠

≤ E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)
2 + 𝛽2

2𝜋 log𝜀−1

∫
[𝑡′
𝑚−1,𝑡 ]\[𝑡𝑚,𝑡

′
𝑚 ]

E[𝑤̃ (𝑚−1) (𝑠, 𝑋)2]
2(𝑡 − 𝑠) + 𝜀2 d𝑠. (6.20)
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Here we used the fact that 𝑤̃ (𝑚−1) is stationary in the spatial variable. In particular, we have

E𝑤̃ (𝑚−1) (𝑡, 𝑋)2 ≤ E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)
2 + 𝛽2

2𝜋 log𝜀−1

∫ 𝑡

𝑡′
𝑚−1

E[𝑤̃ (𝑚−1) (𝑠, 𝑋)2]
2(𝑡 − 𝑠) + 𝜀2 d𝑠,

which by Lemma 3.4 (taking there 𝑓 (𝑠) = E𝑤̃ (𝑚−1) (𝑡 ′
𝑚−1 + 𝑠, 𝑋)

2, and also using Definition 3.5), implies that

E𝑤̃ (𝑚−1) (𝑡, 𝑋)2 ≤ 𝐾2
0E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)

2.

Substituting this back into (6.20), taking 𝑡 = 𝑡 ′𝑚, and recalling (6.17), we have

E𝑤 (𝑚) (𝑡 ′𝑚, 𝑋)2 = E𝑤̃ (𝑚−1) (𝑡 ′𝑚, 𝑋)2

≤ E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)
2

(
1+

𝐾2
0 𝛽

2

4𝜋 log𝜀−1

∫ 𝑡𝑚

𝑡′
𝑚−1

1
𝑡 ′𝑚− 𝑠+ 𝜀2/2

d𝑠

)
≤ E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)

2

(
1+

𝐾2
0 𝛽

2

4𝜋 log𝜀−1 log
𝑡 ′𝑚− 𝑡 ′

𝑚−1
𝑡 ′𝑚− 𝑡𝑚

)
. (6.21)

The logarithm can be estimated as

log
𝑡 ′𝑚− 𝑡 ′

𝑚−1
𝑡 ′𝑚− 𝑡𝑚

= log
𝜀 (𝑚−1) 𝛿𝜀+𝛾𝜀 − 𝜀𝑚𝛿𝜀+𝛾𝜀

𝜀𝑚𝛿𝜀 − 𝜀𝑚𝛿𝜀+𝛾𝜀 = log
𝜀𝛾𝜀−𝛿𝜀 − 𝜀𝛾𝜀

1− 𝜀𝛾𝜀

≤ 𝛿𝜀 log𝜀−1 + log
𝜀𝛾𝜀

1− 𝜀𝛾𝜀 ≤ 𝛿𝜀 log𝜀−1,

where the last inequality is by (6.4). Substituting this back into (6.21), we have

E𝑤 (𝑚) (𝑡 ′𝑚, 𝑋)2 = E𝑤̃ (𝑚−1) (𝑡 ′𝑚, 𝑋)2 ≤ E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)
2

(
1+

𝐾2
0 𝛽

2𝛿𝜀

4𝜋

)
.

Iterating this and recalling (6.9), we have for all 𝑥 ∈ R2,

E𝑤 (𝑚) (𝑡 ′𝑚, 𝑥)2 = E𝑤𝑚(𝑡 ′𝑚, 𝑋)2 ≤ 𝐾2
0𝑎

2

(
1+

𝐾2
0 𝛽

2𝛿𝜀

4𝜋

)𝑚−𝑀1 (𝜀,𝑇 )

≤ 𝐾2
0𝑎

2 exp
{
𝛽2

4𝜋
𝐾2

0𝛿𝜀 (𝑚−𝑀1(𝜀,𝑇))
}

≤ 𝐾2
0𝑎

2 exp
{

2− log𝜀𝑇
4𝜋

𝛽2𝐾2
0

}
for all 𝑚 ≤ 𝑀2(𝜀). The exponential on the right-hand side is uniformly bounded over all 𝑇 ≤ 𝑇0 and all
𝜀 ∈ (0, 𝜀0], so we obtain (6.19). �

Now we can prove Proposition 6.2.

Proof of Proposition 6.2. For any 𝑡 ∈ [𝑇 − 𝑐𝜀𝑚𝛿𝜀+𝛾𝜀 ,𝑇], we clearly have 𝑡 ≥ 𝑡 ′𝑚. By Proposition 5.1 and
Lemma 6.3, we have

E(𝑤 (𝑚) − 𝑤̃ (𝑚−1) ) (𝑡, 𝑥)2 ≤ 𝐾4
0

(
3(𝑡 − 𝑡 ′𝑚) + |𝑥− 𝑋 |2

𝑡 ′𝑚− 𝑡𝑚

)
E𝑤̃ (𝑚−1) (𝑡 ′𝑚−1, 𝑋)

2

≤ 𝐾4
0𝐾

2
1𝑎

2
(
3(𝑡 − 𝑡 ′𝑚) + |𝑥− 𝑋 |2

𝑡 ′𝑚− 𝑡𝑚

)
. (6.22)
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We have 𝑡 ′𝑚− 𝑡𝑚 = 𝜀𝑚𝛿𝜀 (1−𝜀𝛾𝜀 ) ∈
[ 1

2𝜀
𝑚𝛿𝜀 , 𝜀𝑚𝛿𝜀

]
by (6.4), and 𝑡− 𝑡 ′𝑚 ≤ 𝑇 − 𝑡 ′𝑚 = 𝜀𝑚𝛿𝜀+𝛾𝜀 by (6.6), so (6.22)

yields

E(𝑤 (𝑚) − 𝑤̃ (𝑚−1) ) (𝑡, 𝑥)2 ≤ 𝐾4
0𝐾

2
1𝑎

2
(
6𝜀𝛾𝜀 +2𝜀−𝑚𝛿𝜀 |𝑥− 𝑋 |2

)
. (6.23)

On the other hand, by Proposition 4.1 and Lemma 6.3, we have for all 𝑡 ≥ 𝑡 ′𝑚 that

E(𝑤̃ (𝑚−1) −𝑤 (𝑚−1) ) (𝑡, 𝑥)2 ≤
𝛽2𝐾4

0
4𝜋 log𝜀−1

(
log

𝑡 − 𝑡𝑚 + 𝜀2/2
𝑡 − 𝑡 ′𝑚 + 𝜀2/2

+𝐾2
0

)
E𝑤̃ (𝑚−2) (𝑡 ′𝑚−1, 𝑋)

2

≤
𝛽2𝐾4

0𝐾
2
1𝑎

2

4𝜋 log𝜀−1

(
log

𝑡 − 𝑡𝑚 + 𝜀2/2
𝑡 − 𝑡 ′𝑚 + 𝜀2/2

+𝐾2
0

)
. (6.24)

We have 𝑡 − 𝑡𝑚 ≤ 𝑇 − 𝑡𝑚 = 𝜀𝑚𝛿𝜀 and 𝑡 − 𝑡 ′𝑚 ≥ 𝑇 − 𝑐𝜀𝑚𝛿𝜀+𝛾𝜀 − 𝑡 ′𝑚 = (1− 𝑐)𝜀𝑚𝛿𝜀+𝛾𝜀 , so (6.24) gives us

E(𝑤̃ (𝑚−1) −𝑤 (𝑚−1) ) (𝑡, 𝑥)2 ≤ 𝛽2

4𝜋
𝐾4

0𝐾
2
1𝑎

2

(
𝛾𝜀 +

log 1
1−𝑐 +𝐾

2
0

log𝜀−1

)
. (6.25)

Iterating (6.23) and (6.25) and using the triangle inequality, we get(
E(𝑤 (𝑘) −𝑢𝜀,𝑎) (𝑡, 𝑥)2

)1/2

≤ 𝐾2
0𝐾1𝑎

𝑘∑︁
𝑚=𝑀1 (𝜀,𝑇 )+1


√

6𝜀𝛾𝜀/2 +
√

2𝜀−𝑚𝛿𝜀/2 |𝑥− 𝑋 | + 𝛽

2
√
𝜋

©­«𝛾1/2
𝜀 +

√︄
log 1

1−𝑐 +𝐾2
0

log𝜀−1
ª®¬


≤ 𝐾2
0𝐾1𝑎

(2− log𝜀𝑇)𝛿−1
𝜀

©­­«
√

6𝜀𝛾𝜀/2 + 𝛽𝛾
1/2
𝜀

2
√
𝜋

+

√︃
log 1

1−𝑐 +𝐾0√︁
log𝜀−1

ª®®¬+23/2 |𝑥− 𝑋 |𝜀−𝑘 𝛿𝜀/2
 ,

where in the last inequality we used (6.9) and (6.4). Therefore, we have (with 𝐶𝜀 , as in the statement of the
proposition, an arbitrary sequence so that 𝐶𝜀 →∞ as 𝜀 ↓ 0)(

E(𝑢𝜀,𝑎 −𝑤 (𝑘) ) (𝑡, 𝑥)2)1/2

𝑎(1+𝐶𝜀𝜀−𝑘 𝛿𝜀/2 |𝑥− 𝑋 |)
≤ 𝐾2

0𝐾1

(2− log𝜀𝑇)𝛿−1
𝜀

©­­«
√

6𝜀𝛾𝜀/2 + 𝛽𝛾
1/2
𝜀

2
√
𝜋

+

√︃
log 1

1−𝑐 +𝐾0√︁
log𝜀−1

ª®®¬+23/2𝐶−1
𝜀

 .
The first summand in the square brackets goes to 0 as 𝜀 ↓ 0 by (6.1) and (6.2), and since we assumed that
𝐶𝜀 →∞, we obtain (6.18). �

7 The discrete martingale

The key advantage of the approximation carried out in Proposition 6.2 is that we now have an essentially
one-dimensional problem. Note from the definitions (6.11)–(6.14), and also (6.17) and the white-in-time
nature of the noise, that if we (fix once and for all 𝑋 ∈ R2 and) define

𝑌𝜀,𝑎,𝑇 (𝑀1(𝜀,𝑇)) = 𝑎;

𝑌𝜀,𝑎,𝑇 (𝑚) = 𝑤 (𝑚)
𝜀,𝑎,𝑇 ,𝑋

(𝑡 ′𝑚, 𝑋) = 𝑤̃
(𝑚−1)
𝜀,𝑎,𝑇 ,𝑋

(𝑡 ′𝑚, 𝑋), 𝑀1(𝜀,𝑇) +1 ≤ 𝑚 ≤ 𝑀2(𝜀),

then the process {𝑌𝜀,𝑎,𝑇 (𝑚)}𝑚=𝑀1 (𝜀,𝑇 ) ,...,𝑀2 (𝜀) is a Markov chain and a martingale (both with respect to its
own filtration). The key point is that 𝑤 (𝑚)

𝜀,𝑎,𝑇 ,𝑋
evolves with spatially-constant initial condition 𝑌𝜀,𝑎,𝑇 (𝑚),
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driven by the noise that is independent of the past. Thus𝑌𝜀,𝑎,𝑇 (𝑚+1) depends on the past only via𝑌𝜀,𝑎,𝑇 (𝑚).
Moreover the expectation of 𝑌𝜀,𝑎,𝑇 (𝑚 +1) conditional on 𝑌𝜀,𝑎,𝑇 (𝑚) is simply 𝑌𝜀,𝑎,𝑇 (𝑚) due to the fact that,
when starting from constant initial data, the stochastic heat equation (with the noise either on or off) preserves
expectations. Recall that in the case of (very small) 𝑇 ∈ [0, 𝜀2−𝜆𝜀 ], we have defined 𝑀1(𝜀,𝑇) = 𝑀2(𝜀) = 1,
and in this case we simply let 𝑌𝜀,𝑎,𝑇 (𝑀1(𝜀,𝑇)) = 𝑌𝜀,𝑎,𝑇 (𝑀2(𝜀)) = 𝑢𝜀,𝑎 (𝑇, 𝑋).

7.1 Approximating the one-point SPDE solution by the Markov chain

In this section we show that𝑌𝜀,𝑎,𝑇 (𝑀2(𝜀)), at its terminal time 𝑀2(𝜀), is a good approximation for 𝑢𝜀,𝑎 (𝑇, 𝑋)
(in fact, for 𝑢𝜀,𝑎 (𝑇,𝑥) if 𝑥 is close to 𝑋). Most of the work has already been done in Proposition 6.2.

Proposition 7.1. We have

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ]
𝑎>0,𝑥∈R2

(
E(𝑌𝜀,𝑎,𝑇 (𝑀2(𝜀)) −𝑢𝜀,𝑎 (𝑇,𝑥))2)1/2

𝑎(1+ 𝜀−1 |𝑥− 𝑋 |)
= 0. (7.1)

Proof. By Proposition 6.2 (choosing 𝐶𝜀 = 𝜀−𝜁𝜀/2 →∞ by (6.3)), we have

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ]
𝑎>0,𝑥∈R2

(
E(𝑢𝜀,𝑎 −𝑤 (𝑀2 (𝜀))

𝜀,𝑎,𝑇 ,𝑋
) (𝑇,𝑥)2

)1/2

𝑎(1+ 𝜀− 1
2 (𝑀2 (𝜀) 𝛿𝜀+𝜁𝜀) |𝑥− 𝑋 |)

= 0. (7.2)

By (6.8), we have 1
2 (𝑀2(𝜀)𝛿𝜀 + 𝜁𝜀) ≤ 1. Therefore, (7.2) implies that

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ]
𝑎>0,𝑥∈R2

(
E(𝑢𝜀,𝑎 −𝑤 (𝑀2 (𝜀))

𝜀,𝑎,𝑇 ,𝑋
) (𝑇,𝑥)2

)1/2

𝑎(1+ 𝜀−1 |𝑥− 𝑋 |)
= 0. (7.3)

Moreover, by Proposition 3.6, Lemma 6.3 and the fact that 𝑇 − 𝑡 ′
𝑀2 (𝜀) = 𝑠

′
𝑀2 (𝜀) < 𝑠𝑀2 (𝜀) ≤ 𝜀2−𝜁𝜀−𝛿𝜀 , we have

1
𝑎

(
E(𝑤 (𝑀2 (𝜀))

𝜀,𝑎,𝑇 ,𝑋
(𝑇,𝑥) −𝑌𝜀,𝑎,𝑇 (𝑀2(𝜀)))2

)1/2

≤ 𝛽𝐾0

2𝑎
√
𝜋

(
E𝑤 (𝑀2 (𝜀))

𝜀,𝑎,𝑇 ,𝑋
(𝑡 ′
𝑀2 (𝜀) , 𝑋)

2
)1/2

(
log(1+2𝜀−2(𝑇 − 𝑡 ′

𝑀2 (𝜀) ))
log𝜀−1

)1/2

≤ 𝛽𝐾0𝐾1

2
√
𝜋

√︄
log(1+2𝜀−𝜁𝜀−𝛿𝜀 )

log𝜀−1 ,

and the quantity on the right side goes to 0 uniformly in 𝑇,𝑎, 𝑥 by (6.1) and (6.3). This, along with (7.3),
implies (7.1). �

The following spatial regularity statement for 𝑢𝜀,𝑎 (𝑇, ·) is a consequence of Proposition 7.1, so we record
it here for future use.

Corollary 7.2. We have

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ],𝑎>0
𝑥1,𝑥2∈R2

(
E(𝑢𝜀,𝑎 (𝑇,𝑥1) −𝑢𝜀,𝑎 (𝑇,𝑥2))2)1/2

𝑎(1+ 𝜀−1 |𝑥1 − 𝑥2 |)
= 0.
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Proof. By spatial homogeneity, we can assume that 𝑥1 = 𝑋 . Then the result follows immediately by writing(
E(𝑢𝜀,𝑎 (𝑇,𝑥1) −𝑢𝜀,𝑎 (𝑇,𝑥2))2

)1/2
≤

2∑︁
𝑖=1

(
E(𝑢𝜀,𝑎 (𝑇,𝑥𝑖) −𝑌𝜀,𝑎,𝑇 (𝑀2(𝜀)))2

)1/2

and applying Proposition 7.1 to both terms. �

7.2 The martingale differences

The approximation result in Proposition 7.1 motivates us to study the discrete martingale {𝑌𝜀,𝑎,𝑇 (𝑚)}𝑚. Our
ultimate goal will be to show that it approximates a continuous martingale (coming from a solution to (1.5)–
(1.7)) as 𝜀 ↓ 0. We will use the martingale problem approach as explained in [41, Section 11.2], and en route
it will be important to understand some statistical properties of the increments 𝑌𝜀,𝑎,𝑇 (𝑚) −𝑌𝜀,𝑎,𝑇 (𝑚−1)
conditional on 𝑌𝜀,𝑎,𝑇 (𝑚−1), a task to which we now set ourselves. The first observation is that, due to the
independence of d𝑊 𝜀 on disjoint time intervals, if we define

𝑍𝜀,𝑎,𝑚 =

∫
𝐺𝑠𝑚−𝑠′𝑚 (𝑋 − 𝑧)𝑢𝜀,𝑎 (𝑠′𝑚−1 − 𝑠𝑚, 𝑧) d𝑧, 𝑀1(𝜀,𝑇) +1 ≤ 𝑚 ≤ 𝑀2(𝜀), (7.4)

(with 𝑠𝑘 , 𝑠′𝑘 defined as in (6.5)) then

Law[𝑌𝜀,𝑎,𝑇 (𝑚) | 𝑌𝜀,𝑎,𝑇 (𝑚−1) = 𝑏] = Law𝑍𝜀,𝑏,𝑚. (7.5)

This can be seen by noting that the evolution equations for 𝑢𝜀,𝑎 and 𝑤̃ (𝑚) are the same, and that 𝑤̃ (𝑚) is
started with constant initial condition equal to 𝑌𝜀,𝑎,𝑇 (𝑚−1).

7.2.1 Martingale difference variances

Our first interest is in the conditional variance Var[𝑌𝜀,𝑎,𝑇 (𝑚) | 𝑌𝜀,𝑎,𝑇 (𝑚 − 1) = 𝑏] = Var𝑍𝜀,𝑏,𝑚, and we
proceed to study this quantity. The first step is to approximate it by a simpler quantity using the regularity
established in Corollary 7.2. An important role will be played by the function 𝐽𝜀 : (−∞,2+ log𝜀−1 𝑇0] ×R≥0 →
R≥0 defined by

𝐽𝜀 (𝑞, 𝑎) =
1

2
√
𝜋
(E𝜎(𝑢𝜀,𝑎 (𝜀2−𝑞, 𝑥))2)1/2. (7.6)

As 𝑢𝜀,𝑎 is stationary in the spatial variable, the r.h.s. of (7.6) does not depend on 𝑥. Here

𝑞 ∈ (−∞,2+ log𝜀−1 𝑇0] corresponds to 𝜀2−𝑞 ∈ (0,𝑇0],

i.e., we parameterize 𝐽𝜀 in time on the exponential scale discussed in Section 1.1. This section has two main
results. First, we show how to use 𝐽𝜀 to approximate Var𝑍𝜀,𝑏,𝑚:

Proposition 7.3. We have

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ],𝑎>0,

𝑀1 (𝜀,𝑇 )+1≤𝑚≤𝑀2 (𝜀)

𝑎−2 ��𝛿−1
𝜀 Var𝑍𝜀,𝑎,𝑚− 𝐽𝜀 (2− (𝑚−1)𝛿𝜀 , 𝑎)2�� = 0. (7.7)

Also, we will prove the following compactness result for the family {𝐽𝜀}𝜀 , which will help us in our
limit procedure:

Proposition 7.4. For any sequence 𝜀𝑘 ↓ 0, there is a subsequence 𝜀𝑘ℓ ↓ 0 and a continuous function
𝐽 : [0,2] ×R≥0 → R≥0 so that

lim
ℓ→∞

𝐽𝜀𝑘ℓ
| [0,2]×R≥0 = 𝐽 (7.8)

uniformly on compact subsets of [0,2] ×R≥0.

28



As we assumed that 𝑇0 ≥ 1, each 𝐽𝜀 is indeed defined on [0,2]×R≥0. We will prove Proposition 7.4 first,
since the intermediate results will be useful in the proof of Proposition 7.3. We need two preparatory lemmas,
addressing the regularity of 𝐽𝜀 in 𝑞 and in 𝑎. First we address the regularity in 𝑞.

Lemma 7.5. For all 𝜀, 𝑎 > 0 and 𝑞1, 𝑞2 ∈ (−∞,2+ log𝜀−1 𝑇0], we have

|𝐽𝜀 (𝑞2, 𝑎) − 𝐽𝜀 (𝑞1, 𝑎) | ≤
𝑎𝛽2𝐾2

0
4𝜋

(
|𝑞2 − 𝑞1 |1/2 +𝐾0(log𝜀−1)−1/2

)
. (7.9)

Proof. Assume 𝑞1 ≤ 𝑞2. Define 𝐼𝜀 = [0, 𝜀2−𝑞2 − 𝜀2−𝑞1]. We can write

|𝐽𝜀 (𝑞1, 𝑎) − 𝐽𝜀 (𝑞2, 𝑎) | =
1

2
√
𝜋

���(E𝜎(𝑢𝐼𝜀𝜀,𝑎 (𝜀2−𝑞2 , 𝑥))2)1/2 − (E𝜎(𝑢𝜀,𝑎 (𝜀2−𝑞2 , 𝑥))2)1/2
���

≤ 𝛽

2
√
𝜋

(
E

(
𝑢𝐼𝜀𝜀,𝑎 (𝜀2−𝑞2 , 𝑥) −𝑢𝜀,𝑎 (𝜀2−𝑞2 , 𝑥)

)2
)1/2

.

In the first equality we used the fact that

𝑢𝐼𝜀𝜀,𝑎 (𝜀2−𝑞2 , 𝑥) law
= 𝑢𝜀,𝑎 (𝜀2−𝑞1 , 𝑥),

where 𝑢𝐼𝜀𝜀,𝑎 is defined as in (1.26)–(1.27), i.e., the noise is turned off in 𝐼𝜀 . Now we apply Proposition 4.1
with 𝑡 = 𝜀2−𝑞2 , 𝐴 = ∅, 𝜏1 = 0, and 𝜏2 = 𝜀2−𝑞2 − 𝜀2−𝑞1 to obtain

|𝐽𝜀 (𝑞1, 𝑎) − 𝐽𝜀 (𝑞2, 𝑎) | ≤
𝑎𝛽2𝐾2

0

4𝜋
√︁

log𝜀−1

©­«
√︄

log
𝜀2−𝑞2 + 𝜀2/2
𝜀2−𝑞1 + 𝜀2/2

+𝐾0
ª®¬ (7.10)

≤
𝑎𝛽2𝐾2

0
4𝜋

(
|𝑞2 − 𝑞1 |1/2 +𝐾0(log𝜀−1)−1/2

)
, (7.11)

as claimed. �

Now we address the regularity of 𝐽𝜀 in 𝑎. Later on, we will also use the following result to prove that
(1.15) is satisfied for the limits of {𝐽𝜀}𝜀 as 𝜀 ↓ 0. Thus we need the explicit constant in the middle expression
of (7.12).

Lemma 7.6. For all 𝜀 ∈ (0, 𝜀0], 𝑞 ∈ (−∞,2+ log𝜀−1 𝑇0], and 𝑎1, 𝑎2 ≥ 0, we have

|𝐽𝜀 (𝑞, 𝑎2) − 𝐽𝜀 (𝑞, 𝑎1) | ≤
(
4𝜋
𝛽2 − log(1+2𝜀−𝑞)

log𝜀−1

)−1/2
|𝑎2 − 𝑎1 | ≤

𝛽𝐾0

2
√
𝜋
|𝑎2 − 𝑎1 |. (7.12)

In particular, for all 𝑎 > 0, we have

|𝐽𝜀 (𝑞, 𝑎) | ≤
𝛽𝑎𝐾0

2
√
𝜋
. (7.13)

Proof. We have

|𝐽𝜀 (𝑞, 𝑎1) − 𝐽𝜀 (𝑞, 𝑎2) | =
1

2
√
𝜋

���(E𝜎(𝑢𝜀,𝑎1 (𝜀2−𝑞, 𝑥))2)1/2 − (E𝜎(𝑢𝜀,𝑎2 (𝜀2−𝑞, 𝑥))2)1/2
���

≤ 1
2
√
𝜋

(
E[𝜎(𝑢𝜀,𝑎1 (𝜀2−𝑞, 𝑥)) −𝜎(𝑢𝜀,𝑎2 (𝜀2−𝑞, 𝑥))]2

)1/2

≤ 𝛽

2
√
𝜋

(
E[𝑢𝜀,𝑎1 (𝜀2−𝑞, 𝑥) −𝑢𝜀,𝑎2 (𝜀2−𝑞, 𝑥)]2

)1/2
,

and then the first inequality in (7.12) follows from (3.4) with the explicit constant (3.6). The second inequality
in (7.12) is then just (3.8). The bound (7.13) comes from (7.12) with 𝑎2 = 𝑎 and 𝑎1 = 0. �
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Given the regularity results in Lemmas 7.5 and 7.6, the compactness of the family (𝐽𝜀) is straightforward.

Proof of Proposition 7.4. By Lemmas 7.5 and 7.6, along with a simple modification of the Arzelà–Ascoli
theorem to account for the second term on the r.h.s. of (7.9) (see e.g. [20, Lemma A.4]), we can extract a
suitable subsequence and pass to the limit on any rectangular subset of [0,2] ×R≥0 of the form [0,2] × [0, 𝑀],
with 𝑀 > 0. Sending 𝑀→∞ so that the rectangles exhaust [0,2] ×R≥0 and using a diagonalization argument,
we obtain the desired limit and convergence (7.8). �

Now we turn to the proof of Proposition 7.3. We first prove the following intermediate result.

Lemma 7.7. Define

𝑉𝜀,𝑎,𝑚 =
1

log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

𝐽𝜀 (2− log𝜀 𝑠, 𝑎)2

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

d𝑠

=
1

2𝜋 log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑋))2

2(𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠) + 𝜀2 d𝑠.

(7.14)

Then we have, for any fixed 𝑇0 <∞, that

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ]

𝑀1 (𝜀,𝑇 )+1≤𝑚≤𝑀2 (𝜀)

|𝑉𝜀,𝑎,𝑚−Var𝑍𝜀,𝑎,𝑚 |
𝑎2𝛿𝜀

= 0. (7.15)

Proof. We can first write (recalling (7.4))

𝑍𝜀,𝑎,𝑚 = 𝑎 + 1√︁
log𝜀−1

∫
𝐺𝑠𝑚−𝑠′𝑚 (𝑋 − 𝑧)

∫ 𝑠′
𝑚−1−𝑠𝑚

0

∫
𝐺𝑠′

𝑚−1−𝑠𝑚−𝑠 (𝑧− 𝑦)𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦) d𝑧

= 𝑎 + 1√︁
log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

∫
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦)𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦). (7.16)

Therefore, we have

Var𝑍𝜀,𝑎,𝑚 =
1

log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

∬
𝐺 𝜀2 (𝑦1 − 𝑦2)E

2∏
𝑖=1

(
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦𝑖)𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦𝑖))

)
d𝑦1 d𝑦2 d𝑠.

(7.17)
Now we have, by spatial homogeneity, that

E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦2)) = E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑋))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑋 + 𝑦1 − 𝑦2)).

We also have (using the Cauchy–Schwarz inequality) that��E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦2)) −E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))2��
≤ E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1)) |𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1)) −𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦2)) |

≤ 𝛽2
(
E𝑢𝜀,𝑎 (𝑠, 𝑦1)2

)1/2 (
E[𝑢𝜀,𝑎 (𝑠, 𝑦1) −𝑢𝜀,𝑎 (𝑠, 𝑦2)]2

)1/2
,

so by (3.5) and Corollary 7.2 we have a function 𝑓 satisfying lim
𝜀↓0

𝑓 (𝜀) = 0 and

sup
𝑠∈[0,𝑇0 ]
𝑦1,𝑦2∈R2

��E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦2)) −E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))2�� ≤ 𝑎2(1+ 𝜀−1 |𝑦1 − 𝑦2 |) 𝑓 (𝜀) (7.18)
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for all 𝑦1, 𝑦2 ∈ R2 and all 𝑎 ≥ 0. Now we note that

1
log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

∬
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦)𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦′)𝐺 𝜀2 (𝑦− 𝑦′)E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦))2 d𝑦d𝑦′d𝑠

=
1

log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

∫
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦)𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠+𝜀2 (𝑋 − 𝑦)E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦))2 d𝑦d𝑠

=
1

2𝜋 log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑋))2

2(𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠) + 𝜀2 d𝑠 =𝑉𝜀,𝑎,𝑚. (7.19)

where in the second-to-last identity we used spatial homogeneity. Subtracting (7.17) and (7.19) and applying
(7.18), we have

|𝑉𝜀,𝑎,𝑚−Var𝑍𝜀,𝑎,𝑚 |

≤ 𝑓 (𝜀)𝑎2

log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

∬ ( 2∏
𝑖=1
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦𝑖)

)
𝐺 𝜀2 (𝑦1 − 𝑦2) (1+ 𝜀−1 |𝑦1 − 𝑦2 |) d𝑦1 d𝑦2 d𝑠.

(7.20)

If we define ℎ(𝑟) = (2𝜋)−1𝑒−
𝑟2
2 (1+ 𝑟) for 𝑟 ≥ 0, then the last double integral is equal to∬ ( 2∏

𝑖=1
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦𝑖)

)
𝜀−2ℎ(𝜀−1 |𝑦1 − 𝑦2 |) d𝑦1 d𝑦2

≤
(∫

𝜀−2ℎ(𝜀−1 |𝑦 |) d𝑦
) ∫

𝐺𝑠′
𝑚−1−𝑠

′
𝑚−𝑠 (𝑋 − 𝑦)2 d𝑦 =

∫
ℎ( |𝑦 |) d𝑦

4𝜋(𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠) ,

where the inequality is Young’s convolution inequality. Substituting this back into (7.20), we have

|𝑉𝜀,𝑎,𝑚−Var𝑍𝜀,𝑎,𝑚 | ≤
𝑓 (𝜀)𝑎2

∫
ℎ( |𝑦 |) d𝑦

4𝜋 log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

1
𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠 d𝑠

=
𝑓 (𝜀)𝑎2

∫
ℎ( |𝑦 |) d𝑦

4𝜋 log𝜀−1 log
𝑠′
𝑚−1 − 𝑠

′
𝑚

𝑠𝑚− 𝑠′𝑚
=
𝑓 (𝜀)𝑎2

∫
ℎ( |𝑦 |) d𝑦

4𝜋 log𝜀−1 log
𝜀𝛾𝜀−𝛿𝜀 − 𝜀𝛾𝜀

1− 𝜀𝛾𝜀 .

From this and (6.1) we obtain (7.15). �

In Lemma 7.5 we derived the regularity of 𝐽𝜀 in time (where time is taken on an exponential scale). Since
log𝜀 𝑠 varies slowly on most of the interval [0, 𝑠′

𝑚−1 − 𝑠𝑚], it should be plausible that we could approximate
𝐽𝜀 (2− log𝜀 𝑠, 𝑎)2 by

𝐽𝜀 (2− log𝜀 𝑠
′
𝑚−1, 𝑎)

2 = 𝐽𝜀 (2− (𝑚−1)𝛿𝜀 −𝛾𝜀 , 𝑎)2 ≈ 𝐽𝜀 (2− (𝑚−1)𝛿𝜀 , 𝑎)2

in (7.14). Indeed we can, and that is how we will prove Proposition 7.3.

Proof of Proposition 7.3. In light of (7.15), Lemma 7.5 and (7.13), it suffices to show that

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ]

𝑀1 (𝜀,𝑇 )+1≤𝑚≤𝑀2 (𝜀)

𝑎−2 ��𝐽𝜀 (2− (𝑚−1)𝛿𝜀−𝛾𝜀 , 𝑎)2 − 𝛿−1
𝜀 𝑉𝜀,𝑎,𝑚

�� = 0.

We will compare both 𝐽𝜀 (2− (𝑚−1)𝛿𝜀−𝛾𝜀 , 𝑎)2 and 𝛿−1
𝜀 𝑉𝜀,𝑎,𝑚 to the intermediate quantity

𝑉̃𝜀,𝑎,𝑚 B
𝐽𝜀 (2− (𝑚−1)𝛿𝜀 −𝛾𝜀 , 𝑎)2

log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

1
𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

d𝑠

=
𝐽𝜀 (2− (𝑚−1)𝛿𝜀 −𝛾𝜀 , 𝑎)2

log𝜀−1 log
𝜀𝛾𝜀−𝛿𝜀 − 𝜀𝛾𝜀 + 𝜀2−𝑚𝛿𝜀/2

1− 𝜀𝛾𝜀 + 𝜀2−𝑚𝛿𝜀/2
.
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First, we have��𝐽𝜀 (2− (𝑚−1)𝛿𝜀−𝛾𝜀 , 𝑎)2 − 𝛿−1
𝜀 𝑉̃𝜀,𝑎,𝑚

��
= 𝐽𝜀 (2− (𝑚−1)𝛿𝜀−𝛾𝜀 , 𝑎)2

(
1− 1

𝛿𝜀 log𝜀−1 log
𝜀𝛾𝜀−𝛿𝜀 − 𝜀𝛾𝜀 + 𝜀2−𝑚𝛿𝜀/2

1− 𝜀𝛾𝜀 + 𝜀2−𝑚𝛿𝜀/2

)
,

and from this, (7.13) of Lemma 7.6, (6.1), and (6.8) we have

lim
𝜀↓0

sup
𝑇 ∈[0,𝑇0 ]

𝑀1 (𝜀,𝑇 )+1≤𝑚≤𝑀2 (𝜀)

𝑎−2 ��𝐽𝜀 (2− (𝑚−1)𝛿𝜀−𝛾𝜀 , 𝑎)2 − 𝛿−1
𝜀 𝑉̃𝜀,𝑎,𝑚

�� = 0. (7.21)

On the other hand, we have by (7.13) and (7.10) that

𝛿−1
𝜀

��𝑉̃𝜀,𝑎,𝑚−𝑉𝜀,𝑎,𝑚
��

≤ 1
𝛿𝜀 log𝜀−1

∫ 𝑠′
𝑚−1−𝑠𝑚

0

��𝐽𝜀 (2− (𝑚−1)𝛿𝜀−𝛾𝜀 , 𝑎)2 − 𝐽𝜀 (2− log𝜀 𝑠, 𝑎)2
��

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

d𝑠

≤
𝑎2𝛽3𝐾3

0

4𝜋3/2𝛿𝜀 (log𝜀−1) 3
2

∫ 𝑠′
𝑚−1−𝑠𝑚

0

√︂
log 𝑠

′
𝑚−1+𝜀2/2
𝑠+𝜀2/2 +𝐾0

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

d𝑠

≤
𝑎2𝛽3𝐾3

0

4𝜋3/2𝛿𝜀 (log𝜀−1) 3
2

[∫ 𝑠′
𝑚−1−𝑠

′
𝑚

0

log 𝑠
′
𝑚−1+𝜀

2/2
𝑠+𝜀2/2

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

d𝑠+ (1+𝐾0) (log2+ 𝛿𝜀 log𝜀−1)
]
. (7.22)

In the last inequality we used the elementary inequality
√
𝑎 ≤ 1+𝑎 for all 𝑎 ≥ 0 as well as the explicit integral

computation∫ 𝑠′
𝑚−1−𝑠𝑚

0

d𝑠
𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

= log
𝑠′
𝑚−1 − 𝑠

′
𝑚 + 𝜀2/2

𝑠𝑚− 𝑠′𝑚 + 𝜀2/2
≤ log

𝑠′
𝑚−1 − 𝑠

′
𝑚

𝑠𝑚− 𝑠′𝑚
= log

𝜀 (𝑚−1) 𝛿𝜀+𝛾𝜀 − 𝜀𝑚𝛿𝜀+𝛾𝜀
𝜀𝑚𝛿𝜀 − 𝜀𝑚𝛿𝜀+𝛾𝜀

= log
𝜀𝛾𝜀−𝛿𝜀 − 𝜀𝛾𝜀

1− 𝜀𝛾𝜀 ≤ log2+ 𝛿𝜀 log𝜀−1,

with the last inequality by (6.4).
For the first term in brackets on the right side of (7.22), we have by Lemma 4.2 (applied with 𝑡 = 𝑠′

𝑚−1− 𝑠
′
𝑚

and 𝑟 = 𝑠′𝑚) that

∫ 𝑠′
𝑚−1−𝑠

′
𝑚

0

log 𝑠
′
𝑚−1+𝜀

2/2
𝑠+𝜀2/2

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

d𝑠 ≤
(
2+ log(1+2𝜀−2(𝑠′𝑚−1 − 𝑠

′
𝑚))

) (
1+ log

𝑠′
𝑚−1 + 𝜀

2/2
𝑠′
𝑚−1 − 𝑠

′
𝑚 + 𝜀2/2

)
≤

(
2+ log(1+2𝜀−2+(𝑚−1) 𝛿𝜀+𝛾𝜀 )

) (
1+ log

1
1− 𝜀𝛿𝜀

)
.

The second bracketed factor goes to 1 as 𝜀 ↓ 0 (recalling (6.1)) while the first factor is bounded by a constant
times log𝜀−1. Using this in (7.22), we see that there is a constant 𝐶 <∞ so that

𝑎−2𝛿−1
𝜀

��𝑉̃𝜀,𝑎,𝑚−𝑉𝜀,𝑎,𝑚
�� ≤ 𝐶

𝛿𝜀 (log𝜀−1) 1
2
(1+ 𝛿𝜀),

and the right side goes to 0 as 𝜀 ↓ 0 (uniformly in 𝑎 and in 𝑇 ∈ [0,𝑇0]) by (6.1). This and (7.21) imply
(7.7). �
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7.2.2 Higher moments

For tightness purposes, we will also need an upper bound on a higher moment of 𝑍𝜀,𝑏,𝑚. Let 𝑝 > 2 be as in
Proposition 3.1.

Proposition 7.8. We have

limsup
𝜀↓0

sup
𝑎>0

𝑀1 (𝜀,𝑇 )+1≤𝑚≤𝑀2 (𝜀)

E|𝑍𝜀,𝑎,𝑚 |𝑝

𝑎𝑝𝛿
𝑝/2
𝜀

<∞. (7.23)

Proof. Fix 𝜀,𝑚 and define the martingale

𝑍 (𝑟) = 𝑎 + 1√︁
log𝜀−1

∫ 𝑟

0

∫
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦)𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀 (𝑠, 𝑦), 𝑟 ≥ 0,

so by (7.16) we have 𝑍𝜀,𝑎,𝑚 = 𝑍 (𝑠′
𝑚−1 − 𝑠𝑚). The quadratic variation process is

〈𝑍〉(𝑟) = 1
log𝜀−1

∫ 𝑟

0

∬
𝐺 𝜀2 (𝑦1 − 𝑦2)

2∏
𝑖=1

(
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦𝑖)𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦𝑖))

)
d𝑦1 d𝑦2 d𝑠.

By the Burkholder–Davis–Gundy inequality (see e.g. [32, Proposition 4.4]), we have a constant 𝐶𝑝 <∞ so
that

E|𝑍𝜀,𝑎,𝑚 |𝑝 ≤ 𝐶𝑝E[〈𝑍〉(𝑠′𝑚−1 − 𝑠𝑚)]
𝑝/2. (7.24)

By the inequality

|𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦2)) | ≤
𝛽2

2
(𝑢𝜀,𝑎 (𝑠, 𝑦1)2 +𝑢𝜀,𝑎 (𝑠, 𝑦2)2),

we can estimate the quadratic variation as

〈𝑍〉(𝑟) ≤ 𝛽2

log𝜀−1

∫ 𝑟

0

∫
𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠 (𝑋 − 𝑦)𝐺𝑠′

𝑚−1−𝑠
′
𝑚−𝑠+𝜀2 (𝑋 − 𝑦)𝑢𝜀,𝑎 (𝑠, 𝑦)2 d𝑦d𝑠

=
𝛽2

4𝜋 log𝜀−1

∫ 𝑟

0

1
𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

∫
𝐺 (𝑠′

𝑚−1−𝑠
′
𝑚−𝑠) (𝑠′

𝑚−1−𝑠
′
𝑚−𝑠+𝜀2 )

2(𝑠′
𝑚−1−𝑠

′
𝑚−𝑠)+𝜀2

(𝑋 − 𝑦)𝑢𝜀,𝑎 (𝑠, 𝑦)2 d𝑦d𝑠,

where we used (5.9) for the above “=”. By Jensen’s inequality we have

〈𝑍〉(𝑟) 𝑝/2 ≤ 𝛽𝑝

(4𝜋 log𝜀−1) 𝑝/2

(∫ 𝑟

0

1
𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

d𝑠

) 𝑝/2−1

·

·
∫ 𝑟

0

∫
1

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

𝐺 (𝑠′
𝑚−1−𝑠

′
𝑚−𝑠) (𝑠′

𝑚−1−𝑠
′
𝑚−𝑠+𝜀2 )

2(𝑠′
𝑚−1−𝑠

′
𝑚−𝑠)+𝜀2

(𝑋 − 𝑦)𝑢𝜀,𝑎 (𝑠, 𝑦) 𝑝 d𝑦d𝑠

≤ 𝛽𝑝

(4𝜋 log𝜀−1) 𝑝/2

(
log

𝑠′
𝑚−1 − 𝑠

′
𝑚

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑟

) 𝑝/2−1

·

·
∫ 𝑟

0

∫
1

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑠+ 𝜀2/2

𝐺 (𝑠′
𝑚−1−𝑠

′
𝑚−𝑠) (𝑠′

𝑚−1−𝑠
′
𝑚−𝑠+𝜀2 )

2(𝑠′
𝑚−1−𝑠

′
𝑚−𝑠)+𝜀2

(𝑋 − 𝑦)𝑢𝜀,𝑎 (𝑠, 𝑦) 𝑝 d𝑦d𝑠.

Taking expectations and using spatial homogeneity, we have

E〈𝑍〉(𝑟) 𝑝/2 ≤ 𝛽𝑝

(4𝜋 log𝜀−1) 𝑝/2

(
log

𝑠′
𝑚−1 − 𝑠

′
𝑚

𝑠′
𝑚−1 − 𝑠

′
𝑚− 𝑟

) 𝑝/2
sup
𝑠∈[0,𝑟 ]

E𝑢𝜀,𝑎 (𝑠, 𝑦) 𝑝 .
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Substituting 𝑟 = 𝑠′
𝑚−1 − 𝑠𝑚 and recalling (7.24) and Proposition 3.1, we have

E|𝑍𝜀,𝑎,𝑚 |𝑝 ≤
𝛽𝑝𝐶𝑝𝐾

𝑝

0 𝑎
𝑝

(4𝜋 log𝜀−1) 𝑝/2

(
log

𝑠′
𝑚−1 − 𝑠

′
𝑚

𝑠𝑚− 𝑠′𝑚

) 𝑝/2
=

𝛽𝑝𝐶𝑝𝐾
𝑝

0 𝑎
𝑝

(4𝜋 log𝜀−1) 𝑝/2

(
log

𝜀𝛾𝜀−𝛿𝜀 − 𝜀𝛾𝜀
1− 𝜀𝛾𝜀

) 𝑝/2
.

From this and (6.1) we see (7.23). �

8 Proof of Theorem 1.2

In this section we complete the proof of Theorem 1.2. The key remaining step is to show the convergence of
the Markov chain defined in Section 7 to a continuous diffusion. The technology for doing this is well-known,
through the martingale problem of Stroock and Varadhan. We will essentially use [41, Theorem 11.2.3] as a
black box, but we state a special case in a form convenient for us in Appendix A.

Proof of Theorem 1.2. Suppose that 𝜀𝑘 ↓ 0 and 𝐽 : [0,2] ×R≥0 → R≥0 are such that

𝐽𝜀𝑘 | [0,2]×R≥0 → 𝐽 (8.1)

uniformly on compact subsets of [0,2] ×R≥0. (These are the subsequential limits that are guaranteed to exist
by Proposition 7.4.) By Lemma 7.6, this implies in particular that 𝐽 is uniformly Lipschitz in its second
argument. For 𝑄 ∈ [0,2] and 𝑎 ≥ 0, we consider the stochastic differential equation

dΞ̃𝐽𝑎,𝑄 (𝑞) = 𝐽 (2− 𝑞, Ξ̃
𝐽
𝑎,𝑄 (𝑞))d𝐵(𝑞), 𝑞 ∈ (2−𝑄,2]; (8.2)

Ξ̃𝐽𝑎,𝑄 (2−𝑄) = 𝑎, (8.3)

where 𝐵 is a standard Brownian motion. Since 𝐽 is Lipschitz in the spatial variable, the problem (8.2)–(8.3)
has a unique strong solution (given 𝑄 and 𝐽). For the moment, the limit 𝐽 may depend on the sequence {𝜀𝑘 },
as may the solution to (8.3).

Suppose that {𝑄𝜀 ∈ [0,2]}𝜀>0 is such that

𝑄 B lim
𝜀↓0
𝑄𝜀 (8.4)

exists. Define 𝑇𝜀𝑘 = 𝜀
2−𝑄𝜀𝑘

𝑘
. We claim that

𝑢𝜀𝑘 ,𝑎 (𝑇𝜀𝑘 , 𝑋)
law−−−−→
𝑘→∞

Ξ̃𝐽𝑎,𝑄 (2). (8.5)

By Proposition 7.1, it suffices to show that

𝑌𝜀𝑘 ,𝑎,𝑇𝜀𝑘
(𝑀2(𝜀𝑘))

law−−−−→
𝑘→∞

Ξ̃𝐽𝑎,𝑄 (2). (8.6)

We now explain how (8.6) follows from Theorem A.1 with 𝐴1 = 2−𝑄, 𝐴2 = 2, and 𝐿 (𝑞, 𝑏) = 𝐽 (2−𝑞, 𝑏). From
(6.7)–(6.8) and (8.4) we have 𝛿𝜀𝑘𝑀1(𝜀𝑘 ,𝑇𝜀𝑘 ) → 2−𝑄 and 𝛿𝜀𝑘𝑀2(𝜀𝑘) → 2 as 𝑘 →∞. The condition (A.1)
is verified by Proposition 7.3, while the condition (A.2) is verified by Proposition 7.8. Thus Theorem A.1
applies and we obtain (8.6) and thus (8.5).

We note that the family of random variables {𝜎(𝑢𝜀𝑘 ,𝑏 (𝑇𝜀𝑘 , 𝑋))2}𝑘≥1 is uniformly integrable by the 𝑝 > 2
moment bound in Proposition 3.1, so from (8.5) we can derive

𝐽 (𝑄,𝑎) = lim
𝑘→∞

𝐽𝜀𝑘 (𝑄,𝑎) = lim
𝑘→∞

1
2
√
𝜋

(
E𝜎(𝑢𝜀𝑘 ,𝑎 (𝑇𝜀𝑘 , 𝑋))2

)1/2
=

1
2
√
𝜋

(
E𝜎(Ξ̃𝐽𝑎,𝑄 (2))

)1/2
. (8.7)
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The problem (8.2), (8.3), (8.7) agrees with the problem (1.5)–(1.7) by the change of variables

Ξ𝑎,𝑄 (𝑞) = Ξ̃𝐽𝑎,𝑄 (𝑞 +2−𝑄). (8.8)

Note also that
𝐽 (𝑄,0) = lim

𝑘→∞
𝐽𝜀𝑘 (𝑄,0) = 0,

for all 𝑄 ∈ [0,2], and that

Lip 𝐽 (𝑄, ·) ≤ limsup
𝑘→∞

Lip 𝐽𝜀𝑘 (𝑄, ·) ≤ limsup
𝑘→∞

(
4𝜋
𝛽2 −

log(1+2𝜀−𝑞
𝑘
)

log𝜀−1
𝑘

)−1/2

= (4𝜋/𝛽2 − 𝑞)−1/2

by Lemma 7.6. Therefore, 𝐽 satisfies both conditions of Theorem 1.1, and thus 𝐽 is uniquely characterized by
the properties we have established for it. By Proposition 7.4, this means that in fact

lim
𝜀↓0

𝐽𝜀 | [0,2]×R≥0 = 𝐽

uniformly on compact subsets of [0,2] ×R≥0, so the limiting procedure above does not depend on the specific
choice of {𝜀𝑘 }. By the same argument as that leading to (8.5), we have

𝑢𝜀,𝑎 (𝜀2−𝑄𝜀 , 𝑋) law−−−−→
𝜀→0

Ξ̃𝐽𝑎,𝑄 (2)
law
= Ξ𝑎,𝑄 (𝑄). (8.9)

In particular, for any 𝑇 independent of 𝜀, taking 𝑄𝜀 = 2− log𝜀𝑇 →𝑄 = 2, we have

𝑢𝜀,𝑎 (𝑇, 𝑋)
law−−−−→
𝜀→0

Ξ𝑎,2(2),

as claimed. �

Remark 8.1. Now we are able to prove the convergence of the variance of the random variable

U𝜀,𝑎,𝑇 (𝑔) :=
√︃

log𝜀−1
∫

[𝑢𝜀,𝑎 (𝑇,𝑥) − 𝑎]𝑔(𝑥)d𝑥,

where 𝑇 > 0 and a Schwartz function 𝑔 are fixed. By the mild formulation (1.4), recalling that ∗ denotes the
spatial convolution, we have

EU𝜀,𝑎,𝑇 (𝑔)2

= E
����∫ 𝑇

0

∫
𝐺𝑇 −𝑠 ∗𝑔(𝑦)𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦))d𝑊 𝜀 (𝑠, 𝑦)

����2
=

∫ 𝑇

0

∬
𝐺𝑇 −𝑠 ∗𝑔(𝑦1)𝐺𝑇 −𝑠 ∗𝑔(𝑦2)𝐺 𝜀2 (𝑦1 − 𝑦2)E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦2))d𝑦1d𝑦2d𝑠

=

∫ 𝑇

0

∬
𝐺𝑇 −𝑠 ∗𝑔(𝑦1)𝐺𝑇 −𝑠 ∗𝑔(𝑦1 + 𝜀𝑦2)𝐺1(𝑦2)E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1 + 𝜀𝑦2))d𝑦1d𝑦2d𝑠.

(8.10)

By Theorem 1.2, Corollary 7.2, and Proposition 3.1, we have, for any 𝑠 ∈ (0,𝑇), 𝑦1, 𝑦2 ∈ R2,

E𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1))𝜎(𝑢𝜀,𝑎 (𝑠, 𝑦1 + 𝜀𝑦2)) → E𝜎(Ξ𝑎,2(2))2, as 𝜀→ 0.
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Then we pass to the limit in (8.10) to derive

EU𝜀,𝑎,𝑇 (𝑔)2 → E𝜎(Ξ𝑎,2(2))2
∫ 𝑇

0

∫
|𝐺𝑇 −𝑠 ∗𝑔(𝑦) |2d𝑦d𝑠, (8.11)

so the variance of U𝜀,𝑎,𝑇 (𝑔) converges as 𝜀→ 0. By adopting the approach in [25], one should be able to
further prove the convergence

U𝜀,𝑎,𝑇 (𝑔)
law−−−→
𝜀↓0

U𝑎,𝑇 (𝑔) :=
∫
𝑈𝑎 (𝑇,𝑥)𝑔(𝑥)d𝑥, (8.12)

with the random distribution𝑈𝑎 solving the Edwards-Wilkinson equation

d𝑈𝑎 =
1
2
Δ𝑈𝑎d𝑡 +

√︃
E𝜎(Ξ𝑎,2(2))2d𝑊 (𝑡, 𝑥), 𝑈𝑎 (0, 𝑥) = 0. (8.13)

To avoid further lengthening the paper we do not pursue this direction here.

9 Multipoint statistics

Now we turn our attention to multipoint statistics and work towards proving Theorem 1.3.

9.1 Local-in-space dependence of the solution on the noise

We can interpret Proposition 4.1 of Section 4 as a form of local-in-time dependence of the solution 𝑢𝜀,𝑎 on
the noise. In particular, we can turn off the noise in an area temporally distant from where we evaluate the
solution without affecting the solution much. To discuss multipoint statistics, we will need a similar property
when we turn off the noise in a spatial region that is distant from our point of interest.

For 𝐵 ⊂ R2, let 𝑣𝐵𝜀,𝑎 solve the problem

d𝑣𝐵𝜀,𝑎 (𝑡, 𝑥) =
1
2
Δ𝑣𝐵𝜀,𝑎 (𝑡, 𝑥)d𝑡 + (log𝜀−1)− 1

2𝜎(𝑣𝐵𝜀,𝑎 (𝑡, 𝑥))d𝑊 𝜀,𝐵 (𝑡, 𝑥); (9.1)

𝑣𝐵𝜀,𝑎 (0, 𝑥) = 𝑎. (9.2)

Here, 𝑊 𝜀,𝐵 = 𝐺 𝜀2/2 ∗ (𝑊1𝐵). Note that 𝑊 𝜀 = 𝑊 𝜀,𝐵 +𝑊 𝜀,𝐵c
, and moreover that 𝑊 𝜀,𝐵 and 𝑊 𝜀,𝐵c

are
independent. Define

𝑅𝜀,𝐵 (𝑥, 𝑥 ′) =
∫
𝐵

𝐺 𝜀2/2(𝑥− 𝑦)𝐺 𝜀2/2(𝑥 ′− 𝑦) d𝑦 (9.3)

so that, formally,

Ed𝑊 𝜀,𝐵 (𝑡, 𝑥)d𝑊 𝜀,𝐵 (𝑡 ′, 𝑥 ′) = 𝛿(𝑡 − 𝑡 ′)𝑅𝜀,𝐵 (𝑥, 𝑥 ′).

Note that 𝑅𝜀,𝐵 (𝑥, 𝑥 ′) ≤ 𝐺 𝜀2 (𝑥 − 𝑥 ′) for all 𝑥, 𝑥 ′ ∈ R2. We note that 𝑣𝐵𝜀,𝑎 has nothing to do with the 𝑣𝜀,𝑎
considered in Section 5.

Our first goal will be an estimate on what happens if we turn off the noise in a half-plane, which we
do in Lemma 9.2 below. We then consider complements of rectangles by taking unions of half-planes in
Proposition 9.3. First we record a simple moment bound.

Lemma 9.1. For any 𝑇 ∈ [0,𝑇0] and any 𝐵 ⊂ R2, we have

sup
𝑥∈R2

(
E𝑣𝐵𝜀,𝑎 (𝑡, 𝑥)2

)1/2
≤ 𝐾0𝑎. (9.4)
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Proof. By the mild solution formula and Young’s inequality, we have

E𝑣𝐵𝜀,𝑎 (𝑡, 𝑥)2 = 𝑎2 + 1
log𝜀−1

∫ 𝑡

0

∬
𝐺𝑡−𝑠 (𝑥− 𝑦1)𝐺𝑡−𝑠 (𝑥− 𝑦2)𝑅𝜀,𝐵 (𝑦1, 𝑦2)·

·E[𝜎(𝑣𝐵𝜀,𝑎 (𝑡, 𝑦1))𝜎(𝑣𝐵𝜀,𝑎 (𝑡, 𝑦2))] d𝑦1 d𝑦2 d𝑠

≤ 𝑎2 + 1
2log𝜀−1

2∑︁
𝑖=1

∫ 𝑡

0

∬
𝐺𝑡−𝑠 (𝑥− 𝑦1)𝐺𝑡−𝑠 (𝑥− 𝑦2)𝑅𝜀,𝐵 (𝑦1, 𝑦2)E𝜎(𝑣𝐵𝜀,𝑎 (𝑡, 𝑦𝑖))2 d𝑦1 d𝑦2 d𝑠.

This means that

sup
𝑥∈R2

E𝑣𝐵𝜀,𝑎 (𝑡, 𝑥)2 ≤ 𝑎2 + 1
2log𝜀−1

∫ 𝑡

0

∬
𝐺𝑡−𝑠 (𝑥− 𝑦1)𝐺𝑡−𝑠 (𝑥− 𝑦2)𝐺 𝜀2 (𝑦1 − 𝑦2)·

· sup
𝑥∈R2

E𝜎(𝑣𝐵𝜀,𝑎 (𝑡, 𝑥))2 d𝑦1 d𝑦2 d𝑠

≤ 𝑎2 + 1
2𝜋 log𝜀−1

∫ 𝑡

0

sup𝑥∈R2 E𝜎(𝑣𝐵𝜀,𝑎 (𝑡, 𝑥))2

2(𝑡 − 𝑠) + 𝜀2 d𝑠,

and (9.4) then follows from Lemma 3.4 (and (3.8)). �

Lemma 9.2. Let 𝐵 ⊂ R2 and let 𝐻 be a half-plane in R2. Then we have, for all 𝑥 ∉ 𝐻, that

E(𝑣𝐵𝜀,𝑎 − 𝑣
𝐵\𝐻
𝜀,𝑎 ) (𝑡, 𝑥)2 ≤ 5𝑎2𝐾2

0

∞∑︁
𝑘=1

(
𝛽2

4𝜋
log(1+2𝜀−2𝑡)

log𝜀−1

) 𝑘
(𝐺 1

2 [𝑡+𝑘 𝜀2 ] ∗1𝐻 ) (𝑥). (9.5)

Proof. From (9.1)–(9.2) we write the mild solution formula

𝑣𝐵𝜀,𝑎 (𝑡, 𝑥) = 𝑎 +
1√︁

log𝜀−1

∫ 𝑡

0

∫
𝐺𝑡−𝑠 (𝑥− 𝑦)𝜎(𝑣𝐵𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀,𝐵 (𝑠, 𝑦).

Subtracting the corresponding expression for 𝑣𝐵\𝐻𝜀,𝑎 , we obtain

(𝑣𝐵𝜀,𝑎 − 𝑣
𝐵\𝐻
𝜀,𝑎 ) (𝑡, 𝑥)

=
1√︁

log𝜀−1

∫ 𝑡

0

∫
𝐺𝑡−𝑠 (𝑥− 𝑦) [𝜎(𝑣𝐵𝜀,𝑎 (𝑠, 𝑦)) −𝜎(𝑣

𝐵\𝐻
𝜀,𝑎 (𝑠, 𝑦))] d𝑊 𝜀,𝐵\𝐻 (𝑠, 𝑦)

+ 1√︁
log𝜀−1

∫ 𝑡

0

∫
𝐺𝑡−𝑠 (𝑥− 𝑦)𝜎(𝑣𝐵𝜀,𝑎 (𝑠, 𝑦)) d𝑊 𝜀,𝐵∩𝐻 (𝑠, 𝑦).

Taking second moments in this expression, using the independence of𝑊 𝜀,𝐵\𝐻 and𝑊 𝜀,𝐵∩𝐻 , we have

E(𝑣𝐵𝜀,𝑎 − 𝑣
𝐵\𝐻
𝜀,𝑎 ) (𝑡, 𝑥)2

≤ 𝛽2

log𝜀−1

∫ 𝑡

0

∬
𝑅𝜀,𝐵\𝐻 (𝑦1, 𝑦2)

2∏
𝑖=1

(
𝐺𝑡−𝑠 (𝑥− 𝑦𝑖)

(
E(𝑣𝐵𝜀,𝑎 − 𝑣

𝐵\𝐻
𝜀,𝑎 ) (𝑠, 𝑦𝑖)2

)1/2
)

d𝑦1 d𝑦2 d𝑠

+ 𝛽2

log𝜀−1

∫ 𝑡

0

∬
𝑅𝜀,𝐵∩𝐻 (𝑦1, 𝑦2)

2∏
𝑖=1

(
𝐺𝑡−𝑠 (𝑥− 𝑦𝑖)

(
E𝑣𝐵𝜀,𝑎 (𝑠, 𝑦𝑖)2

)1/2
)

d𝑦1 d𝑦2 d𝑠

C 𝐼1 + 𝐼2. (9.6)
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For the first term we can estimate

𝐼1 ≤
𝛽2

log𝜀−1

∫ 𝑡

0

∬
𝐺𝑡−𝑠 (𝑥− 𝑦1)𝐺𝑡−𝑠 (𝑥− 𝑦2)𝐺 𝜀2 (𝑦1 − 𝑦2)

2∏
𝑖=1

(
E(𝑣𝐵𝜀,𝑎 − 𝑣

𝐵\𝐻
𝜀,𝑎 ) (𝑠, 𝑦𝑖)2

)1/2
d𝑦1 d𝑦2 d𝑠

≤ 𝛽2

log𝜀−1

∫ 𝑡

0

∫
𝐺𝑡−𝑠 (𝑥− 𝑦1)𝐺𝑡−𝑠+𝜀2 (𝑥− 𝑦1)E(𝑣𝐵𝜀,𝑎 − 𝑣

𝐵\𝐻
𝜀,𝑎 ) (𝑠, 𝑦1)2 d𝑦1 d𝑠

≤ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

0

∫ 𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )
2(𝑡−𝑠)+𝜀2

(𝑥− 𝑦)

𝑡 − 𝑠+ 𝜀2/2

(
1𝐻 c (𝑦)E(𝑣𝐵𝜀,𝑎 − 𝑣

𝐵\𝐻
𝜀,𝑎 ) (𝑠, 𝑦)2 +4𝐾2

0𝑎
21𝐻 (𝑦)

)
d𝑦d𝑠, (9.7)

where in the last inequality we used (5.9) and Lemma 9.1. For the second term of (9.6) we can estimate

𝐼2 ≤
𝛽2𝑎2𝐾2

0
log𝜀−1

∫ 𝑡

0

∬
𝐺𝑡−𝑠 (𝑥− 𝑦1)𝐺𝑡−𝑠 (𝑥− 𝑦2)𝑅𝜀,𝐵∩𝐻 (𝑦1, 𝑦2) d𝑦1 d𝑦2 d𝑠

≤
𝛽2𝑎2𝐾2

0
4𝜋 log𝜀−1

∫ 𝑡

0

(𝐺 1
2 [𝑡−𝑠+𝜀2/2] ∗1𝐻 ) (𝑥)
𝑡 − 𝑠+ 𝜀2/2

d𝑠, (9.8)

where in the second inequality we used (5.9). Using (9.7) and (9.8) in (9.6), we have

E(𝑣𝐵𝜀,𝑎 − 𝑣
𝐵\𝐻
𝜀,𝑎 ) (𝑡, 𝑥)2

≤ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

0

∫ 𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )
2(𝑡−𝑠)+𝜀2

(𝑥− 𝑦)

𝑡 − 𝑠+ 𝜀2/2
1𝐻 c (𝑦)E(𝑣𝐵𝜀,𝑎 − 𝑣

𝐵\𝐻
𝜀,𝑎 ) (𝑠, 𝑦)2 d𝑦d𝑠

+
𝛽2𝑎2𝐾2

0
4𝜋 log𝜀−1

∫ 𝑡

0

( [
4𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )

2(𝑡−𝑠)+𝜀2
+𝐺 1

2 [𝑡−𝑠+𝜀2/2]

]
∗1𝐻

)
(𝑥)

𝑡 − 𝑠+ 𝜀2/2
d𝑠.

(9.9)

Now we note that for all 𝑥 ∉ 𝐻, and all 𝑟 > 0, if we let 𝜔 ≥ 0 be the distance between 𝑥 and 𝐻, then we
have

d
d𝑟

(𝐺𝑟 ∗1𝐻 ) (𝑥) =
d
d𝑟

∫ ∞

𝜔

(2𝜋𝑟)−1/2e−𝜉
2/(2𝑟 ) d𝜉 =

∫ ∞

𝜔

𝜕2

𝜕𝜉2 (2𝜋𝑟)
−1/2e−𝜉

2/(2𝑟 ) d𝜉

= − 𝜕

𝜕𝜉
(2𝜋𝑟)−1/2e−𝜉

2/(2𝑟 )
����
𝜉=𝜔

= (2𝜋𝑟)−1/2𝜔

𝑟
e−𝜔

2/(2𝑟 ) ≥ 0.
(9.10)

This means that for all 𝑠 ∈ [0, 𝑡], we have

(𝐺 1
2 [𝑡−𝑠+𝜀2/2] ∗1𝐻 ) (𝑥) ≤ (𝐺 1

2 (𝑡+𝜀2) ∗1𝐻 ) (𝑥)

and similarly
(𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )

2(𝑡−𝑠)+𝜀2
∗1𝐻 ) (𝑥) ≤ (𝐺 𝑡 (𝑡+𝜀2 )

2𝑡+𝜀2
∗1𝐻 ) (𝑥) ≤ (𝐺 1

2 (𝑡+𝜀2) ∗1𝐻 ) (𝑥).

Using these estimates in (9.9), we see that if we put 𝑓 (𝑡, 𝑥) = E(𝑣𝐵𝜀,𝑎 − 𝑣
𝐵\𝐻
𝜀,𝑎 ) (𝑡, 𝑥)2, then for all 𝑥 ∈ 𝐻c we

have

𝑓 (𝑡, 𝑥) ≤ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

0

∫ 𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )
2(𝑡−𝑠)+𝜀2

(𝑥− 𝑦)

𝑡 − 𝑠+ 𝜀2/2
1𝐻 c (𝑦) 𝑓 (𝑠, 𝑦) d𝑦d𝑠

+ 5
4𝜋
𝛽2𝑎2𝐾2

0

(
𝐺 1

2 [𝑡+𝜀2 ] ∗1𝐻
)
(𝑥) log(1+2𝜀−2𝑡)

log𝜀−1

(9.11)

Define

𝑏 (𝑘) (𝑡) = 𝑡

2
+ 𝑘 𝜀

2

2
. (9.12)
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We note that

sup
𝑠∈[0,𝑡 ]

[
𝑏 (𝑘) (𝑠) + (𝑡 − 𝑠) (𝑡 − 𝑠+ 𝜀2/2)

2(𝑡 − 𝑠) + 𝜀2/2

]
= sup
𝑠∈[0,𝑡 ]

[
𝑠

2
+ 𝑘 𝜀

2

2
+ (𝑡 − 𝑠) (𝑡 − 𝑠+ 𝜀2/2)

2(𝑡 − 𝑠) + 𝜀2/2

]
≤ 𝑏 (𝑘+1) (𝑡)

(9.13)

for all 𝑠 ∈ [0, 𝑡] and all 𝑘 ≥ 1. Define

𝐵
(𝑘)
2 = 5𝑎2𝐾2

0

(
𝛽2

4𝜋
log(1+2𝜀−2𝑡)

log𝜀−1

) 𝑘
.

Suppose that

𝑓 (𝑡, 𝑥) ≤ 𝐵 (𝑛)
1 +

𝑛∑︁
𝑘=1

𝐵
(𝑘)
2 (𝐺𝑏 (𝑘) (𝑡) ∗1𝐻 ) (𝑥) (9.14)

for all 𝑥 ∈ 𝐻c. This is automatically true for 𝑛 = 0 with 𝐵 (0)
1 = ‖ 𝑓 ‖𝐿∞ ( [0,𝑡 ]×R2) . Then we have from (9.11)

that, for all 𝑥 ∈ 𝐻c,

𝑓 (𝑡, 𝑥) ≤ 𝛽2

4𝜋 log𝜀−1

∫ 𝑡

0

∫ 𝐺 (𝑡−𝑠) (𝑡−𝑠+𝜀2 )
2(𝑡−𝑠)+𝜀2

(𝑥− 𝑦)

𝑡 − 𝑠+ 𝜀2/2
1𝐻 c (𝑦)

[
𝐵
(𝑛)
1 +

𝑛∑︁
𝑘=1

𝐵
(𝑘)
2 (𝐺𝑏 (𝑘) (𝑠) ∗1𝐻 ) (𝑦)

]
d𝑦d𝑠

+ 5
4𝜋
𝛽2𝑎2𝐾2

0

(
𝐺 1

2 [𝑡+𝜀2 ] ∗1𝐻
)
(𝑥) log(1+2𝜀−2𝑡)

log𝜀−1

≤
𝛽2𝐵

(𝑛)
1

8𝜋
log(1+2𝜀−2𝑡)

log𝜀−1 + 𝛽2

4𝜋 log𝜀−1

𝑛∑︁
𝑘=1

𝐵
(𝑘)
2

∫ 𝑡

0

∫
1

𝑡 − 𝑠+ 𝜀2/2
(𝐺

𝑏 (𝑘) (𝑠)+ (𝑡−𝑠) (𝑡−𝑠+𝜀2 )
2(𝑡−𝑠)+𝜀2

∗1𝐻 ) (𝑥) d𝑠

+ 5
4𝜋
𝛽2𝑎2𝐾2

0

(
𝐺𝑏 (1) (𝑡) ∗1𝐻

)
(𝑥) log(1+2𝜀−2𝑡)

log𝜀−1

≤
𝛽2𝐵

(𝑛)
1

8𝜋
log(1+2𝜀−2𝑡)

log𝜀−1 + 𝛽
2 log(1+2𝜀−2𝑡)

4𝜋 log𝜀−1

𝑛∑︁
𝑘=1

𝐵
(𝑘)
2 (𝐺𝑏 (𝑘+1) (𝑡) ∗1𝐻 ) (𝑥) +𝐵 (1)

2

(
𝐺𝑏 (1) (𝑡) ∗1𝐻

)
(𝑥)

=
𝛽2𝐵

(𝑛)
1

8𝜋
log(1+2𝜀−2𝑡)

log𝜀−1 +
𝑛+1∑︁
𝑘=1

𝐵
(𝑘)
2 (𝐺𝑏 (𝑘) (𝑡) ∗1𝐻 ) (𝑥).

In the third inequality we used (9.13) and (9.10). By induction, this means that (9.14) holds for all 𝑛 ≥ 0,
with 𝐵 (𝑛)

1 = ‖ 𝑓 ‖𝐿∞ ( [0,𝑡 ]×R2)

(
𝛽2

8𝜋 ·
log(1+4𝜀−2𝑡)

log 𝜀−1

)𝑛
→ 0 as 𝑛→∞. Therefore, we in fact have

𝑓 (𝑡, 𝑥) ≤ 5𝑎2𝐾2
0

∞∑︁
𝑘=1

(
𝛽2

4𝜋
log(1+2𝜀−2𝑡)

log𝜀−1

) 𝑘
(𝐺𝑏 (𝑘) (𝑡) ∗1𝐻 ) (𝑥),

which (recalling (9.12)) is (9.5). �

Now we apply Lemma 9.2 four times to bound the effect of turning off the noise outside of a square.

Proposition 9.3. Suppose that

lim
𝜀↓0

𝜉𝜀

𝜂𝜀
= lim
𝜀↓0

𝑡
1/2
𝜀

𝜂𝜀
= 0. (9.15)

and
limsup
𝜀↓0

𝑡𝜀 <∞. (9.16)
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Let �𝜀 = [−𝜂𝜀 , 𝜂𝜀]2. Then we have for all 𝑥 ∈ [−𝜉𝜀 , 𝜉𝜀]2 that

lim
𝜀↓0

E(𝑢𝜀,𝑎 − 𝑣�𝜀𝜀,𝑎) (𝑡𝜀 , 𝑥)2 = 0. (9.17)

Proof. Using Lemma 9.2 four times, we have

E(𝑢𝜀,𝑎 − 𝑣�𝜀𝜀,𝑎) (𝑡𝜀 , 𝑥)2 ≤ 5𝑎2𝐾2
0

4∑︁
𝑖=1

∞∑︁
𝑘=1

𝑐𝑘𝜀 (𝐺 1
2 [𝑡𝜀+𝑘 𝜀2 ] ∗1𝐻𝑖

) (𝑥), (9.18)

where 𝐻1, . . . , 𝐻4 are four half-planes so that �𝜀 =
⋂4
𝑖=1𝐻𝑖 . Here we have also defined

𝑐𝜀 =
𝛽2

4𝜋
log(1+ 𝜀−2𝑡𝜀)

log𝜀−1 .

We note that (9.16) and the subcriticality assumption 𝛽 <
√

2𝜋 that

limsup
𝜀↓0

𝑐𝜀 < 1. (9.19)

Now if limsup
𝜀↓0

𝜀−2𝑡𝜀 <∞, then 𝑐𝜀 → 0 as 𝜀 ↓ 0, so using the trivial bound (𝐺 1
2 [𝑡𝜀+𝑘 𝜀2 ] ∗1𝐻𝑖

) (𝑥) ≤ 1 in (9.18)

we get (9.17). Therefore, we can assume that

limsup
𝜀↓0

𝜀−2𝑡𝜀 =∞. (9.20)

We break the inner sum in (9.18) into two pieces. First we estimate

∞∑︁
𝑘= b𝜀−2𝑡𝜀 c

𝑐𝑘𝜀 (𝐺 1
2 [𝑡𝜀+𝑘 𝜀2 ] ∗1𝐻𝑖

) (𝑥) ≤
∞∑︁

𝑘= b𝜀−2𝑡𝜀 c
𝑐𝑘𝜀 =

𝑐
b𝜀−2𝑡𝜀 c
𝜀

1− 𝑐𝜀
→ 0

as 𝜀 ↓ 0 by (9.19) and (9.20). Then we estimate

b𝜀−2𝑡𝜀 c∑︁
𝑘=1

𝑐𝑘𝜀 (𝐺 1
2 [𝑡𝜀+𝑘 𝜀2 ] ∗1𝐻𝑖

) (𝑥) ≤ (𝐺𝑡𝜀 ∗1𝐻𝑖
) (𝑥)

∞∑︁
𝑘=1

𝑐𝑘𝜀 =
𝑐𝜀

1− 𝑐𝜀
(𝐺𝑡𝜀 ∗1𝐻𝑖

) (𝑥),

using the fact that 𝑡𝜀/2+ 𝑘𝜀2/2 ≤ 𝑡𝜀 whenever 𝑘 ≤ 𝜀−2𝑡𝜀 . Now we have, for 𝑥 ∈ [−𝜉𝜀 , 𝜉𝜀]2, that

(𝐺𝑡𝜀 ∗1𝐻𝑖
) (𝑥) ≤ 1

√
2𝜋𝑡𝜀

∫ ∞

𝜂𝜀−𝜉𝜀
exp

{
− 𝛼

2

2𝑡𝜀

}
d𝛼 ≤ 1

√
2𝜋𝑡𝜀

∫ ∞

𝜂𝜀−𝜉𝜀
exp

{
−𝛼(𝜂𝜀 − 𝜉𝜀)

2𝑡𝜀

}
d𝛼

=

√︁
2𝑡𝜀/𝜋
𝜂𝜀 − 𝜉𝜀

exp
{
− (𝜂𝜀 − 𝜉𝜀)2

2𝑡𝜀

}
→ 0

as 𝜀 ↓ 0 by (9.15). Combining the last three displays and (9.18) gives us (9.17). �

9.2 Proof of Theorem 1.3

We now have the tools we need to prove Theorem 1.3. Throughout this section, our setup is as in the statement
of Theorem 1.3. We note in particular that (1.19) implies (with 𝑑 as in (1.18)) that

𝑑 ((𝜏𝜀,𝑖 , 𝑥𝜀,𝑖), (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗)) = 𝜀1−𝑑𝑖 𝑗+𝑜 (1) .
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and (1.20) implies that
𝜏𝜀,𝑖 = 𝜀

2−𝑄+𝑜 (1) (9.21)

as 𝜀 ↓ 0. Let 𝜅𝜀 be such that 𝜅𝜀 → 0 and

10𝜀1−𝑑𝑖 𝑗+𝜅𝜀 ≤ 𝑑 ((𝜏𝜀,𝑖, 𝑥𝜀,𝑖), (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗)) ≤
1
2
𝜀1−𝑑𝑖 𝑗−𝜅𝜀 . (9.22)

and
2𝜀2−𝑄+2𝜅𝜀 ≤ 𝜏𝜀,𝑖 ≤ 𝜀2−𝑄−2𝜅𝜀 . (9.23)

Our first step will apply Proposition 9.3 to show that the values of the solution 𝑢𝜀,𝑎 at distant space-time
points are asymptotically independent.

Proposition 9.4. Let 𝑃1, . . . , 𝑃𝑅 be a partition of [𝑁] so that

𝑑𝑖 𝑗 ≥ 𝑄/2 ⇐⇒ 𝑖 ∈ 𝑃𝑚, 𝑗 ∈ 𝑃𝑛, 𝑛 ≠ 𝑚. (9.24)

Then there is an 𝜀1 ∈ (0, 𝜀0] so that if 𝜀 ∈ [0, 𝜀1) then there are independent processes 𝑢 (1)𝜀,𝑎, . . . , 𝑢
(𝑅)
𝜀,𝑎 so that

𝑢
(𝑘)
𝜀,𝑎

law
= 𝑢𝜀,𝑎 (𝑘 = 1, . . . , 𝑅), and for each 𝑗 ∈ 𝑃𝑘 (𝑘 = 1, . . . , 𝑅), we have

lim
𝜀↓0

E(𝑢 (𝑘)𝜀,𝑎 (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗) −𝑢𝜀,𝑎 (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗))2 = 0. (9.25)

Proof. For each 𝑘 = 1, . . . , 𝑅, let 𝑖𝑘 be an arbitrary element of 𝑃𝑘 . Define

𝐷𝑘 B max
𝑖, 𝑗∈𝑃𝑘

𝑑𝑖 𝑗 < 𝑄/2, (9.26)

with the inequality by (9.24). Define the sets 𝑆𝜀,𝑘 ⊂ R×R2 by

𝑆𝜀,𝑘 =

(
𝜏𝜀,𝑖𝑘 + [−𝜀2−𝑄+2𝜅𝜀+2𝜁𝜀 , 𝜀2−𝑄+2𝜅𝜀+2𝜁𝜀 ]

)
×

(
𝑥𝜀,𝑖𝑘 + [−𝜀1−𝑄/2+𝜅𝜀 , 𝜀1−𝑄/2+𝜅𝜀 ]2

)
.

Here 𝜅𝜀 is as in (9.22)–(9.23) and 𝜁𝜀 is as in (6.3).
If 𝑘1 ≠ 𝑘2, then we have by (9.24) that 𝑑𝑖𝑘1 𝑖𝑘2

≥ 𝑄/2, so by (1.18) and (9.22) we have

max{|𝜏𝜀,𝑖𝑘1
− 𝜏𝜀,𝑖𝑘2

|1/2, |𝑥𝜀,𝑖𝑘1
− 𝑥𝜀,𝑖𝑘2

|} ≥ 10𝜀1−𝑄/2+𝜅𝜀 .

This means that {𝑆𝜀,1, . . . , 𝑆𝜀,𝑅} forms a pairwise-disjoint family of sets.
Let 𝐴𝑘 = [0, 𝜏𝜀,𝑖𝑘1

− 𝜀2−𝑄+𝜅𝜀+𝜁𝜀 ]. Define 𝑢𝐴𝑘
𝜀,𝑎 as in (1.26)–(1.27). By Proposition 4.1, we have, for all

𝑗 ∈ 𝑃𝑘 , that (
E(𝑢𝜀,𝑎 −𝑢𝐴𝑘

𝜀,𝑎) (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗)2
)1/2

≤
𝛽𝑎𝐾2

0

2
√︁
𝜋 log𝜀−1

©­«𝐾0 +

√︄
log

𝜏𝜀, 𝑗 + 𝜀2

𝜏𝜀, 𝑗 − 𝜏𝜀,𝑖𝑘 + 𝜀2−𝑄+2𝜅𝜀+2𝜁𝜀 + 𝜀2
ª®¬ .

(9.27)

We note (still assuming 𝑗 ∈ 𝑃𝑘) that

|𝜏𝜀, 𝑗 − 𝜏𝜀,𝑖𝑘 | ≤
1
4
𝜀2−2𝐷𝑘−2𝜅𝜀 � 𝜀2−𝑄+2𝜅𝜀+2𝜁𝜀 and 𝜏𝜀, 𝑗 ≤ 𝜀2−𝑄−2𝜅𝜀 (9.28)

by (9.22), (9.23), and (9.26). Thus from (9.27) we obtain a constant 𝐶 so that(
E(𝑢𝜀,𝑎 −𝑢𝐴𝑘

𝜀,𝑎) (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗)2
)1/2

≤
𝐶𝛽𝑎𝐾2

0

2
√︁
𝜋 log𝜀−1

(
𝐾0 +

√︃
log𝜀−4𝜅𝜀−2𝜁𝜀

)
→ 0 (9.29)
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as 𝜀 ↓ 0 since 𝜅𝜀 , 𝜁𝜀 → 0.
Define 𝜋1 : R×R2 → R be given by 𝜋1(𝑡, 𝑥) = 𝑡 and 𝜋2 : R×R2 → R2 be given by 𝜋2(𝑡, 𝑥) = 𝑥. Let 𝑢̃ (𝑘)𝜀,𝑎

solve the problem

d𝑢̃ (𝑘)𝜀,𝑎 (𝑡, 𝑥) =
1
2
Δ𝑢̃

(𝑘)
𝜀,𝑎 (𝑡, 𝑥)d𝑡 + (log𝜀−1)− 1

2 1𝜋1 (𝑆𝜀,𝑘 ) (𝑡)𝜎(𝑢̃
(𝑘)
𝜀,𝑎 (𝑡, 𝑥))d𝑊 𝜀, 𝜋2 (𝑆𝜀,𝑘 ) (𝑡, 𝑥); (9.30)

𝑢̃
(𝑘)
𝜀,𝑎 (0, 𝑥) = 𝑎. (9.31)

This turns off some temporal part of the noise as in (1.26)–(1.27) but also a spatial part of the noise as in
(9.1)–(9.2). Since {𝑆𝜀,1, . . . , 𝑆𝜀,𝑅} is pairwise-disjoint, the processes 𝑢 (1)𝜀,𝑎, . . . , 𝑢

(𝑅)
𝜀,𝑎 are independent. We now

want to apply (a translated version of) Proposition 9.3 with

𝜉𝜀 = 𝜀
1−𝐷𝑘−𝜅𝜀 , 𝜂𝜀 = 𝜀

1−𝑄/2+𝜅𝜀 , 𝑡𝜀 = 𝜏𝜀, 𝑗 − 𝜏𝜀,𝑖𝑘1
+ 𝜀2−𝑄+2𝜅𝜀+2𝜁𝜀 .

Note that

lim
𝜀↓0

𝜉𝜀

𝜂𝜀
= lim
𝜀↓0

𝜀1−𝐷𝑘−𝜅𝜀

𝜀1−𝑄/2+𝜅𝜀
= lim
𝜀↓0

𝜀𝑄/2−𝐷𝑘−2𝜅𝜀 = 0

since 𝐷𝑘 < 𝑄/2 and 𝜅𝜀 → 0, and also that (using these facts along with (6.3) and (9.28)) that

lim
𝜀↓0

𝑡
1/2
𝜀

𝜂𝜀
≤ lim
𝜀↓0

(𝜏𝜀, 𝑗 − 𝜏𝜀,𝑖𝑘1
)1/2

𝜀1−𝑄/2+𝜅𝜀
+ lim
𝜀↓0

𝜀1−𝑄/2+𝜅𝜀+𝜁𝜀

𝜀1−𝑄/2+𝜅𝜀
≤ lim
𝜀↓0

𝜀1−𝐷𝑘−𝜅𝜀

𝜀1−𝑄/2+𝜅𝜀
+ lim
𝜀↓0

𝜀𝜁𝜀 = 0.

Therefore, (9.15) is verified, so Proposition 9.3 applies, and we have (combining the result with (9.29)) that

lim
𝜀↓0

E(𝑢𝜀,𝑎 − 𝑢̃ (𝑘)𝜀,𝑎) (𝜏𝜀,𝑖 𝑗 , 𝑥𝜀,𝑖 𝑗 )2 = 0 (9.32)

for all 𝑗 ∈ 𝑃𝑘 . Now let 𝑢 (𝑘)𝜀,𝑎 solve the problem

d𝑢 (𝑘)𝜀,𝑎 (𝑡, 𝑥) =
1
2
Δ𝑢

(𝑘)
𝜀,𝑎 (𝑡, 𝑥)d𝑡 (9.33)

+ (log𝜀−1)− 1
2 1𝜋1 (𝑆𝜀,𝑘 ) (𝑡)𝜎(𝑢

(𝑘)
𝜀,𝑎 (𝑡, 𝑥))d[𝑊 𝜀, 𝜋2 (𝑆𝜀,𝑘 ) (𝑡, 𝑥) +𝑊̃ 𝜀, 𝜋2 (𝑆𝜀,𝑘 )c]

+ (log𝜀−1)− 1
2 1R\𝜋1 (𝑆𝜀,𝑘 ) (𝑡)𝜎(𝑢

(𝑘)
𝜀,𝑎 (𝑡, 𝑥))d𝑊̃ 𝜀 (𝑡, 𝑥)

𝑢𝜀,𝑎 (0, 𝑥) = 𝑎, (9.34)

where 𝑊̃ is an independent copy of 𝑊 (different and independent across different choices of 𝑘). Note
that 𝑢 (1)𝜀,𝑎, . . . , 𝑢

(𝑅)
𝜀,𝑎 are independent since the family {𝑆𝜀,1, . . . , 𝑆𝜀,𝑅} is disjoint. The pairs (𝑢𝜀,𝑎, 𝑢̃ (𝑘)𝜀,𝑎) and

(𝑢 (𝑘)𝜀,𝑎, 𝑢̃ (𝑘)𝜀,𝑎) have the same joint laws because to go from 𝑢𝜀,𝑎 to 𝑢 (𝑘)𝜀,𝑎 we simply replaced a part of the noise
(on 𝑆c

𝜀,𝑘
) that is independent of 𝑢̃ (𝑘)𝜀,𝑎 (for which the noise on 𝑆c

𝜀,𝑘
is turned off). Therefore, (9.32) also means

that
lim
𝜀↓0

E(𝑢 (𝑘)𝜀,𝑎 − 𝑢̃ (𝑘)𝜀,𝑎) (𝜏𝜀,𝑖 𝑗 , 𝑥𝜀,𝑖 𝑗 )2 = 0, (9.35)

and combining this with (9.32) yields (9.25). �

Now we can prove Theorem 1.3.

Proof of Theorem 1.3. We use induction on 𝑁 . The base case, (1.24) with 𝑁 = 1, is simply an application of
(8.9). Now suppose that 𝑁 ≥ 2 and that (1.24) holds for all strictly smaller 𝑁 . Let

𝑞0 = 2−2 max
𝑖, 𝑗∈[𝑁 ]

𝑑𝑖, 𝑗 . (9.36)
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Then we have
𝑞 < 𝑄−2+ 𝑞0 =⇒ 𝑖 (𝑄−𝑞)/2( [𝑁]) = {1} (9.37)

by the definition (1.21). Define

𝑚𝜀 (𝑞0) = max{𝑀1(𝜀, 𝜏𝜀,1), b(𝑞0 −2𝜅𝜀 −2𝛾𝜀)𝛿−1
𝜀 c}, (9.38)

recalling the definition (6.7), and also recall the definition (6.11)–(6.12) of 𝑤 (𝑚)
𝜀,𝑎,𝑇 ,𝑋

. In the case 𝑚𝜀 (𝑞0) =
𝑀0(𝜀, 𝜏𝜀,1), we have

𝑢𝜀,𝑎 (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗) = 𝑤 (𝑚𝜀 (𝑞0))
𝜀,𝑎,𝜏𝜀,1,𝑥𝜀,1 (9.39)

by the definition (6.10). Otherwise, we note using (9.22) that

𝜏𝜀, 𝑗 ≥ 𝜏𝜀,1 −
1
2
𝜀2−2𝑑1 𝑗−2𝜅𝜀 ≥ 𝜏𝜀,1 −

1
2
𝜀𝑞0−2𝜅𝜀 ≥ 𝜏𝜀,1 −

1
2
𝜀𝑚𝜀 (𝑞0) 𝛿𝜀+𝛾𝜀 . (9.40)

Thus we can apply Proposition 6.2 with 𝐶𝜀 = 𝜀−𝛾𝜀/2 (recalling (6.1)) and 𝑐 = 1/2, and by (9.40) take 𝑇 = 𝜏𝜀,1,
𝑘 = 𝑚𝜀 (𝑞0), and 𝑡 = 𝜏𝜀, 𝑗 in the supremum in (6.18), to obtain

lim
𝜀↓0

(
E(𝑢𝜀,𝑎 −𝑤 (𝑚𝜀 (𝑞0))

𝜀,𝑎,𝜏𝜀,1,𝑥𝜀,1) (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗)2
)1/2

𝑎(1+ 𝜀−𝑚𝜀 (𝑞0) 𝛿𝜀/2−𝛾𝜀/2 |𝑥𝜀, 𝑗 − 𝑥𝜀,1 |)
= 0. (9.41)

Note that (9.39) implies (9.41) as well, so in fact (9.41) holds unconditionally. On the other hand, we also
have, using (9.38), (9.22), (9.36), and (6.1), that

lim
𝜀↓0

𝜀−𝑚𝜀 (𝑞0) 𝛿𝜀/2−𝛾𝜀/2 |𝑥𝜀, 𝑗 − 𝑥𝜀,1 | ≤
1
2

lim
𝜀↓0

𝜀𝛾𝜀/2−𝑞0/2+1−𝑑1 𝑗 ≤ 1
2

lim
𝜀↓0

𝜀𝛾𝜀/2 = 0.

Combined with (9.41), this means that

lim
𝜀↓0

𝑎−1
(
E(𝑢𝜀,𝑎 −𝑤 (𝑚𝜀 (𝑞0))

𝜀,𝑎,𝜏𝜀,1,𝑥𝜀,1) (𝜏𝜀, 𝑗 , 𝑥𝜀, 𝑗)
2
)1/2

= 0. (9.42)

Now define
ℓ𝜀 = 𝜏𝜀,1 − 𝜀𝑚𝜀 (𝑞0) 𝛿𝜀+𝛾𝜀 (9.43)

and
𝑤(𝑡, 𝑥) = 𝑤 (𝑚𝜀 (𝑞0))

𝜀,𝑎,𝜏𝜀,1,𝑥𝜀,1 (𝑡 + ℓ𝜀 , 𝑥𝜀,1).

Note that if 𝑇 = 𝜏𝜀,1 then 𝑡 ′
𝑚𝜀 (𝑞0) = 𝜏𝜀,1−ℓ𝜀 , so 𝑤(0, ·) is constant in space and 𝑤(0, 𝑥) law

= 𝑌𝜀,𝑎,𝜏𝜀,1 (𝑚𝜀 (𝑞0)).
Thus, by applying Theorem A.1 as in the proof of (8.6) (recalling (8.8) and (9.37)), we see that

𝑤(0, 𝑥) law−−−→
𝜀↓0

Γ𝑎,𝑄,1(𝑄− (2− 𝑞0)). (9.44)

Moreover, 𝑤 is equal in law to 𝑢𝜀,𝑏, where 𝑏 = 𝑤(0, 𝑥) is taken to be independent of the noise driving 𝑢𝜀,𝑏.
Recall the definition (1.21) and let

𝑃𝑘 = 𝑖
−1
1−𝑞0/2(𝑘) = { 𝑗 ∈ [𝑁] : 𝑖1−𝑞0/2( 𝑗) = 𝑘}.

Note that 𝑃1, . . . , 𝑃𝑁 form a partition of [𝑁], and by (9.36) this partition is nontrivial. If 𝑖1−𝑞0/2( 𝑗1) =
𝑖1−𝑞0/2( 𝑗2) then 𝑑 𝑗1, 𝑗2 < 1− 𝑞0/2 by the strong triangle inequality (1.25). On the other hand, if 𝑖1−𝑞0/2( 𝑗1) ≠
𝑖1−𝑞0/2( 𝑗2) and 𝑑 𝑗1, 𝑗2 < 1− 𝑞0/2, then we have by (1.25) and (9.36) that

𝑑𝑖1−𝑞0/2 ( 𝑗1) ,𝑖1−𝑞0/2 ( 𝑗2) ≤ max{𝑑𝑖𝑞0 ( 𝑗1) , 𝑗1 , 𝑑 𝑗1, 𝑗2 , 𝑑 𝑗2,𝑖𝑞0 ( 𝑗2) } < 1− 𝑞0/2,

43



contradicting the definition (1.21). Therefore, we have

𝑖1−𝑞0/2( 𝑗1) = 𝑖1−𝑞0/2( 𝑗2) ⇐⇒ 𝑑 𝑗1, 𝑗2 < 1− 𝑞0/2. (9.45)

Furthermore, we note that, for all 𝑗 ∈ 𝑃𝑘 , we have 2𝑑 𝑗 ,𝑘 < 2− 𝑞0, which means that (recalling (9.43), (9.22),
and (9.36)) we have

2− lim
𝜀↓0

log𝜀
(
𝜏𝜀, 𝑗 − ℓ𝜀

)
= 2− 𝑞0. (9.46)

Comparing this with (1.20), we see that the collection {(𝜏𝜀, 𝑗 − ℓ𝜀 , 𝑥𝜀, 𝑗)} 𝑗∈[𝑁 ] of space-time points satisfies
the hypotheses of the theorem with the same 𝑑𝑖 𝑗s but with 𝑄 replaced by 2− 𝑞0. Thus by (9.45), Proposi-
tion 9.4 applies and we obtain independent processes 𝑤 (1) , . . . ,𝑤 (𝑁 ) , each distributed identically to 𝑤, so
that, whenever 𝑗 ∈ 𝑃𝑘 , we have

lim
𝜀↓0

E(𝑤 (𝑘) −𝑤) (𝜏𝜀, 𝑗 − ℓ𝜀 , 𝑥𝜀, 𝑗)2 = 0. (9.47)

By the nontriviality of the partition {𝑃1, . . . , 𝑃𝑁 } we have |𝑃𝑘 | < 𝑁 for each 𝑘 . Therefore, by the inductive
hypothesis, we have

(𝑤 (𝑘) (𝜏𝜀, 𝑗 − ℓ𝜀 , 𝑥𝜀, 𝑗)) 𝑗∈𝑃𝑘

law−−−→
𝜀↓0

(Γ𝑏,2−𝑞0, 𝑗 (2− 𝑞0)) 𝑗∈𝑃𝑘
,

with 𝑏 = 𝑤(0, 𝑥) independent of the randomness in the processes on the right side. Here we also used that
𝑖 (2−𝑞0−𝑞)/2( 𝑗) does not change when the minimum in (1.21) is restricted to elements of 𝑃𝑘 , since 𝑃𝑘 was
defined so that this minimum will be an element of 𝑃𝑘 anyway. But since the family (𝑤 (𝑘) )𝑁

𝑘=1 is independent,
as is the family ((Γ𝑏,𝑄−𝑞0, 𝑗 (𝑄− 𝑞0)) 𝑗∈𝑃𝑘

)𝑁
𝑘=1, this means that in fact

(𝑤 (𝑘) (𝜏𝜀, 𝑗 − ℓ𝜀 , 𝑥𝜀, 𝑗))𝑁𝑗∈1
law−−−→
𝜀↓0

(Γ𝑏,2−𝑞0, 𝑗 (2− 𝑞0))𝑁𝑗=1, (9.48)

again with 𝑏 = 𝑤(0, 𝑥) independent of the randomness in the processes on the right side. Combining (9.42),
(9.44), (9.47), (9.48), and the continuity of the SDE (1.22)–(1.23) with respect to the initial condition, we
obtain (1.24). �

A Convergence of discrete Markov martingales to continuous diffusions

For the convenience of readers, we recall in this section a classical result on the convergence of Markov
chains to diffusions that is used in the paper. We use the formulation and results given in [41, Section 11.2].

Theorem A.1. Suppose that we have a sequence of numbers 𝛿𝑘 ↓ 0, a sequence of discrete Markov martingales
({𝑌𝑘 (𝑚)}𝑚=𝐴1 (𝑘) ,...,𝐴2 (𝑘) )∞𝑘=1, and a continuous function 𝐿 : [𝐴1, 𝐴2] ×R → R satisfying the following
conditions:

1. The sequence of random variables (𝑌𝑘 (𝐴1(𝑘))) converges in law to a random variable 𝑋 as 𝑘 →∞.

2. For each 𝑞 ∈ [𝐴1, 𝐴2], the function 𝐿 (𝑞, ·) is Lipschitz with the Lipschitz constant bounded above
independent of 𝑞.

3. We have 𝛿𝑘𝑚 ∈ [𝐴1, 𝐴2] for all 𝑘 ≥ 1 and 𝑚 = 𝐴1(𝑘), . . . , 𝐴2(𝑘), and

lim
𝑘→∞

𝛿𝑘𝐴1(𝑘) = 𝐴1 and lim
𝑘→∞

𝛿𝑘𝐴2(𝑘) = 𝐴2.
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4. For each 𝑅 <∞, we have

lim
𝑘→∞

sup
|𝑥 | ≤𝑅

𝐴1 (𝑘) ≤𝑚<𝐴2 (𝑘)

��𝛿−1
𝑘 Var[𝑌𝑘 (𝑚 +1) | 𝑌𝑘 (𝑚) = 𝑥] − 𝐿 (𝛿𝑘𝑚,𝑥)

�� = 0. (A.1)

5. There is a 𝑝 > 2 so that, for each 𝑅 <∞, we have

sup
𝑘<∞, |𝑥 | ≤𝑅

𝐴1 (𝑘) ≤𝑚<𝐴2 (𝑘)

𝛿
−𝑝/2
𝑘

E[(𝑌𝑘 (𝑚 +1) −𝑌𝑘 (𝑚)) 𝑝 | 𝑌𝑘 (𝑚) = 𝑥] <∞. (A.2)

Let (𝑌 (𝑞))𝑞∈[𝐴1,𝐴2 ] solve the stochastic differential equation

d𝑌 (𝑞) = 𝐿 (𝑞,𝑌 (𝑞)) d𝐵(𝑞), 𝑞 > 𝐴1; (A.3)

𝑌 (𝐴1) = 𝑋, (A.4)

where 𝐵(𝑞) is a standard Brownian motion. Then we have

𝑌𝑘 (𝐴2(𝑘))
law−−−−→
𝑘→∞

𝑌 (𝐴2). (A.5)

Proof. This is essentially an application of [41, Theorem 11.2.3]. Since that theorem is stated in a general
form, we provide some details on how to check the conditions. First we note that although [41, Theorem
11.2.3] is stated for time-independent diffusions, it is trivial to add the time-dependence simply by considering
the space-time processes of the form {(𝑌𝑘 (𝑚), 𝛿𝑘𝑚)}𝑚=𝐴1 (𝑘) ,...,𝐴2 (𝑘) . Applying [41, Theorem 11.2.3]
requires also knowing that the limiting martingale problem corresponding for (A.3)–(A.4) is well-posed.
The SDE (A.3)–(A.4) has pathwise unique solutions by the standard theory and condition 2 in the statement
of theorem. This implies that there are unique solutions for the martingale problem by results [44, 43] of
Watanabe and Yamada; see [41, Corollary 8.1.6]. Finally, [41, Theorem 11.2.3] is stated for diffusions
starting at time 0 and lasting for all time; this can be adapted to our setting (a finite time interval with arbitrary
starting time) by shifting time and extending the Markov chains to later times in some arbitrary way.

The quantitative conditions for [41, Theorem 11.2.3] are [41, (11.2.4)–(11.2.6)]. In our setting, [41,
(11.2.4)] is a consequence of (A.1) (and the fact that there is no diffusion for the time process). The fact that
we have assumed that each 𝑌𝑘 (·) is a martingale means that there is no drift for the space process, and of
course the drift condition is satisfied trivially for the time process, so [41, (11.2.5)] is trivial in our setting.
Finally, [41, (11.2.6] holds because, by (A.2) and Markov’s inequality, we have for any fixed 𝜅 > 0 that

1
𝛿𝑘

P ( |𝑌𝑘 (𝑚 +1) −𝑌𝑘 (𝑚) | ≥ 𝜅 | 𝑌𝑘 (𝑚) = 𝑥) ≤
E [|𝑌𝑘 (𝑚 +1) −𝑌𝑘 (𝑚) |𝑝 | 𝑌𝑘 (𝑚) = 𝑥]

𝛿𝑘𝜅
𝑝

≤ 𝐶𝛿𝑝/2−1
𝑘

𝜅−𝑝

for a constant 𝐶 <∞, and the last quantity goes to 0 as 𝑘 →∞ since 𝑝 > 2 and 𝛿𝑘 ↓ 0.
Now condition 1 and the proof of [41, Theorem 11.2.3] show that, if we define

𝑌 𝑘 (𝐴1 + 𝛿𝑘 [𝑚− 𝐴1(𝑘)]) = 𝑌𝑘 (𝑚), 𝑚 = 𝐴1(𝑘), . . . , 𝐴2(𝑘),

and extend 𝑌 𝑘 to [𝐴1, 𝐴2] by linear interpolation (possibly extending it by a constant on the small interval
[𝐴1 + 𝛿𝑘 (𝐴2(𝑘) − 𝐴1(𝑘)), 𝐴2]), then 𝑌 𝑘 converges to 𝑌 in distribution with respect to the uniform topology
on continuous functions on [𝐴1, 𝐴2]. Then (A.5) follows. �
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