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Abstract: In a binary classification problem where the goal is to fit an accurate predictor, the
presence of corrupted labels in the training data set may create an additional challenge. However,
in settings where likelihood maximization is poorly behaved—for example, if positive and negative
labels are perfectly separable—then a small fraction of corrupted labels can improve performance
by ensuring robustness. In this work, we establish that in such settings, corruption acts as a form
of regularization, and we compute precise upper bounds on estimation error in the presence of
corruptions. Our results suggest that the presence of corrupted data points is beneficial only up to
a small fraction of the total sample, scaling with the square root of the sample size.
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1. Introduction

Consider a classification problem, where our goal is to predict a binary label Y € {£1} using information
captured by a feature vector X € R%. Based on n training data points (X1, Y1), ... (Xy, Ys), the objective
is to fit a classifier f: R — {+1} to this data, mapping a new test feature vector X to a predicted label
+1or —1.

In many settings, inherent noise in the measurement process can introduce corruption into the observed
labels Y;. For example, consider a medical application where features X; for patient i determine their
likelihood of having a particular disease, and Y; € {£1} indicates presence or absence of the disease.
Imperfect diagnostic tests might mean that the observed label may differ from the true label Y;. Writing
Y; € {+1} to denote the observed label, we might have P{Y; = —1 | Y; = +1} > 0 (if the diagnostic test
has a nonzero rate of false negatives) and similarly P{Y; = +1 | ¥; = —1} > 0 (indicating false positives).

1.1. Setting and notation

We begin by introducing some basic notation and definitions that we will use throughout. Consider the
following model for the triples (X,Y,Y), where as before, X € R? denotes the feature vector, Y € {+1} is

the true label (which we do not observe), and ¥ € {+1} is the observed label (which may be corrupted,
i.e., may differ from the true label):

X ~ Px (a distribution on R%),

YIX — +1, W%th prob. n(X),
—1, with prob. 1 — n(X),

}N/|X,Y _ -Y, W?th prob. p,
Y, with prob. 1 —p

Here n(z) denotes the probability of a positive (true) label,
n(x) =P{Y = +1| X =z},

while p denotes the probability that the observed label is corrupted, assumed to be identical across all
data points (the “homogeneous noise” setting).
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In the classification problem, our goal is to define a classification rule that, given a feature vector
x € R%, outputs a predicted label +1 or —1. The misclassification rate is minimized by predicting +1 or
—1 depending on whether 7n(z) is above or below 0.5, respectively. In a real data setting where n(x) is
unknown, the classification problem is typically addressed by fitting some function f(x) € R and then
predicting the label sign(f(x)). We can interpret f(z) as containing information about both our prediction
for the label (via the sign) and our confidence in this prediction (via the magnitude—values f(z) ~ 0
indicate uncertainty).

Given a possible choice of the function f, the misclassification rate on the training data set {(X;,Y;) :
it =1,...,n} is therefore given by the empirical 0-1 loss,

() = = 1A% Vi <0},

i=1
while
~ 1 & ~
2 () = - D {f(x) - Vi < 0}
W) ng; F(X3)
measures misclassification on the corrupted training data set {(Xi,f/i) 24 = 1,...,n}. Our goal is to

ensure a low “true” misclassification rate, i.e., for predicting the label Y for a new point with features
X, that is,
LO(f) = P{f(X) Y <0},

where (X,Y) is a new data point drawn from the same distribution as the original training data—that
is, X ~ Px, and Y|X is a label in {1} with probabilities determined by n(X).
Since the zero/one loss is challenging to optimize, it is standard to use a surrogate loss function
¢ : R — Ry, typically chosen to be continuous, convex, and monotone nonincreasing. For example, a
logistic surrogate loss is given by
0t) =log(1+e "),

while the hinge loss is given by
£(t) = max{0,1 — t}.

Given a sample of n data points, (X1,Y1),...,(Xn,Ys), we then define the empirical risk

~ 1 &
Ln(f) = - DUf(X:) - Yy,
i=1
which is the average surrogate loss on the data set {(X;,Y;) : ¢ = 1,...,n}, and the corrupted empirical
risk
~ 1 & ~
LR(f) = = DL UF(X) - Vo),
i=1
which is the average surrogate loss on the corrupted data set {(X;,Y;) i =1,...,n}. We will also write

L(f) = E[L(f(X) - Y],

the “true” risk of a function f, with expectation taken over a data point (X,Y) drawn from the same
distribution as before, i.e., X ~ Px, and label Y|X drawn with probabilities determined by n(X).

1.2. Summary of questions and results
The key question of this work is to compare the performance of the empirical risk minimizer,

F = argmin;_r L,,(f),
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and its corrupted counterpart, N N
f= argminfef LA (1),

where the minimization is taken over some predefined class of functions F (for example, linear functions
of x). That is, how does the presence of corrupted labels affect the performance of the empirical risk
minimizer? In particular, we emphasize that the surrogate loss function is unchanged—we do not adjust
¢ or attempt to “correct” for the presence of corruption (this is in contrast to much of the existing
literature, which we review below).

Our findings can be summarized as follows. First, we find that corruption mimics regularization—
in particular, for a fixed function f € F, the corrupted empirical risk ££(f) is a biased estimate of the
true risk L£(f), but acts as an unbiased estimate of a penalized version of this risk,

L(f) + AR(S)

where A > 0 is a penalty parameter depending on the corruption level p, while the regularization function

is given by
(X)) +f(—f(X))]
2 )

the expected loss of the function f under a completely random label.

While adding a penalty introduces bias into our estimator, it also serves to reduce variance, and for
limited sample size n, this reduction in variance may outweigh the bias. Our second finding is therefore
that, in some settings, corruption may lead to reduced risk for finite sample size, since it is
effectively acting as a regularizer and can substantially reduce variance.

() -

1.3. Prior work

The problem of learning a classifier in the presence of corrupted labels has been studied in many works
in the recent literature. Here we give a very brief overview of the settings and types of results considered.
Consider the more general model

X ~ Px (a distribution on R%),

YIX — +1, w%th prob. n(X),
—1, with prob. 1 — n(X),

—Y, with prob. p(X,Y),

YIX,Y = .
Y, with prob. 1 — p(X,Y).

Here n(x) denotes the probability of a positive (true) label as before, while p(x,y) denotes the probability

that the observed label is corrupted,

which now may depend on x and/or y.

Frénay et al. [7] and Frenay and Verleysen [8] provide overviews of recent works on this problem. They
categorize the existing methods to three types: label noise-robust models, data cleaning methods, and
label noise-tolerant learning algorithms.

The homogeneous noise setting assumes that p(z,y) = p for all x,y—that is, there is a constant
probability for each label to be corrupted. This is the setting we study in the present work. Under this
setting, Long and Servedio [14] study boosting algorithms and discuss negative consequences of label noise.
Van Rooyen, Menon and Williamson [26] consider ERM method and propose a label noise-robust loss
function. Manwani and Sastry [16] discuss the noise-tolerance property of risk minimization. Cannings,
Fan and Samworth [5] show that LDA is consistent under the noise, and Blanco, Japén and Puerto [2]
propose robust algorithms that apply relabeling and clustering to SVM.
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The class-dependent noise setting assumes that p(z,y) = p, for all z,y—that is, the probability of
corrupting a positive label (Y = +1 but Y = —1) is constant with respect to the feature vector x, and
similarly for a negative label, but these two probabilities may differ. For example, in our earlier medical
example, the diagnostic test might have different false positive and false negative rates, but these rates
themselves are constant across patients (i.e., independent of features such as age that might be included
in the X vector). Liu and Tao [13], Scott, Blanchard and Handy [25], and Blanchard et al. [1] study the
consistency of the classifier under corruption, while Reeve et al. [23] focus on the minimax optimal learning
rate of the corrupted estimator. Some recent works try correction of the loss function or the observed
labels; see Natarajan et al. [19], van Rooyen and Williamson [27], Patrini et al. [21], and Lin and Bradic
[12]. Other recent works focus on studying or developing label noise-robust methods; see Natarajan et al.
[18], Patrini et al. [20], Reeve and Kabén [24], Bootkrajang and Kabén [3], and Bootkrajang and Kabédn
[4].
Finally, the general setting—where p(z,y) might vary with z—is studied by Cannings, Fan and Sam-
worth [5]. In particular, they examine a setting for k-nearest neighbor where the corrupted labels )NQ are
more “clean” than the original labels Y;, in the sense that the corruption mechanism defined by p(z,y)
acts to denoise labels near the decision boundary (i.e., n(z) & 0.5) Specifically, suppose that, for values
x with n(z) slightly higher than 0.5, we have p(z, +1) < p(z,—1) (that is, a label ¥; = —1 that “should”
instead be positive, has a greater chance of being flipped to Y, = +1), and similarly if n(z) is slightly lower
than 0.5 then p(z,+1) > p(z, —1). In this case, the Y;’s carry strictly more information for estimating
the decision boundary, as compared to the Y;’s; this setting is therefore fundamentally different from the
one we consider here, where homogeneous noise creates strictly noisier labels. Menon, Van Rooyen and
Natarajan [17] consider a similar general setting where they show that any consistent algorithm for noise
free setting is also consistent under noisy labels under appropriate assumptions. Recent discussions on
the noise-tolerence and the robustness of the corrupted classification under this setting can be found in
Ghosh, Manwani and Sastry [9] and Cheng et al. [6].

2. Main results
2.1. Intuition: corruption acts as regularization

The key idea for studying the corrupted estimator through the framework of regularization, is to find
a regularizer that matches the expected behavior of the corruption. In order to do this, we first find a
different representation of the corruption variables: define

R Bernoulli(2p) and Z; by Uniform{+1},
drawn independently from each other and independently of the clean data. Then let

Yi=Q1-R)-Yi+ Ri- Zi.

That is, R; determines whether the label Y; will be replaced by a random sign, and Z; provides this random
sign. Examining this construction we can see that this yields the same distribution of the corrupted labels
as the original definition. We can then write the corrupted loss as

Le(f) =

S

Z 0f(X)-Y) = Z(l = R;) - L(f(X;) Yi) + Z Ri - U(f(Xi) - Zi).
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Next, we treat f as fixed, and then condition on the clean data and marginalize over the distribution of
the R;’s and Z;’s:
E I:Zfr)z(f) ) Xl:nle:n]

- LNER - R (X)) +

n

Recall the definition of the regularizer,

R(f) = E [f(f(X)) +f(—f(X))] ’

2

the expected loss of f on purely random labels. We can also consider an empirical version,

) (X0) + €= 10X)

Rulf) = >

We therefore see that
E[20(f) | (XiYi)i =10 on] = (1=2p) - (£a(f) + ARa(F)),
where A = —22_. Finally, for any fixed function f, we have

1-2p°

~

E[La(f) + ARa(f)] = L(f) + AR(f),

by definition. Therefore, we can view the corrupted empirical risk minimizer f as a sample estimate of
the minimizer of the penalized loss L£(f) + AR(f).
To summarize our findings so far, we have seen that f = argming. r Eﬁ( f) can be described in two
ways:
e Fixing the training data {(X;,Y;) : ¢ = 1,...,n} and taking an expectation over the corruption
mechanism (the R;’s and Z;’s above), we see that £7(f) has (conditional) expected value L, (f) +
)\ﬁn( f), a penalized empirical risk.

e Taking expectations over both the original data and the random corruption, f,fl( f) has expected
value L(f) + AR(f), a penalized true risk.

2.2. Results for the linear setting

Next, we will examine the implications of this relationship between corruption and regularization, on
the goals of minimizing risk. From this point on, we will restrict our discussion to the setting where F
consists of linear functions,

F={zw—w'z:weR,
in order to be able to achieve precise results. Consequently we will shift our notation from functions f to

vectors w. Specifically, for each w € R? we will define the population-level loss and regularized loss,

Lw) =E[(XTw-Y)] and L£P(w)=E[(X w-Y)]+ 1302P.R(w),

where 0XTw) + 0(—X Tw) L(w) + L(—w)

R(w) ~ €| . - L)L)
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as well as the empirical loss and empirical corrupted loss,

Ln(w) =

3=
3=

MuxX w-Y) and  Lo(w) == D UX w Y).
i=1 i=1

We will also define population-level minimizers

wy = argming, gs L(w) and @ = argmin, g L7 (w), (1)

and empirical minimizers
Wy, = argmin, cge Ln,(w) and @ = argmin, cga £ (w), (2)

whenever these minimizers exist. (Note that, in some settings, the loss or its empirical or corrupted
counterpart may have no minimizer—for example, logistic loss, where the positive and negative labels
can be perfectly separated.) For each of the four minimization problems, if the minimizer exists but is not
unique, our results will apply to any minimizer (e.g., w4 denotes any element of the set argmin,,.ga ,/3”(11))7
ete).

It is well-known that regularization may help reduce risk, even at the cost of increasing bias due to
the influence of the regularization function. As discussed earlier, since corruption mimics regularization,
in many settings we empirically observe that corruption reduces the risk—that is, L(wf) < L(@,,), even
though the corruption introduces bias. We will next study why this phenomenon occurs, by establishing
bounds on the loss £(w~) of the corrupted estimator.

2.2.1. Theoretical results

We begin by defining our assumptions. First, we require some conditions on the loss function ¢:

Assumption 1. The loss function £ is nonnegative, nonincreasing, convex, and L-Lipschitz. Furthermore,
£ is strictly decreasing on negative values, with

L(t) = £(0) + ~|t| for all t < 0O
for some v > 0, and has a subexponential decay for positive values,
0(t) < cre™ " for allt =0,

for some c¢1,co > 0.

The last two conditions ensure that the loss function enacts a strong penalty if X "w predicts the sign
of Y incorrectly (i.e., £(t) is large for t < 0), but decays quickly if X Tw predicts the sign of Y correctly
(i.e., £(t) is small for t > 0). These conditions are satisfied by many well-known examples, for instance:

e The logistic loss ¢; = log(1 + e~*) satisfies Assumption 1 with y = 3 and L = ¢; = ¢o = 1.
e The hinge loss ¢, = (1 — t) satisfies Assumption 1 with L =y =¢; = ¢3 = 1.

We will also need some weak assumptions on the distribution of the feature vector X:

Assumption 2. For some ag,a1,a2 > 0, it holds that
E[ea0|XTu|2] <a

and . a
E [(fﬂx “‘] < 72 for allt > 0.

for all unit vectors u e S¢1.
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For example, this assumption is satisfied by any multivariate Gaussian distribution with mean u and
covariance X, with the parameters ag, a1, a2 depending on ||| and on the largest and smallest eigenvalues
of ¥, but not on the dimension d.
Under these assumptions, our main result establishes a bound on the loss of the corrupted estimator
wh.
Theorem 1. Suppose that Assumptions 1 and 2 hold. Let n > 2 and fix any o > 0. Suppose p € (0, %)
satisfies
dlogn
p=C- sh

n

Then, with probability at least 1—n~%, the set argmin,, ga L7 (w) is nonempty, and for all @ € argmin,,.ga LL (w)

1t holds that
_ [dlogn
p1/2+p1/2~ n]

Here C,C" depend only on a and on the constants in Assumptions 1 and 2, but not on n, d, or p.

L(w?) < inf L(w)+C’

weR4

We can see an immediate tradeoff in the upper bound in Theorem 1. The p'/? term acts as an “approx-

imation error”, where a large corruption proportion p leads to a potentially large gap between the loss of
the regularized estimator, £(w%), and the minimum possible loss without regularization, inf,cga £(w).

On the other hand, the p=1/2. 4/ dlo% term is the “estimation error”, which is large when the corruption
proportion p is small (i.e., insufficient regularization). The resulting upper bound on risk is minimized

when the corruption level scales as p = (dlo#)l/z, leading to an upper bound on excess risk scaling

as = (Lng”)l/ *. This suggests that even a very small fraction of corrupted entries can lead to a re-

duced risk. In contrast, the uncorrupted minimization problem may not behave well under these weak
assumptions—for instance, if the labels are perfectly linearly separable (as might be the case if, e.g., Y| X
follows a logistic regression with very high signal strength), then a minimizer does not even exist (i.e.,
argmin, e L, (w) is empty).

The assumption that p = C - dl‘;i is not merely an artifact of the proof—in fact, without this type
of assumption, we cannot even ensure that argmin, cga Zﬁ(w) is nonempty. To see why, let us consider
a setting where the population is perfectly separable and £ is a strictly decreasing function. In this case,
the empirical risk minimizer w,, does not exist (or in other words, it diverges). Now, if p = 1/n, then with
probability (1 — %)" ~ e~ !, the corrupted dataset is equal to the original dataset, which means that the
corrupted data set is also perfectly separable and thus @# does not exist.

Of course, the result of Theorem 1 is an upper bound on the loss, and may be loose for certain examples;
the value of p that minimizes the upper bound (i.e., p =< (dlo%)lm) might not be the same as the value of
p that minimizes the loss itself. In particular, the result can be viewed as a “worst case” bound that holds
even when the unregularized loss has no minimizer (such as logistic regression with perfectly separable
labels, as mentioned above); in problems where this is not the case, regularization is not as critical, and
a smaller value of p (or even p = 0) may perform better.

2.2.2. Proof of Theorem 1

Our first step is to examine some properties of the regularized population minimizer @4 and its empirical
counterpart, the corrupted estimator w¥.

Lemma 1. Suppose Assumptions 1 and 2 hold. Fiz any p € (0, %) Then argmin, cra Ep(w) 18 nonempty,
and any @ € argmin, .ga L°(w) must satisfy |@2] < Cop~*/% and

L(W4) < inf £(w) + Cip'2.
weR4
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Moreover, for any a >0, ifn =2 and p = C - dlo% then with probability at least 1 — n™% it holds that
argmin, ga L0 (w) is nonempty, that any @F € argmin,,cga L (w) must satisfy | @] < Cop™/2, and that

~ ~ [d1
sup L0 (w) — Ep(w)‘ < Cyp~ 12 aoen.
lwl<Cop1/2 n

Here C,Cy, C1,Cy depend on o and on the constants in Assumptions 1 and 2, but not on n, d, or p.

Now we prove the theorem. By Lemma 1, with probability at least 1—n~%, for any @4 € argmin, cga Zp(w)
and all @, € argmin,,ga L££ (w) it holds that £(@}) < inf,cre L(w) + C1p*/? and that

dlogn
<oy

From now on, we assume that these events all hold. Then we have

Lo(@h) — LP(ak)|, |Lh(ah) — LP (L)

max {

Lo(ivg) = £e(@f) + (L(@g) - £r(@f)) + (Ln(an) - Za@)) + (£0(@h) - Lh ()

~ ~ ~ dl

< ZP() + (Lh(@5) — Eo(%)) +2Cop™ /2|50
o ~p —1/2 dlogn . . N

< LP(wh) + 2Cyp AV i— by optimality of w”
: 1/2 —1/2 |dlogn

< inf C(w) + Cip/= +2Cyp A ————
weR4 n

!

< it )+ lpm 4 vz, [dlogn ] |

weR4 2 n
where we set C' = max {2C1,4C5}. Next, by definition of EN", we have
LP(@L) — inf L(w)=(1—p) [L@)— inf L(w)]+p-[L(~@L) — inf L(w)]

weR4 weR? weR4

=

_ dlogn
P2 4 V2 /n]’

[@5) ~ it L(w)]

weRd

N |

where the last step holds since p < 5. Therefore,

1
5

L(w?) < inf L(w)+C’

weR4

which completes the proof of the theorem.

2.2.3. Another perspective on the regqularizer

The results above suggest that the main source of possible improvements by corruption is the shrinkage
induced by the corruption (or, at the population level, by the regularizer R(w)). In particular, the results
of Lemma 1 show that, in the linear setting, the corruption (or the regularizer) lead to an upper bound
on |w]. We will now examine this connection more closely.

The following lemma verifies that, up to constants, R(w) is equivalent to |w]|. In a sense, then, we can
view regularization with R(w) as effectively placing a penalty on |w]|.

Lemma 2. Suppose Assumptions 1 and 2 hold. Then it holds that
max{cy, - |w],£(0)} < R(w) < cy - |w] + £(0) for all w e RY,

where cr,, cy depend only on the constants in Assumptions 1 and 2.
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Proof. In the calculations (3) and (4) appearing in the proof of Lemma 1, we will see that Assumption 2
implies that

log 2
082 CE[XTul] <4/

2a2 ap

for all unit vectors u € R?. For any w € R?, for the lower bound, we have

R(w) [mxw +2e<—|XTw|>] e [z(—|X2Tw) ] e [a_pm;p —e<o>]

Y T v log 2
> — - E[|X > —|wl,
2 [1X ] Tay ||

and furthermore

£ [f(XTU}) + (=X Tw])

R(w) = 5 ]>am

by convexity of . For the upper bound, we have

Tw — TU}
() - [ AT 4 (T

:am+E[K*XTZ)‘“m]+E[“Mﬁi?—am]

(=X Twl) f(O)]

<€(0)+E[ 5

L L
< 0(0) + = -E[IX Twl|] < £0) + 24/ 2 - ).
2 2\ ao
O

3. Simulations

Now we empirically investigate the effect of corruption through a simulation.! We generate the data
{(Xi,Yi)} 1 <i<p, in the following way: choosing dimension d = 50, we draw

X; ~N(0,1y)

. . exp{3X,1+0.5(X;2)%}
Y| Xi = {+1, with probability 1+e§’(p{3)§“+0_5(£2)3}7

—1, with probability 1+exp{3Xi11+0.5(Xi2)3}7

independently for each i = 1,...,n. The corrupted labels {Y;}1<;<, are generated as
XNQ | X0 Y — -Y;, w%th prob. p,
Y; with prob. 1 — p,

independently for each ¢ = 1,...,n. We run the experiment at a small and large sample size, n = 400
and n = 2000, and at a range of values of the corruption probability, p € {0,0.01,0.02,...,0.2}. For each
sample size n and corruption level p, we run 100 independent trials of the experiment, we choose the
logistic loss function £(¢) = log(1+e~"), and compute the corrupted empirical minimizer @# defined in (2)
and the penalized population-level minimizer w4 as in (1) (which reduces to the uncorrupted empirical
minimizer @, and the unpenalized population-level minimizer wy, respectively, in the case p = 0). Note
that the data generating distribution does not follow the logistic regression model (due to the cubic
term), and so the logistic loss simply acts as a surrogate for the 0-1 loss (i.e., it does not correspond to a

likelihood for some well-specified model).

1Code to reproduce this simulation is available at https://www.stat.uchicago.edu/~rina/code/corrupted_labels_sim.R.
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Fig 1: Risks of the original classifier w,,, the corrupted classifier W/, the optimal classifier wy, and the population-
level corrupted classifier @4 on the test set, with sample size n = 400 (left) and n = 2000 (right). For the sample
estimators @, and @4, the figure displays the mean over 100 independent trials, with standard error bars. See
Section 3 for further details.

Figure 1 shows the performance of the corrupted estimator @? and its population-level version %,
across the range of corruption values p € {0,0.01,0.02,...,0.2}, at each sample size n € {400,2000};
the result at p = 0 is highlighted in each case, as it corresponds to the uncorrupted estimator @, and
to the corresponding population-level minimizer wy. Overall, the plots illustrate how corruption acts as
regularization—for the smaller sample size n = 400, we see that a small amount of corruption substantially
reduces the test risk of the empirical minimizer @#, while for the larger sample size n = 2000 the
uncorrupted estimator w,, achieves good performance and we no longer see any noticeable improvement
from corruption. For the population-level minimizers, on the other hand, increasing regularization always

leads to an increase in risk, as expected.

4. Discussion

In this work, we have shown that the corruption of labels has a regularization-type effect on binary
classification problems, leading to a possibility of an improvement of the fitted classifier in terms of test
risk. Unlike many prior works that apply adjustment or correction to achieve consistency or robustness
of the estimator, our result implies that corruption itself can be beneficial without any adjustment to the
estimation process, and thus it could be better in some cases to simply fit the corrupted dataset without
any modification on the methods—in particular, this means that we do not need to know or estimate
the corruption mechanism, as would be the case for a procedure that corrects for the corruption. For
the fitting of linear classifiers using empirical risk minimization under homogeneous noise, Theorem 1
provides an explanation for the possibility of corruption being beneficial, illustrating the tradeoff between
loss approximation and the estimation.

We can expect a similar tradeoff for more general settings where the noise is not homogeneous, or where
different estimation methods are applied; in general, it is intuitive that a small amount of corruption can
reduce the chance of overfitting, especially when the inherent noise level is low, and that this benefit
may outweigh the low bias that is introduced. As an example of a broader setting where this type of
phenomenon may be useful, we can consider a setting where some data points are known to be “clean”
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while others are potentially corrupted (this setting can be thought of as a special case of transfer learning—
for example, see Reeve, Cannings and Samworth [22]). While we might expect that performance could
be improved by removing or down-weighting the latter data points in order to avoid or reduce the effect
of corruption, our findings instead suggest that the presence of the non-“clean” data might even be
beneficial.

The question of corrupted labels, with its possible risks and benefits, is studied only in a very specific
setting in our work (i.e., linear prediction rules in low dimensions), and many open questions remain.
First, noting that the corrupted loss can be thought as another surrogate of 0-1 loss, we may ask how
corruption affects the prediction performance of the estimator in terms of misclassification rate, i.e., 0-1
risk. Second, do similar phenomena occur in the high-dimensional regime, d » n or docn? In particular,
we have seen that homogeneous corruption mimics an /> penalty in the low-dimensional setting; however,
the same is not immediately true in high dimensions, since these results rely on concentration type
arguments that would no longer hold (and, in particular, for d » n, in general both the uncorrupted data
{(X;,Y:)}1<i<n and the corrupted data {(Xi,%)}lgign are perfectly linearly separable, so we cannot
expect good performance without some additional constraints or regularization). Finally, since the key
phenomenon underlying our results is the way that homogeneous corruption mimics ¢5 regularization (and
therefore, corruption induces shrinkage in the resulting estimator), this does not explain any potential
benefits from corruption if we instead use methods such as a k-nearest-neighbor estimator, or other
methods where there is no notion of shrinkage; is corruption beneficial more broadly, by reducing the
chance of overfitting in a more general sense? We leave these questions for future work.
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Appendix A: Additional proofs

A.1. Proof of Lemma 1

We first verify that Lris (B-Lipschitz, where § = L, /Z—;. For any w # w’ € R we have

2o(w) = 2(w)| = [E[6X Tw - §) — (X Tw! - T)]|
H Tw- V) — (X Tw' - Yﬂ]
<E [L . ‘X wY — X w - ?H since ¢ is L-Lipschitz by Assumption 1

= LE[|XT(w —w)|] since Y e {+1}
w—w

Jw —w'|

= L|w—w'||-E[|X Tu|] where u =
< B w—w],
where the last inequality follows from Assumption 2 via the calculation

ar > E [ ] > a0 - E[XT0[2] > ag - E[IX 0[] (3)

We therefore have that £° is [B-Lipschitz. Note that the above argument also holds for p = 0, implying
that £ is also S-Lipschitz.

Now fix t = Cop~ /2 for any Cy > 4/ 628;:11352. We will show that, for any u e S41,

LP(t-u) > LP(0.5¢t - u).
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First we calculate
log 2

2(12

E[1XTul- 1{XTu-¥ <0}| > p-EIXTul] > p

where the first inequality holds by definition of the distribution of the corrupted label ¥ (since P{? =+1|X}e
[p,1 — p] holds almost surely), while for the second inequality, by Jensen’s inequality together with As-
sumption 2,

~20:E[|X Tul] _ pro-202lXTuly o 92 _ 1
€ < E[e IS5, ~ 2
SO 1 9
)
E[|X "ul] > . 4
[1XTul] > 52 (4)
We also know that
O(—t-|X Tul) = £(=0.5t - | X Tu|) =~ 0.5t | X Tul,
by Assumption 1, and so
E [(Z(t XTu V)= 005t X Tu-¥)) -1 {XTu Y < 0}]
log 2

>E[,y.0.5t.|X7u|-]l{XTu~1~/<0}] =>v-05t-p- Sy

We therefore have
LP(t-u) — LP(0.5¢ - u)
—E [é(t XTu- V) — 005t XTu- 17)]
—E [(e(t XTu- V)= 005t XTu- V) 1 {XTu Y < o}]

+E [(e(t X Tu- V) =005t XTu-V)) - 1 {XTu V> 0}]

> 05tp- % LE [(E(t X Tuf) — 605t [ X Tul)) - 1 {XTu ¥>0 ]
>v-05tp- 1;’%22 —E[€(0.5¢t - | X Tul)]

=~v-0.5t-p- 1;522 —cE [6_02‘0'5’5“XT“‘] by Assumption 1

=>~-05t-p- 1;522 — 026-13.2515 by Assumption 2

> 0 by definition of t.

In particular, this implies that £°(tw) > inf,,cga £°(w) for all u € ST, Since w — LP(w) is continuous as
shown above, this implies that £°(w) attains its infimum, and any @4 € argmin,gs £°(w) must satisfy
@) <t. }

Next we bound L(w}) for any @ € argmin,cgs £L°(w). First note that the corrupted risk can be
written as N

Lo(w) = (1 =2p) - L(w) + 2p - R(w) = (1 = p)L(w) + pL(~w). (5)
Applying (5) with w = @} we obtain
Lo(wy) = (1= p)L(W5) + pL(—w%),

and similarly applying (5) with w = —@} we obtain

LP(—@5) = (1= p)L(—a%) + pL(@%).
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Since EN‘)(@*) E”( W) by optimality of @%, and p < i by assumption, this proves that L(@§) <
L(—w%) and therefore,
L(wh) < LP(wh).

—-1/2 cias

, where ¢ = She - Then

Next, fix any w € R%. First consider the case that |w| < cp

LP(@0) — L{w) < LP(w) — L(w) by optimality of &%
= p(L(=w) = L(w)) by (5)
<2pB-cp 2
= 2Bcp!/?
where the last inequality holds since £ is S-Lipschitz.

Next consider the case that ||w| > c¢p~ /2. Let u = w/||w| and t = c¢p~/2. Then by the reasoning

above, we have N
LP(W) — L(tu) < 2Bep*/?

Next, let Z, = X "w - Y, then we have

L(tu) = L(w) = E[€(t - Zu) — ((|w] - Zu)]
(€t - Zu) = L(|w] - Zu)) - 1{Zy > O} + E[(£(t - Zu) — £(|w] - Zu)) - 1{Zu < 0}]

E[
< E[((t-Z,) —L(w| - Zy)) - 1{Z, > 0}] since |w| > ¢ and ¢ is nonincreasing
<E[{(t-Z,)-1{Z, > 0}] since ¢ is nonnegative
< ClE[e_CﬁlXT“I] by Assumption 1
<ep- a2 by Assumption 2

Cgt

_a% 12

cac '

Therefore, for this second case, we have shown that

LP() — L(w) < (25 n c1a2> Y2 = 8fcraz - pl/2,

C2C C2
Combining the two cases, we have shown that

£(%) < 2P(02) < L(w) + 4|22 2
2

for all w € R, which proves the desired inequality with

8501(12
C2 '

C =

Now we turn to the corrupted estimator w?. First we will need a lemma to establish some concentration
results.

Lemma 3. Suppose Assumptions 1 and 2 hold. Fix any o > 0, p € (0, %), t >0, and r > 0. Then with
probability at least 1 —n~%, it holds that

inf { Zmax{() XTu Y}}Zmp—rz.dlogn (6)

d—1
UES =1 n

and

weSd—1 n

1 dl
sup { e tXT“} 7n—3+7"4 ogn (7)
n = t
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Bow) — ()| <rs [T, (®)

where r1,12,13,74,75 > 0 depend only on a and on the constants in Assumptions 1 and 2, and not on n,
d, r, ort.

and

sup
[wl<r

We are now ready to prove the remainder of Lemma 1. First we bound |@w?]|. Define C' = QT% and fix

4cq (2c;1r3) 8¢y (071/27"4)
i ’ T

t = Cop~ /2 for any Cy > max {2 }7 which therefore satisfies

Oy > \/401 (26;1T3 + 000_1/27“4)
yr

We will show that, for any v e S,

LO(t-u) > LP(0.5t - u).

Then assuming p = C - dlzg”, the bound (6) in Lemma 3 implies that

1 & - 1 & -

—2|X;ru|-]l{XiTu-Yi <O} = —ZmaX{O,—X;u-Yi} = T—l-p,

ni3 ni4 2
for all u € S4~!. Furthermore, since t = Cop~ /2, the bound (7) in Lemma 3 (applied with 0.5¢t in place
of t) together with our assumption p > C - ‘“O% implies that

n -1 -1/2
Ze—cz‘O.5t|X?u| _ 2y 13+ GoC /1y

i=1 t

for all v € S?~!. Following identical arguments as in the population case, we have

5 5 2¢5 1 CoC1/2
LO(t-u)—LL(0.5t-u) =v-05t-p-r1/2—cy- C2 T3+t0 "oy

for all u € S¥~! where the last step holds by definition of ¢ and of Cj. Since Zﬁ is continuous (because
we have assumed the loss £ is continuous), as for the population case this again proves that L2 (w) must
attain its infimum, and that any w € argmin, cgs £ (w) must satisfy |w|| < ¢.

Finally, the bound supj,|<c,,-12 LP(w) — Ep(w)‘ < Cyp~1/2 dlo% follows immediately from the

bound (8) in Lemma 3, by setting Cy = Cyrs.

A.2. Proof of Lemma 3
First, we prove (6). The distribution of (X,Y) can equivalently be represented as
(X,Y)=(X,1-R)- Y +R Z),

where R ~ Bernoulli(2p) is generated independently from (X,Y"), and Z ~ Unif{+1} is generated inde-
pendently from (X,Y, R). Let (X;,Y;, R;, Z;) generate the n i.i.d. data points. Furthermore, define

)_(—X-min{l,élEB;T”}.

and

¢ : 4E[|X|]}
X; = X; -min{ 1, ——— ¢ .
{ 16
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Then we can check that, for all u e S¢1,

¢ 1L N i
Ei;max{o,—XiTu-Yi}2ﬁi;max{o,—X;ujfi}>ﬁzmax{0,_XiTu.Ri.Zi}.

i=1
Define

A = sup

ueSa—1

n
% > max {0, -Xu- R; - Zi} — E[max {0, —X "u- R- Z}]|.
i=1

We can verify that, since X, R, Z are independent, by definition of their distributions we have
E [max {0, —X"u-R- Z}|=p-E [|XTu|] .

Furthermore, by Jensen’s inequality,

exp {~4a:E [|XTul]} < B[ et X0 | < E et 4 pyx| > 4[| X1}
_a | E[X]] _1

\74’ )
day  4E[|X]] 2

where the last inequality applies Assumption 2 together with Markov’s inequality. Rearranging terms,

then,
log 2

T
E[| X ul] = Ty

Therefore, combining everything we have shown so far, it holds deterministically that

. 1 ¢ ey log 2
{3 Do o)) 2o B2 s

Now we need to bound A with high probability.

By the symmetrization inequality Koltchinskii [10, Theorem 2.1] we have
where the last expectation is taken with respect to the i.i.d. data (X;, 37;) as well as i.i.d. Rademacher ran-

ueSd—1

E[A] <2E l sup

ni:l

dom variables &; id Unif{£1}. Since ¢ — max{0, —t} is 1-Lipschitz, the contraction inequality Koltchinskii
[10, Theorem 2.2] verifies that

1 & .
— M & X u-Ri- 7|
ueSd—1 ’I?,i=1

E[A] <4E l sup

Furthermore, deterministically we have

)

IS -
*Zfi'XiTu'Ri'Zi
"o

1 & _
.

Z i Ri - Z; - X,
(38 )

and so combining everything so far, we have shown that

IR -
<”niz‘1§i‘Ri'Zi'Xi

] |

E[A] < 4E Uiigi-m Zi- X,
i=1
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Moreover, we can see that (X;,&; - Z;) is equal in distribution to (X;,&;) (since Z; € {£1} while & ~
Unif{+1} is drawn independently from the data), and so

Finally,

n d n 2
nia n j=1 1=1

d n
1 1
- Z D EIXZRY = — Z 20E(I1X:1°) < - 16E[|X]]” - 2p,
j=1li=1

E[]iig Y,

since by definition, it holds deterministically that | X;| < 4E[|X|], while R; ~ Bernoulli(2p) is indepen-
dent from X;. Combining everything so far,

1
E[A] < 4\/n 16E[|X ]2 - 2p.
Next, since for all u € S~ ! we have
E[max {0,—X Tu-R-Z}"] < 2p- (4E[|X[])*

and
0 < max{0,—X "u- R-Z} < 4E[| X||] almost surely,

applying Koltchinskii [10, Bousquet bound, Section 2.3] yields the concentration result

p {A < ) o 21080 Co AOEIIXIF + SELXIN-2ETAD) gy ln) }

n

1
>1——.
3n™

Furthermore, Assumption 2 together with Jensen’s inequality implies

2 . 12 12
CEINIPd o gromunisyaEINF] < e B[] < )
1<j<

and so E[|X[] < E[|X[?]"/? < 4/6“‘;%. Combined with our bound on E[A], we can verify that this

bound can be relaxed to
P{A<T’< p.dlogn_i_dlogn)}?l_l
n n 3ne

where r’ is chosen appropriately as a function of «, ag, and a;. Therefore, we have shown that with
probability at least 1 — —Q,

. 1 & ey log 2 , dlogn dlogn
uelgdf—1{ni=z]11nax{07_Xi UYZ}} Z P 4as - P n * n ’

which is sufficient to verify (6) with 71,7 chosen appropriately, since it holds that 4/p- 481 < 72 4

dlogn
2r'n

for all " > 0.
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Next we prove (7). Note that, comparing the two terms in the desired upper bound and noting that

1/t is only dominant if ¢t < we can see that it suffices to prove the result for t < , /57—, since
gn

_n
dlogn’

T . . N
t — Sup,cga—1 {% Z?:l e X “|} 1s monotone nonincreasing in t.

We have
T 1 & T
sup Z e tXiul b < sup < — 2 e tXiul
ueSd—1 ueSd—1 | T i=1

where, changing the definition of X and X;, we let

X—X-min{l,ﬂ)?j]}.

and analogously

v . tE[Ilel]}
X; = Xi'mln{l7 .
16

Next fix € > 0, and take a covering uy,...,uy of S¥~! such that

- <
sup {m m1n7M [l um|} <e

ueSd—1 1

By Lorentz, Golitschek and Makovoz [15, Chapter 15], for any € > 0 we can construct a set with this
property of size M < (3/€)¢. Then for any u € S~1, if we find m such that |u — u,,| < ¢, we have

et < X unl 4 g %, - e < KT uml 4 2E[X] e,

since e *1*| is t-Lipschitz over x € R. Therefore,

1 _
sup { 2 e—t|XTu} < t2E [”X”] €+ IIllaX { Z —tX,_-Tuml} )
n

ueSd—1 i=1

3

Next, for each m, by Hoeffding’s inequality,

I %7 AR log(3Mn®) 1
pl!_ X, um| _ E X um| < -
{n z; ‘ e 1> 2n 3Mne

Furthermore,
as + 1

t )
by applying Assumption 2 together with Markov’s inequality. Therefore, combining everything, with
probability at least 1 —

E[e !X uml] < E[e=X "unl] 4 P{|X| > tE[| X[]} <

3n0"
1 & log(3 - (3/€)d - ne 1
sup 4= Ze—t\xjm < 2E[|X]] .6+\/0g( (3/e)*-n) L atl
wesSd—1 [T izl 2n t
Since we have assumed that ¢ < n, taking € = n=2° we obtain

wesSd—1 [ M izl \/ﬁ 2n t

wp {1i _ﬂm} EUX)  ose- G o) el

which clearly satisfies (7) with 73, r4 chosen appropriately, since as shown before, E[| X ||] < 4/ %ﬁ‘“.
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Finally we prove (8). We first bound the quantity in the expected value. We have

E| sup
[wl<r

LA (w) — Ep(w)’] =E l sup

1 & ~
<2E[sup — Y Gl(X w - V)

lw|<r | T i3

|

by the symmetrization inequality Koltchinskii [10, Theorem 2.1], where the last expectation is taken with

respect to the i.i.d. data (X;, 171) as well as i.i.d. Rademacher random variables &; id Unif{+1}. Next, the
contraction inequality Koltchinskii [10, Theorem 2.2] verifies that

e, o
<lwl-|- ) &% X
i=1

] |

Moreover, we can see that (X;,& - Y;) is equal in distribution to (X;,&;) (since Y; € {+1} while & ~
Unif{+1} is drawn independently from (X;,Y;)), and so

n

1 & ~ 1 ~
— D GlX ] w - Y)) ~ D6 X w Y
Jwl<r |21 wll<r |21

E[sup

< 2LE [ sup

since ¢ is L-Lipschitz by Assumption 1. Furthermore, deterministically we have

1 & ~

.

w *Efi'Yi'Xi
(”il )

and so combining everything so far, we have shown that

)

1 ¢ o
*Z&'X;w'yi
s

Elsup

lwl<r

27 (w) — Ep(w)” < ALrE Hi i &V, X
=1

lwll<r

E l sup |LP (w) — Zp(w)” < 4LrE “:L i & - X,
i=1

9 1 d n 2
] = E Z E ( Xijgi)
=1 i=1

- LY SEn = e < 41w
_ngj:u:1 n “noap

Finally,

J[EpoEe

2 n
] <EM}1;&.X¢

since E[| X ?] < %ﬁal as calculated above. Therefore,

~ ~ 4Lr+/1 d

2P (w) _/y(w)’ < Hrvosa \/>
A/ Ao n

L

n

let (X’,Y’) be an i.i.d. draw from the distribution of (X,Y). For A > 0, we calculate

Elsup

lwi<r

Next we prove that the quantity sup,,<, |£f,(w) — Ep(w)‘ concentrates around its expectation. First,

E [16AX?X'?'| N 16,\|X?x'ff’] <E [e,@ux‘hx'?'\ﬁ/z]
2 2

<E [eX“-(\IX?\|2+HX’?’H2)] _E [€A2~Hx?\\2]2 _E [eﬂ-nxuz]z

d 2
—E [e’\Q'ijl |Xf|2]2 <E l‘li D ef”z"Xf'Zl ,

j=1
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by the AM—GM inequality. Applying Assumption 2, we then obtain

2224
a,
a;"°

E [lexxff—x’f/w + ;e—,\p(f/—x/ff’] <

~

Lo (w) — L (w)

as long as A\? < ag/d. Following the proof of Kontorovich [11, Theorem 1], since SUD| 4| <r

isa %—Lipschitz function of each data point product X; - }N’i,

i C ~ 5 L 8ndl - log(3n®
P{ vz ﬁﬁ(w)_ﬁ”(w)’_Elsup ﬁﬁ(w)—ﬁp(w)’] >T.\/ ndlog ay - log(3n )}
lwl<r Jwi<r n ao
< exp {Mlogal —A- \/S"dl(’g“l -log(3n®) } :
ap ag

Taking

)= agp ~|8ndlogay - log(3n®)
4dndlog aq ag

(which clearly satisfies A < /% for sufficiently large n), this probability is bounded by 371% (If instead
n is not sufficiently large (i.e., A > /%), then the guarantee (8) holds trivially.) Combining everything,
and choosing 75 appropriately, we have established (8).
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