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Abstract

We consider a particle undergoing Brownian motion in Euclidean space of any dimension, forced by a
Gaussian random velocity field that is white in time and smooth in space. We show that conditional on
the velocity field, the quenched density of the particle after a long time can be approximated pointwise by
the product of a deterministic Gaussian density and a spacetime-stationary random field𝑈. If the velocity
field is additionally assumed to be incompressible, then𝑈 ≡ 1 almost surely and we obtain a local central
limit theorem.

1 Introduction

Let (Ω,H ,P) be a probability space. Fix a spatial dimension 𝑑 ∈ N. Let 𝑉 = (𝑉1, . . . ,𝑉𝑑) be a Wiener process
on 𝐿2(R𝑑;R𝑑) that is spatially-smooth, with covariance function formally given by

E𝑉𝑖 (d𝑡, 𝑥)𝑉 𝑗 (d𝑠, 𝑦) = 𝛿(𝑡 − 𝑠)𝑅𝑖 𝑗 (𝑥− 𝑦)d𝑠d𝑡

for some covariance function 𝑅 ∈ C∞
c (R𝑑;R𝑑×𝑑). (That is, 𝑅 is smooth with compact support.) Let {F𝑡 } be

the usual filtration associated to 𝑉 (generated by {𝑉 (𝑠) : 𝑠 ≤ 𝑡}) and let F =
∨

𝑡<∞F𝑡 . Let 𝐵 = (𝐵1, . . . , 𝐵𝑑)
be a Brownian motion taking values in R𝑑 (independent of F ) with quadratic variation

〈𝐵𝑖 , 𝐵 𝑗〉(𝑡) = 𝜈𝛿𝑖 𝑗 𝑡 (1.1)

for some 𝜈 > 0. Let {G𝑡 } be the usual filtration associated to 𝐵, and let G =
∨

𝑡<∞G𝑡 . Let H𝑡 = F𝑡 ∨G𝑡 . We
assume that the 𝜎-algebra H is given by H = F ∨G.

We are interested in the stochastic differential equation

d𝑋 (𝑡) =𝑉 (d𝑡, 𝑋 (𝑡)) +d𝐵(𝑡); (1.2)

𝑋 (0) = 0, (1.3)

which models a passive scalar in a environment that decorrelates rapidly in time. We will interpret (1.2) in
the manner of [28, Section 3.4]; that is, as equivalent to the Itô integral equation

𝑋 (𝑡) = 𝐵(𝑡) +
∫ 𝑡

0
𝑉 (d𝑠, 𝑋 (𝑠)),

where {𝑋 (𝑡)} is assumed to be a continuous R𝑑-valued process adapted to {H𝑡 }.
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This problem has a unique solution by [28, Theorem 3.4.1] (using our assumption on the smoothness of
𝑅). The process {𝑋 (𝑡)} is a continuous martingale with quadratic variation process given by

〈𝑋𝑖 , 𝑋 𝑗〉(𝑡) = (𝜈𝛿𝑖 𝑗 +𝑅𝑖 𝑗 (0))𝑡, (1.4)

by [28, Theorem 3.2.4]. Thus, the annealed law of {𝑋 (𝑡)} is actually a 𝑑-dimensional Brownian motion with
covariance matrix (𝜈𝐼𝑑 +𝑅(0))𝑡 at time 𝑡. Here we used 𝐼𝑑 to denote the 𝑑 × 𝑑 identity matrix. We will think
of the forcing 𝑉 as a random velocity field and the forcing 𝐵 as a molecular diffusion, so 𝜈 is the “molecular
diffusivity”. Our interest will be in the quenched (with respect to the molecular diffusion) law of 𝑋 given by

𝜇𝑡 = Law[𝑋 (𝑡) | F ] . (1.5)

We will show in Section 2.1 that, for 𝑡 > 0, 𝜇𝑡 has a density with respect to Lebesgue measure on R𝑑 that
exists as a random field

(
𝑢(𝑡, 𝑥)

)
𝑡>0,𝑥∈R𝑑 (as a consequence of the molecular diffusion):

𝜇𝑡 (d𝑥) = 𝑢(𝑡, 𝑥)d𝑥, 𝑡 > 0, 𝑥 ∈ R𝑑 . (1.6)

Thus, 𝑢(𝑡, ·) is a density function that feels the randomness of the velocity field. Let 𝐺𝑡 be the solution to the
PDE

𝜕𝑡𝐺𝑡 (𝑥) =
1
2

tr[(𝜈𝐼𝑑 +𝑅(0))∇2𝐺𝑡 (𝑥)];

𝐺0 = 𝛿0.
(1.7)

Thus 𝐺𝑡 is a Gaussian density centered at the origin with covariance matrix (𝜈𝐼𝑑 +𝑅(0))𝑡, and so 𝐺𝑡 is the
density of annealed law of 𝑋 (𝑡). The goal of this paper is to study the relationship between the quenched law
𝑢(𝑡, ·) and the annealed law 𝐺𝑡 (·), and to understand how the randomness from the environment affects the
local behavior of the passive scalar. Here is the main theorem:

Theorem 1.1. There is a spacetime-stationary random field𝑈, positive almost surely with E𝑈 ≡ 1, and, for
every 𝜀 > 0, a constant 𝐶 = 𝐶 (𝑅, 𝜈, 𝜀) <∞ so that

sup
𝑥∈R𝑑

E|𝑢(𝑡, 𝑥) −𝐺𝑡 (𝑥)𝑈 (𝑡, 𝑥) |2 ≤ 𝐶𝑡−𝑑
(
𝑡−1/3 log 𝑡1𝑑=1 + 𝑡−2/(2+𝑑)+𝜀

1𝑑≥2

)
(1.8)

for all 𝑡 ≥ 𝐶. In particular, for any 𝑐 < 1
31𝑑=1 + 2

2+𝑑1𝑑≥2, we have

lim
𝑡→∞

sup

{
E
����𝑢(𝑡, 𝑥)𝐺𝑡 (𝑥)

−𝑈 (𝑡, 𝑥)
����2 : (𝜈𝐼𝑑 +𝑅(0))−1𝑥 · 𝑥 ≤ 𝑐𝑡 log 𝑡

}
= 0. (1.9)

We in fact have 𝑈 ≡ 1 almost surely if and only if
∑𝑑

𝑖=1
𝜕𝑅𝑖 𝑗

𝜕𝑥𝑖
≡ 0 for each 𝑗 (which holds if and only if 𝑉 is

incompressible almost surely). In general, we have

|E(𝑈 (𝑡, 𝑥1) −1) (𝑈 (𝑡, 𝑥2) −1) | ≤ 𝐶 (1+ |𝑥1 − 𝑥2 |)−𝑑 . (1.10)

Define 𝑋𝜀 (𝑡) = 𝜀𝑋 ( 𝑡

𝜀2 ), so the quenched density of 𝑋𝜀 (𝑡) is

𝑢𝜀 (𝑡, 𝑥) = 𝜀−𝑑𝑢( 𝑡

𝜀2 ,
𝑥
𝜀
).

By (1.8), we have for any 𝑡 > 0, 𝑥 ∈ R𝑑 , that

E|𝑢𝜀 (𝑡, 𝑥) −𝐺𝑡 (𝑥)𝑈 ( 𝑡

𝜀2 ,
𝑥
𝜀
) |2 → 0, as 𝜀→ 0.
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In other words, the quenched density of the diffusively rescaled process is approximately the Gaussian density
multiplying a stationary random field, which can be viewed as the “corrector” in stochastic homogenization.
This corrector is the constant 1 in the incompressible case, so we obtain a local central limit theorem.

Alternatively, Theorem 1.1 can be seen as a continuous-space, continuous-time version of the local limit
theorems for random walk in a random environment proved in [12, 17]. (See also the survey [13, §1.4.3]
regarding the result of [12].) Since the result concerns the long-time behavior of the system, one does not
expect a substantial difference between the discrete and continuous settings. However, the local temporal
roughness of the driving force introduces substantial complications in establishing the required estimates, as
we discuss in Section 1.1 below. Moreover, Theorem 1.1 is meaningful in the entire diffusive bulk region (i.e.
|𝑥 | . 𝑡1/2), while [12, Theorem 2] only holds for |𝑥 | � 𝑡1/3. Similar results were shown in [34, 14] for certain
exactly-solvable models, with the one-point distribution of the correction field𝑈 characterize explicitly. It is
also worth mentioning that for reversible random walks/diffusions in random environments, e.g., the random
conductance model, one can actually prove the local central limit theorem. Using our notation this says that
𝑢𝜀 (𝑡, 𝑥) ≈ 𝐺𝑡 (𝑥) for 𝜀� 1, similar to our result when 𝑉 is incompressible. We refer the reader to [1, 2] and
the references therein.

The stationary random field 𝑈 is a spacetime stationary solution to the Fokker-Planck equation (2.7)
with E𝑈 = 1, which is closely related to the invariant measure of the process of “environment seen from the
particle,” a crucial object in the study of random walk/diffusion in random environment. This connection was
also made in [17] for random walks in a balanced random environment. We refer to Remark 3.3 for more
discussion.

Our interest in the quenched density 𝑢(𝑡, 𝑥) is motivated in part by the recent work on the moderate- and
large-deviations regime of diffusion in a time-dependent random environment, which decorrelates rapidly;
see the discussions [4, 5, 6, 30] in both the physics and mathematics literature. In the diffusive regime 𝑥 ∼

√
𝑡,

which is what we consider here, it is well-known that the diffusion scales to a Brownian motion, see e.g. the
discussion on similar models in [9, 33, 21] and [24] for a monograph on the subject. (In our special setting of
white-in-time noise, the annealed law of 𝑋 (𝑡) is actually exactly the Brownian motion.) To study the error,
one can consider quantities of the form

E[ 𝑓 (𝜀𝑋 ( 𝑡

𝜀2 )) | F ] −
∫

R𝑑

𝑓 (𝑥)𝐺𝑡 (𝑥)d𝑥 =
∫

R𝑑

𝑓 (𝑥) [𝑢𝜀 (𝑡, 𝑥) −𝐺𝑡 (𝑥)]d𝑥,

where 𝑓 : R𝑑 → R is an arbitrary smooth function. The Edwards-Wilkinson type fluctuation is proved in
[3, 10, 35], i.e., after a proper rescaling, {𝑢𝜀 (𝑡, 𝑥) −𝐺𝑡 (𝑥)}𝑡>0,𝑥∈R𝑑 converges in law and weakly in space to a
Gaussian field that solves a stochastic heat equation with an additive Gaussian noise. Compared to our result,
the difference is that we consider the fluctuation 𝑢𝜀 (𝑡, 𝑥) −𝐺𝑡 (𝑥) for any fixed (𝑡, 𝑥), rather than performing
a spatial averaging under which the local fluctuations average out so that one needs to consider the next order
error to observe random fluctuations. One can also look at super-diffusive regimes. In the moderate-deviations
regime of 𝑥 ∼ 𝑡3/4, the KPZ equation arises [5] (see a similar result in a weak noise regime [16]), and the
large-deviations regime 𝑥 ∼ 𝑡 is associated with the KPZ fixed point and the Tracy-Widom type distribution
was derived in [4].

In [30], the relation between the diffusion in time-dependent random environments and the KPZ univer-
sality class was explored. For log𝑢(𝑡, 𝑥), the Edwards–Wilkinson universality was actually conjectured to
prevail in the diffusive regime, and it was also pointed out that the expected normal statistics seems to be
different from the one studied in [3]. Our result of 𝑢(𝑡, 𝑥) ≈ 𝐺𝑡 (𝑥)𝑈 (𝑡, 𝑥) in 𝑡 � 1 shows that the random
fluctuation is governed by the stationary random field𝑈, but we do not observe log-normal fluctuations of
𝑈 (𝑡, 𝑥). Instead, as it will become clear later in the proof, 𝑈 (𝑡, 𝑥) is a deterministic functional of the local
random environment near (𝑡, 𝑥), so there is actually no averaging taking place. It is very similar to the case of
a directed polymer in a random environment in dimension 𝑑 ≥ 3 at high temperature, where it is well-known
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that the polymer path is diffusive and the partition function is approximately a deterministic functional of the
random environment near the endpoint.

We approach the problem from a more analytic perspective. We will show in Proposition 2.1 below that 𝑢
satisfies the stochastic PDE

d𝑢(𝑡) = 1
2

tr[(𝜈𝐼𝑑 +𝑅(0))∇2𝑢(𝑡)]d𝑡 −∇ · [𝑢(𝑡)𝑉 (d𝑡)], 𝑡 > 0; (1.11)

𝑢(0) = 𝛿0, (1.12)

which can be seen as a Fokker–Planck equation with random coefficients. Here and throughout the paper,
we use ∇2 to mean the Hessian operator, not the Laplacian. Then the field 𝑈 in Theorem 1.1 is in fact a
spacetime-stationary solution to (1.11), starting from constant initial data 𝑢(0, 𝑥) ≡ 1. Thus, Theorem 1.1 is
quite similar to the “homogenization-type” theorems of [19, 15] proved for the stochastic heat equation with
weak noise in 𝑑 ≥ 3, in that it shows how to approximate the solution to a stochastic PDE with a compactly-
supported initial condition by a deterministic evolution multiplied by a random spacetime-stationary solution.
(A similar result was proved for directed polymers in 𝑑 ≥ 3 in [11].)

In the case when the forcing is assumed to be incompressible (i.e. ∇ ·𝑉 ≡ 0 almost surely), the SPDE
(1.11) has been extensively studied in the turbulence community as the “rapid decorrelation in time model”
or “Kraichnan model.” See [32] and the references therein. incompressibility and indeed an important case is
when 𝑑 = 1, in which nontrivial incompressibility is impossible.

1.1 Proof strategy

As pointed out above, our result is quite similar in form to the results on the stochastic heat equation in 𝑑 ≥ 3.
If we ignore convergence issues and formally write the mild solution formula to (1.11)

𝑢(𝑡) = 𝐺𝑡 ∗𝑢(0) −
∫ 𝑡

0

∫
𝐺𝑡−𝑠 ∗∇ · [𝑢(𝑠)𝑉 (d𝑠)]

= 𝐺𝑡 ∗𝑢(0) −
∫ 𝑡

0
∇𝐺𝑡−𝑠 ∗ [𝑢(𝑠)𝑉 (d𝑠)],

(1.13)

then we immediately see the similarity between (1.11) and the stochastic heat equation, with the only
difference coming from the use of ∇𝐺𝑡−𝑠 instead of 𝐺𝑡−𝑠 in the stochastic integral term. This extra gradient is
the reason our result holds in 𝑑 ≥ 1, rather than the requirement of 𝑑 ≥ 3 for the stochastic heat equation. To
see it more clearly, one can look at the first order “chaos”, which is the first random term obtained by iterating
the mild formulation: for SHE, we obtain

∫ 𝑡

0 𝐺𝑡−𝑠 ∗𝑉 (d𝑠), which converges to a stationary Gaussian field in

large time, only in 𝑑 ≥ 3; for the Fokker-Planck equation, the convergence of
∫ 𝑡

0 ∇𝐺𝑡−𝑠 ∗𝑉 (d𝑠) to a stationary
Gaussian field holds in any dimension. The extra gradient also means that making (1.13) rigorous seems
quite nontrivial, due to the worse singularity of ∇𝐺𝑡 (𝑥) near (𝑡, 𝑥) = (0,0). (Some progress in developing
such a theory was made in [23] for a special class of 𝑉 .) Thus, we do not use the formulation (1.13) in the
present work, and instead use another approach to make sense of the SPDE (1.11).

While it is not difficult to formally derive (1.11) as the Fokker–Planck equation associated with the passive
scalar evolution (1.2), solution theories for the stochastic PDE (1.11) are rather intricate; see the discussion
in [23, pp. 2–3]. We will use a solution theory due to Kunita [26] (similar to the approach described in [28,
§6.2]) that uses stochastic flows to make sense of the stochastic PDE. We note that we require a somewhat
stronger solution theory than simply deriving the problem (1.11)–(1.12) solved by the density, because, as
indicated above, we will also need to construct spacetime-stationary solutions to (1.11), with the initial data
𝑢(0, 𝑥) ≡ 1. We recall the results we will need in Section 2.1. This approach requires 𝑅 to be (qualitatively)
several times differentiable, which we have assumed in our work. Alleviating this restriction was part of the
goal of [23], but results in this direction are not yet strong enough for our purposes.
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To justify the approximation

𝑢(𝑡, 𝑥) ≈ 𝐺𝑡 (𝑥)𝑈 (𝑡, 𝑥), 𝑡 � 1, (1.14)

and thus prove Theorem 1.1, our strategy is similar to that of [18] for the 2D nonlinear stochastic heat
equation. Namely, we first approximate (1.11) by the equation for which the noise has been turned off in
the time interval [0, 𝑞], for some properly chosen 𝑞 so that 1 � 𝑡 − 𝑞 � 𝑡. Then we show that the latter
solution can be approximated locally in space by a stationary solution. Basically, the evolution of (1.11) in
the time interval [0, 𝑞], which is almost of length 𝑡, generates the factor 𝐺𝑡 (𝑥) in (1.14), while the evolution
in the remaining interval [𝑞, 𝑡], which is macroscopically small but microscopically large, “feels” the random
environment and produces the factor 𝑈 (𝑡, 𝑥) in (1.14). A difference is that [18] works with a stochastic
heat equation in 𝑑 = 2, where spacetime-stationary solutions do not exist. Thus, as we have stated before,
phenomenologically the situation is more similar to that considered in [19, 15], although in those works a
different approach based on the Feynman–Kac formula was used in the proofs.

Proving the mentioned bounds in [18] was done using the mild solution formula, the analogue of (1.13).
A discrete chaos expansion was also the key technique used for the proof in [12]. As we have stated, we do
not (at present) have a mild solution theory for the SPDE (1.11). Thus we work in a more analytic way, using
the PDE satisfied by the two-point correlation function of the solution to (1.11) in Section 2.2. This PDE
has been used before in the case of the Kraichnan model (i.e. when the forcing is assumed incompressible);
see for example [31]. Then we use tools from the theory of parabolic PDE (in particular [22, 20]) to prove
the required bounds on the correlations. We establish these bounds in Section 2.2.1. Then we apply them in
Section 3 to prove the existence of the spacetime-stationary solution𝑈 and in Section 4 to complete the proof
of Theorem 1.1.
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2 Setup and preliminaries

Throughout the paper, the letter 𝐶 will denote a positive constant depending on 𝑅 and 𝜈, and only on other
parameters if specified explicitly. We will allow 𝐶 to change from line to line if necessary.

We wish to derive a stochastic PDE satisfied by 𝜇𝑡 , but before we do this we will generalize (1.2)–(1.3)
to the setting of stochastic flows (see [28, Chapter 4]). Let 𝜑𝑠,𝑡 (𝑥) (𝑠, 𝑡 ∈ R, 𝑥 ∈ R𝑑) be the family of random
diffeomorphisms solving the family of SDEs

d𝑡𝜑𝑠,𝑡 (𝑥) =𝑉 (d𝑡, 𝜑𝑠,𝑡 (𝑥)) +d𝐵(𝑡); (2.1)

𝜑𝑠,𝑠 (𝑥) = 𝑥, (2.2)

by which we mean solving the stochastic Itô integral equations

𝜑𝑠,𝑡 (𝑥) = 𝑥 +
∫ 𝑡

𝑠

[𝑉 (d𝑟, 𝜑𝑠,𝑟 (𝑥)) +d𝐵(𝑟)], 𝑡 ≥ 𝑠. (2.3)

This means that the solution to (1.2)–(1.3) will be given by 𝑋 (𝑡) = 𝜑0,𝑡 (0). Such a solution exists and is
unique by [28, Theorem 4.5.1].
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2.1 The stochastic PDE

Now for a Borel measure 𝜇0 on R𝑑 , which we assume to live in some weighted Sobolev space (of negative
regularity) with at most polynomial growth at infinity, let 𝜇̃𝑡 be the pushforward measure of 𝜇0 by 𝜑0,𝑡 , so for
any 𝐴 ⊂ R𝑑 , we have

𝜇̃𝑡 (𝐴) = 𝜇0(𝜑−1
0,𝑡 (𝐴)). (2.4)

Thus, 𝜇̃𝑡 is an H𝑡 -measurable random measure.
The definition (2.4) is similar to [27, (2.14)] and [26, (2.4)], which define the composition of a tempered

distribution and a stochastic flow. We emphasize, however, that the composition of a tempered distribution
with a diffeomorphism is not a generalization of the pushforward of a measure by a diffeomorphism, as
the former construction involves a factor of the Jacobian determinant of the diffeomorphism. That is, our
definition (2.4) is in fact the same as defining

𝜇̃𝑡 =

(
𝜇0

det𝐷𝜑0,𝑡

)
◦𝜑−1

0,𝑡 , (2.5)

where the ◦ denotes composition of distributions, in the sense that

〈𝜇̃𝑡 , 𝑓 〉 =
∫

1
det𝐷𝜑0,𝑡 (𝑥)

(det𝐷𝜑0,𝑡 (𝑥)) 𝑓 (𝜑0,𝑡 (𝑥)) d𝜇0(𝑥) =
∫

𝑓 (𝜑0,𝑡 (𝑥)) d𝜇0(𝑥),

which agrees with (2.4). The determinants involved in the last two formulas are positive, so there is no need
to take an absolute value.

Now we define
𝜇𝑡 = E[𝜇̃𝑡 | F ], (2.6)

so (1.5) represents the special case when 𝜇0 = 𝛿0. Conditional expectations of the form (2.6) were constructed
and studied in [26]. By [26, Theorem 3.2] (which relies on the partial Malliavin calculus developed in [7, 29]),
for all 𝑡 > 0 the measure 𝜇𝑡 has a (spatially) smooth density 𝑢(𝑡) with respect to the Lebesgue measure almost
surely. This property comes from the ellipticity implied by (1.1) of the molecular diffusion. The following
proposition shows that (2.6) solves the Fokker-Planck in an appropriate sense:

Proposition 2.1. The function 𝑢, considered as a time-indexed family of tempered distributions on R𝑑 , is the
unique solution of the Itô stochastic PDE

d𝑢(𝑡) = 1
2

tr[(𝜈𝐼𝑑 +𝑅(0))∇2𝑢(𝑡)]d𝑡 −∇ · [𝑢(𝑡)𝑉 (d𝑡)], 𝑡 > 0; (2.7)

lim
𝑡↓0
𝑢(𝑡) = 𝜇(0) (2.8)

in the “generalized solution” sense analogous to [26, (3.3)]: for almost every realization of the random
environment, we have for all Schwartz functions ℎ : R𝑑 → R that

〈𝑢(𝑡), ℎ〉 = 〈𝜇(0), ℎ〉 +
∫ 𝑡

0

1
2
〈𝑢(𝑠), tr[(𝜈𝐼𝑑 +𝑅(0))∇2ℎ]〉 d𝑠+

∫ 𝑡

0
〈𝑢(𝑠),∇ℎ ·𝑉 (d𝑠)〉, 𝑡 > 0. (2.9)

Remark 2.2. In the sequel, we will use the standard abuse of notation and write (2.8) as 𝑢(0) = 𝜇(0), even if
𝜇(0) does not have a density.

Proof. We will derive (2.7) by applying [26, Theorem 3.1]. In order to use this theorem, we must show how
our problem fits into the framework of [26]. This is done via the following list of correspondences, in which
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the left-side quantities (also written in sans-serif type to avoid confusion with the notation used in the present
paper) are the notations of [26] and the right-side quantities are our notations:

W𝑖 = −𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑑; (2.10)

W𝑑+1 = −∇ ·𝑉 ; (2.11)

B(𝑥, 𝑡) = −𝐵(𝑡) + 1
2
(∇ · 𝑅) (0)𝑡; (2.12)

L =
1
2
𝜈Δ+ 1

2
(∇ · 𝑅) (0) · ∇, i.e. a𝑖 𝑗 ≡ 𝜈𝛿𝑖 𝑗 , b𝑖 ≡ 1

2

𝑑∑︁
𝑗=1

𝜕𝑅𝑖 𝑗

𝜕𝑥 𝑗
(0), d ≡ 0; (2.13)

X = 𝜇(0); (2.14)

G ≡ 0. (2.15)

Here and henceforth, by (∇ · 𝑅) (0) we denote the vector with the 𝑖th component
∑𝑑

𝑗=1
𝜕𝑅𝑖 𝑗

𝜕𝑥 𝑗
(0).

As [26] works with Stratonovich rather than Itô integrals, we rewrite (2.1) in the Stratonovich form.
Using the Itô–Stratonovich correction given in [28, Theorem 3.2.5], we have

𝜑𝑠,𝑡 (𝑥) = 𝑥 +
∫ 𝑡

𝑠

𝑉 (d𝑟, 𝜑𝑠,𝑟 (𝑥)) +𝐵(𝑡) −𝐵(𝑠)

= 𝑥 +
∫ 𝑡

𝑠

𝑉 (◦d𝑟, 𝜑𝑠,𝑟 (𝑥)) +𝐵(𝑡) −𝐵(𝑠) −
1
2
(∇ · 𝑅) (0) (𝑡 − 𝑠), (2.16)

or equivalently

d𝑡𝜑𝑠,𝑡 (𝑥) =𝑉 (◦d𝑡, 𝜑𝑠,𝑡 (𝑥)) +𝐵(d𝑡) −
1
2
(∇ · 𝑅) (0)d𝑡.

Using the correspondences (2.10)–(2.13), we see that (2.16) matches [26, (3.4)], with 𝜓 = 𝜑.
Now using the differentiation rule [28, (3.3.21)] we have that

d𝑡 [𝐷𝜑𝑠,𝑡 (𝑥)] = d(𝐷𝑉) (◦d𝑡, 𝜑𝑠,𝑡 (𝑥)) ·𝐷𝜑𝑠,𝑡 (𝑥).

Therefore, by the Jacobi formula and the chain rule for Stratonovich integrals, we have

d𝑡 [det𝐷𝜑𝑠,𝑡 (𝑥)] = tr[(adj𝐷𝜑𝑠,𝑡 (𝑥))𝐷𝑉 (◦d𝑡, 𝜑𝑠,𝑡 (𝑥)) ·𝐷𝜑𝑠,𝑡 (𝑥)]
= det𝐷𝜑𝑠,𝑡 (𝑥) (∇ ·𝑉) (◦d𝑡, 𝜑𝑠,𝑡 (𝑥)),

where adj denotes the classical adjoint (adjugate) matrix. This implies that

d𝑡 [logdet𝐷𝜑𝑠,𝑡 (𝑥)] = (∇ ·𝑉) (◦d𝑡, 𝜑𝑠,𝑡 (𝑥)),

so

det𝐷𝜑𝑠,𝑡 (𝑥) = exp
{∫ 𝑡

0
(∇ ·𝑉) (◦d𝑟, 𝜑𝑠,𝑟 (𝑥))

}
, (2.17)

Therefore, recalling (2.11) and (2.13), we have

𝛾𝑠,𝑡 (𝑥) =
1

det𝐷𝜑𝑠,𝑡 (𝑥)
, X(𝑡) = 𝜇(0)

det𝐷𝜑0,𝑡
, (2.18)

with the left sides in the notation of [26, (3.5)–(3.6)] and the right sides in our notation.
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Now we see that [26, Theorem 3.1] applies, and it tells us that

𝜇(𝑡) = 𝜇(0) +
∫ 𝑡

0

[
1
2
𝜈Δ𝜇(𝑠) + 1

2
(∇ · 𝑅) (0) · ∇𝜇(𝑠)

]
d𝑠−

∫ 𝑡

0
∇𝜇(𝑠) ·𝑉 (◦d𝑠)

−
∫ 𝑡

0
𝜇(𝑠) (∇ ·𝑉) (◦d𝑠).

(2.19)

Since 𝑢(𝑡) is the density of 𝜇(𝑡), the same equation holds for 𝑢.
To complete the proof, it remains to convert (2.19) into an Itô integral equation by subtracting the

appropriate correction term. This computation is carried out on in [28, p. 302]. Again using a sans-serif
font for the notation there, we have Fi = −𝑉𝑖 for 𝑖 = 1, . . . , 𝑑 and Fd+1 = −∇ ·𝑉 . Thus we have the “local
characteristic”

Aij(𝑥, 𝑦, 𝑡) =


𝑅𝑖 𝑗 (𝑥− 𝑦), 1 ≤ 𝑖, 𝑗 ≤ 𝑑;
−∑𝑑

𝑘=1
𝜕𝑅𝑖𝑘

𝜕𝑥𝑘
(𝑥− 𝑦) = −(∇ · 𝑅)𝑖 (𝑥− 𝑦), 1 ≤ 𝑖 ≤ 𝑑, 𝑗 = 𝑑 +1;∑𝑑

𝑘=1
𝜕𝑅𝑘 𝑗

𝜕𝑥𝑘
(𝑥− 𝑦), 𝑖 = 𝑑 +1, 1 ≤ 𝑗 ≤ 𝑑;

−∑𝑑
𝑘,ℓ=1

𝜕2𝑅𝑘ℓ

𝜕𝑥𝑘𝜕𝑥ℓ
(𝑥− 𝑦), 𝑖 = 𝑗 = 𝑑 +1.

(2.20)

We also have the auxiliary functions

C 𝑗 (𝑥, 𝑡) =
𝑑∑︁
𝑖=1

𝜕A𝑖 𝑗

𝜕y𝑖
(𝑥, 𝑦, 𝑡) |𝑦=𝑥 = −

𝑑∑︁
𝑖=1

𝜕𝑅𝑖 𝑗

𝜕𝑥𝑖
(0) = (∇ · 𝑅) 𝑗 (0)

D(𝑥, 𝑡) =
𝑑∑︁
𝑖=1

𝜕A𝑖,𝑑+1

𝜕𝑦𝑖
(𝑥, 𝑦, 𝑡) |𝑦=𝑥 =

𝑑∑︁
𝑘,ℓ=1

𝜕𝑅𝑘ℓ

𝜕𝑥𝑘𝜕𝑥ℓ
(0).

Thus, [28, p. 302, (3)] becomes in our setting

L̃𝑢 =
1
2

𝑑∑︁
𝑖, 𝑗=1

𝑅𝑖 𝑗 (0)
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥 𝑗
+

𝑑∑︁
𝑖=1

(
−(∇ · 𝑅)𝑖 +

1
2
(∇ · 𝑅)𝑖

)
𝜕𝑢

𝜕𝑥𝑖

=
1
2

𝑑∑︁
𝑖, 𝑗=1

𝑅𝑖 𝑗 (0)
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥 𝑗
− 1

2
(∇ · 𝑅) · ∇𝑢,

and so by [28, p. 302, (4)], we have

𝜇(𝑡) = 𝜇(0) +
∫ 𝑡

0

[
1
2
𝜈Δ𝜇(𝑠) + 1

2
(∇ · 𝑅) (0) · ∇𝑢(𝑠) + L̃𝑢(𝑠)

]
d𝑠−

∫ 𝑡

0
∇𝜇(𝑡) ·𝑉 (d𝑠)

−
∫ 𝑡

0
𝜇(𝑠) (∇ ·𝑉) (d𝑠)

= 𝜇(0) +
∫ 𝑡

0

1
2

tr[(𝜈𝐼𝑑 +𝑅(0))∇2𝜇(𝑠)] d𝑠−
∫ 𝑡

0
∇𝜇(𝑡) ·𝑉 (d𝑠) −

∫ 𝑡

0
𝜇(𝑠) (∇ ·𝑉) (d𝑠). (2.21)

Thus 𝑢 satisfies the Itô SPDE (2.7). �

2.2 The second-moment PDE

As described in the introduction, we now want to write a PDE for the second moments of 𝑢(𝑡). To this end,
we first consider

𝑢2(𝑡, 𝑥, 𝑦) = 𝑢(𝑡, 𝑥)𝑢(𝑡, 𝑦). (2.22)
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Since 𝑢(𝑡, ·) is the quenched density of 𝑋 (𝑡), we know that if 𝑢(0) is a delta, then 𝑢2(𝑡, 𝑥, 𝑦) is the joint
quenched density of (𝑋 (𝑡),𝑌 (𝑡)) with

𝑋 (𝑡) = 𝑋 (0) +𝐵1(𝑡) +
∫ 𝑡

0
𝑉 (d𝑠, 𝑋 (𝑠)),

𝑌 (𝑡) = 𝑌 (0) +𝐵2(𝑡) +
∫ 𝑡

0
𝑉 (d𝑠,𝑌 (𝑠)),

(2.23)

where 𝐵1, 𝐵2 are independent Brownian motions that are also independent from 𝑉 . Thus, 𝑢2 encodes the
correlation of the two passive scalars in the same random environment. From the Itô formula and the SPDE
(2.7) (or, in the case when 𝑢(0) is a delta, by redoing the computation in Proposition 2.1 but for a flow on R2𝑑

where the first and last 𝑑 coordinates are forced by the same instance of 𝑉 but two independent Brownian
motions 𝐵1 and 𝐵2), we see that 𝑢2 satisfies the SPDE

d𝑢2(𝑡, 𝑥, 𝑦) =
1
2

tr[(𝜈𝐼𝑑 +𝑅(0))⊗2∇2𝑢2] (𝑡, 𝑥, 𝑦)d𝑡 −𝑢(𝑡, 𝑥)∇ · [𝑢(𝑡, 𝑦)𝑉 (d𝑡, 𝑦)] −𝑢(𝑡, 𝑦)∇ · [𝑢(𝑡, 𝑥)𝑉 (d𝑡, 𝑥)]

+
𝑑∑︁

𝑖, 𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑦 𝑗
(𝑢2(𝑡, 𝑥, 𝑦)𝑅𝑖 𝑗 (𝑥− 𝑦))d𝑡,

(2.24)
again in the sense of [26, (3.3)]. If we define

𝑄𝑡 (𝑥, 𝑦) = E𝑢2(𝑡, 𝑥, 𝑦),

then 𝑄𝑡 lives in polynomially-weighted Sobolev space by [26, Lemma 3.1]. By definition, 𝑄𝑡 is the annealed
density of (𝑋 (𝑡),𝑌 (𝑡)) defined in (2.23). Now we take expectations in (2.24). Rigorously, this could be
done by using [26, Theorem 3.1] again, but this time taking conditional expectation with respect to the null
filtration. In this way, we see that 𝑄𝑡 , considered as a tempered distribution, is the unique solution to the PDE

𝜕𝑡𝑄𝑡 (𝑥, 𝑦) =
1
2

tr[∇2 [(𝜈𝐼𝑑 +𝑅(0))⊗2𝑄𝑡 ]] (𝑥, 𝑦) +
𝑑∑︁

𝑖, 𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑦 𝑗
(𝑄𝑡 (𝑥, 𝑦)𝑅𝑖 𝑗 (𝑥− 𝑦)), 𝑡 > 0; (2.25)

𝑄0(𝑥, 𝑦) = 𝑢0(𝑥)𝑢0(𝑦) (2.26)

in the “generalized” sense of [26, (2.1)] (which means that the corresponding integral equation holds when
𝑄𝑡 is integrated against a Schwartz test function).

Now we make change of variables

𝑥 ↦→ 𝑤 + 𝑧/2, 𝑦 ↦→ 𝑤− 𝑧/2, (2.27)

and put
𝑆𝑡 (𝑤, 𝑧) =𝑄𝑡 (𝑤 + 𝑧/2,𝑤− 𝑧/2).

With 𝑋 (𝑡),𝑌 (𝑡) defined in (2.23), we further define the center of mass and the relative distance by

𝑊 (𝑡) = (𝑋 (𝑡) +𝑌 (𝑡))/2, 𝑍 (𝑡) = 𝑋 (𝑡) −𝑌 (𝑡), (2.28)

so 𝑆𝑡 (𝑤, 𝑧) is the annealed density of (𝑊 (𝑡), 𝑍 (𝑡)). Define the matrix 𝐴(𝑧) by

𝐴(𝑧) =
(
𝐴11 𝐴12
𝐴21 𝐴22

)
(𝑧) = 1

2

( 1
2 𝐼𝑑

1
2 𝐼𝑑

𝐼𝑑 −𝐼𝑑

) [
𝜈𝐼2𝑑 +

(
𝑅(0) 𝑅(𝑧)T

𝑅(𝑧) 𝑅(0)

)] ( 1
2 𝐼𝑑 𝐼𝑑
1
2 𝐼𝑑 −𝐼𝑑

)
=

1
2

( 1
2 [𝜈𝐼𝑑 +𝑅(0)] +

1
4
[
𝑅(𝑧) +𝑅(𝑧)T] 1

2
[
𝑅(𝑧)T −𝑅(𝑧)

]
1
2
[
𝑅(𝑧) −𝑅(𝑧)T] 2𝜈𝐼𝑑 +2𝑅(0) −

[
𝑅(𝑧) +𝑅(𝑧)T] ) . (2.29)
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Then from (2.25) we obtain

𝜕𝑡𝑆𝑡 (𝑤, 𝑧) = L∗𝑆𝑡 (𝑤, 𝑧) = tr
[
∇2(𝐴𝑆𝑡 ) (𝑤, 𝑧)

]
; (2.30)

𝑆0(𝑤, 𝑧) = 𝑢0(𝑤 + 𝑧/2)𝑢0(𝑤− 𝑧/2), (2.31)

where we have defined the differential operator

L 𝑓 (𝑤, 𝑧) = tr[𝐴(𝑧)∇2 𝑓 (𝑤, 𝑧)], (2.32)

and L∗ its adjoint
L∗ 𝑓 (𝑤, 𝑧) = tr[∇2(𝐴 𝑓 ) (𝑤, 𝑧)],

where we use the notation, if 𝐴 = (𝑎𝑖 𝑗),

tr[∇2(𝐴 𝑓 )] =
𝑑∑︁

𝑖, 𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
[𝑎𝑖 𝑗 𝑓 ] .

We emphasize that (2.30)–(2.31) is simply a deterministic change of variables from (2.25)–(2.26). Alterna-
tively, one could start from (2.23) to write down the equation satisfied by (𝑊 (𝑡), 𝑍 (𝑡)), then derive the PDE
satisfied by its annealed density, which is (2.30).

If 𝑋 : R𝑑 → R𝑑 is a stationary Gaussian random field with correlation function E𝑋 (𝑧)𝑋 (0)T = 𝑅(𝑧), then
we have

E
(
𝑋 (𝑧)
𝑋 (0)

) (
𝑋 (𝑧)T 𝑋 (0)T) = (

𝑅(0) 𝑅(𝑧)
𝑅(−𝑧) 𝑅(0)

)
=

(
𝑅(0) 𝑅(𝑧)
𝑅(𝑧)T 𝑅(0)

)
,

so the matrix on the right is nonnegative-definite, and thus from (2.29) we conclude that 𝐴(𝑧) is positive-
definite uniformly over all 𝑧 ∈ R𝑑 . By the assumption 𝑅 ∈ C∞

c , 𝐴(𝑧) is also smooth in 𝑧.
Now by the theory of parabolic PDEs (which relies on the ellipticity of 𝐴; see e.g. [22, §1.6]), we

know that the PDE (2.30) has a fundamental solution. Thus, (2.30)–(2.31) has a classical solution given by
integration of the initial measure against the fundamental solution. Since it is clear that this classical solution
is also a tempered distribution and satisfies (2.30)–(2.31) in the “generalized” sense of Kunita [26], for which
there is a uniqueness statement, the function 𝑆𝑡 in fact is given by integration of the initial condition (2.31)
against the fundamental solution. In the sequel, we mean this solution when we talk about “the” solution to
(2.30)–(2.31). (Any other solution must have extremely fast growth as |𝑥 | → ∞.)

2.2.1 Bounds on the fundamental solution

For notational convenience, we will often write 𝜔 = (𝑤, 𝑧). Let Γ𝑡 be the fundamental solution for (2.30), so
that the solution to (2.30) satisfies

𝑆𝑡 (𝜔) =
∫

Γ𝑡−𝑠 (𝜔;𝜔′)𝑆𝑠 (𝜔′) d𝜔′

for 𝑠 < 𝑡 and 𝜔 ∈ R2𝑑 . We note that Γ𝑡 is the fundamental solution for the non-divergence form parabolic
PDE

𝜕𝑡𝑔 = L𝑔, (2.33)

with its arguments swapped, i.e.,

𝑔𝑡 (𝜔) =
∫

Γ𝑡−𝑠 (𝜔′;𝜔)𝑔𝑠 (𝜔′) d𝜔′.

In this section we will prove some bounds on Γ𝑡 using tools from the theory of parabolic PDE.

10



Recall from (2.29) that

𝐴22(𝑧) = 𝜈𝐼𝑑 +𝑅(0) −
1
2
[
𝑅(𝑧) +𝑅(𝑧)T] . (2.34)

We first need the following proposition, which will also be useful later.

Proposition 2.3. There is a unique function 𝜒 ∈ C∞(R𝑑;R) and a constant 𝐶 <∞ so that

tr[∇2(𝐴22𝜒)] ≡ 0, (2.35)

𝜒−1 ∈ 𝐿 𝑝 (R𝑑) for any 𝑝 > 1, (2.36)

𝐶−1 ≤ inf
R𝑑
𝜒 ≤ sup

R𝑑

𝜒 ≤ 𝐶, (2.37)

and
|𝜒(𝑥) −1| ≤ 𝐶 |𝑥 |−𝑑 for all 𝑥 with |𝑥 | ≥ 1. (2.38)

Remark 2.4. In the case of 𝑅(𝑧) = 𝑓 (𝑧)𝐼𝑑 for some scalar function 𝑓 ∈ C∞
𝑐 (R𝑑;R) (which is always the case

in 𝑑 = 1), we can take

𝜒(𝑧) = 𝜈 + 𝑓 (0)
𝜈 + 𝑓 (0) − 𝑓 (𝑧)

which evidently satisfies (2.35)–(2.37). In fact, it satisfies (2.36) with 𝑝 = 1 as well.

Remark 2.5. In the case when
∑𝑑

𝑖=1
𝜕𝑅𝑖 𝑗

𝜕𝑥𝑖
≡ 0 for each 𝑗 (i.e. when 𝑉 is incompressible almost surely), it is

clear from (2.34) that 𝜒 ≡ 1.

Remark 2.6. From (2.34) and the fact that 𝑅 is compactly supported, one can view 𝐴22 as a perturbation of
the constant matrix 𝜈𝐼𝑑 + 𝑅(0). Since (2.35) is the equation for the invariant measure of the process 𝑍 (𝑡)
defined in (2.28), Proposition 2.3 is essentially to quantify the fact that the invariant measure is a perturbation
of the Lebesgue measure.

Proof of Proposition 2.3. By Remark 2.4, we can assume that 𝑑 ≥ 2, so we can use the results of [20]. Since
𝐴 is uniformly positive definite, Theorem 1.1 of [20] implies that there is a unique, up to a scalar multiple
normalization, 𝜒 : R𝑑 → R≥0 satisfying (2.35) in a weak sense. Using the assumption that 𝑅 is smooth, [8,
Theorem 1.4.6] ensures that 𝜒 is smooth as well. Therefore, 𝜒 in fact satisfies (2.35) in a classical sense.

Now we need to prove (2.36) and (2.37). Our approach is based on the proof of [20, Theorem 1.5], the
difference being that we make stronger assumptions and obtain stronger results. For the purpose of this
proof only, we make a deterministic, linear change of coordinates so that we can assume that 𝜈𝐼𝑑 +𝑅(0) = 𝐼𝑑 .
This does not affect the conclusions of the proposition (up to the choice of constants). This means that
𝐴22(𝑧) = 𝐼𝑑 +𝐸 (𝑧), where 𝐸 is compactly-supported, say on 𝐵𝑀 (0) for some 𝑀 > 0. Throughout the proof,
to simplify the notation we write

∑
𝑖, 𝑗 =

∑𝑑
𝑖, 𝑗=1 and A = 𝐴22. Now define

𝑓𝑥 (𝑟) =
∫
𝐵𝑟 (𝑥)

𝜒(𝑧) d𝑧.

Then we claim that

𝑟

∫
𝐵𝑟 (𝑥)

𝜒(𝑧) trA(𝑧) d𝑧 =
∫
𝜕𝐵𝑟 (𝑥)

𝜒(𝑧)A(𝑧) (𝑧− 𝑥) · (𝑧− 𝑥) dH 𝑑−1(𝑧), (2.39)
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where dH 𝑑−1 is the surface measure. To show (2.39), we write

𝑟

∫
𝐵𝑟 (𝑥)

𝜒(𝑧) trA(𝑧) d𝑧 = 𝑟
∑︁
𝑖, 𝑗

∫
𝐵𝑟 (𝑥)

𝜒(𝑧)A𝑖 𝑗 (𝑧)𝛿𝑖 𝑗d𝑧

=
𝑟

2

∑︁
𝑖, 𝑗

∫
𝐵𝑟 (𝑥)

𝜒(𝑧)A𝑖 𝑗 (𝑧)𝜕𝑧𝑖𝑧 𝑗 ( |𝑧− 𝑥 |2 − 𝑟2)d𝑧

=
𝑟

2

∑︁
𝑖, 𝑗

∫
𝐵𝑟 (𝑥)

𝜕𝑧𝑖

(
𝜒(𝑧)A𝑖 𝑗 (𝑧)𝜕𝑧 𝑗 ( |𝑧− 𝑥 |2 − 𝑟2)

)
d𝑧

− 𝑟
2

∑︁
𝑖, 𝑗

∫
𝐵𝑟 (𝑥)

𝜕𝑧𝑖

(
𝜒(𝑧)A𝑖 𝑗 (𝑧)

)
𝜕𝑧 𝑗 ( |𝑧− 𝑥 |2 − 𝑟2)d𝑧

C 𝐼1 − 𝐼2.

For 𝐼1, we apply the divergence theorem to see that it is equal to the r.h.s. of (2.39). For 𝐼2, by the fact that
tr[∇2(A𝜒)] ≡ 0, we have

𝐼2 =
𝑟

2

∑︁
𝑖, 𝑗

∫
𝐵𝑟 (𝑥)

𝜕𝑧𝑖𝑧 𝑗

(
𝜒(𝑧)A𝑖 𝑗 (𝑧) ( |𝑧− 𝑥 |2 − 𝑟2)

)
d𝑧 = 0

where the last identity comes from another application of divergence theorem. So (2.39) is proved.
Now we have

𝑓 ′𝑥 (𝑟) =
∫
𝜕𝐵𝑟 (𝑥)

𝜒(𝑧) dH 𝑑−1(𝑧) = 1
𝑟2

∫
𝜕𝐵𝑟 (𝑥)

|𝑧− 𝑥 |2𝜒(𝑧) dH 𝑑−1(𝑧)

=
1
𝑟2

∫
𝜕𝐵𝑟 (𝑥)

𝜒(𝑧)A(𝑧) (𝑧− 𝑥) · (𝑧− 𝑥) dH 𝑑−1(𝑧) −𝐷1(𝑟, 𝑥)

=
1
𝑟

∫
𝐵𝑟 (𝑥)

𝜒(𝑧) trA(𝑧) d𝑧−𝐷1(𝑟, 𝑥) =
𝑑

𝑟

∫
𝐵𝑟 (𝑥)

𝜒(𝑧) d𝑧+𝐷2(𝑟, 𝑥) −𝐷1(𝑟, 𝑥)

=
𝑑

𝑟
𝑓𝑥 (𝑟) +𝐷2(𝑟, 𝑥) −𝐷1(𝑟, 𝑥). (2.40)

where we used the fact that A(𝑧) = 𝐼𝑑 +𝐸 (𝑧) and we defined

𝐷1(𝑟, 𝑥) =
1
𝑟2

∫
𝜕𝐵𝑟 (𝑥)

𝜒(𝑧)𝐸 (𝑧) (𝑧− 𝑥) · (𝑧− 𝑥) dH 𝑑−1(𝑧)

=
1
𝑟2

∫
𝜕𝐵𝑟 (𝑥)∩𝐵𝑀 (0)

𝜒(𝑧)𝐸 (𝑧) (𝑧− 𝑥) · (𝑧− 𝑥) dH 𝑑−1(𝑧).

and
𝐷2(𝑟, 𝑥) =

1
𝑟

∫
𝐵𝑟 (𝑥)∩𝐵𝑀 (0)

𝜒(𝑧) tr𝐸 (𝑧) d𝑧.

We note that there is a constant 𝐷, independent of 𝑥 and 𝑟 , so that

|𝐷1 |, 𝑟 |𝐷2(𝑟, 𝑥) | ≤ 𝐷, 𝑟 > 0, 𝑥 ∈ R𝑑 . (2.41)

First we consider the case 𝑥 = 0. We note that, whenever 𝑟 ≥ 𝑀, we have 𝐷1(𝑟,0) = 0 and 𝐷2(𝑟,0) =
𝑀
𝑟
𝐷2(𝑀,0). Therefore, we have for 𝑟 ≥ 𝑀 that

𝑓 ′0 (𝑟) =
𝑑

𝑟

[
𝑓𝑥 (𝑟) + 𝑑−1𝑀𝐷2(𝑀,0)

]
,
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so, solving the ODE, we obtain for 𝑟 ≥ 𝑀 that

𝑓0(𝑟) = 𝜅𝑟𝑑 − 𝑑−1𝑀𝐷2(𝑀,0) (2.42)

for some constant 𝜅. We fix the normalization of 𝜒 so that 𝜅 is the volume of the unit ball in R𝑑 . In other
words, for 𝑟 � 1, we have ∫

𝐵𝑟 (0)
𝜒(𝑧) d𝑧 = 𝑓0(𝑟) ∼

∫
𝐵𝑟 (0)

1(𝑧) d𝑧.

Now we consider general 𝑥. From (2.40) we have

𝑓 ′𝑥 (𝑟) =
𝑑

𝑟
𝑓𝑥 (𝑟) +𝐷2(𝑟, 𝑥) −𝐷1(𝑟, 𝑥). (2.43)

We note that 𝐷1(𝑟, 𝑥) = 0 and 𝐷2(𝑟, 𝑥) = |𝑥 |+𝑀
𝑟

𝐷2( |𝑥 | +𝑀,𝑥) whenever 𝑟 ≥ |𝑥 | +𝑀 . Therefore, we have

𝑓 ′𝑥 (𝑟) =
𝑑

𝑟

[
𝑓𝑥 (𝑟) + 𝑑−1( |𝑥 | +𝑀)𝐷2( |𝑥 | +𝑀,𝑥)

]
, 𝑟 ≥ |𝑥 | +𝑀,

and thus
𝑓𝑥 (𝑟) = 𝜅𝑥𝑟𝑑 − 𝑑−1( |𝑥 | +𝑀)𝐷2( |𝑥 | +𝑀,𝑥), 𝑟 ≥ |𝑥 | +𝑀, (2.44)

for some constant 𝜅𝑥 . But since 𝑓0(𝑟 − |𝑥 |) ≤ 𝑓𝑥 (𝑟) ≤ 𝑓0(𝑟 + |𝑥 |) for all 𝑟 ≥ |𝑥 |, comparing (2.42) and (2.44)
and taking 𝑟 large we see that in fact we must have 𝜅𝑥 = 𝜅 for all 𝑥, and thus

𝑓𝑥 (𝑟) = 𝜅𝑟𝑑 − 𝑑−1( |𝑥 | +𝑀)𝐷2( |𝑥 | +𝑀,𝑥), 𝑟 ≥ |𝑥 | +𝑀. (2.45)

Using (2.41) in (2.45), we have that

| 𝑓𝑥 (𝑟) − 𝜅𝑟𝑑 | ≤ 𝑑−1𝐷, 𝑟 ≥ |𝑥 | +𝑀. (2.46)

Now assume that |𝑥 | ≥ 𝑀 +1. We have from (2.43) and (2.41) that, as long as 𝑟 ≥ |𝑥 | −𝑀 , we have 𝑟 ≥ 1
and hence ���� d

d𝑟

(
𝑟−𝑑 𝑓𝑥 (𝑟)

)���� ≤ 𝐷𝑟−𝑑 [1+1/𝑟] ≤ 2𝐷𝑟−𝑑 ,

so ��( |𝑥 | +𝑀)−𝑑 𝑓𝑥 ( |𝑥 | + |𝑀 |) − (|𝑥 | −𝑀 |)−𝑑 𝑓𝑥 ( |𝑥 | −𝑀)
�� ≤ 4𝐷𝑀 ( |𝑥 | −𝑀)−𝑑 . (2.47)

Since 𝜒 is harmonic in 𝐵 |𝑥 |−𝑀 (𝑥) (recall that A(𝑧) = 𝐼𝑑 for |𝑧 | ≥ 𝑀), we have

( |𝑥 | −𝑀 |)−𝑑 𝑓𝑥 ( |𝑥 | −𝑀) = 𝜅𝜒(𝑥). (2.48)

Using (2.46) and (2.48) in (2.47), we have

𝜅 |1− 𝜒(𝑥) | ≤ 𝑑−1𝐷 ( |𝑥 | +𝑀)−𝑑 +4𝐷𝑀 ( |𝑥 | −𝑀)−𝑑 . (2.49)

Now since 𝜒 is smooth, (2.49) implies (2.36). Also, (2.49) implies (2.37) and (2.38) for large |𝑥 |. But for
𝑥 in any bounded domain, (2.37) holds by the smoothness of 𝜒 and 𝐸 and the strong maximum principle.
This completes the proof. �

Lemma 2.7. There exists a constant 𝐶 = 𝐶 (𝜈, 𝑅) <∞ so that, for all 𝑡 > 0 and all 𝜔,𝜔′ ∈ R2𝑑 , we have

Γ𝑡 (𝜔;𝜔′) ≤ 𝐶𝑡−𝑑 exp
{
−𝐶−1𝑡−1 |𝜔−𝜔′ |2

}
. (2.50)
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Proof. Recall that we write 𝜔 = (𝑤, 𝑧) and 𝜔′ = (𝑤′, 𝑧′). Let

𝜒̃(𝜔) = 𝜒̃(𝑤, 𝑧) = 𝜒(𝑧)∫
|𝜔′ |2≤1 𝜒(𝑧′) d𝑤′d𝑧′

,

with 𝜒 as in Proposition 2.3, which satisfies L∗ 𝜒̃ = 0 by (2.35), and also satisfies
∫
|𝜔 |2≤1 𝜒̃(𝜔) d𝜔 = 1. By

(2.37), there is a constant 𝐶 = 𝐶 (𝜈, 𝑅) <∞ so that for all 𝑡 > 0 and all 𝜔 ∈ R2𝑑 , we have

𝜒̃(𝜔) ≤ 𝐶

and ∫
𝐵𝑡 (𝜔)

𝜒̃(𝜔′) d𝜔′ ≥ 𝐶−1𝑡2𝑑 .

Using these bounds in the result of [20, Theorem 1.2] (noting that our 𝜒̃ is denoted there by 𝑊), we have
another constant 𝐶 = 𝐶 (𝜈, 𝑅) so that, for all 𝑡 > 0 and all 𝜔,𝜔′ ∈ R2𝑑 , the estimate (2.50) holds. Note that
[20] is written in terms of the nondivergence form PDE (2.33), but the fundamental solutions are related by
simply swapping the arguments and so the same bound holds for Γ𝑡 . The proof is complete. �

Remark 2.8. Note that [20] assumes that the dimension 𝑑 is at least 2, but the proof of the upper bound in
[20, Theorem 1.2] given there works also for 𝑑 = 1. Actually, the proof is in fact simpler as it follows just
from the Krylov–Safonov Harnack inequality [20, Theorem 3.1] and the construction of a subsolution [20,
Lemma 3.1] as in the derivation leading to [20, (3.8)], using the explicit construction of the invariant measure
given in Remark 2.4 and the fact that in 𝑑 = 1, what [20] calls a “normalized adjoint solution” is in fact just a
solution to the original nondivergence-form equation.

Lemma 2.9. There exists a constant 𝐶 = 𝐶 (𝜈, 𝑅) <∞ so that, for all 𝑡 ≥ 1 and all 𝜔,𝜔′ ∈ R2𝑑 , we have��∇2
𝜔′Γ𝑡 (𝜔;𝜔′)

�� ≤ 𝐶𝑡−𝑑 exp
{
−𝐶−1𝑡−1 |𝜔−𝜔′ |2

}
. (2.51)

Proof. By the Chapman–Kolmogorov equation we have

Γ𝑡 (𝜔;𝜔′) =
∫

Γ𝑡−1/2(𝜔;𝜔′′)Γ1/2(𝜔′′;𝜔′) d𝜔′′.

Thus we have
|∇2

𝜔′Γ𝑡 (𝜔;𝜔′) | ≤
∫

|Γ𝑡−1/2(𝜔;𝜔′′) | · |∇2
𝜔′Γ1/2(𝜔′′;𝜔′) | d𝜔′′. (2.52)

By [22, Theorem 9.6.7 on p. 261] (which again concerns the fundamental solution for the adjoint problem
(2.33), but that corresponds to our fundamental solution by swapping the arguments), using the assumed
smoothness of 𝐴, we have a constant 𝐶 <∞ so that

|∇2
𝜔′Γ1/2(𝜔′′;𝜔′) | ≤ 𝐶 exp{−𝐶−1 |𝜔′′−𝜔 |2}.

Using this bound along with Lemma 2.7 in (2.52) we obtain (2.51). �

3 The stationary solution

Let 𝑢 [𝑀 ] solve (2.7) but with constant initial condition 1 at time −𝑀 , i.e.,

d𝑢 [𝑀 ] (𝑡) = 1
2

tr[(𝜈𝐼𝑑 +𝑅(0))∇2𝑢 [𝑀 ] (𝑡)]d𝑡 −∇ · [𝑢 [𝑀 ] (𝑡)𝑉 (d𝑡)], 𝑡 > −𝑀

𝑢 [𝑀 ] (−𝑀) ≡ 1.
(3.1)

The main result of this section is the following proposition.
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Proposition 3.1. For any 𝑡 ∈ R, 𝑥 ∈ R𝑑 , the sequence (𝑢 [𝑀 ]
𝑡 (𝑥))𝑀>−𝑡 is a Cauchy sequence in 𝐿2(Ω).

In particular, for any 𝜀 > 0 (or 𝜀 = 0 if 𝑑 = 1) there exists a constant 𝐶 = 𝐶 (𝜀, 𝜈, 𝑅) < ∞ so that for any
𝑀1, 𝑀2 > −𝑡,

E
���𝑢 [𝑀1 ] (𝑡, 𝑥) −𝑢 [𝑀2 ] (𝑡, 𝑥)

���2 ≤ 𝐶 [(𝑡 +𝑀1)−(𝑑−𝜀)/2 + (𝑡 +𝑀2)−(𝑑−𝜀)/2] . (3.2)

Proof. Define
𝑆
[𝑀 ]
𝑡 (𝑧) = E𝑢 [𝑀 ] (𝑡,0)𝑢 [𝑀 ] (𝑡, 𝑧),

which is equal to E𝑢 [𝑀 ] (𝑡,𝑤− 𝑧/2)𝑢 [𝑀 ] (𝑡,𝑤 + 𝑧/2) for all 𝑤 ∈ R𝑑 , due to the fact that the noise is spatially
translation-invariant and that the initial data is constant. Thus 𝑆 [𝑀 ]

𝑡 satisfies the PDE

𝜕𝑡𝑆
[𝑀 ]
𝑡 (𝑧) = L∗

𝑆
[𝑀 ]
𝑡 (𝑧) = 1

2
tr[∇2(𝐴22𝑆

[𝑀 ]
𝑡 ) (𝑧)], (3.3)

𝑆
[𝑀 ]
−𝑀 (𝑧) = 1, (3.4)

where we have defined L 𝑓 (𝑧) = 1
2 tr[𝐴22(𝑧)∇2 𝑓 (𝑧)] . The problem (3.3)–(3.4) is obtained from (2.30)–(2.31)

by using the space-translation-invariance and the fact that the initial data is a constant. The PDE (3.3) has
fundamental solution Γ given by

Γ𝑡 (𝑧; 𝑧′) =
∫

Γ(𝑦, 𝑧; 𝑦′, 𝑧′) d𝑦,

which in fact is independent of 𝑦′. Integrating (2.50) over 𝑦, we have a constant 𝐶 = 𝐶 (𝜈, 𝑅) <∞ so that

Γ𝑡 (𝑧; 𝑧′) ≤ 𝐶𝑡−𝑑/2 exp
{
−𝐶−1𝑡−1 |𝑧− 𝑧′ |2

}
. (3.5)

Now we recall the function 𝜒 from Proposition 2.3. We note that∫
Γ𝑡 (𝑧; 𝑧′)𝜒(𝑧′) d𝑧′ = 𝜒(𝑧) (3.6)

by (2.35). Thus we have

𝑆
[𝑀 ]
𝑡 (𝑧) =

∫
Γ𝑡+𝑀 (𝑧; 𝑧′) d𝑧′ =

∫
Γ𝑡+𝑀 (𝑧; 𝑧′) (𝜒(𝑧′) − [𝜒(𝑧′) −1]) d𝑧′

= 𝜒(𝑧) −
∫

Γ𝑡+𝑀 (𝑧; 𝑧′) [𝜒(𝑧′) −1] d𝑧′. (3.7)

By Hölder’s inquality, for 1/𝑝 +1/𝑞 = 1 we have����∫ Γ𝑡+𝑀 (𝑧; 𝑧′) [𝜒(𝑧′) −1] d𝑧′
���� ≤ ‖Γ𝑡+𝑀 (𝑧; ·)‖𝐿𝑞 (R𝑑) ‖𝜒−1‖𝐿𝑝 (R𝑑) . (3.8)

By (3.5), we have

‖Γ𝑡 (𝑧; ·)‖𝐿𝑞 (R𝑑) ≤
(∫

𝐶𝑡−𝑑𝑞/2 exp
{
−𝑞𝐶−1𝑡−1 |𝑧− 𝑧′ |2

}
d𝑧′

)1/𝑞

=

(∫
𝐶𝑡−𝑑 (𝑞−1)/2 exp

{
−𝑞𝐶−1 |𝑧′ |2

}
d𝑧′

)1/𝑞
≤ 𝐶𝑡−

𝑑
2𝑝 .

(3.9)

Thus, using (2.36) and (3.9) in (3.8) and then substituting into (3.7), we have for any 𝜀 > 0 (choosing
𝑝 = 𝑑/(𝑑 − 𝜀)), there exists a constant 𝐶 so that

|𝑆 [𝑀 ]
𝑡 (𝑧) − 𝜒(𝑧) | ≤ 𝐶 (𝑡 +𝑀)−(𝑑−𝜀)/2. (3.10)
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When 𝑑 = 1, by Remark 2.4 we can take 𝑝 = 1, 𝑞 =∞, and thus 𝜀 = 0.
Now define, for 𝑀1 < 𝑀2,

𝑆
[𝑀1,𝑀2 ]
𝑡 (𝑧) = E(𝑢 [𝑀1 ] (𝑡,0) −𝑢 [𝑀2 ] (𝑡,0)) (𝑢 [𝑀1 ] (𝑡, 𝑧) −𝑢 [𝑀2 ] (𝑡, 𝑧)), 𝑡 > −𝑀1, 𝑧 ∈ R𝑑 .

Then 𝑆 [𝑀1,𝑀2 ]
𝑡 again satisfies the PDE (3.3), since 𝑢 [𝑀1 ] −𝑢 [𝑀2 ] also satisfies (2.7) by linearity. On the other

hand, we have the corresponding initial condition

𝑆
[𝑀1,𝑀2 ]
−𝑀1

(𝑧) = E(𝑢 [𝑀1 ] (−𝑀1,0) −𝑢 [𝑀2 ] (−𝑀1,0)) (𝑢 [𝑀1 ] (−𝑀1, 𝑧) −𝑢 [𝑀2 ] (−𝑀1, 𝑧))
= E(1−𝑢 [𝑀2 ] (−𝑀1,0)) (1−𝑢 [𝑀2 ] (−𝑀1, 𝑧))
= E𝑢 [𝑀2 ] (−𝑀1,0)𝑢 [𝑀2 ] (−𝑀1, 𝑧) −1

= 𝑆
[𝑀2 ]
−𝑀1

(𝑧) −1.

Here we used the fact that E𝑢 [𝑀2 ] ≡ 1. From this and the linearity of (3.3) we further conclude that

𝑆
[𝑀1,𝑀2 ]
𝑡 (𝑧) = 𝑆 [𝑀2 ]

𝑡 (𝑧) − 𝑆 [𝑀1 ]
𝑡 (𝑧), 𝑡 > −𝑀1, 𝑧 ∈ R𝑑 . (3.11)

Combining (3.10), (3.11), and the triangle inequality, we have

E
���𝑢 [𝑀1 ] (𝑡, 𝑥) −𝑢 [𝑀2 ] (𝑡, 𝑥)

���2 = 𝑆 [𝑀1,𝑀2 ]
𝑡 (0) ≤ 𝐶 [(𝑡 +𝑀1)−(𝑑−𝜀)/2 + (𝑡 +𝑀2)−(𝑑−𝜀)/2],

which is (3.2). �

Corollary 3.2. There is a random function𝑈 : R×R𝑑 → R so that, for every 𝑡 ∈ R and 𝑥 ∈ R𝑑 , we have for
any 𝜀 > 0 (or 𝜀 = 0 if 𝑑 = 1) that

lim
𝑀→∞

(𝑡 +𝑀) (𝑑−𝜀)/2E|𝑢 [𝑀 ] (𝑡, 𝑥) −𝑈 (𝑡, 𝑥) |2 = 0.

Moreover,𝑈 is stationary under time and space translations, E𝑈 ≡ 1, and it is a solution to the SPDE (2.7).
Finally, for 𝑥1, 𝑥2 ∈ R, we have

E𝑈 (𝑡, 𝑥1)𝑈 (𝑡, 𝑥2) = 𝜒(𝑥1 − 𝑥2), (3.12)

with 𝜒 as in Proposition 2.3.

Proof. We can construct𝑈 as the limit of the 𝑢 [𝑀 ] in an appropriate spatially- and temporally-weighted 𝐿2

space using Proposition 3.1 and Fubini’s theorem. The limit preserves the expectation, so E𝑈 ≡ 1. Spatial
and temporal stationarity, and the fact that solving the SPDE (2.7) (i.e. solving the integral equation (2.9))
passes to the limit, is clear. Finally, (3.12) follows directly from the convergence of 𝑢 [𝑀 ] (𝑡, 𝑥) →𝑈 (𝑡, 𝑥) in
𝐿2(Ω) and equation (3.10). �

Remark 3.3. The spacetime stationary random field𝑈 solves equation (2.7), which is related to the Fokker-
Planck equation for the process of “environment seen from the particle.” If we use 𝑈 (0,0) as the Radon-
Nikodym derivative to tilt the probability measure P, then the new measure is actually the invariant measure
for the “environment seen from the particle.” For a model of random walk in balanced random environment,
[17] proved a similar result as Theorem 1.1. The 𝑈 (𝑡, 𝑥) constructed above corresponds to the 𝜌𝜔 (𝑥, 𝑡)
defined in [17, Page 3], and the SPDE (2.7) corresponds to [17, Equation (3)]. For a Markovian velocity field
with a large spectral gap, the invariant measure was constructed in [25], in parallel to our construction of
the spacetime stationary solution to equation (2.7), although the velocity field here is white in time which
corresponds to an infinite spectral gap.

Corollary 3.4. For any sequence ((𝑡𝑘 , 𝑀𝑘))𝑘≥0 so that 𝑡𝑘 +𝑀𝑘 →∞ as 𝑘 →∞, we have for any 𝜀 > 0 (or
𝜀 = 0 if 𝑑 = 1) that

lim
𝑘→∞

(𝑡𝑘 +𝑀𝑘) (𝑑−𝜀)/2E|𝑢 [𝑀𝑘 ] (𝑡𝑘 , 𝑥) −𝑈 (𝑡𝑘 , 𝑥) |2 = 0. (3.13)

Proof. This is clear from the translation-invariance and Corollary 3.2. �
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4 Proof of Theorem 1.1

Let 𝑢(𝑡) solve (2.7) with 𝑢(0) = 𝛿0, a Dirac delta measure at zero. For any 𝑞 ≤ 𝑡, let F𝑞,𝑡 be the 𝜎-algebra
generated by 𝑉 (𝑠) −𝑉 (𝑟) for 𝑞 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡. Given 𝑞 > 0, define

𝑢̃𝑞 (𝑡) = E[𝑢(𝑡) | F𝑞,𝑡 ], 𝑡 ≥ 𝑞.

Then 𝑡 ↦→ 𝑢̃𝑞 (𝑡) satisfies (2.7) for 𝑡 > 𝑞, and we have the initial condition

𝑢̃𝑞 (𝑞) = 𝐺𝑞,

where we recall that 𝐺 solves (1.7). An important step in the proof of Theorem 1.1 is the following
proposition.

Proposition 4.1. For any 𝛽 ∈ (0,1), there exists a constant 𝐶 = 𝐶 (𝑅, 𝜈, 𝛽) <∞ so that, for all 𝑡 ≥ 𝐶,

sup
𝑥∈R𝑑

E|𝑢(𝑡, 𝑥) − 𝑢̃𝑡−𝑡𝛽 (𝑡, 𝑥) |2 ≤ 𝐶𝑡−(𝑑∧(𝑑/2+1))−𝛽𝑑/2 log 𝑡. (4.1)

Proof. Step 1: taking second moments. Define

𝐴 =

( 1
4 [𝜈𝐼𝑑 +𝑅(0)]

𝜈𝐼𝑑 +𝑅(0)

)
, 𝐴̃(𝑧) =

( 1
8
[
𝑅(𝑧) +𝑅(𝑧)T]

] 1
4
[
𝑅(𝑧) −𝑅(𝑧)T]

1
4
[
𝑅(𝑧)T −𝑅(𝑧)

]
−1

2
[
𝑅(𝑧) +𝑅(𝑧)T] ) ,

so we can decompose (2.29) as
𝐴(𝑧) = 𝐴+ 𝐴̃(𝑧). (4.2)

Let 𝐻𝑡 be the solution to the PDE

𝜕𝑡𝐻𝑡 (𝜔) = tr[𝐴∇2𝐻𝑡 (𝜔)];
𝐻0 = 𝛿0.

This means that 𝐻𝑡 (𝑤, 𝑧) = 𝐺𝑡/2(𝑤)𝐺2𝑡 (𝑧). For any 𝑞 > 0, if we define

𝑆𝑡 (𝑦, 𝑧) = E𝑢(𝑡, 𝑦 + 𝑧/2)𝑢(𝑡, 𝑦− 𝑧/2), 𝑆𝑞,𝑡 (𝑦, 𝑧) = E𝑢̃𝑞 (𝑡, 𝑦 + 𝑧/2)𝑢̃𝑞 (𝑡, 𝑦− 𝑧/2),

then 𝑆𝑡 satisfies (2.30) with initial condition

𝑆0(𝑦, 𝑧) = 𝛿0(𝑦)𝛿0(𝑧) (4.3)

and 𝑡 ↦→ 𝑆𝑞,𝑡 satisfies (2.30) for 𝑡 > 𝑞 with initial condition

𝑆𝑞,𝑞 = 𝐻𝑞 . (4.4)

In particular, we have
𝑆𝑡 (𝜔) = Γ𝑡 (𝜔;0). (4.5)

Then define

𝑆𝑞,𝑡 (𝑦, 𝑧) = E(𝑢(𝑡, 𝑦 + 𝑧/2) − 𝑢̃𝑞 (𝑡, 𝑦 + 𝑧/2)) (𝑢(𝑡, 𝑦− 𝑧/2) − 𝑢̃𝑞 (𝑡, 𝑦− 𝑧/2)).

Again 𝑡 ↦→ 𝑆𝑞,𝑡 satisfies (2.30) in 𝑡 > 𝑞. The initial condition is

𝑆𝑞,𝑞 (𝑦, 𝑧) = E
(
𝑢(𝑞, 𝑦 + 𝑧/2) − 𝑢̃𝑞 (𝑞, 𝑦 + 𝑧/2)

) (
𝑢(𝑞, 𝑦− 𝑧/2) − 𝑢̃𝑞 (𝑞, 𝑦− 𝑧/2)

)
= E

(
𝑢(𝑞, 𝑦 + 𝑧/2) −𝐺𝑞 (𝑦 + 𝑧/2)

) (
𝑢(𝑞, 𝑦− 𝑧/2) −𝐺𝑞 (𝑦− 𝑧/2)

)
= E𝑢(𝑞, 𝑦 + 𝑧/2)𝑢(𝑞, 𝑦− 𝑧/2) −𝐺𝑞 (𝑦 + 𝑧/2)𝐺𝑞 (𝑦− 𝑧/2)
= 𝑆𝑞 (𝑦, 𝑧) − 𝑆𝑞,𝑞 (𝑦, 𝑧), (4.6)
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where we used the fact that E𝑢(𝑡) = 𝐺𝑡 . Therefore, by the linearity of (2.30) we in fact have

𝑆𝑞,𝑡 (𝑦, 𝑧) = 𝑆𝑡 (𝑦, 𝑧) − 𝑆𝑞,𝑡 (𝑦, 𝑧)

for all 𝑡 > 𝑞.
Step 2: proving the bound. Similar to the proof of Proposition 3.1, our goal is to prove an upper bound on

𝑆𝑞,𝑡 (𝑦,0). Since 𝑡 ↦→ 𝑆𝑞,𝑡 satisfies (2.30) we have the identity

𝑆𝑞,𝑡 (𝜔) =
∫

Γ𝑡−𝑞 (𝜔;𝜔′)𝑆𝑞,𝑞 (𝜔′) d𝜔′. (4.7)

By the Duhamel principle applied to the PDE (2.30), using the decomposition (4.2), we have

𝑆𝑞 (𝜔′) = 𝐻𝑞 (𝜔′) +
∫ 𝑞

0

∫
𝐻𝑞−𝑠 (𝜔′−𝜔′′) tr

[
∇2 [ 𝐴̃𝑆𝑠] (𝜔′′)

]
d𝜔′′d𝑠.

Subtracting (4.4) and recalling (4.6), we obtain

𝑆𝑞,𝑞 (𝜔′) =
∫ 𝑞

0

∫
𝐻𝑞−𝑠 (𝜔′−𝜔′′) tr

[
∇2 [ 𝐴̃𝑆𝑠] (𝜔′′)

]
d𝜔′′d𝑠.

Now plugging this into (4.7) and using Fubini’s theorem, we obtain

𝑆𝑞,𝑡 (𝜔) =
∫ 𝑞

0

∫
𝐾𝑞−𝑠,𝑡−𝑞 (𝜔;𝜔′) tr

[
∇2 [ 𝐴̃𝑆𝑠] (𝜔′)

]
d𝜔′d𝑠, (4.8)

where we have defined
𝐾𝑟1,𝑟2 (𝜔;𝜔′) =

∫
Γ𝑟2 (𝜔;𝜔′′)𝐻𝑟1 (𝜔′′−𝜔′) d𝜔′′. (4.9)

Integrating by parts in (4.8), we have

𝑆𝑞,𝑡 (𝜔) =
∫ 𝑞

0

∫
𝑆𝑠 (𝜔′) tr

[
𝐴̃(𝜔′)∇2

𝜔′𝐾𝑞−𝑠,𝑡−𝑞 (𝜔;𝜔′)
]

d𝜔′d𝑠. (4.10)

Using Lemma 4.2 below, and also another application of Lemma 2.7 (and (4.5)) to bound 𝑆𝑠 (𝜔′), in (4.10),
we obtain, for 𝑡 ≥ 𝑞 +1,���𝑆𝑞,𝑡 (𝜔)��� ≤ 𝐶∫ 𝑞

0
[(𝑞− 𝑠)−1 ∧1] (𝑡 − 𝑠)−𝑑𝑠−𝑑

∫
| 𝐴̃(𝑧′) | exp

{
− |𝜔′−𝜔|2
𝐶 (𝑡 − 𝑠) − |𝜔′ |2

𝐶𝑠

}
d𝜔′d𝑠

= 𝐶

(∫ 1

0
+
∫ 𝑞

1

)
[(𝑞− 𝑠)−1 ∧1] (𝑡 − 𝑠)−𝑑𝑠−𝑑

∫
| 𝐴̃(𝑧′) | exp

{
− |𝜔′−𝜔|2
𝐶 (𝑡 − 𝑠) − |𝜔′ |2

𝐶𝑠

}
d𝜔′d𝑠

B 𝐼1 + 𝐼2.

(4.11)

To control the above integral, we consider the region of 𝑠 ∈ (0,1) and 𝑠 ∈ (1, 𝑞) separately. For the integration
in 𝑠 ∈ (0,1), by the fact that 𝐴̃ is uniformly bounded, we integrate in 𝜔′ to derive

𝐼1 ≤ 𝐶𝑡−𝑑
∫ 1

0
[(𝑞− 𝑠)−1 ∧1]d𝑠 ≤ 𝐶𝑡−𝑑 (𝑞−1)−1. (4.12)

For the integration in 𝑠 ∈ (1, 𝑞), to control the inner integral, we write∫
| 𝐴̃(𝑧′) | exp

{
− |𝜔′−𝜔 |2
𝐶 (𝑡 − 𝑠) − |𝜔′ |2

𝐶𝑠

}
d𝜔′

=

(∫
| 𝐴̃(𝑧′) | exp

{
− |𝑧′− 𝑧 |2
𝐶 (𝑡 − 𝑠) −

|𝑧′ |2
𝐶𝑠

}
d𝑧′

) (∫
exp

{
− |𝑦′− 𝑦 |2
𝐶 (𝑡 − 𝑠) −

|𝑦′ |2
𝐶𝑠

}
d𝑦′

)
≤ 𝐶‖ 𝐴̃‖𝐿1 (R𝑑 ;R2𝑑×2𝑑)

(
𝑠(𝑡 − 𝑠)
𝑡

)𝑑/2
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for a new constant 𝐶, still depending only on 𝑅 and 𝜈. Using this bound in (4.11), we obtain

𝐼2 ≤ 𝐶𝑡−𝑑/2
∫ 𝑞

1
[(𝑞− 𝑠)−1 ∧1] (𝑡 − 𝑠)−𝑑/2𝑠−𝑑/2 d𝑠

≤ 𝐶𝑡−𝑑/2(𝑡 − 𝑞)−𝑑/2
∫ 𝑞

1
[(𝑞− 𝑠)−1 ∧1]𝑠−𝑑/2 d𝑠. (4.13)

Now we estimate the last integral in two parts. First we have∫ 𝑞

𝑞/2
[(𝑞− 𝑠)−1 ∧1]𝑠−𝑑/2 d𝑠 ≤ (𝑞/2)−𝑑/2

∫ 𝑞

𝑞/2
[(𝑞− 𝑠)−1 ∧1] d𝑠 = (𝑞/2)−𝑑/2 [1+ log(𝑞/2)] .

Second, we have∫ 𝑞/2

1
(𝑞− 𝑠)−1𝑠−𝑑/2 d𝑠 ≤ 2𝑞−1

∫ 𝑞/2

1
𝑠−𝑑/2 d𝑠 ≤ 𝐶𝑞−1

(
√
𝑞1𝑑=1 + log𝑞1𝑑=2 +1𝑑≥3

)
≤ 𝐶𝑞−( (𝑑/2)∧1) log𝑞.

Using the last two inequalities in (4.13) and taking 𝑞 = 𝑡 − 𝑡𝛽 we obtain, for a 𝐶 now depending also on 𝛽,

𝐼2 ≤ 𝐶𝑡−(𝑑∧(𝑑/2+1))−𝛽𝑑/2 log 𝑡.

Combining this with (4.12), we obtain (4.1). �

Now we must prove the lemma we used in the previous proof.

Lemma 4.2. Recall the definition (4.9) of 𝐾𝑟1,𝑟2 . There is a constant 𝐶 = 𝐶 (𝜈, 𝑅) <∞ so that, for all 𝑟1 > 0
and 𝑟2 ≥ 1, we have ��∇2

𝜔′𝐾𝑟1,𝑟2 (𝜔;𝜔′)
�� ≤ 𝐶 (𝑟−1

1 ∧1) (𝑟1 + 𝑟2)−𝑑 exp
{
− |𝜔′′−𝜔|2
𝐶 (𝑟1 + 𝑟2)

}
. (4.14)

Proof. Differentiating (4.9) and using Lemma 2.7, we have��∇2
𝜔′𝐾𝑟1,𝑟2 (𝜔;𝜔′)

�� ≤ ∫
Γ𝑟2 (𝜔;𝜔′′)

��∇2
𝜔′𝐻𝑟1 (𝜔′′−𝜔′)

�� d𝜔′′

≤ 𝐶𝑟−𝑑2 𝑟−𝑑−1
1

∫
exp

{
−𝐶−1𝑟−1

2 |𝜔−𝜔′′ |2 −𝐶−1𝑟−1
1 |𝜔′′−𝜔′ |2

}
d𝜔′′

≤ 𝐶𝑟−1
1 (𝑟1 + 𝑟2)−𝑑 exp

{
−𝐶−1(𝑟1 + 𝑟2)−1 |𝜔−𝜔′ |2

}
, (4.15)

where we allowed the constant 𝐶 to change from line to line. Alternatively, we can use integration by parts
and Lemma 2.9 to derive that��∇2

𝜔′𝐾𝑟1,𝑟2 (𝜔;𝜔′)
�� ≤ ∫ ��∇2

𝜔′′Γ𝑟2 (𝜔;𝜔′′)
��𝐻𝑟1 (𝜔′′−𝜔′) d𝜔′′

≤ 𝐶𝑟−𝑑2 𝑟−𝑑1

∫
exp

{
−𝐶−1𝑟−1

2 |𝜔−𝜔′′ |2 −𝐶−1𝑟−1
1 |𝜔′′−𝜔′ |2

}
d𝜔′′

≤ 𝐶 (𝑟1 + 𝑟2)−𝑑 exp
{
−𝐶−1(𝑟1 + 𝑟2)−1 |𝜔−𝜔′ |2

}
, (4.16)

where again 𝐶 changed from line to line. Together, (4.15) and (4.16) imply (4.14). �
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Now we want to show that, when 1 � 𝑡 − 𝑞 � 𝑡, the field 𝑢̃𝑞 (𝑡) is well-approximated by the stationary
solution𝑈 (𝑡) multiplied by 𝐺𝑡 . Let 𝑢

𝑞
(𝑡) solve (2.7) in 𝑡 > 𝑞, with initial condition

𝑢
𝑞
(𝑞) ≡ 1,

so by Corollary 3.4 we have

lim
𝑡−𝑞→∞

sup
𝑥∈R𝑑

E|𝑢
𝑞,𝑡

(𝑥) −𝑈𝑡 (𝑥) |2 = 0. (4.17)

Proposition 4.3. There exists a constant 𝐶 so that, for any 𝑥 ∈ R and 𝑡 > 𝑞, we have

E|𝑢̃𝑞 (𝑡, 𝑥) −𝐺𝑞 (𝑥)𝑢𝑞 (𝑡, 𝑥) |
2 ≤ 𝐶𝑞−𝑑−1(𝑡 − 𝑞), (4.18)

and in particular, for any 𝛽 ∈ (0,1), there exists a constant 𝐶 = 𝐶 (𝑅, 𝜈, 𝛽) such that for all 𝑡 > 1

sup
𝑥∈R𝑑

E
��𝑢̃𝑡−𝑡𝛽 (𝑡, 𝑥) −𝐺𝑡−𝑡𝛽 (𝑥)𝑢𝑡−𝑡𝛽 (𝑡, 𝑥)

��2 ≤ 𝐶𝑡−𝑑−1+𝛽 . (4.19)

Proof. Fix 𝑞,𝑥. First recall that 𝑢̃𝑞, 𝑢𝑞 both solve (2.7) in 𝑡 > 𝑞. Let

𝑆
𝑞,𝑡 ,𝑥

(𝑦, 𝑧) = E(𝑢̃𝑞 (𝑡, 𝑦 + 𝑧/2) −𝐺𝑞 (𝑥)𝑢𝑞 (𝑡, 𝑦 + 𝑧/2)) (𝑢̃𝑞 (𝑡, 𝑦− 𝑧/2) −𝐺𝑞 (𝑥)𝑢𝑞 (𝑡, 𝑦− 𝑧/2)).

Then as a function of (𝑡, 𝑦, 𝑧), we have 𝑆
𝑞,𝑡 ,𝑥

solves (2.30) with initial condition

𝑆
𝑞,𝑞,𝑥

(𝑦, 𝑧) =
(
𝐺𝑞 (𝑦 + 𝑧/2) −𝐺𝑞 (𝑥)

) (
𝐺𝑞 (𝑦− 𝑧/2) −𝐺𝑞 (𝑥)

)
.

Therefore, we have

𝑆
𝑞,𝑡 ,𝑥

(𝑦, 𝑧) =
∫ (

𝐺𝑞 (𝑦′+ 𝑧′/2) −𝐺𝑞 (𝑥)
) (
𝐺𝑞 (𝑦′− 𝑧′/2) −𝐺𝑞 (𝑥)

)
Γ𝑡−𝑞 (𝑦, 𝑧; 𝑦′, 𝑧′) d𝑦′d𝑧′,

and so

𝑆
𝑞,𝑡 ,𝑥

(𝑥,0) =
∫ ��𝐺𝑞 (𝑦′+ 𝑧′/2) −𝐺𝑞 (𝑥)

�� ��𝐺𝑞 (𝑦′− 𝑧′/2) −𝐺𝑞 (𝑥)
��Γ𝑡−𝑞 (𝑥,0; 𝑦′, 𝑧′) d𝑦′d𝑧′

≤ 𝐶 (𝑡 − 𝑞)−𝑑
∫ ��𝐺𝑞 (𝑦′+ 𝑧′/2) −𝐺𝑞 (𝑥)

�� ��𝐺𝑞 (𝑦′− 𝑧′/2) −𝐺𝑞 (𝑥)
��e− |𝑦′−𝑥 |2+|𝑧′ |2

𝐶 (𝑡−𝑞) d𝑦′d𝑧′

≤ 𝐶 (𝑡 − 𝑞)−𝑑 ‖∇𝐺𝑞 ‖2
∞

∫
|𝑦′+ 𝑧′/2| · |𝑦′− 𝑧′/2|e−

|𝑦′ |2+|𝑧′ |2
𝐶 (𝑡−𝑞) d𝑦′d𝑧′

≤ 𝐶𝑞−𝑑−1(𝑡 − 𝑞)
∫

|𝑦′+ 𝑧′/2| · |𝑦′− 𝑧′/2|e−
|𝑦′ |2+|𝑧′ |2

𝐶 d𝑦′d𝑧′,

where in the first inequality we used Lemma 2.7. This completes the proof of (4.18), and (4.19) follows
immediately. �

Now we can prove our main theorem.

Proof of Theorem 1.1. Fix 𝛽 ∈ (0,1) and let 𝑞 = 𝑡 − 𝑡𝛽 . We use the triangle inequality to write

E|𝑢(𝑡, 𝑥) −𝐺𝑡 (𝑥)𝑈 (𝑡, 𝑥) |2 ≤ 𝐶E|𝑢(𝑡, 𝑥) − 𝑢̃𝑞 (𝑡, 𝑥) |2 +𝐶E|𝑢̃𝑞 (𝑡, 𝑥) −𝐺𝑞 (𝑥)𝑢𝑞 (𝑡, 𝑥) |
2

+𝐶 |𝐺𝑞 (𝑥) −𝐺𝑡 (𝑥) |2E𝑢
𝑞
(𝑡, 𝑥)2 +𝐶𝐺𝑡 (𝑥)2E|𝑢

𝑞
(𝑡, 𝑥) −𝑈 (𝑡, 𝑥) |2.

(4.20)
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We note that

sup
𝑥∈R𝑑

|𝐺𝑞 (𝑥) −𝐺𝑡 (𝑥) | ≤ (𝑡 − 𝑞) sup
𝑥∈R𝑑 ,𝑠∈[𝑞,𝑡 ]

|𝜕𝑠𝐺𝑠 (𝑥) | ≤ 𝐶𝑡𝛽−𝑑/2−1. (4.21)

Applying (4.1), (4.19), (4.21) (along with the fact that E𝑢
𝑞
(𝑡, 𝑥)2 is uniformly bounded by Corollary 3.4),

and (3.13), respectively, to the four terms on the right side of (4.20), we obtain for every 𝜀 > 0 (or 𝜀 = 0 if
𝑑 = 1), there is a constant 𝐶 = 𝐶 (𝑅, 𝜈, 𝛽, 𝜀) <∞ so that

E|𝑢(𝑡, 𝑥) −𝐺𝑡 (𝑥)𝑈 (𝑡, 𝑥) |2 ≤ 𝐶
(
𝑡−(𝑑∧(𝑑/2+1))−𝛽𝑑/2 log 𝑡 + 𝑡−𝑑−1+𝛽 + 𝑡2𝛽−𝑑−2 + 𝑡−𝑑−𝛽𝑑/2+𝛽𝜀

)
,

Then we take
𝛽 = 2

31𝑑=1 + 𝑑
𝑑+21𝑑≥2

to further derive that

E|𝑢(𝑡, 𝑥) −𝐺𝑡 (𝑥)𝑈 (𝑡, 𝑥) |2 ≤ 𝐶𝑡−𝑑
(
𝑡−1/3

1𝑑=1 + 𝑡−2/(2+𝑑)+𝜀𝑑/(2+𝑑)
1𝑑≥2

)
log 𝑡.

Changing 𝜀 yields (1.8), and (1.9) is then a consequence of the formula for the Gaussian density.
If
∑𝑑

𝑖=1
𝜕𝑅𝑖 𝑗

𝜕𝑥𝑖
≡ 0 for each 𝑗 , then by Remark 2.5, (3.12) and the fact that E𝑈 ≡ 1, we have𝑈 ≡ 1 almost

surely. On the other hand, if 𝑉 is not incompressible, then it is clear that the constant 1 does not solve (2.7),
and so𝑈 cannot be a.s. identically equal to 1 by Corollary 3.2. Finally, (1.10) follows from (3.12) and (2.38).
This completes the proof of the theorem. �
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