A quenched local limit theorem for stochastic flows

Alexander Dunlap® Yu Gu'

November 27, 2021

Abstract

We consider a particle undergoing Brownian motion in Euclidean space of any dimension, forced by a
Gaussian random velocity field that is white in time and smooth in space. We show that conditional on
the velocity field, the quenched density of the particle after a long time can be approximated pointwise by
the product of a deterministic Gaussian density and a spacetime-stationary random field U. If the velocity
field is additionally assumed to be incompressible, then U = 1 almost surely and we obtain a local central
limit theorem.

1 Introduction

Let (Q,H,P) be a probability space. Fix a spatial dimension d € N. Let V = (V1,...,V;) be a Wiener process
on L?(R%;R¥) that is spatially-smooth, with covariance function formally given by

EV;(dt,x)V;(ds,y) =6(t=s)R;j(x —y)dsdt

for some covariance function R € C°(R?;R?*9). (That is, R is smooth with compact support.) Let {77} be
the usual filtration associated to V (generated by {V(s) : s <t})andlet ¥ =V, ;. Let B=(By,...,Bg)
be a Brownian motion taking values in R? (independent of ) with quadratic variation

<Bi,Bj>(l‘)=V5ijl‘ (1.1)

for some v > 0. Let {G, } be the usual filtration associated to B, and let G = \/, ., G;. Let H, = F, vV G,. We
assume that the o-algebra H is givenby H =F V G.
We are interested in the stochastic differential equation

dX(¢) =V(dt,X(¢)) +dB(1); (1.2)
X(0)=0, (1.3)

which models a passive scalar in a environment that decorrelates rapidly in time. We will interpret (1.2) in
the manner of [28, Section 3.4]; that is, as equivalent to the /76 integral equation

X(t)=B(t)+/0tV(ds,X(s)),

where {X (1)} is assumed to be a continuous R¢-valued process adapted to {7, }.

*Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 USA.
alexander.dunlap@cims.nyu.edu.
TDepartment of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213 USA. yug2@andrew.cmu.edu.


mailto:alexander.dunlap@cims.nyu.edu
mailto:yug2@andrew.cmu.edu

This problem has a unique solution by [28, Theorem 3.4.1] (using our assumption on the smoothness of
R). The process {X ()} is a continuous martingale with quadratic variation process given by

(Xi, Xj) () = (voij+R;;(0))t, (1.4)

by [28, Theorem 3.2.4]. Thus, the annealed law of {X(¢)} is actually a d-dimensional Brownian motion with
covariance matrix (vIz+ R(0))t at time z. Here we used I to denote the d X d identity matrix. We will think
of the forcing V as a random velocity field and the forcing B as a molecular diffusion, so v is the “molecular
diffusivity”. Our interest will be in the quenched (with respect to the molecular diffusion) law of X given by

pe =Law[X (1) | F]. (1.5)

We will show in Section 2.1 that, for # > 0, i, has a density with respect to Lebesgue measure on R¢ that
exists as a random field (u(t,x)) £>0.xeRd (as a consequence of the molecular diffusion):

; (dx) = u(z,x)dx, t>0,xeR?, (1.6)

Thus, u(t,-) is a density function that feels the randomness of the velocity field. Let G, be the solution to the
PDE

0,G1(x) = 3 el (Vg + RO) VG, (] .

Gy = 0p.

Thus G; is a Gaussian density centered at the origin with covariance matrix (vl + R(0))?, and so G; is the
density of annealed law of X (). The goal of this paper is to study the relationship between the quenched law
u(t,-) and the annealed law G,(-), and to understand how the randomness from the environment affects the
local behavior of the passive scalar. Here is the main theorem:

Theorem 1.1. There is a spacetime-stationary random field U, positive almost surely with EU = 1, and, for
every € >0, a constant C = C(R,v,&) < oo so that

sup Elu(t,x) -G, (x)U(t,x)|* < Ct‘d(t‘1/3 logt14-; +z—2/<2+d>+811d22) (1.8)
x€R4
forallt > C. In particular, for any c < %lldzl + ﬁ]ldzz, we have

2

. u(t,x)
tll)nolo sup {E G -U(t,x)

. (vIg+R0)'x-x < ctlogt} =0. (1.9

We in fact have U = 1 almost surely if and only if Zf-l:] %Lx‘;f = 0 for each j (which holds if and only if V is
incompressible almost surely). In general, we have
[E(U(t,x1) = D(U(t,x2) = DI < C(1+ |y =x2) 7. (1.10)
Define X, (1) =X (é), so the quenched density of X (¢) is

ug(t,x) = s_du(ﬁ, ).

By (1.8), we have for any 7 > 0,x € R?, that

Elus(t,3) Gy (U (L5, ) - 0, as 6 — 0,
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In other words, the quenched density of the diffusively rescaled process is approximately the Gaussian density
multiplying a stationary random field, which can be viewed as the “corrector” in stochastic homogenization.
This corrector is the constant 1 in the incompressible case, so we obtain a local central limit theorem.

Alternatively, Theorem 1.1 can be seen as a continuous-space, continuous-time version of the local limit
theorems for random walk in a random environment proved in [12, 17]. (See also the survey [13, §1.4.3]
regarding the result of [12].) Since the result concerns the long-time behavior of the system, one does not
expect a substantial difference between the discrete and continuous settings. However, the local temporal
roughness of the driving force introduces substantial complications in establishing the required estimates, as
we discuss in Section 1.1 below. Moreover, Theorem 1.1 is meaningful in the entire diffusive bulk region (i.e.
|x| < t'/2), while [12, Theorem 2] only holds for |x| < #!/3. Similar results were shown in [34, 14] for certain
exactly-solvable models, with the one-point distribution of the correction field U characterize explicitly. It is
also worth mentioning that for reversible random walks/diffusions in random environments, e.g., the random
conductance model, one can actually prove the local central limit theorem. Using our notation this says that
us(t,x) = G;(x) for & < 1, similar to our result when V is incompressible. We refer the reader to [1, 2] and
the references therein.

The stationary random field U is a spacetime stationary solution to the Fokker-Planck equation (2.7)
with EU = 1, which is closely related to the invariant measure of the process of “environment seen from the
particle,” a crucial object in the study of random walk/diffusion in random environment. This connection was
also made in [17] for random walks in a balanced random environment. We refer to Remark 3.3 for more
discussion.

Our interest in the quenched density u(z,x) is motivated in part by the recent work on the moderate- and
large-deviations regime of diffusion in a time-dependent random environment, which decorrelates rapidly;
see the discussions [4, 5, 6, 30] in both the physics and mathematics literature. In the diffusive regime x ~ Vi,
which is what we consider here, it is well-known that the diffusion scales to a Brownian motion, see e.g. the
discussion on similar models in [9, 33, 21] and [24] for a monograph on the subject. (In our special setting of
white-in-time noise, the annealed law of X (¢) is actually exactly the Brownian motion.) To study the error,
one can consider quantities of the form

BUAX(ED 1 71- [ @G wdr= [ Wl -Giwlar

where f: R? — R is an arbitrary smooth function. The Edwards-Wilkinson type fluctuation is proved in
[3, 10, 35], i.e., after a proper rescaling, {u . (#,x) = G (x)};50.xcra converges in law and weakly in space to a
Gaussian field that solves a stochastic heat equation with an additive Gaussian noise. Compared to our result,
the difference is that we consider the fluctuation u . (¢,x) — G, (x) for any fixed (¢,x), rather than performing
a spatial averaging under which the local fluctuations average out so that one needs to consider the next order
error to observe random fluctuations. One can also look at super-diffusive regimes. In the moderate-deviations
regime of x ~ 314 the KPZ equation arises [5] (see a similar result in a weak noise regime [16]), and the
large-deviations regime x ~ t is associated with the KPZ fixed point and the Tracy-Widom type distribution
was derived in [4].

In [30], the relation between the diffusion in time-dependent random environments and the KPZ univer-
sality class was explored. For logu(t,x), the Edwards—Wilkinson universality was actually conjectured to
prevail in the diffusive regime, and it was also pointed out that the expected normal statistics seems to be
different from the one studied in [3]. Our result of u(¢,x) ~ G;(x)U(¢,x) in t > 1 shows that the random
fluctuation is governed by the stationary random field U, but we do not observe log-normal fluctuations of
U(t,x). Instead, as it will become clear later in the proof, U(t,x) is a deterministic functional of the local
random environment near (,x), so there is actually no averaging taking place. It is very similar to the case of
a directed polymer in a random environment in dimension d > 3 at high temperature, where it is well-known



that the polymer path is diffusive and the partition function is approximately a deterministic functional of the
random environment near the endpoint.

We approach the problem from a more analytic perspective. We will show in Proposition 2.1 below that u
satisfies the stochastic PDE

du(r) = %tr[(vld+R(O))V2u(t)]dt—V- [w(H)V(d)],  t>0; (1.11)
u(0) = 8, (1.12)

which can be seen as a Fokker—Planck equation with random coefficients. Here and throughout the paper,
we use V2 to mean the Hessian operator, not the Laplacian. Then the field U in Theorem 1.1 is in fact a
spacetime-stationary solution to (1.11), starting from constant initial data u(0,x) = 1. Thus, Theorem 1.1 is
quite similar to the “homogenization-type” theorems of [19, 15] proved for the stochastic heat equation with
weak noise in d > 3, in that it shows how to approximate the solution to a stochastic PDE with a compactly-
supported initial condition by a deterministic evolution multiplied by a random spacetime-stationary solution.
(A similar result was proved for directed polymers in d > 3 in [11].)

In the case when the forcing is assumed to be incompressible (i.e. V-V = 0 almost surely), the SPDE
(1.11) has been extensively studied in the turbulence community as the “rapid decorrelation in time model”
or “Kraichnan model.” See [32] and the references therein. incompressibility and indeed an important case is
when d = 1, in which nontrivial incompressibility is impossible.

1.1 Proof strategy

As pointed out above, our result is quite similar in form to the results on the stochastic heat equation in d > 3.
If we ignore convergence issues and formally write the mild solution formula to (1.11)

u(t) = Gy #u(0) - /0 / Gy # V- [u(s)V(ds)]
(1.13)

:G,*M(O)—/OtVGt—s*[M(S)V(ds)]’

then we immediately see the similarity between (1.11) and the stochastic heat equation, with the only
difference coming from the use of VG,_; instead of G,_s in the stochastic integral term. This extra gradient is
the reason our result holds in d > 1, rather than the requirement of d > 3 for the stochastic heat equation. To
see it more clearly, one can look at the first order “chaos”, which is the first random term obtained by iterating
the mild formulation: for SHE, we obtain fot G,_s *V(ds), which converges to a stationary Gaussian field in

large time, only in d > 3; for the Fokker-Planck equation, the convergence of fot VG;_s % V(ds) to a stationary
Gaussian field holds in any dimension. The extra gradient also means that making (1.13) rigorous seems
quite nontrivial, due to the worse singularity of VG, (x) near (¢,x) = (0,0). (Some progress in developing
such a theory was made in [23] for a special class of V.) Thus, we do not use the formulation (1.13) in the
present work, and instead use another approach to make sense of the SPDE (1.11).

While it is not difficult to formally derive (1.11) as the Fokker—Planck equation associated with the passive
scalar evolution (1.2), solution theories for the stochastic PDE (1.11) are rather intricate; see the discussion
in [23, pp. 2-3]. We will use a solution theory due to Kunita [26] (similar to the approach described in [28,
§6.2]) that uses stochastic flows to make sense of the stochastic PDE. We note that we require a somewhat
stronger solution theory than simply deriving the problem (1.11)—(1.12) solved by the density, because, as
indicated above, we will also need to construct spacetime-stationary solutions to (1.11), with the initial data
u(0,x) = 1. We recall the results we will need in Section 2.1. This approach requires R to be (qualitatively)
several times differentiable, which we have assumed in our work. Alleviating this restriction was part of the
goal of [23], but results in this direction are not yet strong enough for our purposes.
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To justify the approximation
u(t,x) ~ G, (x)U(t,x), > 1, (1.14)

and thus prove Theorem 1.1, our strategy is similar to that of [18] for the 2D nonlinear stochastic heat
equation. Namely, we first approximate (1.11) by the equation for which the noise has been turned off in
the time interval [0, ¢g], for some properly chosen g so that 1 < t—¢g < t. Then we show that the latter
solution can be approximated locally in space by a stationary solution. Basically, the evolution of (1.11) in
the time interval [0, ¢], which is almost of length ¢, generates the factor G;(x) in (1.14), while the evolution
in the remaining interval [g, ], which is macroscopically small but microscopically large, “feels” the random
environment and produces the factor U(z,x) in (1.14). A difference is that [18] works with a stochastic
heat equation in d = 2, where spacetime-stationary solutions do not exist. Thus, as we have stated before,
phenomenologically the situation is more similar to that considered in [19, 15], although in those works a
different approach based on the Feynman—Kac formula was used in the proofs.

Proving the mentioned bounds in [18] was done using the mild solution formula, the analogue of (1.13).
A discrete chaos expansion was also the key technique used for the proof in [12]. As we have stated, we do
not (at present) have a mild solution theory for the SPDE (1.11). Thus we work in a more analytic way, using
the PDE satisfied by the two-point correlation function of the solution to (1.11) in Section 2.2. This PDE
has been used before in the case of the Kraichnan model (i.e. when the forcing is assumed incompressible);
see for example [31]. Then we use tools from the theory of parabolic PDE (in particular [22, 20]) to prove
the required bounds on the correlations. We establish these bounds in Section 2.2.1. Then we apply them in
Section 3 to prove the existence of the spacetime-stationary solution U and in Section 4 to complete the proof
of Theorem 1.1.

1.2 Acknowledgments

A.D. was partially supported by the NSF Mathematical Sciences Postdoctoral Fellowship program via grant
no. DMS-2002118. Y.G. was partially supported by the NSF through DMS-1907928 and the Center for
Nonlinear Analysis of CMU. We thank Guillaume Barraquand for helpful comments on a draft of the
manuscript, and Margaret Smith at NYU Libraries for help in obtaining copies of references during the
COVID-19 pandemic.

2 Setup and preliminaries

Throughout the paper, the letter C will denote a positive constant depending on R and v, and only on other
parameters if specified explicitly. We will allow C to change from line to line if necessary.

We wish to derive a stochastic PDE satisfied by y,, but before we do this we will generalize (1.2)—(1.3)
to the setting of stochastic flows (see [28, Chapter 4]). Let ¢ ;(x) (s, € R, x € R?) be the family of random
diffeomorphisms solving the family of SDEs

dr s, (x) = V(d1, @51 (x)) +dB(2); 2.1)
@s,s(x) =x, 2.2

by which we mean solving the stochastic 1t6 integral equations
t
@s.1(x) :x+/ [V(dr,¢s,r(x))+dB(r)], t>s. (2.3)
S

This means that the solution to (1.2)—(1.3) will be given by X (#) = ¢0,(0). Such a solution exists and is
unique by [28, Theorem 4.5.1].



2.1 The stochastic PDE

Now for a Borel measure 1o on R?, which we assume to live in some weighted Sobolev space (of negative
regularity) with at most polynomial growth at infinity, let /i, be the pushforward measure of po by ¢ ;, so for
any A ¢ R?, we have

fir (A) = po (g (A)). (24)

Thus, f, is an H;-measurable random measure.

The definition (2.4) is similar to [27, (2.14)] and [26, (2.4)], which define the composition of a tempered
distribution and a stochastic flow. We emphasize, however, that the composition of a tempered distribution
with a diffeomorphism is not a generalization of the pushforward of a measure by a diffeomorphism, as
the former construction involves a factor of the Jacobian determinant of the diffeomorphism. That is, our
definition (2.4) is in fact the same as defining

_ Ho -1
S , 2.5
/Jl‘ (detD(,D()’t ) o ()00’1‘ ( )

where the o denotes composition of distributions, in the sense that

)= [ o e s (D o) = [0, o),

which agrees with (2.4). The determinants involved in the last two formulas are positive, so there is no need
to take an absolute value.
Now we define

pe =E[d: | 71, (2.6)

so (1.5) represents the special case when g = 6g. Conditional expectations of the form (2.6) were constructed
and studied in [26]. By [26, Theorem 3.2] (which relies on the partial Malliavin calculus developed in [7, 29]),
for all r > 0 the measure u, has a (spatially) smooth density u(¢) with respect to the Lebesgue measure almost
surely. This property comes from the ellipticity implied by (1.1) of the molecular diffusion. The following
proposition shows that (2.6) solves the Fokker-Planck in an appropriate sense:

Proposition 2.1. The function u, considered as a time-indexed family of tempered distributions on R, is the
unique solution of the It6 stochastic PDE

du(r) = %tr[(vld +R(0)V2u(0)]dt =V - [u()V(dr)], 1> 0; 2.7)
limu(r) = u(0) 2.8)

in the “generalized solution” sense analogous to [26, (3.3)]: for almost every realization of the random
environment, we have for all Schwartz functions h : RY - R rthat

(u(t),h) = (,u(O),h)+‘/z ] (u(s),tr[(vld+R(0))V2h])ds+/ot<u(s),Vh-V(ds)), t>0. 2.9)

0 2
Remark 2.2. In the sequel, we will use the standard abuse of notation and write (2.8) as u(0) = u(0), even if

1(0) does not have a density.

Proof. We will derive (2.7) by applying [26, Theorem 3.1]. In order to use this theorem, we must show how
our problem fits into the framework of [26]. This is done via the following list of correspondences, in which



the left-side quantities (also written in sans-serif type to avoid confusion with the notation used in the present
paper) are the notations of [26] and the right-side quantities are our notations:

Wi = -V, 1<i<d, (2.10)
wél = _v.y; (2.11)
1
B(x.1) = ~B(1) +5 (V- R)(O)r; 2.12)
d
1 1 . . 1 OR;j
L=~vA+~(V-R)(0)-V, ie. a’ =v6;;, bl = = 2(0), d=0; 2.1
SVA+5(V-R)(0)-V. ie.al =vd;;. b 2; r, (0), d=0 (2.13)
X = u(0); (2.14)
G=0. 2.15)

Here and henceforth, by (V- R)(0) we denote the vector with the ith component Z?:I %Ii';f (0).

As [26] works with Stratonovich rather than Itd integrals, we rewrite (2.1) in the Stratonovich form.
Using the Ito—Stratonovich correction given in [28, Theorem 3.2.5], we have

era)=x+ [ V(g (0)4B(0) - BG)
=x+ /t V(odr,¢s.(x))+B(t) — B(s) — %(V -R)(0)(z—y), (2.16)
or equivalently

i (06) = V(odi, oy (x)) + B — 3 (V- R)(0)dr

Using the correspondences (2.10)—(2.13), we see that (2.16) matches [26, (3.4)], with ¥ = ¢.
Now using the differentiation rule [28, (3.3.21)] we have that

d [Dgs.¢(x)] =d(DV)(edt, s, (x)) - Dy ¢ (x).
Therefore, by the Jacobi formula and the chain rule for Stratonovich integrals, we have

d;[detDy; ;(x)] = tr[(adj Dgs,, (x)) DV (odt, s 1 (x)) - Deps 1 (x)]
=detDy; ,(x)(V-V)(odt, g5 +(x)),

where adj denotes the classical adjoint (adjugate) matrix. This implies that
d;[logdet Dy, (x)] = (V- V)(edr, g5, (x)),

SO

t
detDps, (x) =exp {/ (V- V)(Odr’¢s,r(x))}’ (2.17)
0
Therefore, recalling (2.11) and (2.13), we have
u(0)
S G X(t) = _— 218
Vst (X) detDps . () (1) detDyo, (2.18)

with the left sides in the notation of [26, (3.5)—(3.6)] and the right sides in our notation.



Now we see that [26, Theorem 3.1] applies, and it tells us that

u(r) = u(0) + / Bmu(m%(vm(m-vms)] ds— / Viu(s)-V(ods)
0 0 (2.19)

- /0 1(5)(V-V)(ods).

Since u(t) is the density of u(t), the same equation holds for u.
To complete the proof, it remains to convert (2.19) into an Itd integral equation by subtracting the
appropriate correction term. This computation is carried out on in [28, p. 302]. Again using a sans-serif

font for the notation there, we have F' = —V; fori = 1,...,d and F&*' = -V . V. Thus we have the “local
characteristic”
Rij(x_y)’ 1Sl,]§d,
d OR;i _ . < .
; -y x—y)=—(V-R);(x-y), 1<i<d, j=d+1;
Al(x,y,1) = 5"‘5&"‘ o) ==V Rk, I (2.20)
Zk16Xk’(x y), i=d+1,1<j<d;
zkflai,ﬁak;[( -y i=j=d+1.

We also have the auxiliary functions

d i d
, OAY OR;;j
CJ<x,z>:ZF<x,y,r>|y:x:— T (O =(V-R);(0)
i %Y
d i d
OAL-d+] OR
Der1) = ), @y 0ly=x= ) > (’;5 (0).
i1 9 K,o=1 TXROXE

Thus, [28, p. 302, (3)] becomes in our setting

o1
Lu:EZR -(0) ax, +Z( (V-R);j+— (V R))

i,j=1 i=1

d 1
= Z Rij(o)ﬁ - E(V-R)-Vu,
and so by [28, p. 302, (4)], we have
t 1 1 ~ t
wu(t) = pu(0) +‘/0 [EVA/J(S) + E(V-R)(O) -Vu(s) +Lu(s)] ds _/o Vu(t)-V(ds)
- [ uts)v-vys
t 1 5 t t
=/1(0)+/ Etr[(vld+R(O))V ,u(s)]ds—/ Vu(t)-V(ds)— [ u(s)(V-V)(ds). (2.21)
0 0 0
Thus u satisfies the 1t6 SPDE (2.7). O

2.2 The second-moment PDE

As described in the introduction, we now want to write a PDE for the second moments of «(¢). To this end,
we first consider

up(t,x,y) =u(t,x)u(t,y). (2.22)



Since u(t,-) is the quenched density of X(¢), we know that if #(0) is a delta, then u,(z,x,y) is the joint
quenched density of (X(¢),Y(¢)) with

X(t) =X(0)+Bi(r) +/0 V(ds, X(s)),
(2.23)

Y () =Y (0)+ By(1) +/Ot V(ds,Y(s)),

where B, B, are independent Brownian motions that are also independent from V. Thus, u; encodes the
correlation of the two passive scalars in the same random environment. From the It6 formula and the SPDE
(2.7) (or, in the case when #(0) is a delta, by redoing the computation in Proposition 2.1 but for a flow on R??
where the first and last d coordinates are forced by the same instance of V but two independent Brownian
motions By and B»), we see that u, satisfies the SPDE

dus(t,x,y) = %tr[(vld+R(0))®2V2u2] (t,x,y)dt —u(t,x)V - [u(t,y)V(dt,y)] —u(t,y)V - [u(t,x)V(dt,x)]

d
62
t R;i(x— dr,
+,~; Tray; (8 Ry (6 =)

(2.24)
again in the sense of [26, (3.3)]. If we define

Qt(-x9y) = EMZ(t’-x’y),

then Q; lives in polynomially-weighted Sobolev space by [26, Lemma 3.1]. By definition, Q; is the annealed
density of (X (z),Y(¢)) defined in (2.23). Now we take expectations in (2.24). Rigorously, this could be
done by using [26, Theorem 3.1] again, but this time taking conditional expectation with respect to the null
filtration. In this way, we see that Q;, considered as a tempered distribution, is the unique solution to the PDE

2

Gy, QMR =y), 120 225)

d
5:0:(x,3) = 3 61V [+ ROITQ, 1) *2
Qo (x,y) = uo(x)uo(y) (2.26)

in the “generalized” sense of [26, (2.1)] (which means that the corresponding integral equation holds when
Q; is integrated against a Schwartz test function).
Now we make change of variables

x> w+z/2, vy w—2/2, 2.27)

and put
S;(w,2) =0;(w+z/2,w—2/2).

With X(¢),Y(¢) defined in (2.23), we further define the center of mass and the relative distance by
W) =(X(0)+Y(@)/2,  Z(1)=X(1)-Y (1), (2.28)
so S;(w, z) is the annealed density of (W(¢),Z(¢)). Define the matrix A(z) by
An Ap L(3la %la RO0) R@"\|(zla Ia
A(z) = =—12 2 I 2
@ (A2l Azz) @ 2 ( I, —14) " R} R(0) sla —1q
1 (% [vIg+R(0)]+1[R(2)+R(2)"] 1 [R()T-R(2)] )

"2 HR(2) - R(2)7] 2vI4+2R(0) - [R(z) +R(2)7]

(2.29)



Then from (2.25) we obtain
0;S;(w,z) = LS (w,2) =tr [V2(AS,) (w,2)]; (2.30)
So(w,z) =uo(w+2z2/2)up(w—2/2), (2.31)
where we have defined the differential operator
Lf(w,2) =tr[A(D)V?f(w,2)], (2.32)

and L* its adjoint
L' f(w,2) =te[V(Af)(w,2)],

where we use the notation, if A = (a;;),

d 92
tr[V2(Af)] = Z

_]=

lai; f1.

We emphasize that (2.30)—(2.31) is simply a deterministic change of variables from (2.25)—(2.26). Alterna-
tively, one could start from (2.23) to write down the equation satisfied by (W(#), Z(t)), then derive the PDE
satisfied by its annealed density, which is (2.30).

If X : R? — R¥ is a stationary Gaussian random field with correlation function EX (z) X (0)T = R(z), then

e have X(2) RO) R()\ (RO R()
Z Z Z
E(X(O))(X( b xXO7) = (R( ~2) R<0>) (R<z>T R<0>)’

so the matrix on the right is nonnegative-definite, and thus from (2.29) we conclude that A(z) is positive-
definite uniformly over all z € R?. By the assumption R € C°, A(z) is also smooth in z.

Now by the theory of parabolic PDEs (which relies on the ellipticity of A; see e.g. [22, §1.6]), we
know that the PDE (2.30) has a fundamental solution. Thus, (2.30)—(2.31) has a classical solution given by
integration of the initial measure against the fundamental solution. Since it is clear that this classical solution
is also a tempered distribution and satisfies (2.30)—(2.31) in the “generalized” sense of Kunita [26], for which
there is a uniqueness statement, the function S; in fact is given by integration of the initial condition (2.31)
against the fundamental solution. In the sequel, we mean this solution when we talk about “the” solution to
(2.30)—(2.31). (Any other solution must have extremely fast growth as |x| — 0.)

2.2.1 Bounds on the fundamental solution

For notational convenience, we will often write w = (w, z). Let I'; be the fundamental solution for (2.30), so
that the solution to (2.30) satisfies

S10) = [ T (@08, (0) o
for s < t and w € R??. We note that I'; is the fundamental solution for the non-divergence form parabolic

PDE
0g=Lg, (2.33)

with its arguments swapped, i.e.,

gr(w)=/Fz_s(w’;w)gs(w’)dw’.

In this section we will prove some bounds on I'; using tools from the theory of parabolic PDE.
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Recall from (2.29) that
An() = vIg+R(O0) ~ 5 [R()+R()T]. (2.34)

We first need the following proposition, which will also be useful later.

Proposition 2.3. There is a unique function y € C*(R%;R) and a constant C < co so that

tr[V2(Anx)] =0, (2.35)
x-1eLP(RY  foranyp>1, (2.36)
C'<infy <supy <C, (2.37)
R4 R4
and
Ly (x) = 1] < Clx|™ for all x with |x| > 1. (2.38)

Remark 2.4. Tn the case of R(z) = f(z)1, for some scalar function f € C=°(R9;R) (which is always the case
in d = 1), we can take
) v+ £(0)
x(2) = ————
v+f(0)-f(2)
which evidently satisfies (2.35)—(2.37). In fact, it satisfies (2.36) with p = 1 as well.

Remark 2.5. In the case when Zflzl aaljéf = 0 for each j (i.e. when V is incompressible almost surely), it is

clear from (2.34) that y = 1.

Remark 2.6. From (2.34) and the fact that R is compactly supported, one can view A, as a perturbation of
the constant matrix vI;+ R(0). Since (2.35) is the equation for the invariant measure of the process Z(t)
defined in (2.28), Proposition 2.3 is essentially to quantify the fact that the invariant measure is a perturbation
of the Lebesgue measure.

Proof of Proposition 2.3. By Remark 2.4, we can assume that d > 2, so we can use the results of [20]. Since
A is uniformly positive definite, Theorem 1.1 of [20] implies that there is a unique, up to a scalar multiple
normalization, y : R? — R satisfying (2.35) in a weak sense. Using the assumption that R is smooth, [8,
Theorem 1.4.6] ensures that y is smooth as well. Therefore, y in fact satisfies (2.35) in a classical sense.

Now we need to prove (2.36) and (2.37). Our approach is based on the proof of [20, Theorem 1.5], the
difference being that we make stronger assumptions and obtain stronger results. For the purpose of this
proof only, we make a deterministic, linear change of coordinates so that we can assume that vI;+ R(0) = I;.
This does not affect the conclusions of the proposition (up to the choice of constants). This means that
Ax(z) =14+ E(z), where E is compactly-supported, say on By (0) for some M > 0. Throughout the proof,
to simplify the notation we write 2}; ; = Zi”fj:l and A = Aj. Now define

r= [ e
B, (x)
Then we claim that

r / D AG) dz = / YDA (=) - (2 =) dHE(2), (2.39)
B, (x) OBy (x)

11



where dH9! is the surface measure. To show (2.39), we write

r/ () trA(z)dz :rZ/ x(2)A;j(2)0;;dz
B (x) ij B, (x)

,
2 IZJ‘:/r(x))((z)ﬂij(z)azizfﬂz_X|2 -r?)dz
-
) EZ/B ( )aZi (X(Z)ﬂ”(z)a@(k—xlz—Vz))dz
i,j r{x

,
——Z/ 0z (X(Z)ﬂij(Z))ﬁzj(lz—XIz—rz)dz
2 i,j By (x)
= 11 —12.

For 11, we apply the divergence theorem to see that it is equal to the r.h.s. of (2.39). For I,, by the fact that
tr[V2(Ayx)] =0, we have

r
IZZEZ/B ( )aZiz_i(X(Z)ﬂij(Z)(lz—Xlz—FZ))dZ:0
ij Y Brix

where the last identity comes from another application of divergence theorem. So (2.39) is proved.
Now we have

S = /aB,(x)X(Z) dH" (2) = rlZ/ : lz—x*x(2) dH ' (2)

OB, (x
-1 [ x@A@ @0 -0 dH ()= Dy ()
r= JéB, (x)
2 [ x@ua@E-piew =% [ x@d D) -Ditr)
rJB,(x) r JB,(x)
= L 1)+ D2(rx) = D1 (). (2.40)

where we used the fact that A(z) = I;+ E(z) and we defined

Di(r,x) = l2/ X(DE(2)(z=x)- (z=x)dH ()
r? JoB, (x)
-1 YDE@)(z-x)- (z-x)dH (2).
I'= JOB, (x)NB (0)
and

1

Dy(r,x) = —/ x()trE(z)dz.
F JB,.(x)nBup (0)

We note that there is a constant D, independent of x and r, so that

|D1|,r|D>(r,x)| <D,  r>0,xeR. (2.41)

First we consider the case x = 0. We note that, whenever r > M, we have D(r,0) =0 and D,(r,0) =
%Dz(M ,0). Therefore, we have for r > M that

131 = S [fe)+d™ MD (M, 0)]
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so0, solving the ODE, we obtain for r > M that
fo(r) =kr? —d~'MD>(M,0) (2.42)

for some constant x. We fix the normalization of y so that « is the volume of the unit ball in R¢. In other

words, for r > 1, we have
[ xoa=pn~ [ 1o
B, (0) B, (0)

Now we consider general x. From (2.40) we have
, d
fi(r)= 7fx(r) +Dy(r,x)—D(r,x). (2.43)
We note that D (r,x) =0 and D,(r,x) = |X|T+MD2(|x| + M ,x) whenever r > |x|+ M. Therefore, we have

filr) = ? [fe()+d (x| + M)Da(Ix|+ M, 0)],  r=|x|+M,

and thus
Ffe(r) = kxrd —=d7 V(x| + M) Do (x| + M, x), 7> |x|+M, (2.44)

for some constant k. But since fo(r —|x|) < fx(r) < fo(r+|x|) for all r > |x|, comparing (2.42) and (2.44)
and taking r large we see that in fact we must have «, = « for all x, and thus

fe(r) =krd —d~"(|x|+ M) D> (|x] + M, x), r>|x|+M. (2.45)
Using (2.41) in (2.45), we have that
lfe(r) —krd|<d™'D,  r>|x|+M. (2.46)

Now assume that |x| > M + 1. We have from (2.43) and (2.41) that, as long as r > |x| — M, we have r > 1
and hence

'C% (r_dfx(r)) <Dr[1+1/r] <2Dr 4,

SO
|1l + M)~ fo (x| + M) = (Ix| = M) fe(Ix| = M)| < 4DM (x| - M) ™. (2.47)

Since y is harmonic in B/, |- (x) (recall that A(z) = I4 for |z| > M), we have
(el =MD~ fillxl = M) = kx (x). (2.48)
Using (2.46) and (2.48) in (2.47), we have
k1= x(x)| <d"'D(|x|+ M) +4DM(|x| - M) ™. (2.49)

Now since y is smooth, (2.49) implies (2.36). Also, (2.49) implies (2.37) and (2.38) for large |x|. But for
x in any bounded domain, (2.37) holds by the smoothness of y and E and the strong maximum principle.
This completes the proof. o

Lemma 2.7. There exists a constant C = C(v,R) < o so that, for all t > 0 and all w,w’ € R*?, we have

I (w;w') < Ctrdexp {—C‘lt_1|w—w’|2}. (2.50)
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Proof. Recall that we write w = (w,z) and 0’ = (w’, 7). Let

S _ x(2)
X (w)=x(w,2) /l'wIIZSlX(Z,) dW'dz”

with y as in Proposition 2.3, which satisfies £* ¥ = 0 by (2.35), and also satisfies /|w|2<1/\?(a)) dw=1. By
(2.37), there is a constant C = C(v,R) < oo so that for all # > 0 and all w € R24 we have

¥(w)<C
and

/ T(w)do' > C7 14,
B (w)

Using these bounds in the result of [20, Theorem 1.2] (noting that our y is denoted there by W), we have
another constant C = C(v, R) so that, for all 7 > 0 and all w,w’ € R?¢, the estimate (2.50) holds. Note that
[20] is written in terms of the nondivergence form PDE (2.33), but the fundamental solutions are related by
simply swapping the arguments and so the same bound holds for I';. The proof is complete. ]

Remark 2.8. Note that [20] assumes that the dimension d is at least 2, but the proof of the upper bound in
[20, Theorem 1.2] given there works also for d = 1. Actually, the proof is in fact simpler as it follows just
from the Krylov—Safonov Harnack inequality [20, Theorem 3.1] and the construction of a subsolution [20,
Lemma 3.1] as in the derivation leading to [20, (3.8)], using the explicit construction of the invariant measure
given in Remark 2.4 and the fact that in d = 1, what [20] calls a “normalized adjoint solution” is in fact just a
solution to the original nondivergence-form equation.

Lemma 2.9. There exists a constant C = C(v,R) < oo so that, for all t > 1 and all w,w’ € R*¢, we have
V2, T (wi0)| < Ctdexp{-C' w-w'?}. (2.51)

Proof. By the Chapman—Kolmogorov equation we have

Ft(w;w’)=/Ft-l/z(w;w”)Fl/z(w”;w’)dw"-

Thus we have
VL @i < [ I p(@io)] 198 )] o 2.52)

By [22, Theorem 9.6.7 on p. 261] (which again concerns the fundamental solution for the adjoint problem
(2.33), but that corresponds to our fundamental solution by swapping the arguments), using the assumed
smoothness of A, we have a constant C < oo so that

|Vi),l“1/2(w”;w’)| < Cexp{-C7'|w" - wl|?}.

Using this bound along with Lemma 2.7 in (2.52) we obtain (2.51). O

3 The stationary solution
Let u!™] solve (2.7) but with constant initial condition 1 at time —M, i.e.,
1
du™1(1) = 5tr[(v]d+R(O))V2u[M](t)]dt— V- [y, t>-M

3.1)
uMl(-Mm) =1.

The main result of this section is the following proposition.
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Proposition 3.1. For any t € R, x € R?, the sequence (ut[M] (x))ar>—s is a Cauchy sequence in L*(Q).
In particular, for any € > 0 (or € =0 if d = 1) there exists a constant C = C(g,v,R) < oo so that for any
M, My > —t,

2
E ™ (2,x) = ut™V(2,x)| < C[(t+ M) 24 (14 Mp)~(4-2)/2], (3.2)

Proof. Define
SIMI ) = Eu™] (2, 0)u™1 (1, ),

which is equal to Eu!™!(t,w —z/2)u!™1(z,w +z/2) for all w € R, due to the fact that the noise is spatially
translation-invariant and that the initial data is constant. Thus S t[M] satisfies the PDE

— 1
35" () = L5 (2) = 5wl V (A4nSi" D ()], (3.3)
sl =1, (3.4)
where we have defined £ f(z) = %tr[Azz(z)V2 f(2)]. The problem (3.3)—(3.4) is obtained from (2.30)—(2.31)

by using the space-translation-invariance and the fact that the initial data is a constant. The PDE (3.3) has
fundamental solution I" given by

fz(z;Z’)=/F(y,z;yﬁz/)dy,
which in fact is independent of y’. Integrating (2.50) over y, we have a constant C = C(v, R) < oo so that
T (z:2) < CrPexp{-C7 ' |z -2/} (3.5)
Now we recall the function y from Proposition 2.3. We note that
/ T (2:2)x(2) d2’ = x(2) (3.6)
by (2.35). Thus we have
S @) = [ Tranr (22102 = [ Trana (@:2) Gel&) = () =11
— @~ [ Frow (@) Le@) - 1142 37)

By Holder’s inquality, for 1/p+1/g = 1 we have

< ”I:t+M(Z;')||LCI(Rd)”)(_ Ul Lp (Ra)- (3.8)

‘/ Tram (232) [x(2) = 11d2’

By (3.5), we have

1/q
T (23 ) | La ey < (/ Cr 41 exp{—qC"17" |z - 2’|’} dz')
3.9

1/q
= (/ Ct_d<"_1)/2exp{—qC‘llz’lz} dz’) < Cr .

Thus, using (2.36) and (3.9) in (3.8) and then substituting into (3.7), we have for any & > 0 (choosing
p =d/(d - ¢)), there exists a constant C so that

1511 (2) ~x ()] < Clr+ 1)~ (", (310
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When d =1, by Remark 2.4 we can take p = 1, g = oo, and thus £ = 0.
Now define, for M| < M>,

S () = B ™ (1,0) = ™) (1,0)) ™ (1,2) —u™)(1,2)), 1> -My,zeRY.

Then S,[M"MZ] again satisfies the PDE (3.3), since ulMil _ [M2] g150 satisfies (2.7) by linearity. On the other
hand, we have the corresponding initial condition

SUME] (2) = B (=M1, 0) - ™21 (=1, 0)) (M (=M 2) — M2 (- My, 2))
=E(1-u™1(-M,,0)) (1 -u!™) (M, , 2))
= Eu™1(— My, 0)u™2) (-My,2) - 1

= sl () - 1.
Here we used the fact that E«!™2! = 1. From this and the linearity of (3.3) we further conclude that
SIMEML oy - gIMT (o _gIMI () s M,z e RY (.11

Combining (3.10), (3.11), and the triangle inequality, we have

2
E [ul™ 1 (7,2) —u™2) (1,0)| = SPMM21(0) < O+ My) 492 4 (14 M)~ @202,
which is (3.2). O

Corollary 3.2. There is a random function U : R xR? — R so that, for every t € R and x € R%, we have for
anye>0(ore=0ifd=1) that

Jim (t+M) @O LPELIM (1 ) —U(1,x)? = 0.

Moreover, U is stationary under time and space translations, EU = 1, and it is a solution to the SPDE (2.7).
Finally, for x1,x, € R, we have
EU(2,x1)U(t,x2) = x (x1 —x2), (3.12)

with y as in Proposition 2.3.

Proof. We can construct U as the limit of the «!™1 in an appropriate spatially- and temporally-weighted L>
space using Proposition 3.1 and Fubini’s theorem. The limit preserves the expectation, so EU = 1. Spatial
and temporal stationarity, and the fact that solving the SPDE (2.7) (i.e. solving the integral equation (2.9))
passes to the limit, is clear. Finally, (3.12) follows directly from the convergence of u!™1(z,x) — U(t,x) in
L*(Q) and equation (3.10). O

Remark 3.3. The spacetime stationary random field U solves equation (2.7), which is related to the Fokker-
Planck equation for the process of “environment seen from the particle.” If we use U(0,0) as the Radon-
Nikodym derivative to tilt the probability measure P, then the new measure is actually the invariant measure
for the “environment seen from the particle.” For a model of random walk in balanced random environment,
[17] proved a similar result as Theorem 1.1. The U(t,x) constructed above corresponds to the p,(x,?)
defined in [17, Page 3], and the SPDE (2.7) corresponds to [17, Equation (3)]. For a Markovian velocity field
with a large spectral gap, the invariant measure was constructed in [25], in parallel to our construction of
the spacetime stationary solution to equation (2.7), although the velocity field here is white in time which
corresponds to an infinite spectral gap.

Corollary 3.4. For any sequence ((ti, My))r >0 so that ty + My — o0 as k — oo, we have for any € > 0 (or
e=0ifd=1) that

Jim (1 + M) PE MK (1, ) = U (1, x)|> = 0. (3.13)
Proof. This is clear from the translation-invariance and Corollary 3.2. O
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4 Proof of Theorem 1.1

Let u(t) solve (2.7) with u(0) = 6y, a Dirac delta measure at zero. For any g < ¢, let F, ; be the o--algebra
generated by V(s) -V (r) for g <r < s <t. Given g > 0, define

ig(1) =E[u(t) | F4.],  t2q.
Then t + 7, (t) satisfies (2.7) for t > ¢, and we have the initial condition

where we recall that G solves (1.7). An important step in the proof of Theorem 1.1 is the following
proposition.

Proposition 4.1. For any B8 € (0, 1), there exists a constant C = C(R,v,8) < o so that, for allt > C,

sup Elu(t,x) —ii,_5(t,x)|* < Cr~@Nd2D)=Bd[2 1504 4.1

xeR4

Proof. Step 1: taking second moments. Define

=+ _ (3 v1a+R(0)]

A %[R<z>+R<z>T1]] LR(2)-R()T]

v1d+R<o>)’ A(Z):(i[moT—R(z) “HRG)+RG)T)

so we can decompose (2.29) as _
A(z) = A+A(2). 4.2)

Let H, be the solution to the PDE
0, Hy(w) = tr[AV2H, (w)];
Hy = 6.
This means that H;(w,z) = G;/2(w)G2(z). For any g > 0, if we define
Se(y,2) =Bu(t,y+z/2u(t,y=2/2),  S4.:(y,2) =Bty (1,y+2/2)iiy(1,y ~2/2),

then S, satisfies (2.30) with initial condition

So(y,z) = 60(y)d0(2) (4.3)
and t — S’qJ satisfies (2.30) for ¢ > ¢ with initial condition

Sq.q=Hy. (4.4)

In particular, we have
St(w) =Tt (w;0). 4.5)

Then define
Sq.t(3.2) =E(u(t,y+2/2) —iig(t,y+2/2)) (u(t,y —2/2) = iig(t,y — 2/2)).
Again 1 S, satisfies (2.30) in t > g. The initial condition is
Sg.q(3,2) =E (u(q,y+2/2) —iig(g,y+2/2)) (u(g,y = 2/2) —iig(g,y = 2/2))
=E (u(q,y+2/2) = Gq(y+2/2)) (u(q,y = 2/2) = G4 (y - 2/2))

=Eu(q,y+z/2)u(q,y—2/2) = G4(y+2/2)G4(y—z/2)
=S,(3,2) = S84.4(3,2), (4.6)
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where we used the fact that Eu(7) = G;. Therefore, by the linearity of (2.30) we in fact have

Sg.t(3,2) =8:(3,2) = Sg.1(¥,2)

forall > g.
_ Step 2: proving the bound. Similar to the proof of Proposition 3.1, our goal is to prove an upper bound on
Sq.:(»,0). Since t — S ; satisfies (2.30) we have the identity

Eq,t(w) = / | P (w;w')gq’q(w’) do’. 4.7)
By the Duhamel principle applied to the PDE (2.30), using the decomposition (4.2), we have
Sy (w) = Hy(w')+ /O ! / Hys(0' 0" tr [V2[AS](0”)] dw” ds.
Subtracting (4.4) and recalling (4.6), we obtain
Syq(w) = /O ! / Hys(0' 0" tr [V2[AS](0”)] dw” ds.
Now plugging this into (4.7) and using Fubini’s theorem, we obtain
Sy(w) = /0 ! / Kys,i—q(w;0) tr [V2[ASs](w")] do’ds, (4.8)
where we have defined
Ky r,(wi0') = / I (w;0")Hy (0" - o) dw”. (4.9)
Integrating by parts in (4.8), we have

Eq,t(w):/oq‘/Ss(w’)tr [A(w')Vi/ q_s,t_q(a);a)’)] dow’ds. (4.10)

Using Lemma 4.2 below, and also another application of Lemma 2.7 (and (4.5)) to bound S (w’), in (4.10),
we obtain, forr > g+1,

r_ 02 72
Bu@l<c [Ma=9 atie=9s [1a e (-2 gura,

~d -d 0 -wl* || ENCARY
—C(/ /)(q—s) Al (t—s)" /IA(Z)|exp{ i) oF }dw ds

=11+1.

To control the above integral, we consider the region of s € (0, 1) and s € (1, g) separately. For the integration
in s € (0, 1), by the fact that A is uniformly bounded, we integrate in w’ to derive

1
I < Cz—d/ [(g=s)"'Allds < Cr¥(g-1)"". (4.12)
0

For the integration in s € (1, g), to control the inner integral, we write
' -wf ',
A d
./' (z)|exp{ C(t—s) cs | ¢

_ 12 712 r_ 42 712
T L [V i B
s(t—s))d/2

t

< C”AHU(RLI;Rszd) (
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for a new constant C, still depending only on R and v. Using this bound in (4.11), we obtain
I < Ct_d/zflq [(g—s)"" A1](r—s) 42572 ds
< Ct_d/z(t—q)_d/z/lq[(q—s)_l A1]s™42 ds. (4.13)
Now we estimate the last integral in two parts. First we have

/ g9 A1l ds < (/2 / lg=s)" Al1ds = (q/2) %[ 1 +1og(q/2)].
q/2 q/2

Second, we have

q/2 q/2
/ (g-s5)"'s42ds < 247! / s~ ds < Cq™! (\/Elldzl +loggl g +1453] < Cgq~((d/2AD logg.
1 1

Using the last two inequalities in (4.13) and taking g = ¢ — ## we obtain, for a C now depending also on j3,

I < Cr@nd2+)=Bd/2 100

Combining this with (4.12), we obtain (4.1). O
Now we must prove the lemma we used in the previous proof.

Lemma 4.2. Recall the definition (4.9) of K, r,. There is a constant C = C(v,R) < o so that, for all r; >0
and ry > 1, we have

, ~ ~ |(,()”—(1)|2
V2, Ky, o (0307 < COr 7 ALY (11 1) dexp{—m : (4.14)
Proof. Differentiating (4.9) and using Lemma 2.7, we have
|V%U,Kr1’r2(a);a)’)| < ‘/Frz(w;w")wi},Hrl (0" -w")|dw”
< Cl"z_dl"l_d_l / exp {_C—lrz—lla)_wu|2_C—1r1—1|wu_w/|2} dw”
< Crl_l(rl +r7) Yexp {—C_l(rl +r2)_1|w—w'|2}, (4.15)

where we allowed the constant C to change from line to line. Alternatively, we can use integration by parts
and Lemma 2.9 to derive that

Vi),Krl,rz(a);w’)| S/lVi),,Frz(w;w") Hy (0" - ") dw”

< Crz_drl_d/exp{—C_lrz_llw—a)”|2—C_lrl_llw"—a)’|2} dw”
< C(ri+r) Yexp{-C'(ri+r) w-w'|*}, (4.16)

where again C changed from line to line. Together, (4.15) and (4.16) imply (4.14). O
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Now we want to show that, when 1 < —¢q < t, the field ii, (¢) is well-approximated by the stationary
solution U (¢) multiplied by G,. Let u 4 (¢) solve (2.7) in t > g, with initial condition

u,(q) =1,

so by Corollary 3.4 we have

lim sup Elu, ,(x)- U, (x)]>=0. (4.17)

17472 y cRd
Proposition 4.3. There exists a constant C so that, for any x € R and t > ¢, we have
Elity (1,x) = G4 (x)u, (t,%)* < Cq™" (1), (4.18)
and in particular, for any B € (0, 1), there exists a constant C = C(R,v,8) such that for all t > 1

_ 2 —d-
sup Elut_,ﬁ (t,x) =G, (xX)u,_.p (t,x)| < Crd=B, 4.19)

xeR4

Proof. Fix g, x. First recall that ﬂq,gq both solve (2.7) int > ¢q. Let

S, x 2 =By (1,y+2/2) - Gg()u, (1,y+2/2)) (g (1,y —2/2) =G4 (X)u, (1,y - 2/2)).

Then as a function of (z,y,z), we have §q ; x solves (2.30) with initial condition

§q,q,x(y’z) = (Gq(y+z/2) _Gq(x)) (Gq(y—z/2) —Gq(x)) .

Therefore, we have
§q,,,x(y,z) = / (Gq(y' +2'/2) =G y(x)) (G4 (y' =2"/2) =G 4 (x)) Ty—g (v, 23y, 2") dy’ d2’,
and so

S, (x,0) = / G4 (V' +2'/2) =G4 (0)||G 4 (3" =2'/2) = G 4 (x)| Ti—g (x,0;¥",2") dy’ d2’
- ’ ’ ’ ’ —7|yl_x‘2+‘zl‘2 ’ ’
<C(t-q) d/|Gq(y +2/2) =G4 (x)||G4(y' =2 /2) = G4(x)|e” €~ dy’dz
"2+Z,2

< Cli-g) VG, |2 / V2 21y -2 2l dydz

P2

<Cq(i-g) / Y220y =2 2l e,

where in the first inequality we used Lemma 2.7. This completes the proof of (4.18), and (4.19) follows
immediately. U

Now we can prove our main theorem.
Proof of Theorem 1.1. Fix € (0,1) and let ¢ =t — 5. We use the triangle inequality to write

Elu(t,x) =G, (x)U(1,x)|* < CEJu(t,x) = ity (1,x)|* + CEliiy (1,x) = G 4 (x)u (1,x)|*

420
+C|Gq(x)—Gt(x)|2qu(t,x)2+CG,(x)2E|gq(t,x)—U(t,x)lz. =8
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‘We note that

sup |Gy (x) =G, (x)| < (1—q)  sup  [8,Gs(x)| < CP4>N, (4.21)

x€R4 x€R4,se[q,t]

Applying (4.1), (4.19), (4.21) (along with the fact that Eu q(t,x)2 is uniformly bounded by Corollary 3.4),
and (3.13), respectively, to the four terms on the right side of (4.20), we obtain for every £ > 0 (or £ =0 if
d = 1), there is a constant C = C(R, v, 8,€) < oo so that

E|u(t,x)-G;(x)U(t,x)|* < C (t_(de/z“))_ﬁd/z10gt+t_d_1+ﬁ + 12842 +fd—ﬁd/2+ﬁ8) ,

Then we take
B=31a1+ 75145,

to further derive that
Elu(t,x) -G, (x)U(t,x)|> < Ct™¢ (r‘1/3]ld=1 +17 2 (rd)red](2+d) ]ld>2) log?.

Changing ¢ yields (1.8), and (1.9) is then a consequence of the formula for the Gaussian density.

If Zf: 1 %Ii’;f = 0 for each j, then by Remark 2.5, (3.12) and the fact that EU = 1, we have U = 1 almost
surely. On the other hand, if V is not incompressible, then it is clear that the constant 1 does not solve (2.7),
and so U cannot be a.s. identically equal to 1 by Corollary 3.2. Finally, (1.10) follows from (3.12) and (2.38).

This completes the proof of the theorem. ]
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