- 1 **TITLE:** Chiffon triggers global histone H3 acetylation and expression of developmental genes in
- 2 Drosophila embryos
- 3 **AUTHORS:** Torres-Zelada, Eliana F.¹, George, Smitha^{1,#}, Blum, Hannah R.¹, and Weake, Vikki
- 4 M.^{1,2,3}
- ¹Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
- ²Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
- 7 47907, USA.
- ³To whom correspondence should be addressed: Vikki M. Weake, Department of Biochemistry,
- 9 Purdue University, 175 S. University Street, West Lafayette, Indiana 47907, USA, Tel: (765)
- 10 496-1730; Fax (765) 494-7897; Email: wweake@purdue.edu
- [#]Present address: Department of Microbiology and immunology, Dalhousie University, Halifax,
- 12 Nova Scotia, Canada

13 **KEYWORDS**

14 Chiffon, *Drosophila*, chromatin, histone acetylation, development, SAGA, CHAT

ABSTRACT:

16

- 17 The histone acetyltransferase Gcn5 is critical for gene expression and development. In
- 18 Drosophila, Gcn5 is part of four complexes (SAGA, ATAC, CHAT, and ADA) that are essential
- 19 for fly viability and have key roles in regulating gene expression. Here, we show that while the
- SAGA, ADA, and CHAT complexes play redundant roles in embryonic gene expression, the
- 21 insect-specific CHAT complex uniquely regulates expression of a subset of developmental
- 22 genes. We also identify a substantial decrease in histone acetylation in *chiffon* mutant embryos
- that exceeds that observed in *ada2b*, suggesting broader roles for Chiffon in regulating histone
- 24 acetylation outside of the Gcn5 complexes. The chiffon gene encodes two independent
- polypeptides that nucleate formation of either the CHAT or Dbf4-dependent kinase (DDK)
- complexes. DDK includes the cell cycle kinase Cdc7, which is necessary for maternally-driven
- 27 DNA replication in the embryo. We identify a temporal switch between the expression of these
- 28 chiffon gene products during a short window during the early nuclear cycles in embryos that
- correlates with the onset of zygotic genome activation, suggesting a potential role for CHAT in
- 30 this process.

31

INTRODUCTION

- Histone acetylation stimulates chromatin remodeling, thereby contributing to transcription
- activation. One of the best characterized histone acetyltransferases (HAT) is the highly
- conserved general control nonrepressed 5 (Gcn5), which functions as part of large multi-subunit
- transcriptional coactivator complexes to stimulate gene expression (Soffers and Workman,
- 36 2020). The fruit fly *Drosophila melanogaster* contains four Gcn5-containing complexes: Spt-
- 37 Ada-Gcn5 acetyltransferase (SAGA) (Kusch et al., 2003; Muratoglu et al., 2003), Ada2a-
- 38 containing complex (ATAC) (Guelman et al., 2006), Chiffon Histone Acetyltransferase (CHAT)
- 39 (Torres-Zelada et al., 2019), and the Ada2/Gcn5/Ada3 transcription activator (ADA) (Soffers et
- 40 al., 2019). The formation of each of these complexes is determined by which Ada2 homolog
- incorporates into the complex: ATAC contains Ada2a, while SAGA and ADA contain the Ada2b-
- 42 PB splice isoform, and CHAT contains the Ada2b-PA isoform (Kusch et al., 2003; Muratoglu et
- 43 al., 2003; Torres-Zelada et al., 2019; Weake et al., 2009). In general, all Gcn5 complexes
- 44 preferentially acetylate histone H3 in vitro and in vivo with the highest activity on K9 and K14
- 45 (Guelman et al., 2006; Pankotai et al., 2005; Soffers et al., 2019; Torres-Zelada et al., 2019). In
- 46 addition, ATAC acetylates histone H4 due to the presence of a second HAT within the complex
- 47 (Suganuma et al., 2008). Mutations in ada2b that disrupt SAGA, ADA, and CHAT alter gene
- expression (Li et al., 2017; Weake et al., 2008). However, there is remarkably little overlap

49 between the genes regulated by ada2b and other SAGA subunits. Although this lack of overlap 50 was previously attributed to SAGA's additional enzymatic activities, in light of findings that 51 Ada2b splice isoforms nucleate formation of distinct Gcn5 complexes (Torres-Zelada et al., 52 2019), an alternative interpretation is that SAGA, ADA, and CHAT have distinct roles in gene 53 expression. 54 CHAT contains three subunits that are shared with the other Gcn5 complexes, Gcn5, Ada3, and 55 Sqf29, and two unique subunits, the Ada2b-PA splice isoform and Chiffon (Fig. 1A). In flies, 56 chiffon encodes two polypeptides that have independent functions. The Chiffon N-terminal 57 product is orthologous to Dbf4, which is a cyclin-like protein that binds and activates Cdc7 58 forming the Db4-dependent kinase (DDK) complex that initiates DNA replication (Landis and 59 Tower, 1999; Stephenson et al., 2015); we refer to this polypeptide as Chiffon-A. In contrast, the C-terminal domain of Chiffon, which is only conserved within insects, directly binds Gcn5 and 60 nucleates formation of the CHAT complex; we refer to this polypeptide as Chiffon-B. Only 61 62 Chiffon-B is essential for fly viability because it rescues the lethal *chiffon* mutant phenotype, while Chiffon-A, which binds Cdc7, does not (Torres-Zelada et al., 2019). Intriguingly, CHAT can 63 64 also substitute for SAGA or ADA HAT activity during fly development because expression of the 65 CHAT-specific Ada2b-PA splice isoform restores viability to ada2b mutants while the SAGAspecific Ada2b-PB isoform does not (Torres-Zelada et al., 2019). These data suggest that either 66 67 CHAT is the predominant HAT required for development in flies, or that CHAT can compensate for some of SAGA/ADA's functions in acetylation (Torres-Zelada et al., 2019). To distinguish 68 between these possibilities, we investigated the functional overlap between the SAGA, ADA, 69 70 and CHAT complexes in terms of gene regulation. Here, we show that the majority of genes with disrupted expression in ada2b embryos are redundantly regulated by SAGA, ADA, and 71 72 CHAT. Surprisingly, chiffon mutants that disrupt only CHAT cause different changes in gene 73 expression compared with loss of ada2b, accompanied by a global loss of H3K14ac genome-74 wide in embryos. These data suggest that in addition to its HAT activity, the Chiffon subunit of 75 CHAT might have another role in gene expression that is independent of Gcn5. In addition, we 76 identify a temporal switch between expression of the Chiffon-A and Chiffon-B polypeptides in 77 early embryos that coincides with the second wave of zygotic transcription. We propose that 78 CHAT functions as a pioneer coactivator complex during embryogenesis that is necessary for 79 the later recruitment and/or activity of HAT complexes that activate gene expression programs 80 essential for development.

RESULTS

82

83

SAGA/ADA and CHAT act redundantly to regulate gene expression in embryos 84 Gene expression profiling of ada2b mutants has revealed widespread disruption of gene expression that was historically attributed to the loss of SAGA activity (Torres-Zelada and 85 86 Weake, 2020). However, the recent finding that alternative splicing of ada2b can generate new 87 diversity in Gcn5 complexes raises the question of whether these complexes have overlapping 88 or distinct roles in regulating gene expression. To answer this question, we generated ada2b mutant embryos that express either the Ada2b-PA or Ada2b-PB isoforms, resulting in embryos 89 90 that lack CHAT, or SAGA and ADA, respectively (Fig. 1A, B). The Ada2b-PA or -PB transgenes 91 were expressed in *trans* under control of the genomic *ada2b* regulatory sequences (*ada2b*_{EN}). as described previously (Weake et al., 2011). The lethality observed in ada2b mutants is entirely 92 93 rescued by expression of both Ada2b splice isoforms (Torres-Zelada et al., 2019). We note that 94 the SAGA and ADA complexes cannot be distinguished genetically in flies through ada2b 95 because the Ada2b-PB isoform is present in both complexes (Fig. 1A). 96 As wild-type (WT) controls, we used ada2b embryos that express both Ada2b-PA and Ada2b-PB (which fully restore viability), as well as elav-Gal4>GFP embryos that do not carry the ada2b 97 98 alleles (Fig. 1B). We observed a decrease in H3K14ac levels in the GFP-positive ada2b null 99 embryos relative to their heterozygous (non-GFP) siblings by stage 13, indicating that loss of all 100 Ada2b isoforms globally impacts histone H3 acetylation (Fig. 1C). Based on these data, we performed RNA-seg experiments in stage 12 -14 embryos (8-11 hr after egg laying, AEL). 101 Principal component analysis (PCA) revealed that the ada2b samples were distinct from the two 102 103 WT controls (Fig. 1D). Interestingly, the ada2b embryos expressing either the Ada2b-PA isoform 104 (Δ SAGA/ADA) or the Ada2b-PB isoform (Δ CHAT) grouped more closely to each other rather than to either the null or WT samples. These data suggested that SAGA/ADA and CHAT might 105 106 have redundant or overlapping roles in gene expression during embryogenesis. 107 To identify genes that required SAGA/ADA or CHAT for expression, we first identified genes 108 that were differentially expressed between ada2b and both WT controls. We identified 2111 109 differentially expressed genes (DEGs) between ada2b and WT. We conclude that these 2111 DEGs, corresponding to 22% of all expressed genes, represent the complete set of gene 110 targets for the Ada2 subunits of SAGA, ADA, and CHAT in embryos (Table S1). Next, we 111 reasoned that there were three distinct possibilities for how these Gcn5 complexes could 112 113 regulate gene expression: If SAGA/ADA and CHAT regulate expression of unique sets of

114 genes, then some of the 2111 DEGs would be mis-regulated in the same direction and to the 115 same extent (fold-change, FC) in ada2b embryos expressing either the Ada2b-PA or Ada2b-PB 116 isoforms (Fig. 1E). Alternatively, if SAGA/ADA and CHAT act cooperatively to regulate gene 117 expression, then those DEGs would be mis-regulated in the same direction in both ada2b 118 embryos expressing Ada2b-PA (ada2b + Ada2b-PA) and Ada2b-PB (ada2b + Ada2b-PB), but to 119 a lesser extent than the null. Last, if SAGA/ADA and CHAT act redundantly, then the identified 120 DEGs would not be mis-expressed in *ada2b* embryos expressing either splice isoform because SAGA/ADA and CHAT would compensate for the loss of each other at these genes. 121 122 When we clustered the 2111 DEGs identified in ada2b relative to WT, we found very few genes 123 that were uniquely regulated by SAGA/ADA (ada2b + Ada2b-PA, 54 genes) while nearly a 124 quarter were uniquely regulated by CHAT (ada2b + Ada2b-PB, 514 genes). Further, only 184 125 genes were cooperatively regulated by SAGA/ADA and CHAT, showing changes in expression upon loss of either isoform. In contrast, the majority of the DEGs (1359 genes) appear to be 126 127 regulated redundantly by SAGA/ADA and CHAT, showing restored expression in the presence 128 of either splice isoform (Fig. 1F). Examination of the normalized expression for these genes 129 revealed that even at these redundantly regulated genes, loss of CHAT still had a stronger 130 effect on gene expression relative to the loss of SAGA/ADA, particularly for downregulated genes. These data suggest that most genes that require SAGA, ADA, or CHAT for proper 131 132 expression are regulated redundantly by these complexes, with a slightly stronger role for CHAT relative to the other Gcn5 complexes in embryos. 133 134 Gene Ontology (GO) analysis for these 1359 SAGA/ADA/CHAT-regulated genes showed 135 enrichment for biological processes involved in development such as regionalization, negative 136 regulation of cell communication, and positive regulation of transcription (Fig. 1G). Because 137 Ada2b-PA is essential for fly viability but Ada2b-PB is not (Torres-Zelada et al., 2019), it is likely 138 that either the 514 CHAT-regulated genes or the 184 SAGA/ADA/CHAT cooperatively-regulated 139 genes represent those critical genes that when mis-expressed at this embryonic stage, cause 140 lethality later in development. For this group of genes, the most enriched GO terms included 141 gene silencing, cellular macromolecule catabolic process, and posttranslational protein folding processes (Fig. 1H). Although expression of Ada2b-PA restores adult viability to ada2b mutants, 142 143 only 63% of the expected adults emerge, suggesting that SAGA, ADA, and CHAT act together 144 to regulate the expression of genes that are essential for proper development. Overall, we 145 conclude that SAGA/ADA and CHAT act redundantly at most genes in embryos, with a small proportion of genes being uniquely regulated by CHAT. 146

CHAT is necessary for global H3K14ac in embryos

147

148

149150

151

152

153

154

155

156

157158

159

160 161

162

163

164

165 166

167

168

169

170171

172

173

174

175

178

Since SAGA/ADA and CHAT shared overlapping roles in gene expression in embryos, we next asked how loss of CHAT affected histone acetylation in embryos. We previously showed that CHAT acetylates histone H3 with specificity for lysines 9, 14, and 18, with chiffon null ovary follicle cells showing a 50% decrease in H3K14ac levels (Torres-Zelada et al., 2019). We used a similar genetic approach to that used for ada2b to positively label embryos that contained two different chiffon null alleles with GFP (Fig. 2A). Using an antibody raised against the unique Cterminal region of Chiffon (1400 – 1695aa), we showed that GFP-positive chiffon embryos have a substantial decrease in Chiffon protein levels by stage 9 (Fig. 2B). Surprisingly, when we examined H3K14ac levels in *chiffon* embryos, we observed a stronger decrease in H3K14ac than that observed in ada2b mutants that disrupt SAGA, ADA, and CHAT (compare Fig. 2C, 1C, Fig. S1A, B). When we quantified these data, we found that chiffon embryos showed 40% of the H3K14ac signal relative to their heterozygote siblings, versus 70% in ada2b embryos (Fig. S1C). We also observed a significant decrease of H3K18ac in GFP-positive chiffon embryos when compared with their heterozygous siblings, however to a lesser extent than H3K14ac (Fig. S1D, E). These data show that loss of chiffon substantially decreases H3K14ac levels in embryos.

Because Ada2 subunits are essential for the nucleosomal HAT activity of Gcn5 (Grant et al., 1997), we next asked if Ada2b-PA, Gcn5, Sgf29, and Ada3 could associate in the absence of Chiffon. To do this, we expressed each subunit in *Sf21* cell using Baculovirus, and tested for direct interaction by co-immunoprecipitation (Fig S2). Using this approach, we found that Ada2b-PA directly binds Gcn5 and Ada3, but not Sgf29, which is recruited instead through Ada3. Because Ada2b-PA is necessary and sufficient for Gcn5, Sgf29 and Ada3 to associate even in the absence of Chiffon, we would therefore expect that loss of *ada2b* would disrupt CHAT formation. Thus, the loss of Chiffon in embryos has a stronger impact on histone acetylation that can be explained simply by loss of SAGA, ADA, and CHAT HAT activity. Moreover, the decrease in H3K14ac in *chiffon* embryos differs from our previous observations in ovary follicle cells in which *chiffon* and *ada2b* mutants both showed ~50% decreases in H3K14ac relative to their respective controls (Torres-Zelada et al., 2019).

To investigate how loss of *chiffon* affects H3K14ac genome-wide, we next performed H3K14ac

177 Chromatin Immunoprecipitation followed by Illumina sequencing (ChIP-seq) in GFP-positive

chiffon stage 12 - 14 embryos (8 – 11 hr AEL). As a WT control, we performed ChIP-seg in

179 chiffon embryos expressing the full-length Chiffon rescue transgene (Chiffon FL), which restores 180 viability and H3K14ac levels (Torres-Zelada et al., 2019). The Chiffon FL transgene was 181 expressed in trans, as for Ada2b-PA or -PB (Fig. 1B), under control of the chiffon genomic regulatory sequences. We examined H3K14ac levels relative to histone H3 to control for 182 183 differences in nucleosomal occupancy, and sequenced input chromatin controls for each sample. Because we suspected that loss of chiffon would result in a global decrease in 184 185 H3K14ac levels based on our observations from the embryo immunostaining, we included 186 spike-in Saccharomyces cerevisiae chromatin enabling us to normalize H3K14ac signal to this 187 internal control (Fig. 2D, Table S3). We then compared spike-in-normalized H3K14ac levels relative to histone H3 around the transcription start site (TSS) of all genes in *chiffon* embryos 188 relative to WT (Fig. 2E, F). We observed a striking decrease in H3K14ac in chiffon embryos that 189 190 was also readily observed in the individual three biological replicates (Fig. S3). Although H3K14ac is predominantly associated with promoters, a recent study has demonstrated peaks 191 192 of H3K14ac in gene bodies, most likely due to the activity of the HAT Chameau rather than Gcn5 (Regadas et al., 2021). Our data also showed a decrease in H3K14ac gene body peaks in 193 194 chiffon embryos both globally and at representative genes (Fig. 2G, H). Strikingly, many of the 195 H3K14ac peaks that are present at genes that lack canonical histone acetylation (and are 196 thought to be deposited by Chameau) are also lost in chiffon embryos (Fig. 2I). Together, these 197 data argue that rather than specifically reducing H3K14ac levels only at CHAT-regulated genes, 198 loss of the chiffon subunit in CHAT leads to a decrease in global levels of H3K14ac in embryos 199 by affecting the activity and/or recruitment of other HATs.

Chiffon regulates expression of genes expressed in mid/late embryogenesis

200

201202

203204

205

206

207

208

209

210

211

Because *chiffon* embryos showed a more substantial decrease in H3K14ac relative to *ada2b*, suggesting that the Chiffon subunit within CHAT functions upstream of other HATs, we next asked how loss of *chiffon* impacted gene expression in embryos. To do this, we performed RNA-seq in *chiffon* embryos at stage 12 – 14 (8 – 11 hr AEL) as outlined in Figure 3A. As WT controls, we used either *chiffon* embryos that express a single copy of a Chiffon FL transgene, or the parental *act-Gal4>GFP* embryos (Fig. 3A). Expression of Chiffon FL restores viability to *chiffon* mutants (Torres-Zelada et al., 2019). We identified 996 genes that were differentially expressed between *chiffon* and both WT controls (Table S2). Because *chiffon* encodes independent Chiffon-A and Chiffon-B polypeptides that nucleate formation of DDK and CHAT, respectively (Torres-Zelada et al., 2019), the 996 DEGs identified in *chiffon* embryos could represent targets for either DDK or CHAT activity. Because expression of the ΔN-terminal

transgene that restores CHAT function rescues both H3K14ac and adult viability in *chiffon* mutants (Torres-Zelada et al., 2019), we hypothesized that CHAT is necessary for histone H3 acetylation and gene expression in embryos. However, because DDK phosphorylates histone H3T45 in yeast and mammalian cells (Baker et al., 2010), it is possible that DDK also contributes to gene expression. To distinguish between these possibilities, we performed RNA-seq on *chiffon* mutants that express single copies of each of the following transgenes: Δ N-terminal (Δ N; 401 – 1695aa) and FL with a stop codon at position 174, corresponding to the previously identified Chiffon FL^{WF24} allele (Fig. 3A) (Landis and Tower, 1999). The Δ N and FL^{WF24} transgenes restore viability to *chiffon* mutants because they express Chiffon-B and rescue CHAT function; however the Δ N and FL^{WF24} constructs do not express Chiffon-A and do not restore DDK activity, hence the resulting adult females are sterile due to lack of gene amplification in ovary follicle cells (Torres-Zelada et al., 2019).

212213

214

215

216

217

218

219

220

221

222223

224

225

226227

228

229

230231

232

233

234235

236

237238

239

240

241

242

243

244

PCA revealed that the chiffon samples were distinct from the two WT controls and the FLWF24 genotype, which grouped together (Fig. 3B). These data suggested that the FL^{WF24} embryos that lack DDK activity were most similar to WT embryos rather than chiffon mutants, indicating that the loss of CHAT activity is responsible for most of the differences in gene expression observed in the *chiffon* embryos. Moreover, examination of relative gene expression levels at the 996 DEGs in each genotype revealed that the ΔN and FL^{WF24} genotypes largely resembled the WT controls (Fig. 3C). These data indicate that all of the 996 DEGs identified in chiffon embryos are regulated by CHAT rather than DDK. Interestingly, the ΔN transgene rescue construct was separated along the second PC from both the WT and FLWF24 samples (Fig. 3B), suggesting that although the ΔN and FL^{WF24} transgenes both restore CHAT function – their activity differs. The ΔN and FL^{WF24} transgenes produce the same ~48kDa Chiffon-B protein product that binds Gcn5 and nucleates CHAT formation (Torres-Zelada et al., 2019), but differ at the nucleic acid level because the ΔN transgene lacks the first 1200 bp of the *chiffon* coding region. In addition, whereas the FLWF24 transgene fully restores viability to chiffon mutants, only 66% of the expected adults emerged in *chiffon* mutants expressing the ΔN transgene, suggesting that these 1200 bp of chiffon might contribute to the proper expression of CHAT (Torres-Zelada et al., 2019). We observed significantly higher expression of the ΔN transgene relative to the other constructs (Fig. 3D), suggesting that this 1200 bp region contains negative regulatory elements that control *chiffon* transcript levels. If so, the higher expression of the ΔN transgene relative to FL^{WF24} could result in a slight gain-of-function for CHAT activity in terms of gene expression. Supporting this, 26 genes were differentially expressed between the ΔN and FL^{WF24} genotypes

245 showing an opposite direction compared to the chiffon null (Fig. 3C, Table S2). Together, these 246 data demonstrate that the Chiffon subunit with CHAT is necessary for expression of 10% of 247 expressed genes in *Drosophila* embryos, with no detectable contribution from the DDK complex to gene expression at this developmental stage. 248 249 GO term analysis revealed that the chiffon DEGs were enriched for biological processes 250 including isoprenoid metabolic processes, regulation of neurotransmitters, and cell morphogenesis involved in differentiation (Fig. 3E). Moreover, the 427 downregulated genes 251 252 (Fig. S4A), which represent potential targets for transcription activation by CHAT, were enriched 253 for GO terms including salivary gland morphogenesis, ecdysone biosynthetic process, and cell 254 morphogenesis involved in gastrulation (Fig. S4B). Based on the enrichment of terms involved 255 in development, we wondered if CHAT regulates developmental genes that first initiate 256 expression during late embryogenesis. To examine this, we compared CHAT regulated genes 257 with published developmental gene clusters (Graveley et al., 2011). While only 57% of the 258 CHAT-regulated genes (570/996) fall into any of these developmental expression clusters, of 259 these genes, 40% (228/570) are strongly associated with early-to-mid embryogenesis while 260 another 47% (271/570) are associated with late embryogenesis and larvae stage (Fig. 3F). 261 Overall, our studies demonstrated that Chiffon regulates the expression of genes induced during 262 embryo development. 263 Surprisingly, the overlap between the DEGs identified in the ada2b and chiffon mutants is guite low: 213 genes (Fig. S4C). GO categories for these 213 genes include posttranslational protein 264 folding, positive regulation of cell cycle process, and polytene chromosome puffing (Fig. S4D). 265 266 Based on these observations, and the stronger decrease in H3K14ac in chiffon embryos relative 267 to ada2b, we conclude that the Chiffon-B subunit within the CHAT complex regulates gene 268 expression in part through recruiting Gcn5 to chromatin to acetylate histone H3. However, our 269 data suggest that Chiffon-B has additional roles in gene expression that are distinct from 270 Ada2b/Gcn5 within CHAT, potentially functioning as a transcription coactivator. Our data further 271 suggest that Chiffon-B activity is necessary for the recruitment and/or activity of other HAT 272 complexes that target histone H3. A switch between expression of the DDK and CHAT Chiffon products during embryonic 273 274 development triggers CHAT formation prior to cellularization Because *chiffon* encodes two independent polypeptides that nucleate DDK or CHAT complex 275 276 formation, and because loss of DDK activity had little effect on gene expression in late stage

277 embryos and was dispensable for viability in flies (Torres-Zelada et al., 2019), we wondered if 278 the Chiffon-A product that binds Cdc7 was even expressed in embryos. In *Drosophila* embryos, 279 the first 13 cell cycles are maternally programmed and occur synchronously with extremely 280 short cycles that exhibit no gap phases. Cdc7 is essential for these early embryonic cell cycles, 281 and its protein signal declines by nuclear cycle (NC) 14 when the mid-blastula transition (MBT) 282 initiates (Seller and O'Farrell, 2018). However, it was unclear whether Cdc7 requires Chiffon-A 283 for its activity during early embryogenesis because Chiffon-A is entirely dispensable for adult viability, whereas Cdc7 is an essential gene (Stephenson et al., 2015). 284 285 To address this issue, we generated an epitope-tagged full-length *chiffon* transgene that was 286 HA-tagged on its N-terminus, and expressed this as the sole copy of Chiffon in trans in flies 287 carrying two chiffon null alleles. To assess the expression of Chiffon-A and -B, we then costained embryos with anti-HA antibodies to detect Chiffon-A containing the Cdc7-binding 288 289 domain (DDK complex), together with an anti-Chiffon antibody raised against the C-terminal end of Chiffon to detect Chiffon-B (CHAT complex) (Fig. 4A). No background immunostaining signal 290 was detected in untagged WT embryo (w^{1118}) immunostained for HA under the conditions used 291 292 (Fig. S5A). In addition, the anti-Chiffon antibody is specific for Chiffon-B because we do not 293 detect Chiffon signal in the GFP-positive chiffon mutant embryos immunostained with this 294 antibody (Figure 2B). We determined the nuclear cycle of each embryo by examining nuclei 295 number using 4',6-diamidino-2-phenylindole (DAPI) staining. We observed HA signal 296 corresponding to Chiffon-A expression from NC3 to NC14, in a pattern resembling the published 297 expression pattern of Cdc7 (Seller and O'Farrell, 2018) (Fig. 4B). However, consistent with the 298 lack of gene expression defects in later stage embryos lacking DDK, we did not detect 299 expression of Chiffon-A (HA) after NC11 with no detectable expression in later stage embryos 300 (Fig. 4B, S5B). In contrast to the early embryonic expression of Chiffon-A, we did not detect 301 expression of the Chiffon-B (anti-Chiffon) until NC10/11, after which we observed continued 302 expression throughout the later stages of embryogenesis. Notably, both Chiffon-A and -B were detected together only at NC10/11 (Fig. 4B), suggesting that Chiffon FL might be present only 303 304 transiently, if at all, at these nuclear cycles. Even if full-length Chiffon does exist transiently 305 during NC10/11, our previous studies suggest that the full-length protein does not have an 306 essential role (Torres-Zelada et al., 2019). 307 Chiffon-A and Chiffon-B are both encoded from a single, large ~5kb exon in the chiffon gene, 308 and Northern blotting analysis identified a single 6.5 kb chiffon transcript in Drosophila embryos (Landis and Tower, 1999), arguing against the presence of alternative splice isoforms. To 309

310 further test if there were differences in Chiffon-A or Chiffon-B expression at the mRNA level, we 311 performed qRT-PCR on single embryos with primers that specifically detected Chiffon-A (5' 312 product) or Chiffon-B (3' product) (Fig. 5A). To provide a relative indication of stage, we ranked 313 single embryos by the ratio of expression of nanos (nos) and even skipped (eve), which are 314 expressed early or late during the nuclear cycles, respectively (Thomsen et al., 2010). Using 315 this approach, we did not identify any substantial differences in the relative expression of 316 Chiffon-A and Chiffon-B at the mRNA level, suggesting that the full-length transcript is present 317 throughout these stages of embryogenesis. These data suggest that the switch between 318 Chiffon-A and Chiffon-B expression is not controlled by alternative splicing, and may involve 319 translational mechanisms (Fig. 5B, see Discussion). 320 Our data suggest that there is a switch at NC10/11 between the expression of the Chiffon-A product that nucleates DDK formation and the Chiffon-B product that nucleates CHAT 321 322 formation. We wondered, therefore, whether expression of this Chiffon-B product coincided with 323 the recruitment of Ada2b-PA within CHAT to the nucleus. To test this, we used anti-FLAG antibodies to immunostain embryos expressing epitope-tagged Ada2b-PA. No background 324 immunostaining signal was detected in untagged WT embryo (w^{1118}) immunostained for FLAG 325 326 under the conditions used (Fig. S5C). Similar to the nuclear localization of Chiffon-B starting at 327 NC10/11, Ada2b-PA showed nuclear-localized staining beginning at NC10/11 (Fig. 4C). 328 Intriguingly, Ada2b-PB also showed a similar pattern of immunostaining beginning at NC10/11, 329 albeit with weaker signal intensity, suggesting that SAGA/ADA recruitment to the nucleus occurs 330 during the same temporal window as CHAT recruitment. Chiffon-A within DDK is maternally required for early embryonic development. 331 We previously showed that the DDK activity of Chiffon was not necessary for adult viability, but 332 333 was essential for follicle cell amplification (Torres-Zelada et al., 2019). Because Cdc7 is 334 necessary for DNA replication during the early cell cycles (Seller and O'Farrell, 2018), we 335 hypothesized that the DDK activity of chiffon (i.e. Chiffon-A) is also required maternally for embryo development. To test this, we generated germline mosaic clones in which chiffon was 336 337 maternally depleted (Fig. 6A). Loss of *chiffon* results in a complete failure of embryos to hatch, 338 suggesting that chiffon is required maternally for embryo development but is not essential for 339 oogenesis (Fig. 6A). We could rescue this hatch defect by expressing either the FL or N-340 terminal Chiffon transgenes, suggesting that restoring DDK activity is sufficient for Chiffon's 341 function in these early nuclear cell cycles. In contrast, the Chiffon ΔN transgene did not restore

embryo hatching (Fig. 6A), suggesting that maternal CHAT is not necessary for these early stages of embryonic development.

Altogether, our data show that Chiffon-B nucleates the formation of CHAT in the early nuclear cycles of *Drosophila* embryogenesis before cellularization. We propose that this early formation of CHAT triggers histone H3 acetylation, and is necessary for the subsequent recruitment and/or activity of other histone H3 HATs such as SAGA, ADA, and even Nejire or Chameau. Alternatively, Chiffon-B might have additional functions in controlling gene expression and histone acetylation outside of the CHAT complex. Notably, CHAT formation occurs just prior to the de novo large-scale recruitment of RNA polymerase II (NC13-14) that leads to the second and massive wave massive of the zygotic genome (Chen et al., 2013), suggesting that the timing of CHAT formation could have a key role in activating this wave of early transcription (Fig. 6B).

Discussion

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358 359

360

361

362

363

364 365

366

367

368

369

370

371

372

373

374

Our data support a widespread and overlapping role for the three Ada2b-containing Gcn5 complexes, SAGA, ADA, and CHAT in embryonic gene expression in Drosophila. Consistent with the essential role of Ada2b-PA in fly viability, loss of Ada2b-PA resulted in a stronger effect on gene expression relative to Ada2b-PB, suggesting that CHAT uniquely regulates nearly a quarter of the Ada2b-dependent genes in embryos. Surprisingly, we observed stronger loss of histone acetylation in chiffon mutant embryos relative to ada2b, coupled with largely nonoverlapping changes in gene expression in chiffon versus ada2b mutant embryos. These data suggest that Chiffon might have functions outside of the CHAT complex with regards to both gene regulation and histone acetylation. However, our previous mass spectrometry analysis of Chiffon-B interacting proteins in *Drosophila* S2 cells did not identify any HATs other than Gcn5 (Torres-Zelada et al., 2019). It is possible that any interactions between Chiffon-B and other HATs might be unique to embryos because we did not observe the same level of H3K14ac decrease in *chiffon* mutant ovary follicle cells (Torres-Zelada et al., 2019). Moreover, a much higher number of transcription factors were identified in mass spectrometry of SAGA purified from embryos versus S2 cells (Weake et al., 2011), suggesting that many protein interactions may only be detected in the relevant tissue or developmental stage. Supporting a potential connection between Chiffon and other histone H3 HATs, chiffon embryos showed loss of many of the H3K14ac peaks that are present at genes that lack canonical histone acetylation (H3K14ac unique peaks) and are thought to be deposited by Chameau (Regadas et al., 2021). We recognize that identifying the direct gene targets of Chiffon-B in embryos is critical to

375 provide insight into whether Chiffon-B has roles outside of CHAT; however, our efforts to 376 characterize the genome-wide distribution of the CHAT complex have been technically 377 challenging, potentially due the presence of only a single FLAG tag on Chiffon-B, which has 378 resulted in inefficient ChIP in our hands. Other groups have also reported technical difficulties in 379 obtaining reliable ChIP-seq profiles for many of the Gcn5-containing complexes (Fischer et al., 380 2021). 381 Intriguingly, expression of the Chiffon-B polypeptide that nucleates CHAT formation is first detected around NC11, just prior to the second and large-scale recruitment of RNA Polymerase 382 383 II (Pol II) that leads to major activation of the zygotic genome (Chen et al., 2013) (Fig. 4B, 6B). 384 Because the timing of CHAT formation just precedes zygotic genome activation, we propose 385 that CHAT might have a critical role in regulating the timing of this process, albeit potentially 386 redundant with other coactivator complexes. During Drosophila embryo development, one key 387 player that activates the genome in the early embryo is the pioneer transcription factor Zelda 388 (Liang et al., 2008). Zelda binds its target genes as early as NC8, when the earliest wave of 389 zygotic transcription occurs (Li et al., 2014; Pritchard and Schubiger, 1996). There is a high 390 degree of overlap between histone acetylation at H3K18 and K27, H4K8, and nucleosome remodeling around Zelda binding sites (Li et al., 2014), suggesting that HAT activity contributes 391 392 to Zelda-mediated gene activation. Notably, ChIP-seq analysis shows that these histone marks 393 are all enriched at NC8 and continue to increase substantially in levels through NC14 (Li et al., 394 2014). Nejire (CBP-p300) is regarded as one of the major HATs that contributes to these 395 particular histone acetyl marks (Tie et al., 2009), suggesting that it might be the major HAT that 396 functions during the early first wave of zygotic transcription. However, Zelda might require 397 additional interacting partners at NC14 that are only expressed just prior to this stage (Harrison 398 et al., 2011); we propose that Chiffon-B, as part of CHAT, could constitute a key partner for 399 Zelda in this second wave of zygotic genome activation. Notably, H3K14ac was not examined in 400 the study that identified increases in the other histone acetyl marks that correlate with the first 401 and second waves of zygotic transcription (Li et al., 2014), so it remains possible that Chiffon-B and CHAT could play an as-of-yet unrecognized role in this process. 402 403 What could be responsible for the switch in expression between Chiffon-A and Chiffon-B during 404 early embryonic development? Translational control of maternally-deposited mRNAs plays a 405 central role in early *Drosophila* development because the two waves of zygotic transcription do 406 not begin until NC8 and NC14 (Chekulaeva et al., 2006; Hamm and Harrison, 2018; Tadros and

Lipshitz, 2009). Many RNA-binding proteins control translation of mRNAs; for example, the

Drosophila RNA-binding protein Bruno binds to specific Bruno response elements (BREs), inhibiting translation of these BRE-containing mRNAs (Chekulaeva et al., 2006; Tarn and Lai, 2011). Interestingly, there are 3 BREs in the Chiffon-A region of the *chiffon* mRNA that could negatively regulate the translation of Chiffon N region after NC11 (Fig. 5B). Supporting the hypothesis that negative regulatory elements are present in this N-terminal region that spans ~1200 bp, the ΔN transgene that lacked this region showed partial gain-of-function effects with respect to CHAT gene expression activity. We propose that the unique dicistronic gene structure of *chiffon* allows it to act as a developmental switch to trigger the timing of zygotic genome activation at the same time that embryonic nuclear cycles start to slow, due in part to decreased DDK activity (Fig. 6B). Because the C-terminal extension of Chiffon is only conserved within insect orthologs of Dbf4, it is likely that other mechanisms play a role in this transition in vertebrates and other animals.

MATERIAL AND METHODS

121	Genetics
122	Flies were raised in a 12:12 h light:dark cycle at 25°C on standard fly food (Lewis, 1960).
123	Genotypes for flies used in this study are described in Table S4. For RNA-seq experiments, flies
124	were generated carrying two different chiffon (chiffon ETBE3 and chiffon DsRed) (Torres-Zelada et al.,
125	2019) or <i>ada2b (ada2b</i> ¹ <i>and ada2b</i> ⁸⁴²) (Pankotai et al., 2005; Pankotai et al., 2013) null alleles
126	on chromosome 2 (chiffon) or chromosome 3 (ada2b), respectively, as either actin-Gal4 (or
127	elav-Gal4 for ada2b) or UAS-10XGFP. To identify homozygous chiffon or ada2b mutants, we
128	crossed flies as outlined in Figures 1 and 3 and manually selected GFP-positive embryos that
129	carry the two different null alleles. Chiffon rescue transgenes contain genomic chiffon enhancer
130	sequences that span -3480 bp relative to the translation start site and include the <i>chiffon</i> 3'
131	UTR sequences that extend 1056 bp past the stop codon as described previously in Torres-
132	Zelada et al. 2019. Ada2b transgenes were expressed in trans under control of their
133	genomic $ada2b$ enhancer sequences $(ada2b_{EN})$ that begin -1878 bp from the transcription start
134	site and extend +1782 bp to the end of the second exon, as described previously in Weake et
135	al. 2011. We note that the Chiffon C-terminal transgene previously referred to as Chiffon-C in
136	(Torres-Zelada et al., 2019) is referred to as ΔN in this study. For ChIP-seq experiments,
137	homozygous <i>chiffon</i> mutants or wild type control were selected as outlined in Figure 3. We
138	generated an epitope-tagged full-length <i>chiffon</i> transgene that was HA-tagged on its N-terminal
139	domain, and FLAG-tagged on its C-terminal domain, and expressed this as the sole copy of
140	Chiffon in trans in flies carrying two chiffon null alleles. Expression of the FL-Chiffon transgene
141	fully restored viability and fertility to flies carrying the two chiffon null alleles.
142	RNA-seq
143	GFP-positive stage 12-14 embryos were manually selected using a dissecting microscope with
144	fluorescence (Nightsea SFA). Total RNA from 6 embryos (stage 12 - 14) per biological replicate
145	was extracted using the Direct-zol RNA microprep kit (Zymo Research #R2060). Four biological
146	replicates were performed for RNA-seq experiments. Libraries were generated from 25 ng RNA
147	using the Ovation RNA-seq system (NuGEN) with unique dual indices for multiplexing and
148	Drosophila-specific ribo-depletion.
149	RNA-seq analysis
150	Reads were trimmed using Trimmomatic (v0.38). Quality trimmed reads were mapped to the <i>D</i> .
451	melanogaster genome (BDGP6.99) using HISAT2 (v2.0). Counts were identified for each gene
152	using Htseq-count (v0.11.1) with default parameters. Counts were normalized by replicates
153	using RUV normalization (R package <i>RUVseq</i> , v1.26.0). Differentially expressed genes (DEGs)

- 454 (False Discovery Rate, FDR < 0.05, FC ≥ 0.5) were identified using EdgeR (v3.30.3) filtering low
- 455 count samples, removing rRNA genes because RNA-seq libraries were ribo-depleted, and
- removing the following features: "no feature", "ambiguous", "too low aQual", "not aligned", and
- 457 "alignment not unique". GO term analysis was performed with clusterProfiler (v 3.18.1) and
- 458 TopGO (v2.44.0).

459

Chromatin immunoprecipitation

- S. cerevisiae chromatin was prepared as described previously (Cloutier et al., 2013). GFP-
- 461 positive stage 12-14 *Drosophila* embryos were manually selected using a dissecting microscope
- with fluorescence (Nightsea SFA). 300 GFP-positive embryos per biological replicate were
- collected. After dechorionation with 50% bleach, *Drosophila* embryos were fixed as previously
- described (Zeitlinger et al., 2007). Briefly embryos (stage 12 14) were transferred to 3 mL
- glass vial with PBT (PBS with 0.1% Triton X-100). PBT was then replaced with 230 µl fixation
- solution (50 mM HEPES, 1 mM EDTA, 0.5 mM EGTA, 100 mM NaCl) plus 1.8% formaldehyde
- and 750 µl n-heptane. Embryos were shaken vigorously for 15 min at room temperature.
- Embryos were centrifuged for 1 min at 500 x g at 4 °C and the supernatant was discarded.
- Fixation reaction was then quenched by addition of 1.5 mL PBT-glycine (PBT with 250 mM
- 470 glycine), followed by vigorous shaking for 1 min at room temperature, and collection by
- centrifugation as above. Finally, embryos were washed twice with 1 mL PBT and then there
- were resuspended in 1 mL of PBS with 0.5% Triton X-100. 300 GFP-positive embryos (per
- 473 replicate) were then manually collected using a dissecting microscope with fluorescence
- 474 (Nightsea SFA), and snap-frozen in liquid nitrogen. Then, chromatin pellet was washed three
- 475 times with buffer A1 (15 mM HEPES, pH 7.5, 15 mM NaCl, 60 mM KCl, 4 mM MgCl₂, 0.5%
- 476 Triton X-100) and once with buffer A2 (15 mM HEPES, pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5
- 477 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 0.5% N-laurosylsarcosine)
- and finally chromatin was sonicated in 130 µL of buffer A2 in Covaris E220 with the following
- conditions: 14min, 2% duty cycle, 105 Watts and 200 c.p.b to obtain an average fragment size
- of ~400bp. After centrifugation at 14,000 rpm for 10 min at 4°C, soluble chromatin was diluted
- 481 with buffer A2 (0.1 %SDS) and used for ChIP. ChIP was performed as described (Jauregui-
- 482 Lozano et al., 2021) with the following modification. 1 μg of *Drosophila* chromatin (with 50 ng of
- 483 Saccharomyces spike-in chromatin, to enable us to normalize our signal to this internal control
- (Chen Kaifu et al.). Spike-in factors are reported in Table S5. Chromatin was incubated with 1
- 485 μg of each of the following antibodies: anti-acetylated H3-Lys14 (rabbit; 07353, Millipore), anti-
- 486 H3 (rabbit; ab1791, Abcam) at 4°C overnight with rotation. Immunoprecipitated protein-DNA
- complexes were incubated with 25 µL Dynabeads protein G (ThermoFisher #10004D) for 4

- 488 hours at 4°C. Protein-DNA complexes were eluted from the magnetic beads with Elution buffer
- 489 (1X TE, 1% SDS, 250 mM NaCl), treated with RNAse A (ThermoFisher #EN0531) at 37°C for
- 490 30 min and with Proteinase K (ThermoFisher #AM2546) at 55°C overnight. DNA purification.
- 491 quantification, and input fragment size determination were performed as previously described
- 492 (Jauregui-Lozano et al., 2021). Three biological replicates were performed for ChIP-seq
- experiments. ChIP-seq libraries were generated from 1 ng input and 0.5 ng ChIP DNA using the
- Ovation Ultralow library system (NuGEN) with unique dual indices for multiplexing.

495 ChIP-seq analysis

- Reads were trimmed using Trimmomatic (v0.38) to filter out low quality reads and remove
- adapter contamination. Quality trimmed reads were mapped to the *D. melanogaster* genome
- 498 (BDGP6.99) and *S. cerevisiae* (S288C) genome using Bowtie2 (v2.3.5.1) using -sensitive
- settings. For H3K14ac signal, spike-in factors were calculated as described (Orlando et al.,
- 500 2014), which are reported in Table S3, and used to generate normalized bigwig files using
- deepTools (v3.1.1) bamCoverage subpackage, generating Reference adjusted Reads Per
- Million (RRPM). Metaplots and genomic distribution heatmaps were made with deepTools
- 503 (v3.1.1) subpackages: computeMatrix, plotHeatmap, and plotProfile. The Integrative Genomics
- Viewer (IGV) was used to generate single gene examples shown.

Immunostaining

- 506 Embryos were dechorionated with bleach and cross-linked with 4% formaldehyde in PEM Buffer
- 507 (0.5M PIPES, 5mM MgCl₂, 5mM EGTA, pH 6.9) in 2ml heptane, while vortexing at medium
- speed for 20 minutes. Embryos were devitellinized in methanol/heptane and kept at -20C until
- 509 needed. Embryos were immunostained as in (Rothwell and Sullivan, 2007) using: H3K14ac
- 510 (1:200, rabbit, 07353, Millipore), HA (1:200, rat, 11867423001, Roche), FLAG (1:200, rabbit;
- 511 F7425, Sigma), *Drosophila* Chiffon-C (rabbit, 1:200), Alexa Fluor 488- and Alexa Fluor 568-
- 512 conjugated secondary antibody (1:400; goat; Thermo Scientific). Cell nuclei were stained using
- 1 μg/mL 4',6-diamidino-2-phenylindole, DAPI. Embryos were staged according to the number of
- nuclei stained by DAPI. Images were taken using a Leica DM6B fluorescent microscope
- equipped with CTR6-LED and DFC450 digital camera. Acetylation levels were determined as
- average sum intensity values for fluorescence comparing GFP (mutant embryo) with the non-
- 517 GFP embryo (WT homozygous sibling) using Image J software. Multiple sections were
- examined for each embryo ($n \ge 3$), and single optical sections are shown for each
- 519 representative image.
- 520 Cloning and Purification of Recombinant Gcn5 core complex from Sf21 insect cells

- Coding sequences for Ada2b-PA, Gcn5, Ada3, and Sgf29 were cloned into pBACPAK8 vectors
- with the addition of an N-terminal His-FLAG epitope-tag for Ada2b-PA, and expressed in Sf21
- 523 cells infected with Baculovirus as previously described (Stephenson et al., 2015).
- 524 Western blot
- 525 The following antibodies were used for western blot analysis: anti-Gcn5 (rabbit, 1:1000), anti-
- 526 Ada3 (rabbit, 1:3000), anti-Sgf29 (rabbit. 1:500), anti-FLAG M2-peroxidase (HRP) (A8592,
- 527 Sigma, 1:5000).
- 528 **qRT-PCR**
- Quantitative real time PCR (qRT-PCR) analysis for mRNA levels of Chiffon-A or Chiffon-B
- during the early developmental stage was performed on RNA isolated from single embryos
- 531 collected 0 3h AEL using Direct-zol RNA Micro-prep kit (Zymo Research, Cat. #R2062).
- Relative expression for each gene was normalized to *Rpl32*. Primers are listed in Table S5.
- 533 **Germline clone analysis**
- 534 hsFLP/Y; ovoD1, FRT40A/Cy) males were crossed to females of the indicated genotype e.g.
- *chiffon*^{ETBE3}, FRT40A/CyO that were homozygous for rescue transgene on chromosome 3 (see
- Table S3 for genotypes). Progeny were heat-shocked for 2 hours on two subsequent days 3 4
- days AEL, and non-CyO females were selected and crossed with WT (w^{1118}) males to assess
- fertility and embryo hatch rates. Non-production of eggs, hatched and non-hatched embryos
- were counted for individual female progeny (n). Unhatched embryos were defined as failure to
- 540 produce first instar larvae >26h AEL.
- 541 Antibody production
- 542 The Chiffon-C polyclonal antibody was generated against His-tagged 1400 1695 C-terminal
- recombinant Chiffon protein expressed in *E. coli* injected into rabbits. The rabbit serum was
- affinity purified against GST-tagged recombinant Chiffon C-terminal domain, and used for
- 545 immunostaining as described.
- 546 **Data availability**
- 547 RNA-seq and ChIP-seq data are accessible through the GEO repository under series accession
- 548 number GSE179065.
- 549 **COMPETING INTERESTS**
- The authors declare no competing or financial interests.
- 551 **ACKNOWLEDGMENTS**
- We thank the National Science Foundation for their support under Award Number 1930237 to
- 553 V.W. E. F.T-Z. was supported, in part, by a fellowship from the Purdue Research Foundation,

- and the Bilsland Dissertation Fellowship from the Biochemistry Department. We also thank S.
- 555 Cloutier and E. Tran for providing yeast samples. Information from FlyBase was used in this
- 556 study.

557

562

AUTHOR CONTRIBUTIONS

- Conceptualization: E.F.T.-Z., V.M.W.; Formal analysis: E.F.T.-Z., V.M.W.; Investigation: E.F.T.-
- 559 Z., S.G, H.R.B, V.M.W.; Data curation: E.F.T.-Z., V.M.W.; Writing original draft: E.F.T.-Z.,
- V.M.W.; Visualization: E.F.T.-Z., S.G, H.R.B, V.M.W.; Supervision: V.M.W.; Project
- administration: V.M.W.; Funding acquisition: V.M.W.

REFERENCES

- Baker, S. P., Phillips, J., Anderson, S., Qiu, Q., Shabanowitz, J., Smith, M. M., Yates, J. R. 3rd, Hunt, D. F. and Grant, P. A. (2010). Histone H3 Thr 45 phosphorylation is a replicationassociated post-translational modification in S. cerevisiae. *Nat Cell Biol* 12, 294–298.
- Chekulaeva, M., Hentze, M. W. and Ephrussi, A. (2006). Bruno Acts as a Dual Repressor of
 oskar Translation, Promoting mRNA Oligomerization and Formation of Silencing
 Particles. *Cell* 124, 521–533.
- Chen, K., Johnston, J., Shao, W., Meier, S., Staber, C. and Zeitlinger, J. (2013). A global
 change in RNA polymerase II pausing during the Drosophila midblastula transition. *Elife* 2, e00861.
- Chen Kaifu, Hu Zheng, Xia Zheng, Zhao Dongyu, Li Wei, and Tyler Jessica K. The Overlooked
 Fact: Fundamental Need for Spike-In Control for Virtually All Genome-Wide Analyses.
 Molecular and Cellular Biology 36, 662–667.
- Cloutier, S. C., Wang, S., Ma, W. K., Petell, C. J. and Tran, E. J. (2013). Long Noncoding RNAs Promote Transcriptional Poising of Inducible Genes. *PLOS Biology* 11, e1001715.
- Fischer, V., Plassard, D., Ye, T., Reina-San-Martin, B., Stierle, M., Tora, L. and Devys, D. (2021). The related coactivator complexes SAGA and ATAC control embryonic stem cell self-renewal through acetyltransferase-independent mechanisms. *Cell Rep* 36, 109598.
- Grant, P. A., Duggan, L., Côté, J., Roberts, S. M., Brownell, J. E., Candau, R., Ohba, R., Owen Hughes, T., Allis, C. D., Winston, F., et al. (1997). Yeast Gcn5 functions in two
 multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada
 complex and the SAGA (Spt/Ada) complex. *Genes & Development* 11, 1640–1650.
- Graveley, B. R., Brooks, A. N., Carlson, J. W., Duff, M. O., Landolin, J. M., Yang, L., Artieri, C. G., van Baren, M. J., Boley, N., Booth, B. W., et al. (2011). The developmental transcriptome of Drosophila melanogaster. *Nature* 471, 473–479.
- Guelman, S., Suganuma, T., Florens, L., Swanson, S. K., Kiesecker, C. L., Kusch, T.,
 Anderson, S., Yates, J. R., Washburn, M. P., Abmayr, S. M., et al. (2006). Host Cell
 Factor and an Uncharacterized SANT Domain Protein Are Stable Components of ATAC,

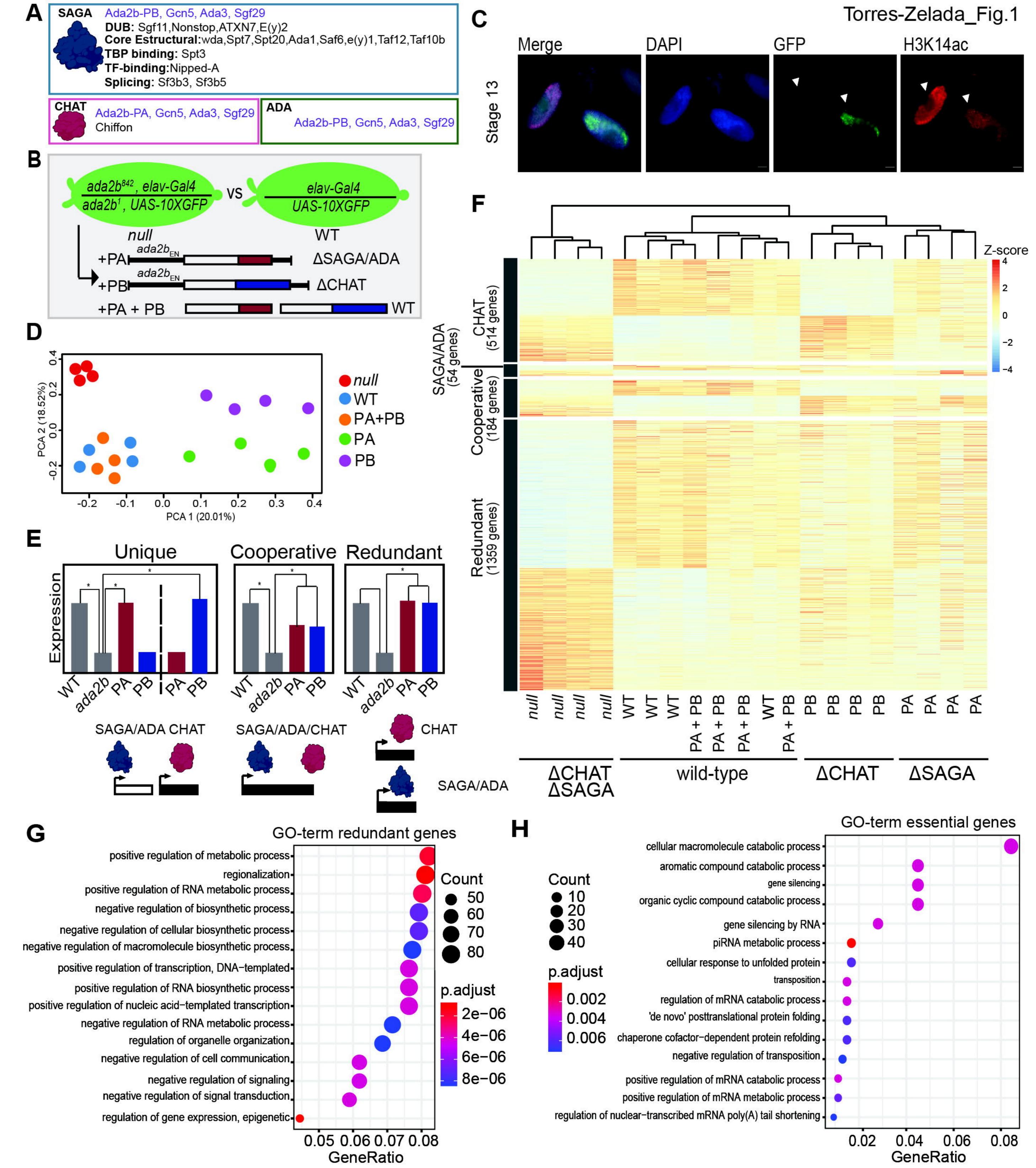
- a Novel dAda2A/dGcn5-Containing Histone Acetyltransferase Complex in Drosophila. *Mol. Cell. Biol.* 26, 871.
- Hamm, D. C. and Harrison, M. M. (2018). Regulatory principles governing the maternal-tozygotic transition: insights from Drosophila melanogaster. *Open Biology* 8, 180183.
- Harrison, M. M., Li, X.-Y., Kaplan, T., Botchan, M. R. and Eisen, M. B. (2011). Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition. *PLOS Genetics* 7, e1002266.
- Jauregui-Lozano, J., Bakhle, K. and Weake, V. M. (2021). In vivo tissue-specific chromatin profiling in Drosophila melanogaster using GFP-tagged nuclei. *Genetics*.
- Kusch, T., Guelman, S., Abmayr, S. M. and Workman, J. L. (2003). Two Drosophila Ada2 homologues function in different multiprotein complexes. *Mol Cell Biol* 23, 3305–3319.
- Landis, G. and Tower, J. (1999). The Drosophila chiffon gene is required for chorion gene amplification, and is related to the yeast Dbf4 regulator of DNA replication and cell cycle.

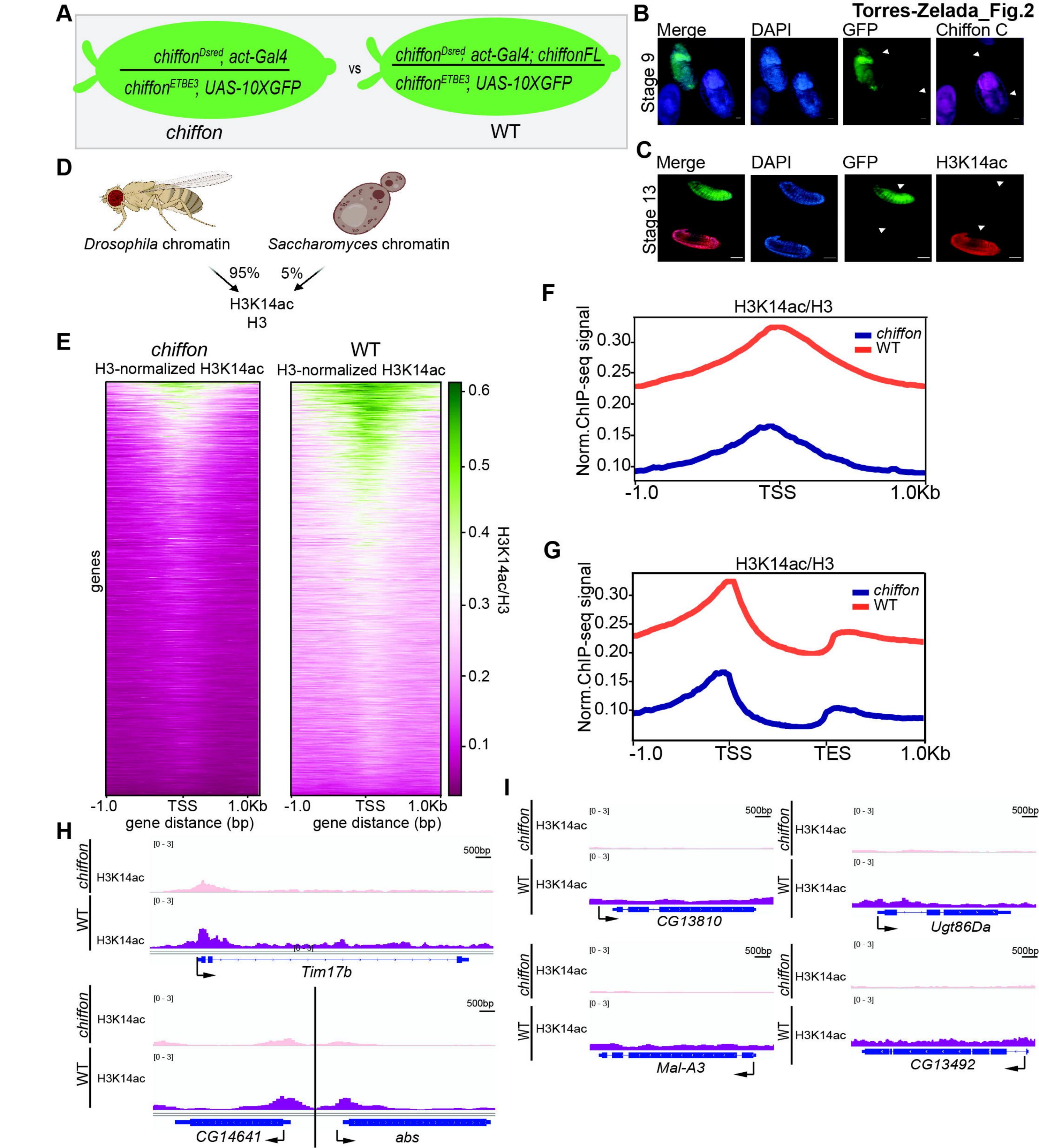
 Development 126, 4281.
- Lewis, E. (1960). A new standard food medium. Drosophila Information Service 34: 117–118. 34, 117–118.
- 606 Li, X.-Y., Harrison, M. M., Villalta, J. E., Kaplan, T. and Eisen, M. B. (2014). Establishment of 607 regions of genomic activity during the Drosophila maternal to zygotic transition. *eLife* 3, 608 e03737.
- 609 Li, X., Seidel, C. W., Szerszen, L. T., Lange, J. J., Workman, J. L. and Abmayr, S. M. (2017). 610 Enzymatic modules of the SAGA chromatin-modifying complex play distinct roles in 611 Drosophila gene expression and development. *Genes Dev* 31, 1588–1600.
- Liang, H.-L., Nien, C.-Y., Liu, H.-Y., Metzstein, M. M., Kirov, N. and Rushlow, C. (2008). The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. *Nature* 456, 400–403.
- 615 Muratoglu, S., Georgieva, S., Pápai, G., Scheer, E., Enünlü, I., Komonyi, O., Cserpán, I., 616 Lebedeva, L., Nabirochkina, E., Udvardy, A., et al. (2003). Two Different 617 Drosophila/em> ADA2 Homologues Are Present in Distinct GCN5 Histone
- Acetyltransferase-Containing Complexes. *Mol. Cell. Biol.* 23, 306.
- Orlando, D. A., Chen, M. W., Brown, V. E., Solanki, S., Choi, Y. J., Olson, E. R., Fritz, C. C., Bradner, J. E. and Guenther, M. G. (2014). Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. *Cell Rep* 9, 1163–1170.
- Pankotai, T., Komonyi, O., Bodai, L., Ujfaludi, Z., Muratoglu, S., Ciurciu, A., Tora, L., Szabad, J. and Boros, I. (2005). The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions. *Mol Cell Biol* 25, 8215–8227.
- Pankotai, T., Zsindely, N., Vamos, E. E., Komonyi, O., Bodai, L. and Boros, I. M. (2013). Functional characterization and gene expression profiling of Drosophila

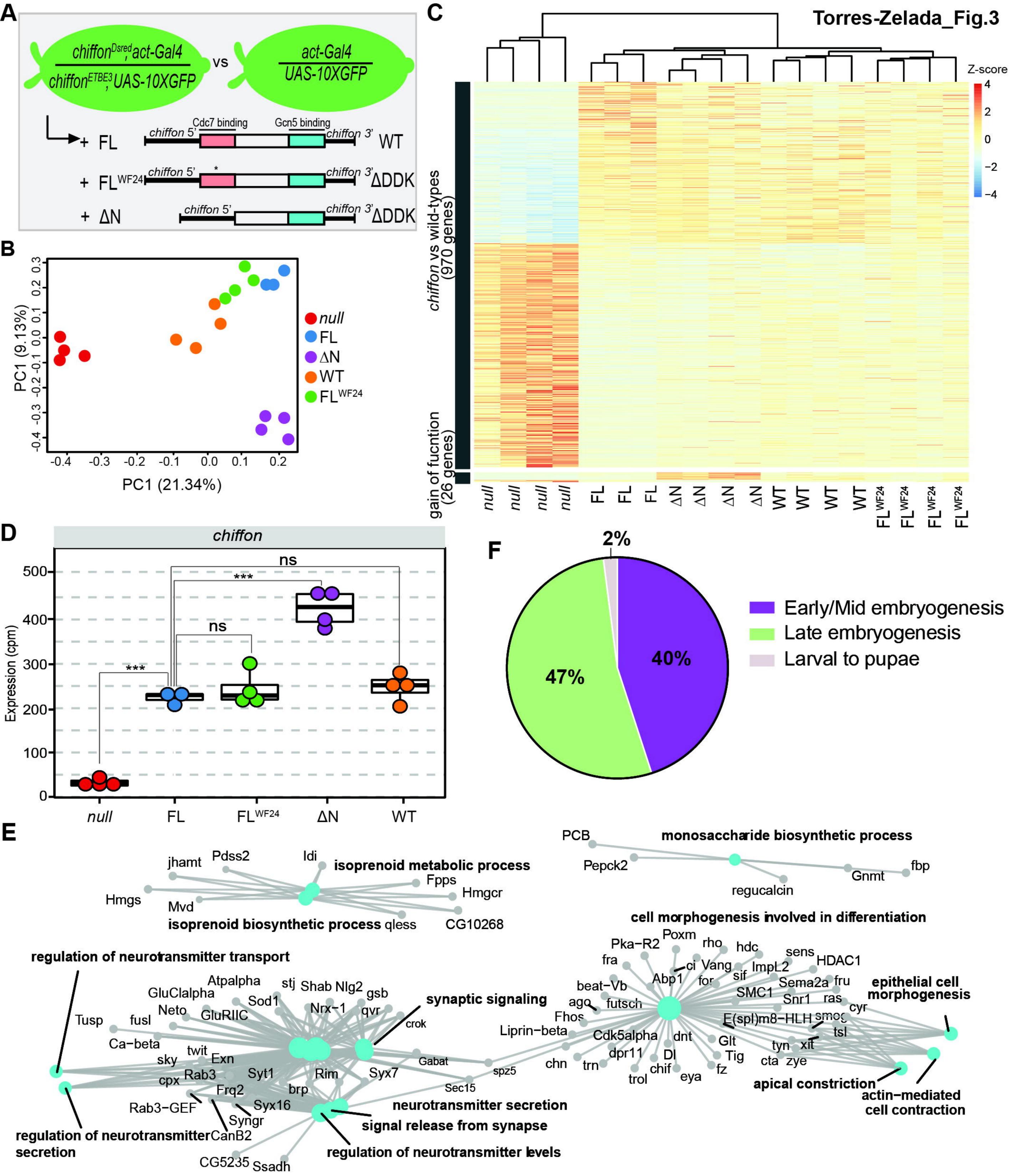
- 628 melanogastershort dADA2b isoform-containing dSAGA complexes. *BMC Genomics* 14, 629 44.
- 630 Pritchard, D. K. and Schubiger, G. (1996). Activation of transcription in Drosophila embryos is a 631 gradual process mediated by the nucleocytoplasmic ratio. *Genes & Development* 10, 632 1131–1142.
- Regadas, I., Dahlberg, O., Vaid, R., Ho, O., Belikov, S., Dixit, G., Deindl, S., Wen, J. and
 Mannervik, M. (2021). A unique histone 3 lysine 14 chromatin signature underlies tissuespecific gene regulation. *Molecular Cell* 81, 1766-1780.e10.
- Rothwell, W. F. and Sullivan, W. (2007). Drosophila Embryo Dechorionation. *Cold Spring Harbor Protocols* 2007, pdb.prot4826.
- Seller, C. A. and O'Farrell, P. H. (2018). Rif1 prolongs the embryonic S phase at the Drosophila mid-blastula transition. *PLOS Biology* 16, e2005687.
- Soffers, J. H. M. and Workman, J. L. (2020). The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. *Genes Dev* 34, 1287–1303.
- Soffers, J. H. M., Li, X., Saraf, A., Seidel, C. W., Florens, L., Washburn, M. P., Abmayr, S. M. and Workman, J. L. (2019). Characterization of a metazoan ADA acetyltransferase complex. *Nucleic Acids Research* 47, 3383–3394.
- Stephenson, R., Hosler, M. R., Gavande, N. S., Ghosh, A. K. and Weake, V. M. (2015).
 Characterization of a Drosophila Ortholog of the Cdc7 Kinase: A ROLE FOR Cdc7 IN
 ENDOREPLICATION INDEPENDENT OF CHIFFON. *Journal of Biological Chemistry* 290, 1332–1347.
- Suganuma, T., Gutiérrez, J. L., Li, B., Florens, L., Swanson, S. K., Washburn, M. P., Abmayr, S.
 M. and Workman, J. L. (2008). ATAC is a double histone acetyltransferase complex that
 stimulates nucleosome sliding. *Nature Structural & Molecular Biology* 15, 364–372.
- Tadros, W. and Lipshitz, H. D. (2009). The maternal-to-zygotic transition: a play in two acts. *Development* 136, 3033–3042.
- Tarn, W.-Y. and Lai, M.-C. (2011). Translational control of cyclins. *Cell Division* 6, 5.
- Thomsen, S., Anders, S., Janga, S. C., Huber, W. and Alonso, C. R. (2010). Genome-wide
 analysis of mRNA decay patterns during early Drosophiladevelopment. *Genome Biology* 11, R93.
- Tie, F., Banerjee, R., Stratton, C. A., Prasad-Sinha, J., Stepanik, V., Zlobin, A., Diaz, M. O., Scacheri, P. C. and Harte, P. J. (2009). CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. *Development* 136, 3131–3141.
- Torres-Zelada, E. F. and Weake, V. M. (2020). The Gcn5 complexes in Drosophila as a model for metazoa. *Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms* 194610.

664 Torres-Zelada, E. F., Stephenson, R. E., Alpsoy, A., Anderson, B. D., Swanson, S. K., Florens, L., Dykhuizen, E. C., Washburn, M. P. and Weake, V. M. (2019). The 665 Drosophila
/em> Dbf4 ortholog Chiffon forms a complex with Gcn5 that is 666 667 necessary for histone acetylation and viability. J. Cell Sci. 132, jcs214072. Weake, V. M., Lee, K. K., Guelman, S., Lin, C.-H., Seidel, C., Abmayr, S. M. and Workman, J. 668 669 L. (2008). SAGA-mediated H2B deubiquitination controls the development of neuronal 670 connectivity in the Drosophila visual system. *EMBO J* 27, 394–405. 671 Weake, V. M., Swanson, S. K., Mushegian, A., Florens, L., Washburn, M. P., Abmayr, S. M. and Workman, J. L. (2009). A novel histone fold domain-containing protein that replaces 672 TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression. Genes 673 674 Dev 23, 2818-2823. Weake, V. M., Dyer, J. O., Seidel, C., Box, A., Swanson, S. K., Peak, A., Florens, L., Washburn, 675 M. P., Abmayr, S. M. and Workman, J. L. (2011). Post-transcription initiation function of 676 677 the ubiquitous SAGA complex in tissue-specific gene activation. Genes Dev 25, 1499-1509. 678 Zeitlinger, J., Zinzen, R. P., Stark, A., Kellis, M., Zhang, H., Young, R. A. and Levine, M. (2007). 679 Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of 680 681 diverse patterning processes in the Drosophila embryo. Genes & Development 21, 385-390. 682 683 684

FIGURE LEGENDS


- 686 Figure 1. Ada2b splice isoforms act redundantly to regulate gene expression in embryos. (A) Schematic showing the differences in composition between the SAGA, ADA, and CHAT 687 complexes. The shared-Gcn5 core subunits are labeled in purple. (B) Outline of the RNA-seq 688 design. Flies that carry two different ada2b null alleles (ada2b⁸⁴² or ada2b¹) were crossed as 689 outlined, and GFP-positive stage 12-14 embryos were manually selected. The Ada2b-PA or 690 691 Ada2b-PB transgenes were expressed as single copies in trans under the control of the ada2b 692 genomic regulatory sequences (ada2b_{EN}). (C) Stage 13 embryos were stained for DAPI and 693 H3K14ac. GFP-positive embryo is ada2b null. Scale bars: 20 µm. (D) Scatterplot of principal 694 component analysis (PCA) of normalized counts for each replicate. (E) Idealized bar plots 695 demonstrating the criteria for Ada2b regulated genes. (F) Heatmap of RNA-seq expression z-696 scores computed for DEGs in ada2b versus PA+PB and WT. (G, H) GO terms for genes 697 regulated redundantly by SAGA/ADA and CHAT (G) or requiring CHAT for unique and 698 cooperative expression (H). 699 Figure 2. CHAT is necessary for global H3K14ac levels in embryos. (A) Outline of the ChIP-700 seq design. Stage 12 - 14 GFP-positive embryos that were chiffon null were compared with 701 chiffon embryos expressing the Chiffon FL rescue transgene (WT). (B) Stage 9 embryos were 702 stained with DAPI and an antibody raised against the C-terminal region of Chiffon (1400 -703 1695aa). GFP-positive embryo is chiffon null. Scale bars: 20 µm. (C) Stage 13 embryos were 704 stained for DAPI and H3K14ac. (D) Schematic explaining spike-in normalization. Before starting 705 ChIP, Drosophila chromatin was mixed with Saccharomyces cerevisiae chromatin in the 706 indicated proportions. (E) Heatmaps showing RRPM-normalized H3K14ac ChIP-seq signal 707 around the transcription start site (TSS) of protein-coding genes in *chiffon* and WT embryos. (F) 708 Metaplot of RRPM-normalized H3K14ac ChIP-seq signal around the TSS averaged for all 709 protein-coding genes in *chiffon* (blue) and WT (orange). (G) Metaplots of *chiffon* (blue) and WT 710 (orange) RRPM-normalized H3K14ac ChIP-seq signal over gene bodies averaged for all 711 protein-coding genes. (H) Genome browser inspection using IGV of RRPM-normalized 712 H3K14ac signal at representative genes comparing chiffon and WT. Data scaled to the same height for all comparisons (0 - 3). (I) Genome browser snapshots (IGV) showing RRPM-713 714 normalized H3K14ac signal for three representative genes containing unique H3K14ac peaks 715 for chiffon and WT samples.
- Figure 3. Chiffon regulates gene expression in embryos. (A) Outline of the Chiffon RNA-seq design. Flies that carry two different *chiffon* null alleles (*chiffon* Diffen or *chiffon* were crossed) were crossed


718	as outlined	and GFP-positive	e stage 12-14	l embryos were	manually s	selected as	chiffon nu	ıll
/ TO	as outilliou.	and On Foositi	/ C 3 lauc 12-1-	t CIIIDI VOS WCIC	illallually s	ocicolou as		an.


- 719 Chiffon rescue transgenes were expressed in *trans* under control of their indicated *chiffon* 5' and
- 720 3' regulatory regions (black boxes). (B) PCA of normalized counts for each sample. (C)
- Heatmap of RNA-seq expression z-scores computed for DEGs in *chiffon* versus FL and WT. (D)
- Box plot showing counts per million (cpm) of replicate normalized counts for *chiffon* across all
- genotypes and samples. *P*-values for the indicated comparisons were determined by
- ANOVA+Dunnett; *p-value* (***, p < 0.0001); ns, not significant. (E) Gene Concept Network plot
- 725 (Cnetplot) highlighting linkage of individual genes and associated functional categories of over-
- represented genes in *chiffon* embryos. (F) Proportion of CHAT-regulated genes in each
- 727 developmental cluster.
- 728 Figure 4. The DDK and CHAT complexes are expressed sequentially during the early
- nuclear embryonic cycles. (A) Schematic of the epitope-tagged FL Chiffon transgene. Chiffon
- transgene is HA tagged in the N-terminal domain and FLAG tagged in the C-terminal domain.
- 731 (B) Diagram highlighting key events that occur during the maternally-driven embryo nuclear
- cycles. There is an initial wave of Pol II recruitment and zygotic transcription at NC8 followed by
- 733 a second more widespread wave of Pol II recruitment and transcription at NC13.
- 734 Immunostaining of embryos at the indicated NC with HA and anti-Chiffon. Embryos were co-
- 735 stained with DAPI and staged according to the number/position of nuclei. Adjacent insets:
- enlarged views of highlighted areas. Representative images are shown ($n \ge 3$). (C)
- 737 Immunostaining of embryos during the indicated NC with FLAG to detect Ada2b-PA or Ada2b-
- 738 PB. Embryos were co-stained with DAPI to visualize nuclei. Scale bars: 20 µm
- 739 Figure 5. The switch between Chiffon-A and Chiffon-B expression is not regulated at the
- 740 **mRNA level**
- 741 (A) Male flies expressing the epitope-tagged Chiffon-FL transgene were crossed to untagged
- females (w¹¹¹⁸), and expression of the paternal *chiffon* gene was assessed in single embryos
- using gRT-PCR with primers specific for Chiffon-A (using HA forward primer and chiffon 5'
- reverse primer) or Chiffon-B (using a *chiffon* forward primer in the 3' region and a FLAG reverse
- primer). Transcript levels were measured in single embryos and are shown relative to *Rpl32*.
- 746 Single embryos were ranked using the ratio of expression of nanos (nos, early) versus even
- 747 *skipped* (eve, late) to provide a relative indication of early versus later developmental stage.
- 748 Each dot represents a single relative transcript measurement (eg chiffon-A/Rpl32) for one
- individual embryo, so that relative levels of Chiffon-A and Chiffon-B mRNA can be compared

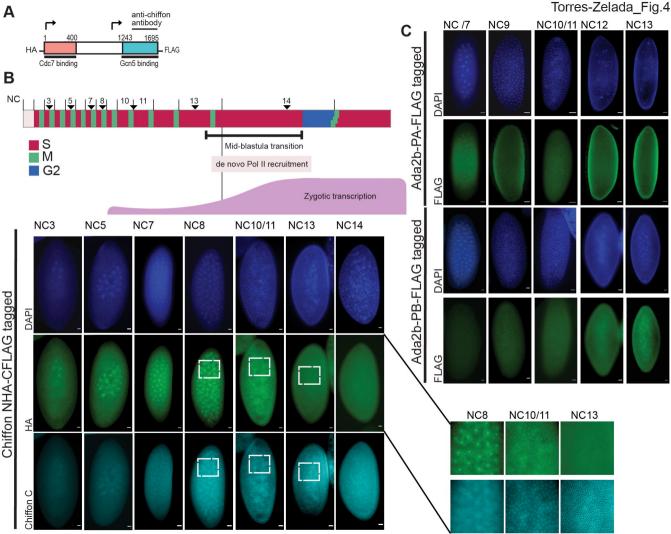

directly. (B) Schematic of *chiffon* gene showing Bruno response elements present in the first 1200bp (N) that are absent from ΔN region.

Figure 6. DDK and CHAT complexes have distinct roles in early embryo development. (A) Germline clones for *chiffon* were generated to assess if DDK or CHAT function was necessary for early embryonic development. Fertility was examined in individual females (n shown above each bar). (B) Model illustrating the developmental switch between expression of the Chiffon-A and Chiffon-B products, that nucleate formation of DDK or CHAT, respectively. The expression of Chiffon-A is highest during the early nuclear cycles when DNA replication occurs rapidly, and starts to diminish as the nuclear cycles slow and zygotic transcription begins. The onset of Chiffon-B expression occurs just prior to the second wave of zygotic transcription, suggesting a potential role in this process.

