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Abstract

In patients with dense breasts or at high risk of breast cancer, dynamic contrast enhanced
MRI (DCE-MRI) is a highly sensitive diagnostic tool. However, its specificity is highly variable
and sometimes low; quantitative measurements of contrast uptake parameters may improve
specificity and mitigate this issue. To improve diagnostic accuracy, data need to be captured at
high spatial and temporal resolution. While many methods exist to accelerate MRI temporal
resolution, not all are optimized for the conditions of breast DCE-MRI. We propose a novel,
flexible, and powerful framework for the reconstruction of highly-undersampled DCE-MRI data:
enhancement-constrained acceleration (ECA). Enhancement-constrained acceleration relies on
(a) an assumption of smooth enhancement over small time-scales and (b) somewhat precise
knowledge of per-frequency acquisition times. This method is tested in silica with
physiologically realistic virtual phantoms, simulating state-of-the-art ultrafast acquisitions at 3.5s
temporal resolution reconstructed at 0.25s temporal resolution (demo code available here).
Virtual phantoms were developed from real patient data and parametrized in continuous time
with arterial input function (AIF) models and lesion enhancement functions. Enhancement-
constrained acceleration was compared to standard ultrafast reconstruction in estimating the
bolus arrival time and initial slope of enhancement from reconstructed images. We found that the
ECA method reconstructed images at 0.25s temporal resolution with no significant loss in image
fidelity and a significant reduction in the error of bolus arrival time estimation in both lesions
(p < 0.05) and arteries (p < 0.02). Our results suggest that ECA is a powerful and versatile tool
for breast DCE-MRI.


https://github.com/tyo8/ECA_Demo
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Introduction

Dynamic contrast enhanced MRI (DCE-MRI) is an important tool for the diagnosis of
breast cancer. MRI detects cancers that other screening methods fail to detect. DCE-MRI is
particularly important for patients with dense breasts or at high risk for breast cancer. DCE-MRI
is highly sensitive (93% [1]) to invasive cancers, and has a variable and sometimes high false
positive rate. One 2016 meta-analysis puts the specificity at 71% [1], while another puts it
between 78% and 94% [2]; individual studies have reported specificities as low as 37% [3].
These results suggest a need for acquisition and analysis methods that increase the diagnostic
accuracy of DCE-MRI. Quantitative measurement of the parameters that describe contrast uptake
kinetics offers one route to improved specificity [4], [5], but accurate measurement of these

parameters can prove challenging.

Clinical standard-of-care focuses on morphological analysis of DCE-MRI images, as well
as evaluation of the overall kinetics of the contrast uptake and washout. As a result, clinical MRI
protocols produce post-contrast-injection images at very high spatial resolution; these show
patient anatomy in exquisite detail but require long scan times. In the standard-of-care setting,
DCE-MRI images are acquired at temporal resolutions of 60-90 seconds. These temporal
resolutions are too low to accurately measure kinetic parameters, especially in early uptake,
when signal changes rapidly, particularly in cancers. Findings in recent years indicate that lesion
conspicuity is highest immediately after contrast uptake [6], [7], so it is especially important to
faithfully capture early-uptake kinetics. Other modes of analysis, even primarily morphological
ones, also benefit from increased temporal resolution. Some groups have found that texture
features, often used to characterize the morphology of lesions and classify them into benign and
malignant subgroups, become more accurate with the inclusion of kinetic data [8]-[11]. Thus,

high temporal resolution DCE-MRI may offer significant advantages in diagnostic accuracy.

Pharmacokinetic lesion analysis requires an accurate quantitative measurement of the
arterial input function (AIF), which requires high temporal resolution measurements. Henderson
et al. [12] found that a temporal resolution of 1s is necessary to capture the AIF. Parker et al. [13]
opt instead for a population-average AIF, which they calculate from 5s/image data. Estimates of
the optimal temporal resolution for pharmacokinetic analysis vary based on the underlying

assumptions used to model tissue behavior. For example, Kershaw et al. showed that the
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standard compartmental (AATH) model requires a temporal resolution of at least 1.5s for
accurate diagnosis [14], even when a population AIF is used. In small mammals, which require
small fields-of-view, researchers have been able to characterize AIFs with significantly higher
sampling frequency; Yankeelov et al. [15] measured an AIF at 0.9s/image in mice, while
Kershaw et al. measured an AIF at 0.44s/image in rabbits [16]. Current state-of-the-art in
ultrafast breast DCE-MRI produces full 3D bilateral breast scans with temporal resolution 2.7-
3.8s [4], [6], [17], [18], well above the desired threshold of temporal resolution.

In fact, the thresholds of 1s and 1.5s offered here represent necessary conditions for only
a subset of analytic approaches. Fractional-second temporal resolutions in breast DCE-MRI may
allow new modes of kinetic characterization, including detailed local measurements of arterial
blood flow and effects of the cardiac cycle, interstitial pressure and vessel permeability, and the
initial time and early morphology of lesion enhancement. These parameters have potential as
indicators of malignancy [4]. However, these approaches have not been adequately explored,
since they require data with high resolution in both the spatial and temporal domains. High
spatio-temporal resolution data could offer significant advances in the characterization of tumor
physiology and access to biomarkers previously unavailable through established techniques. In
order to characterize these vascular properties and assess their utility as malignancy biomarkers,
we must first develop and validate methods for the acquisition and reconstruction of high spatio-

temporal resolution DCE-MRI data.

Many groups have proposed techniques to increase temporal resolution in MRI, each
with their own sets of trade-offs and optimal use cases. While many methods straddle categories,

most algorithms fit approximately into one of the groups below:

Ultrafast methods [5], [6], [17], [18] tend to rely on parallel imaging (and partial Fourier
sampling) techniques to accelerate scans with greatly reduced coverage and/or spatial resolution.
While easy to implement and well-suited to kinetic analysis, the images produced at reduced
coverage/resolution do not always contain enough morphological data to be clinically

interpretable.

Parallel Imaging techniques [19]-[22] make use of multiple receiver coils to acquire
imaging data “in parallel,” with data from each coil constraining the image reconstruction. These

approaches are powerful and ubiquitous, and they can be used in tandem with many other
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techniques. However, they suffer from highly nonlinear artifacts at high accelerations. The
impact of these artifacts on pharmacokinetic analysis is not well-characterized. They also rely

heavily on coil sensitivity maps, which can be difficult to measure precisely.

View-sharing methodologies [6], [23]-[29] accelerate acquisitions by sampling k-space
with non-uniform densities, sampling low frequencies much more often than high spatial
frequencies. This category includes many common acquisition sequences, including DISCO,
TWIST, TRICKS, 4D-TRAK, and most keyhole methods. While these methods do an excellent
job of categorizing large-scale enhancement patterns (e.g., average enhancement within a lesion),
they sample different spatial frequencies at different temporal resolutions. This could create
errors in quantitative analysis. When low spatial frequencies are sampled more often than high
ones, it is difficult to reliably interpret the enhancement kinetics of small, sharp structures like
blood vessels and the edges of lesions. These structures are critical for accurate clinical

diagnosis.

Compressed sensing [30]-[35] strategies capitalize on the sparse enhancement of DCE-
MRI in the early uptake phase to create L!-constrained image reconstructions from very highly
undersampled data. This provides high spatial and temporal resolution. However, because these
approaches require sampling incoherence, they are susceptible to artifacts from non-uniform k-
space sampling. These artifacts are greatest when the signal is changing rapidly, as in the critical

phase of early contrast uptake.

Learning-based [10], [36]-[40] reconstruction methods treat image reconstruction from
k-space data as a process that can be learned from repeated attempts over large datasets.
Especially over the past few years, these methods have become immensely popular for their
power and versatility. However, many of these methods do not adequately incorporate the known
physics of MRI acquisition or physiological information governing contrast media uptake.
Because the reconstruction process is a “black box”, it is difficult characterize or interpret the
artifacts introduced by a learned algorithm. Unless a model is specifically trained to reconstruct

pharmacokinetic data, it may introduce artifacts that are difficult to account for or even detect.

While all of these methods are powerful, they may not be well-suited to the task of

precisely recovering early enhancement kinetics in breast DCE-MRI.
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We propose a novel, flexible, and powerful framework for the reconstruction of highly-
undersampled DCE-MRI data: enhancement-constrained acceleration (ECA). If raw k-space data
is available from the scanner and the acquisition sequence used to produce that data is known,
then data can be re-partitioned into almost-arbitrarily small intervals. The data sampled during
each intervals can then be used to reconstruct a new set if images with a temporal resolution
equal to the interval length. We use the term “sweep time” to refer to the equivalent temporal
resolution of a conventional (fully-Nyquist) Fourier-sampled scan at the same spatial resolution
as the reconstructed image. In a recent study, bilateral ultrafast scans with complete Fourier
sampling had “sweep times” between 3.4 and 4.1s [41]. When the temporal intervals used for
image reconstruction are small compared to the “sweep time,” this reconstruction problem is
(highly) underdetermined. To fully constrain the reconstruction problem, we introduce a penalty
function that requires approximately smooth enhancement on the short timescale of the temporal
resolution of the reconstructed image. In this setting, our reconstruction problem reduces to the

minimization of a constrained quadratic penalty.

Though the work shown here implements a sampling scheme taken from a Cartesian grid,
we emphasize that the framework presented is highly general and can be used to invert data from
arbitrary sampling schemes. Furthermore, if the time course of the sampling scheme used to
acquire the data is either (a) deterministic with known acquisition parameters or (b) recorded as

metadata, this framework allows the retroactive reconstruction of existing data.

In the investigation presented here, we (1) develop physiologically realistic breast
phantoms from patient data, (2) simulate a virtual scanner with custom pulse sequences to
acquire data, and (3) compare the time-tagged reconstructions of phantom data to a “gold
standard” conventional Fourier-sampled ultrafast acquisition. To reflect the current state-of-the-
art in conventional-Fourier ultrafast acquisitions, we simulate data with a sweep time of 3.5
seconds and reconstruct at a temporal resolution of 0.25 seconds. Code that reproduces some of

the examples discussed here is openly available at <github.com/tyo8/ECA Demo>.



https://github.com/tyo8/ECA_Demo
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Theory and Methods

Virtual Phantoms

To provide flexible, programmable, and quantitative ground truths for reconstruction

testing, virtual breast phantoms modeling realistic pharmacokinetic behavior were created from

patient data (Figure 1). Five (5) virtual breast phantoms were created from paired ultrafast and

high-spatial resolution DCE-MRI datasets representing a range of pathologies (Table 1).

Acquisition parameters for the original patient scans are shown in Table 2.

Fig 1. A maximum-intensity projection of a sample phantom.

The red dashed circle (upper left) shows a sample voxel enhancing via the AIF; the blue

dashed circle (middle right) shows a sample voxel enhancing via the EMM.

Table 1: List of pathologies shown in 5 cases selected to use as phantoms

Pathology

Case 1

Invasive ductal carcinoma (IDC), Grade III

Case 2

IDC, Grade II, ductal carcinoma in situ (DCIS), intermediate and high grade, solid
type with necrosis and calcifications

Case 3

Invasive lobular carcinoma, Grade II, lobular carcinoma in situ classic type

Case 4

IDC, Grade III, DCIS, high grade with necrosis and calcifications

Case 5

No abnormal enhancement (control)

Table 2: Scan parameters of the source MR image datasets

HIGH-SPATIAL
RESOLUTION ULTRAFAST
TR/TE (ms) 4.8/2.4 3.2/1.6
Acquisition Voxel Size 0.8 x 0.8 x 1.6 1.5 x 15 x 3
(mm®)
Temporal Resolution 60 - 70 2.8-3.6
Range (s)
Flip Angle 10° 10°
Field of View (mm3) 300-380mm (X,Y), 300-380mm (X,Y),
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180-220mm (Z) 180-220mm (Z)

Number of Slices 120-250 80-100

Virtual phantoms were created as a set of parameters (e.g., bolus arrival time and an
uptake rate constant) and functions that call those parameters (e.g., the Parker AIF) to estimate
whole-image signal at an input time point. We use these enhancement models to compute the
time-evolution of the virtual phantom during the scanning process. The phantoms used in this
experiment modeled noisy acquisition with signal from three different classes of sources; vessel,
lesion, and background. Vessel and lesion signal components come from distinct models but a

single procedure; all signal components are additive.

Vessels and lesions were segmented from patient images and perfusion maps were
created from constraining flow equations with ultrafast data, using a method developed by Wu
et. al [4]. First, ultrafast and high-spatial resolution image sets undergo non-rigid registration for
motion correction. Next, a total 3D vasculature is segmented from high-spatial resolution image
sets by a Hessian filtering process. Lesions were segmented by hand. Using the segmented
lesions and vessels, ultrafast image sets were used to fit a fluid dynamics-based contrast
perfusion model, which created a map of bolus arrival times in the breast. These maps of contrast
perfusion times parametrized Parker et al.’s population-based AIF model [13] in vessels and an
empirically-derived enhancement model [42] in lesions. Additional parameters of the empirical

model were fit from ultrafast image sets.

Background signal in the phantom is static except for fluctuations caused by
measurement noise (noise modeling is discussed in the “Virtual Scanner” section). Motion
artifacts are not directly simulated in this initial study. Each high-resolution image set contains a

single pre-contrast image; these were used to compute the background signal for each phantom.

This breast phantom construction emphasizes the characteristic “sparse plus low-rank”
nature of early-enhancement breast DCE-MRI [43], [44] while including features that have high
resolution in both spatial and temporal domains. In addition, this virtual phantom design is
highly modular and can flexibly incorporate staggered changes to both functions and parameter
sets; different morphologies, perfusion models, and enhancement functions can be swapped

around with relative ease.
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Representation of Sampling Schemes

Here we clarify a notion of k-space sampling trajectories, which plays a role in both

reconstruction and data acquisition.

A known sampling trajectory can be parametrized as a path k; through k-space as a
function of time t. It specifies which Fourier coefficients are measured and the time at which
each that measurement is taken. Though the present work only implements reconstruction on
trajectories embedded on a Cartesian grid, any k-space trajectory that can be parametrized as k;
can be reconstructed using the method here; any deterministic path can be simulated.
Furthermore, if timestamps from a stochastic measurement are recorded during the scan (or
known within the precision of reconstruction time resolution), then these data can be used for

enhancement-constrained image reconstruction.

We also define a few parameters that will be useful in describing the sampling and
reconstruction processes. By N, we denote the total number of k-space points acquired during a
given scan. We use T to represent the number of time-points in an image set. Finally, V is the

number of voxels in the image volume at any single time-point.

In the standard IFFT reconstruction of a Nyquist-sampled, Cartesian-acquisition k-space
dataset, N = VT. On the other hand, when we form an “accelerated” (undersampled) set of

images from N measurements in k-space, we have N < VT. The acceleration factor is then a =
VT . o
- In this work, we reconstruct dynamic image sets of VT ~ 107 total voxels from N ~ 108

measurements (acceleration factor o = 14).

Virtual Scanner

A virtual scanner was developed to simulate the acquisition of data from the phantoms

described above under varying k-space acquisition paths.

To simulate signal evolution during the acquisition window, phantom signal was
recomputed for each k-space measurement (k¢,, ..., k¢, ) made by the scanner. For computational
efficiency, however, full re-evaluations of the virtual phantom contrast functions were only made

every 50ms of scan time; signal updates between full re-evaluations were computed as linear
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interpolations between updates. Linearly interpolating between full updates allowed us to capture
and quantify mid-scan changes in contrast dynamics, which typically occur at too fine of time-
resolutions to be differentiated in standard acquisitions. These are precisely the types of signal
changes we are hoping to detect. However, using linear interpolations between function
evaluations implicitly encodes the assumption that contrast concentration curves are
approximately linear in 50ms windows. and each window has sufficient SNR. While current
compartmental, population, and empirical models of enhancement suggest this assumption is
reasonable (see Figure 2 for a visual representation of this assumption on the Parker AIF) [42],
[45], [46] and introduces negligible error to the models used in our phantoms, contrast perfusion

curves are not sufficiently characterized to fully vet this assumption

Fig 2. Sample concentration curves paired with their 50ms-interval linear

approximations.

The AIF curve (used in vessels) is shown on the left and the EMM curve (used in lesion

voxels) is shown on the right.

Virtual breast phantoms generated signal data under similar scan parameters as an
ultrafast acquisition. A spoiled gradient-echo signal model was used (FA = 10°, TR/TE = 3.2/1.6
ms, resolution = 1 mm?) for each phantom acquisition. Noise was modeled as independent
Gaussian distributions in k-space with variances computed from pre-contrast ultrafast data. To
estimate interference from noise and acquisition artifacts, temporal variances were computed at
each k-space point across five (5) pre-contrast ultrafast images for each phantom. Each point’s
temporal variance parameterized a Gaussian distribution, from which noise realizations were
produced. Over all cases and 100 noise realizations, this method of noise generation produced

data with an average PSNR of 37dB.

Though the virtual scanner does not have parallel imaging (e.g., SENSE or GRAPPA)
[19], [21] or Partial Fourier [47] implementations, path times computed from these scan
parameters were appropriately scaled to match standard ultrafast time resolutions. Each scan
sequence completed a Nyquist-complete k-space sample of VV points every 3.5s and was later
reconstructed at a temporal resolution of 0.25s. These k-space acquisition and reconstruction

times were chosen to demonstrate the high accelerations this method can achieve (an
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acceleration factor of a = % = 14, from 3.5s to 250ms), while also allowing an investigation of

the minimum time resolution necessary to fully resolve enhancement dynamics of clinical

interest.

A simple but (to our knowledge) novel k-space trajectory was used to simulate
acquisitions in this study (Figure 3). By Undersampling With Repeated Advancing Phase
(UnWRAP), we allow our choice of reconstructed temporal resolution to inform the design of
our sampling trajectory. Splitting each group of V acquisitions into f disjoint subsets, we acquire
the first line of each subset before moving to the second line of the first subset: we continue in
this way until all V' acquisitions have been made. This ensures that a uniform distribution of k-
space frequency bands determine each reconstructed image, which makes the subsequent

reconstruction both (a) robust to noise and (b) sensitive to fast changes in sharp features.

Fig 3. Cross-section of UnWRAP sequence in the k, k, plane.

In this scan sequence, k-space is divided into 14 sections, which are each separated into
14 sheaves. Each section must have one sheaf scanned before any section can have

another sheaves scanned. This scheme ensures a nearly uniform distribution of high and
low spatial frequencies are present in each reconstructed image, while still satisfying the

(spatial) Nyquist criterion when all scan data are combined.

The virtual scanner pipeline is summarized in Figure 4.

Fig 4. A flowchart summarizing the virtual scanner pipeline.
IFFT Reconstruction

The “standard” IFFT reconstruction is used to benchmark the ECA reconstruction. This
“reconstruction” is simply the inverse fast Fourier transform applied to the k-space dataset
output by the virtual scanner. This procedure represents the “ideal” ultrafast scan: it assumes a
(spatially) Nyquist complete sample is acquired at 3.5s temporal resolution using typical ultrafast
acquisition parameters (see Table 2). Because ultrafast often relies on other methods (like
SENSE and Partial Fourier) to achieve such high temporal resolution [5], [6], [18], we are

essentially benchmarking against an assumed perfect SENSE and Partial Fourier reconstruction.
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ECA Reconstruction

Our enhancement-constrained acceleration (ECA) reconstruction method penalizes sharp
enhancement between reconstructed time-points and requires that new images match the
measured k-space data. The formal details of this reconstruction algorithm may be found in

Appendix A and Appendix B, which can be summarized as follows:

1. Partition k-space data into time intervals of equal length; require that each
measurement constrains only the image reconstructed in the time interval containing
that measurement’s time-tag (Figure 5).

2. Denote the reconstructed image by the timeseries X = (Xj, ..., Xr) and its spatial
Fourier transform as X = (X, ..., X7). Define

(a) A convex, quadratic smoothness penalty on X = (X3, ..., X7) applied
separately to each voxel v = 1, ..., V in the spatial domain. When a voxel
enhances smoothly, the penalty is small; when it doesn’t, the penalty is large.
The penalty can be weighted differently on each voxel v, reflecting spatial
variation in desired enhancement smoothness.

(b) A data fidelity constraint on X = (X, ..., X7), requiring that, for each t, any
subset of X, measured during time interval ¢t must exactly match the data
acquired during that interval.

3. Solve for the image X = (Xj, ..., Xr) that minimizes the smoothness penalty and

satisfies the data fidelity constraint on X = (X, ..., X7).
Fig 5. An illustration of the k-space partitioning process.

(Top) The sampling scheme displayed in Figure 3 is overlaid on sample k-space data. All
k-space measurements in the same time interval constrain the reconstruction of a single
time-point in the accelerated reconstruction. (Bottom) These k-space points form the
“measured” partition of the reconstructed dataset. The temporal resolution of the
reconstruction determines the size of the measured partition of k-space points used for
each reconstruction. The higher the acceleration factor «, the shorter the duration of each

measured partition and the more underdetermined the reconstruction problem.
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Intuitively, we can think of this optimization as a search for the smoothest set of
enhancement curves that are consistent with our measured k-space data. Formulating the
reconstruction in this way relies heavily on one key assumption: enhancement is smooth on the
timescale of the reconstruction’s temporal resolution. Requiring smoothness on short timescales
does not limit the ability of this algorithm to accurately measure sharp spatio-temporal changes
as in the AIF, since these changes occur on longer timescales. We chose a target temporal
resolution of 0.25 seconds in response to speculations in the literature [12-16] about optimal

temporal resolutions for pharmacokinetic analysis in breast DCE-MRI.

For a formal description of the partitioning process invoked above, see Appendix A.
Since the smoothness penalty optimized during reconstruction is a positive-definite quadratic
form, the reconstruction optimization is convex and has a unique solution. While this solution
can be defined analytically, we calculate it iteratively via conjugate gradient descent. See
Appendix B and Appendix C for further details. Finally, the computation of image updates
requires some amount of regularization to converge; for a discussion on choice of regularization
parameter, see Appendix D. Documentation and demos for the phantom, scanner, and

reconstruction pipelines are available at <github.com/tyo8/ECA Demo>.

Data Analysis

As an initial investigation of the ECA reconstruction framework, we compared images
and enhancement curves recovered from ECA and standard IFFT reconstructions. Two
parameters, bolus arrival time (BAT) and initial enhancement slope, were extracted from the

signal enhancement curve of vessel and lesion voxels by ECA and standard IFFT methods.

BAT was measured from time of peak enhancement in vessel voxels. In lesion voxels,
BAT was calculated as the earliest time at which voxels reached or exceeded 20% of their

maximum enhancement over baseline.

To calculate initial slope in vessel voxels, each voxel timeseries was interpolated by a
modified Akima method [49]. The initial slope was the maximum first derivative of the
interpolated AIF curve. In lesion voxels, percent signal enhancement (PSE) versus time was

fitted to a piecewise empirical mathematical model (EMM):


https://github.com/tyo8/ECA_Demo
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(a(t —t))”
PSE(t) — A * 1+ (a(t — to))z ’ (t = to)
0, (t <to)

where t, is the BAT in lesion voxels, A is the upper limit of percent enhancement, and « is the

uptake rate; thus, A« is the initial enhancement slope.

To assess image preservation, voxel-wise image fidelity was also compared between the
two methods. Ground-truth images are computed by evaluating the signal function at the center
of the temporal window surrounding each reconstructed time point. The distribution of absolute
voxel-wise signal differences between reconstructed and ground-truth images is then computed

and summarized.
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Results

Bolus Arrival Time (BAT)

Figure

Sample BAT maps, computed from both the IFFT and ECA reconstructions, are shown in

6. The images computed from an ECA reconstruction show more accurate and precise

bolus arrival time estimate than do the images computed from an IFFT reconstruction (Figure

7a/b). Absolute error distributions of BAT estimate from ECA and IFFT reconstructions were

compared via a two-sample Kolmogorov-Smirnov test, and BAT estimates were found to be

significantly more accurate in ECA reconstructions (0.01 < p < 0.02 in vessels and 0.04 < p <

0.05 in

all case

lesions). BAT estimation error distributions are shown (for lesion and vessel voxels) for

s in Figure 7a/b. Summary statistics over all cases are shown in Table 3.
Fig 6. Bolus arrival time computed from the case 4 image set.

From left to right: IFFT reconstruction, ECA reconstruction, and ground truth. Times

shown on the color bar are measured in seconds.
Fig 7. Error distributions are shown for all cases.

Distributions for IFFT and ECA are shown in different colors on the same plot. (a) and
(b) show errors in the estimation of the bolus arrival time in milliseconds; (c) and (d)

show the distribution of the proportional voxel error.

Table 3. Median absolute error values over all cases.

BAT Error (ms) Voxel Error (%)
Lesion Vessel Lesion Vessel
IFFT 1701 ms 904 ms IFFT 0.007% 0.39%
ECA 267 ms | 64.6 ms ECA 0.47% 0.56%

BAT differences are shown separated by case in Figure 8. While the standard IFT

reconstruction showed no substantial difference in bolus arrival time by case, ECA predicted

bolus arrival time substantially better in cases 1, 3, and 4 than in cases 2 and 5.

Fig 8. Box and whisker plots of the error in bolus arrival time, by case number and

reconstruction method.
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Red boxplots (right) are from ECA-reconstructed data; blue boxplots (left) are from
standard IFFT reconstructions. Separate sets of plots are shown for lesion and vessel

voxels.

Images reconstructed from the ECA algorithm show much greater precision in estimation
of bolus arrival time. Errors in BAT have much smaller spread (median absolute deviation) for
ECA reconstructions than for IFFT reconstructions, especially in vessel voxels. Furthermore, the
BAT error distribution is clustered much nearer to 0 in ECA reconstructions than in IFFT

reconstructions (Figure 7a/b), especially in vessel voxels.

Overall, ECA reconstructions were much more successful in recovering bolus arrival
times than IFFT reconstructions. Because bolus arrival time estimates were more accurate with
ECA, we conclude that ECA reconstruction allows for more accurate and more precise bolus

tracking than traditional ultrafast methods.

Initial Slope

Enhancement curves recovered from reconstructed images closely match simulated
enhancement from the phantoms. Figure 9 plots ground truth versus estimate values for the
initial slope, as derived from both ECA (left) and IFFT (right) reconstructions. Compared to
standard IFFT, ECA reconstruction more accurately recovers the initial slope of the enhancement
curve in both vessel and lesion voxels. To see this, first note that the coefficient of determination
in both sets of truth-estimate fits is larger for ECA than IFFT; therefore, ECA produces lower-
variance estimates of initial slope than IFFT does. Next, compare the slopes and offsets of the
truth-estimate fits. In vessel voxels, IFFT and ECA have similar fit slopes and offsets, and
therefore introduce similar amounts of bias; in lesion voxels, ECA introduces much less bias
than IFFT. Although both methods exhibit greater error when recovering enhancement curves
with larger initial enhancement slope, ECA estimates the initial slope more accurately than

standard IFFT.

Fig 9. Scatter plot between ground truth initial slope and estimated initial slope.
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394 The panels show ECA and standard IFFT in (a)(b) vessels voxels and (c)(d) lesion
395 voxels. The red lines and blue lines represent the linear correlations and black dashed
396 lines show unity.

397 Image Fidelity

398 ECA-reconstructed images are highly similar to ground-truth images. A sample error map
399 is overlaid on a phantom in Figure 10. Voxel-wise error statistic summaries are shown in Figure
400 11 for the 5 phantoms tested, and a sample enhancing-voxel error distribution is shown in Figure
401  7c/d. Voxel-wise errors in the IFFT reconstruction were generally smaller than in the ECA

402  reconstruction, though fidelity errors were very small in both methods. The voxel intensity error
403  distributions shown in Figure 10 show that the increased temporal resolution comes with at most

404  anegligible cost in voxel intensity accuracy.

405 Fig 10. Proportional intensity error per voxel for case 4.

406 Proportional intensity error is shown from the mean projection over time and through the
407 volume. From left to right: IFFT reconstruction error, ECA reconstruction error, and the
408 ground truth image.

409 Fig 11. Box and whisker plots of the proportional enhancement error, by case and
410 reconstruction method.

411 Red boxplots (right) are from ECA-reconstructed data; blue boxplots (left) are from

412 standard IFFT reconstructions. Separate plots are shown for lesion and vessel voxels.
413

414  Comparison with Standard Methods

415 Figure 12 juxtaposes a median-quality curve from the ECA reconstruction with the IFFT
416  reconstruction (which assumes perfect SENSE and Partial Fourier reconstructions) of the same

417  voxel. Sample curves are shown for constant, vessel, and lesion voxels.

418 Fig 12. Comparison of a sample constant-signal from standard IFFT and ECA

419 reconstruction.
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The ECA is more sensitive to noise than the IFFT, but the noise is still small with respect
to the signal. IFFT reconstruction estimates bolus arrival time and peak signal less

accurately than ECA reconstruction.

Overall, the ECA reconstruction captured bolus arrival times in enhancing voxels more
accurately than the IFFT reconstruction, suffering only a small loss of accuracy in estimating the
per-time point image (Table 3, Figure 7c/d, Figure 11). While ECA proved uniformly more
accurate in recovering the BAT in the vessel, ECA and IFFT estimated lesion BAT with similar
bias in two cases; in the other three, ECA estimated the BAT with lower bias and variance. Even
in cases where ECA and IFFT produced similarly biased estimations of BAT, the ECA estimated
the BAT with lower variance (Table 3, Figure 7a/b, Figure 8).
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Discussion

The results from realistic phantoms reported here demonstrate that sparse uniform
samples of k-space can be used to reconstruct DCE-MRI breast images with high fidelity and
very high temporal resolution. This allows more accurate arterial bolus tracking and more
accurate measurement of lesion enhancement parameters such as the bolus arrival time and
initial enhancement slope. These important diagnostic parameters have been used to improve
cancer diagnosis ([5], [11], [50], [51]). Since the early phase of enhancement is critical for
distinguishing cancers from background parenchymal enhancement [6], [52], high fidelity high
temporal resolution images produced with ECA may significantly improve identification and

characterization of small cancers.
The ECA method introduced here is based on two primary principles.

(1) If k-space data is partitioned into small subsets by acquisition time, each subset retains

important kinetic information.

Especially when enhancement is sparse (as in the early phase of contrast uptake), even
highly sub-Nyquist acquisitions contain sufficient information to almost fully constrain
the evolution of contrast kinetics. The UnWRAP sequence used in this study
demonstrates this principle in action, using simple uniform undersampling to sample a
representative bandwidth of spatial frequencies. We believe the UnWRAP k-space
ordering scheme to be a good choice for sampling the early phase of contrast uptake, but
we emphasize that this principle is applicable to any known/deterministic k-space

sampling trajectory.
(2) DCE-MRI enhancement is approximately smooth in small time intervals.

Provided kinetic processes are slow on fractional-second timescales and samples are
acquired with sufficient SNR and bandwidth, very few measurements of k-space are
needed to “tie together” the time-evolution of an image set. This is especially true when
all of the partial k-space measurements taken together form a Nyquist-complete set. We
designed the UnWRAP acquisition sequence to maximally leverage this principle, but it

is applicable to many undersampled reconstruction methods in DCE-MRI.
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The UnWRAP method introduced here maintains relatively high SNR over each subset of
k-space by sampling a mixture of high and low spatial frequencies. The extent to which both
reconstruction methods preserved voxel-wise intensity suggests the UnWRAP k-space trajectory
chosen offers some advantages over a standard sequential acquisition. Because it maintains a
uniform frequency density in the scan, the UnWRAP sequence samples the k-space center often
enough to preserve signal intensity and the k-space edges often enough to correctly assign signal
to spatial features. As is true for any acceleration method, effective application of the UnWRAP

method requires adequate SNR during each measurement interval.

The results summarized here demonstrate that ECA combined with UNWRAP sampling
has promise for improving breast cancer screening and diagnosis. However, this study had some

limitations:

e This was a simulation study, and it will be critical to test these results in vivo. These tests
are currently underway.

e Motion artifacts were not included in this work. It will be critical to evaluate effects of
motion in future simulations as well as in in vivo studies.

e Neither heart nor background enhancement were modeled in these simulations. It will be
critical to assess the capacity of ECA to reconstruct diagnostically useful enhancement in
the presence of background enhancement.

o T2* effects were not simulated. These effects are significant during the early phase of
contrast media uptake, especially in arteries.

e Other sampling trajectories were not tested; because not all scanners can implement all
undersampling trajectories, it will be important to test ECAs performance with other

types of accelerated acquisitions.

In addition to addressing the study limitations listed above, we suggest several further avenues of
future investigation. First and foremost, ECA requires a thorough characterization of its
performance across a wide range of noise levels. Second, because of the ubiquity of partial
Fourier, parallel imaging, and ML acceleration methods, we will integrate our acceleration
algorithm with popular implementations of these. Finally, we hope to test ECA on a wide variety
of sampling trajectories and use this process to evaluate the optimality of both ECA and these

trajectories in a wider context of DCE-MRI acceleration methods.
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Taken as a whole, the data presented in this work constitute an argument that “sparse +
smooth enhancement” characterize contrast kinetics in breast DCE-MRI to very high precision
during the early phase of contrast media uptake. Smooth enhancement is a stringent condition to
impose on DCE-MRI data and, on its own, encodes a great deal of physiological structure.
Within such a constraint, even a small number of well-chosen measurements can closely
characterize early enhancement in the breast. ECA reconstruction provides a robust framework
to increase diagnostic accuracy and improve understanding of hemodynamics in normal breast

and cancers.
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Appendix A: Formal Description of Partition Constraints

Suppose a total of N measurements are taken over the course of the scan: denote these as
Y = (¥4, ..., ¥n). Choose a reconstruction temporal resolution such that we have T time points in
the reconstructed image. We may identify each measurement with the time ¢,, € {1, ..., T} at
which it was taken. For example, if we partition the time duration of the scan into T intervals,
then t,, = 1 indicates the nth measurement was acquired during the first time interval. We will
also write v,, € {1, ..., V} to denote the k-space voxel (i.e., spatial frequency) at which
measurement n was acquired. Our method does not require that we observe an equal number of
measurements during each time interval ¢ = 1, ..., T, but we typically expect to have N /T

measurements for each t.

Let X = (Xy, ..., X7) be a dynamic timeseries image with T time-points, where each static
image X, has V voxels; this is the unknown sequence of true images (up to spatiotemporal
discretization) that we aim to reconstruct. In a fully sampled regime (N = VT), we would
observe the complete k-space data X, = FX, at each time t = 1, ..., T, where F isthe V X V
discrete Fourier transform matrix. In other words, we would measure (a noisy version of) the

sequence
X =&y &r) = (FXy o, FXp) = (Ip @ FX,

where ® denotes the Kronecker product. (Abusing notation, we will interpret X and X as either
V x T matrices or vectors of length VT, depending on the context.) When reconstructing at
accelerated time resolution (N < VT), the measured data is a proper subset of the full timeseries

(i.e., Y € X). Define

Q= ((ty,vy), -, (ty V)

as the sequence of (time-index, spatial frequency-index) pairs at which the k-space
measurements y;, ..., yy were taken (i.e., each entry in Q lies in the set {1, ..., T} x {1, ..., V}).
Then X, is the observed part of the Fourier transform of the dynamic image sequence. For each

n, our observation y,, is the voxel v,, from the image X t,» 8iving the relation y,, = ()? tn)v +
n

noise. The remaining entries in X (i.e., those in Xc) are left unobserved and must be

reconstructed by our algorithm.
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Our data fidelity constraint stipulates that the observed k-space data Y must remain

unaltered by the reconstruction. Therefore, any reconstruction X of X must satisfy

[(I: ® T)X]Q =Y.
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Appendix B: The Penalty Function

After requiring that each reconstructed image match the k-space points in the partition
corresponding to its interval, we minimize over a weighted and regularized smoothness penalty
to determine a unique reconstruction. The mathematical details of this process are laid out in this

section.

First, we will define the loss function minimized by our reconstruction optimization: the
discretized curvature. For a given signal x = (x4, ..., x;) composed of T time points, define the

smoothness penalty function S as the [?-norm of its discrete second derivative:
S(x) = X153 (ceer — %) — (¢ — x|

Since S is a quadratic function of x, we may write it in terms of a linear operator D satisfying

S(x) = x*Dx.
As a matrix, D takes the form
/ 1 -2 1 0o 0 0 0 \
-2 5 -4 1 0 0 0 0
1 -4 6 -4 0 0 0 0
0 1 -4 6 0 0 0 0
D= : : . : : : :
0 0 0 0o ... 6 -4 1 0
0 0 0 0o ... =4 6 -4 1
0 0 0 o ... 1 -4 5 =2
\ 0 0 0 0o ... 0 1 -2 1 /

The operator D is poorly conditioned. In fact, it can be shown that the respective supremum and

infimum of eigenvalues of D (over all values of T) are g,,,,,(D) = 16 and 6,,,;,(D) = 0.

Since D is (nearly) degenerate and we will later need to invert it, we add a small

parameter A (we chose 1 = 107°) to regularize the operator D:

DA =D+ AIT,
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where I is the T-dimensional identity. Thus, in the reconstruction process, we use the

regularized smoothness penalty
S;(x) = x*Dyx.

If X = (Xq, ..., X7) is a dynamic image composed of T static images, each with V voxels, then

we can extend S to act on X by

14

00 = ) xDyx,,

v=1
where x,, is the timeseries signal at the v voxel.

It may also be desirable to penalize a lack of smoothness in some voxels more than in
others. To enforce such a prioritization of “interesting” voxels, we may also include voxel-wise

weighting terms w,,, generating our full loss function L:

4
LX) = Z Wy, Xy Dy, X,
v=1

Setting W as the V X V diagonal matrix with entries w,,, we can write the reconstruction

optimization problem as

X= argmin {(W,XD;X") | [(Ir @ F)Xlo =Y} (2)
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Appendix C: Solutions to the Optimization Problem
General Case: Arbitrary Voxel Weights

In the following section, we will show that the optimization problem posed by the

reconstruction has the following unique solution:
% - - * - - * -1
X=D;'QWF g ([Dy' Q@ FW1F*]qq) -V, (3)

where, for a VT X VT matrix M, M, o denotes the VT X || submatrix of M with columns

belonging to (; similarly, M, g is the || X || submatrix of M consisting of rows and columns

in Q.

Since computing this solution for X requires a large matrix inversion (N x N ~ 101°),
we implement this computation iteratively. We initialize the solution in k-space, estimating the
Fourier-transformed image sequence X by zero-filling around the N k-space measurements of Y
(Xq =Y and Xc = 0). We then descend along the conjugate gradient of the smoothness penalty

until we converge to (3). See code for implementation: https://github.com/tyo8/ECA_Demo.

We will now check our solution to the target optimization problem. First, we will show

that (3) satisfies the problem constraints.

[(r @ PR, = [ @P)DT @ WF].q- (I @ FW'FTna)” Y |

- - * — _ « -1
=[Di' @ FW ™ F gq - ([D' @ FW™1F ]qq) Y
=Y.

Thus, X is a feasible solution to the optimization problem.

Next, we will show that (3) satisfies first-order optimality conditions. Since D, and W
are both positive-definite matrices, an optimal solution is unique. To see that X is optimal, we

must show that the gradient of the loss function lies in the span of the gradient of the constraints.
VxL(X) = (D, @ W) X
= (D @W) D' @WF Lo (ID7' @ FW 1" ]gq) - Y
=[2@W)- (D7 @ W'F")], - (D7 @ FW'F"Ig0) - ¥

=[I; @ Flua- (D71 @ FW1F*00) -V


https://github.com/tyo8/ECA_Demo
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Since [Ir ® F*]. q is the gradient of the constraint function, we’ve shown that VXL()? ) lies in

the span of the constraint gradients. It follows that X is the unique solution to the reconstruction

optimization problem.

Special Case: Uniform Voxel Weights
When all voxels are uniformly weighted (W « I,), the solution simplifies significantly:
X = @F)Y,

where V¥ = [D;' ® Iy].q - ([D;L_l X IV]Q,Q)_l Y.
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Appendix D: Regularization in the Optimization Problem

Recall the penalty function defined above:
S(x) = x*Dx.

Since the operator D is not invertible (and must be inverted to efficiently compute the optimal

solution), we add a small diagonal element Al to D to get the regularized penalty function
S;(x) = x*Dyx.

As with any regularization parameter, different values of A offer different trade-offs between the
optimality of the solution and the speed at which it is reached. We hope to choose A large enough
that D, is well-conditioned and small enough that S; — S is small compared to S. Equivalently,
we require that

(W, XX*)

A—l
» (W,XDX*)

and —logo A < k for some integer k (which should be chosen empirically based on problem
size, system requirements, and the conditioning of the weights matrix W). We chose A = 107>
because it converged sufficiently quickly and did not significantly alter the penalty function
computed in our experiment. To illustrate the regularization-vs-performance tradeoff, a pair of
plots for different values of A in a small-scale (VT ~ 10°) reconstruction are shown below
(Figure 13). As regularization increases, we converge more quickly to a solution, but that

solution is less accurate.
Fig 13. Reconstruction error and convergence speed as a function of regularization.

(Blue) Error, measured here by normalized mean-square error (MSE), increases with
regularization strength. (Red) Computation time, measured in number of iterations,

decreases with regularization strength.
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