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Abstract 11 

In patients with dense breasts or at high risk of breast cancer, dynamic contrast enhanced 12 

MRI (DCE-MRI) is a highly sensitive diagnostic tool. However, its specificity is highly variable 13 

and sometimes low; quantitative measurements of contrast uptake parameters may improve 14 

specificity and mitigate this issue. To improve diagnostic accuracy, data need to be captured at 15 

high spatial and temporal resolution. While many methods exist to accelerate MRI temporal 16 

resolution, not all are optimized for the conditions of breast DCE-MRI. We propose a novel, 17 

flexible, and powerful framework for the reconstruction of highly-undersampled DCE-MRI data: 18 

enhancement-constrained acceleration (ECA). Enhancement-constrained acceleration relies on 19 

(a) an assumption of smooth enhancement over small time-scales and (b) somewhat precise 20 

knowledge of per-frequency acquisition times. This method is tested in silica with 21 

physiologically realistic virtual phantoms, simulating state-of-the-art ultrafast acquisitions at 3.5s 22 

temporal resolution reconstructed at 0.25s temporal resolution (demo code available here). 23 

Virtual phantoms were developed from real patient data and parametrized in continuous time 24 

with arterial input function (AIF) models and lesion enhancement functions. Enhancement-25 

constrained acceleration was compared to standard ultrafast reconstruction in estimating the 26 

bolus arrival time and initial slope of enhancement from reconstructed images. We found that the 27 

ECA method reconstructed images at 0.25s temporal resolution with no significant loss in image 28 

fidelity and a significant reduction in the error of bolus arrival time estimation in both lesions 29 

(𝑝 ≤ 0.05) and arteries (𝑝 ≤ 0.02). Our results suggest that ECA is a powerful and versatile tool 30 

for breast DCE-MRI.  31 

https://github.com/tyo8/ECA_Demo
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Introduction 32 

Dynamic contrast enhanced MRI (DCE-MRI) is an important tool for the diagnosis of 33 

breast cancer. MRI detects cancers that other screening methods fail to detect. DCE-MRI is 34 

particularly important for patients with dense breasts or at high risk for breast cancer. DCE-MRI 35 

is highly sensitive (93% [1]) to invasive cancers, and has a variable and sometimes high false 36 

positive rate. One 2016 meta-analysis puts the specificity at 71% [1], while another puts it 37 

between 78% and 94% [2]; individual studies have reported specificities as low as 37% [3]. 38 

These results suggest a need for acquisition and analysis methods that increase the diagnostic 39 

accuracy of DCE-MRI. Quantitative measurement of the parameters that describe contrast uptake 40 

kinetics offers one route to improved specificity [4], [5], but accurate measurement of these 41 

parameters can prove challenging. 42 

Clinical standard-of-care focuses on morphological analysis of DCE-MRI images, as well 43 

as evaluation of the overall kinetics of the contrast uptake and washout. As a result, clinical MRI 44 

protocols produce post-contrast-injection images at very high spatial resolution; these show 45 

patient anatomy in exquisite detail but require long scan times. In the standard-of-care setting, 46 

DCE-MRI images are acquired at temporal resolutions of 60-90 seconds. These temporal 47 

resolutions are too low to accurately measure kinetic parameters, especially in early uptake, 48 

when signal changes rapidly, particularly in cancers. Findings in recent years indicate that lesion 49 

conspicuity is highest immediately after contrast uptake [6], [7], so it is especially important to 50 

faithfully capture early-uptake kinetics. Other modes of analysis, even primarily morphological 51 

ones, also benefit from increased temporal resolution. Some groups have found that texture 52 

features, often used to characterize the morphology of lesions and classify them into benign and 53 

malignant subgroups, become more accurate with the inclusion of kinetic data [8]–[11]. Thus, 54 

high temporal resolution DCE-MRI may offer significant advantages in diagnostic accuracy. 55 

Pharmacokinetic lesion analysis requires an accurate quantitative measurement of the 56 

arterial input function (AIF), which requires high temporal resolution measurements. Henderson 57 

et al. [12] found that a temporal resolution of 1s is necessary to capture the AIF. Parker et al. [13] 58 

opt instead for a population-average AIF, which they calculate from 5s/image data. Estimates of 59 

the optimal temporal resolution for pharmacokinetic analysis vary based on the underlying 60 

assumptions used to model tissue behavior. For example, Kershaw et al. showed that the 61 
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standard compartmental (AATH) model requires a temporal resolution of at least 1.5s  for 62 

accurate diagnosis [14], even when a population AIF is used. In small mammals, which require 63 

small fields-of-view, researchers have been able to characterize AIFs with significantly higher 64 

sampling frequency; Yankeelov et al. [15] measured an AIF at 0.9s/image in mice, while 65 

Kershaw et al. measured an AIF at 0.44s/image in rabbits [16]. Current state-of-the-art in 66 

ultrafast breast DCE-MRI produces full 3D bilateral breast scans with temporal resolution 2.7-67 

3.8s [4], [6], [17], [18], well above the desired threshold of temporal resolution. 68 

In fact, the thresholds of 1s and 1.5s offered here represent necessary conditions for only 69 

a subset of analytic approaches. Fractional-second temporal resolutions in breast DCE-MRI may 70 

allow new modes of kinetic characterization, including detailed local measurements of arterial 71 

blood flow and effects of the cardiac cycle, interstitial pressure and vessel permeability, and the 72 

initial time and early morphology of lesion enhancement. These parameters have potential as 73 

indicators of malignancy [4]. However, these approaches have not been adequately explored, 74 

since they require data with high resolution in both the spatial and temporal domains. High 75 

spatio-temporal resolution data could offer significant advances in the characterization of tumor 76 

physiology and access to biomarkers previously unavailable through established techniques. In 77 

order to characterize these vascular properties and assess their utility as malignancy biomarkers, 78 

we must first develop and validate methods for the acquisition and reconstruction of high spatio-79 

temporal resolution DCE-MRI data. 80 

 Many groups have proposed techniques to increase temporal resolution in MRI, each 81 

with their own sets of trade-offs and optimal use cases. While many methods straddle categories, 82 

most algorithms fit approximately into one of the groups below: 83 

Ultrafast methods [5], [6], [17], [18] tend to rely on parallel imaging (and partial Fourier 84 

sampling) techniques to accelerate scans with greatly reduced coverage and/or spatial resolution. 85 

While easy to implement and well-suited to kinetic analysis, the images produced at reduced 86 

coverage/resolution do not always contain enough morphological data to be clinically 87 

interpretable. 88 

Parallel Imaging techniques [19]–[22] make use of multiple receiver coils to acquire 89 

imaging data “in parallel,” with data from each coil constraining the image reconstruction. These 90 

approaches are powerful and ubiquitous, and they can be used in tandem with many other 91 
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techniques. However, they suffer from highly nonlinear artifacts at high accelerations. The 92 

impact of these artifacts on pharmacokinetic analysis is not well-characterized. They also rely 93 

heavily on coil sensitivity maps, which can be difficult to measure precisely. 94 

View-sharing  methodologies [6], [23]–[29] accelerate acquisitions by sampling 𝑘-space 95 

with non-uniform densities, sampling low frequencies much more often than high spatial 96 

frequencies. This category includes many common acquisition sequences, including DISCO, 97 

TWIST, TRICKS, 4D-TRAK, and most keyhole methods. While these methods do an excellent 98 

job of categorizing large-scale enhancement patterns (e.g., average enhancement within a lesion), 99 

they sample different spatial frequencies at different temporal resolutions. This could create 100 

errors in quantitative analysis. When low spatial frequencies are sampled more often than high 101 

ones, it is difficult to reliably interpret the enhancement kinetics of small, sharp structures like 102 

blood vessels and the edges of lesions. These structures are critical for accurate clinical 103 

diagnosis. 104 

Compressed sensing [30]–[35] strategies capitalize on the sparse enhancement of DCE-105 

MRI in the early uptake phase to create 𝐿1-constrained image reconstructions from very highly 106 

undersampled data. This provides high spatial and temporal resolution. However, because these 107 

approaches require sampling incoherence, they are susceptible to artifacts from non-uniform 𝑘-108 

space sampling. These artifacts are greatest when the signal is changing rapidly, as in the critical 109 

phase of early contrast uptake. 110 

Learning-based [10], [36]–[40] reconstruction methods treat image reconstruction from 111 

𝑘-space data as a process that can be learned from repeated attempts over large datasets. 112 

Especially over the past few years, these methods have become immensely popular for their 113 

power and versatility. However, many of these methods do not adequately incorporate the known 114 

physics of MRI acquisition or physiological information governing contrast media uptake. 115 

Because the reconstruction process is a “black box”, it is difficult characterize or interpret the 116 

artifacts introduced by a learned algorithm. Unless a model is specifically trained to reconstruct 117 

pharmacokinetic data, it may introduce artifacts that are difficult to account for or even detect. 118 

While all of these methods are powerful, they may not be well-suited to the task of 119 

precisely recovering early enhancement kinetics in breast DCE-MRI. 120 
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We propose a novel, flexible, and powerful framework for the reconstruction of highly-121 

undersampled DCE-MRI data: enhancement-constrained acceleration (ECA). If raw 𝑘-space data 122 

is available from the scanner and the acquisition sequence used to produce that data is known, 123 

then data can be re-partitioned into almost-arbitrarily small intervals. The data sampled during 124 

each intervals can then be used to reconstruct a new set if images with a temporal resolution 125 

equal to the interval length. We use the term “sweep time” to refer to the equivalent temporal 126 

resolution of a conventional (fully-Nyquist) Fourier-sampled scan at the same spatial resolution 127 

as the reconstructed image. In a recent study, bilateral ultrafast scans with complete Fourier 128 

sampling had “sweep times” between 3.4 and 4.1s [41]. When the temporal intervals used for 129 

image reconstruction are small compared to the “sweep time,” this reconstruction problem is 130 

(highly) underdetermined. To fully constrain the reconstruction problem, we introduce a penalty 131 

function that requires approximately smooth enhancement on the short timescale of the temporal 132 

resolution of the reconstructed image. In this setting, our reconstruction problem reduces to the 133 

minimization of a constrained quadratic penalty.  134 

Though the work shown here implements a sampling scheme taken from a Cartesian grid, 135 

we emphasize that the framework presented is highly general and can be used to invert data from 136 

arbitrary sampling schemes. Furthermore, if the time course of the sampling scheme used to 137 

acquire the data is either (a) deterministic with known acquisition parameters or (b) recorded as 138 

metadata, this framework allows the retroactive reconstruction of existing data. 139 

In the investigation presented here, we (1) develop physiologically realistic breast 140 

phantoms from patient data, (2) simulate a virtual scanner with custom pulse sequences to 141 

acquire data, and (3) compare the time-tagged reconstructions of phantom data to a “gold 142 

standard” conventional Fourier-sampled ultrafast acquisition. To reflect the current state-of-the-143 

art in conventional-Fourier ultrafast acquisitions, we simulate data with a sweep time of 3.5 144 

seconds and reconstruct at a temporal resolution of 0.25 seconds. Code that reproduces some of 145 

the examples discussed here is openly available at <github.com/tyo8/ECA_Demo>. 146 

147 

https://github.com/tyo8/ECA_Demo
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Theory and Methods 148 

Virtual Phantoms 149 

To provide flexible, programmable, and quantitative ground truths for reconstruction 150 

testing, virtual breast phantoms modeling realistic pharmacokinetic behavior were created from 151 

patient data (Figure 1). Five (5) virtual breast phantoms were created from paired ultrafast and 152 

high-spatial resolution DCE-MRI datasets representing a range of pathologies (Table 1). 153 

Acquisition parameters for the original patient scans are shown in Table 2. 154 

Fig 1. A maximum-intensity projection of a sample phantom. 155 

The red dashed circle (upper left) shows a sample voxel enhancing via the AIF; the blue 156 

dashed circle (middle right) shows a sample voxel enhancing via the EMM. 157 

Table 1: List of pathologies shown in 5 cases selected to use as phantoms 158 

 Pathology 

Case 1 Invasive ductal carcinoma (IDC), Grade III 

Case 2 IDC, Grade II, ductal carcinoma in situ (DCIS), intermediate and high grade, solid 
type with necrosis and calcifications 

Case 3 Invasive lobular carcinoma, Grade II, lobular carcinoma in situ classic type 

Case 4 IDC, Grade III, DCIS, high grade with necrosis and calcifications 

Case 5 No abnormal enhancement (control) 

 159 

Table 2: Scan parameters of the source MR image datasets 160 

 HIGH-SPATIAL 
RESOLUTION ULTRAFAST 

TR/TE (ms) 4.8/2.4 3.2 1.6⁄  

Acquisition Voxel Size 
(mm3) 

0.8 ×  0.8 ×  1.6 1.5 ×  1.5 ×  3 

Temporal Resolution 
Range (s) 

60 - 70 2.8 – 3.6 

Flip Angle 10° 10° 

Field of View (mm3) 300-380mm (X,Y), 300-380mm (X,Y), 
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180-220mm (Z) 180-220mm (Z) 

Number of Slices 120-250 80-100 
 161 

Virtual phantoms were created as a set of parameters (e.g., bolus arrival time and an 162 

uptake rate constant) and functions that call those parameters (e.g., the Parker AIF) to estimate 163 

whole-image signal at an input time point. We use these enhancement models to compute the 164 

time-evolution of the virtual phantom during the scanning process. The phantoms used in this 165 

experiment modeled noisy acquisition with signal from three different classes of sources; vessel, 166 

lesion, and background. Vessel and lesion signal components come from distinct models but a 167 

single procedure; all signal components are additive. 168 

Vessels and lesions were segmented from patient images and perfusion maps were 169 

created from constraining flow equations with ultrafast data, using a method developed by Wu 170 

et. al [4]. First, ultrafast and high-spatial resolution image sets undergo non-rigid registration for 171 

motion correction. Next, a total 3D vasculature is segmented from high-spatial resolution image 172 

sets by a Hessian filtering process. Lesions were segmented by hand. Using the segmented 173 

lesions and vessels, ultrafast image sets were used to fit a fluid dynamics-based contrast 174 

perfusion model, which created a map of bolus arrival times in the breast. These maps of contrast 175 

perfusion times parametrized Parker et al.’s population-based AIF model [13] in vessels and an 176 

empirically-derived enhancement model [42] in lesions. Additional parameters of the empirical 177 

model were fit from ultrafast image sets. 178 

Background signal in the phantom is static except for fluctuations caused by 179 

measurement noise (noise modeling is discussed in the “Virtual Scanner” section). Motion 180 

artifacts are not directly simulated in this initial study. Each high-resolution image set contains a 181 

single pre-contrast image; these were used to compute the background signal for each phantom. 182 

This breast phantom construction emphasizes the characteristic “sparse plus low-rank” 183 

nature of early-enhancement breast DCE-MRI [43], [44] while including features that have high 184 

resolution in both spatial and temporal domains. In addition, this virtual phantom design is 185 

highly modular and can flexibly incorporate staggered changes to both functions and parameter 186 

sets; different morphologies, perfusion models, and enhancement functions can be swapped 187 

around with relative ease. 188 
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Representation of Sampling Schemes 189 

Here we clarify a notion of 𝑘-space sampling trajectories, which plays a role in both 190 

reconstruction and data acquisition. 191 

A known sampling trajectory can be parametrized as a path 𝑘𝑡 through 𝑘-space as a 192 

function of time 𝑡. It specifies which Fourier coefficients are measured and the time at which 193 

each that measurement is taken. Though the present work only implements reconstruction on 194 

trajectories embedded on a Cartesian grid, any 𝑘-space trajectory that can be parametrized as 𝑘𝑡 195 

can be reconstructed using the method here; any deterministic path can be simulated. 196 

Furthermore, if timestamps from a stochastic measurement are recorded during the scan (or 197 

known within the precision of reconstruction time resolution), then these data can be used for 198 

enhancement-constrained image reconstruction. 199 

We also define a few parameters that will be useful in describing the sampling and 200 

reconstruction processes. By 𝑁, we denote the total number of 𝑘-space points acquired during a 201 

given scan. We use 𝑇 to represent the number of time-points in an image set. Finally, 𝑉 is the 202 

number of voxels in the image volume at any single time-point. 203 

In the standard IFFT reconstruction of a Nyquist-sampled, Cartesian-acquisition 𝑘-space 204 

dataset, 𝑁 = 𝑉𝑇. On the other hand, when we form an “accelerated” (undersampled) set of 205 

images from 𝑁 measurements in 𝑘-space, we have 𝑁 < 𝑉𝑇. The acceleration factor is then 𝛼 =206 

𝑉𝑇

𝑁
.  In this work, we reconstruct dynamic image sets of 𝑉𝑇 ∼ 109 total voxels from 𝑁 ∼ 108 207 

measurements (acceleration factor 𝛼 = 14). 208 

 209 

Virtual Scanner 210 

A virtual scanner was developed to simulate the acquisition of data from the phantoms 211 

described above under varying 𝑘-space acquisition paths. 212 

To simulate signal evolution during the acquisition window, phantom signal was 213 

recomputed for each 𝑘-space measurement (𝑘𝑡1
, … , 𝑘𝑡𝑁

) made by the scanner. For computational 214 

efficiency, however, full re-evaluations of the virtual phantom contrast functions were only made 215 

every 50ms of scan time; signal updates between full re-evaluations were computed as linear 216 
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interpolations between updates. Linearly interpolating between full updates allowed us to capture 217 

and quantify mid-scan changes in contrast dynamics, which typically occur at too fine of time-218 

resolutions to be differentiated in standard acquisitions. These are precisely the types of signal 219 

changes we are hoping to detect. However, using linear interpolations between function 220 

evaluations implicitly encodes the assumption that contrast concentration curves are 221 

approximately linear in 50ms windows. and each window has sufficient SNR. While current 222 

compartmental, population, and empirical models of enhancement suggest this assumption is 223 

reasonable (see Figure 2 for a visual representation of this assumption on the Parker AIF) [42], 224 

[45], [46] and introduces negligible error to the models used in our phantoms, contrast perfusion 225 

curves are not sufficiently characterized to fully vet this assumption  226 

Fig 2. Sample concentration curves paired with their 50ms-interval linear 227 

approximations. 228 

The AIF curve (used in vessels) is shown on the left and the EMM curve (used in lesion 229 

voxels) is shown on the right. 230 

Virtual breast phantoms generated signal data under similar scan parameters as an 231 

ultrafast acquisition. A spoiled gradient-echo signal model was used (FA = 10˚, TR/TE = 3.2/1.6 232 

ms, resolution = 1 mm3) for each phantom acquisition. Noise was modeled as independent 233 

Gaussian distributions in 𝑘-space with variances computed from pre-contrast ultrafast data. To 234 

estimate interference from noise and acquisition artifacts, temporal variances were computed at 235 

each 𝑘-space point across five (5) pre-contrast ultrafast images for each phantom. Each point’s 236 

temporal variance parameterized a Gaussian distribution, from which noise realizations were 237 

produced. Over all cases and 100 noise realizations, this method of noise generation produced 238 

data with an average PSNR of 37dB. 239 

Though the virtual scanner does not have parallel imaging (e.g., SENSE or GRAPPA) 240 

[19], [21] or Partial Fourier [47] implementations, path times computed from these scan 241 

parameters were appropriately scaled to match standard ultrafast time resolutions. Each scan 242 

sequence completed a Nyquist-complete 𝑘-space sample of 𝑉 points every 3.5s and was later 243 

reconstructed at a temporal resolution of 0.25s. These 𝑘-space acquisition and reconstruction 244 

times were chosen to demonstrate the high accelerations this method can achieve (an 245 
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acceleration factor of 𝛼 =
𝑉𝑇

𝑁
= 14, from 3.5s to 250ms), while also allowing an investigation of 246 

the minimum time resolution necessary to fully resolve enhancement dynamics of clinical 247 

interest. 248 

A simple but (to our knowledge) novel 𝑘-space trajectory was used to simulate 249 

acquisitions in this study (Figure 3). By Undersampling With Repeated Advancing Phase 250 

(UnWRAP), we allow our choice of reconstructed temporal resolution to inform the design of 251 

our sampling trajectory. Splitting each group of 𝑉 acquisitions into 𝑓 disjoint subsets, we acquire 252 

the first line of each subset before moving to the second line of the first subset: we continue in 253 

this way until all 𝑉 acquisitions have been made. This ensures that a uniform distribution of 𝑘-254 

space frequency bands determine each reconstructed image, which makes the subsequent 255 

reconstruction both (a) robust to noise and (b) sensitive to fast changes in sharp features. 256 

Fig 3. Cross-section of UnWRAP sequence in the 𝒌𝒚𝒌𝒛 plane. 257 

In this scan sequence, 𝑘-space is divided into 14 sections, which are each separated into 258 

14 sheaves. Each section must have one sheaf scanned before any section can have 259 

another sheaves scanned. This scheme ensures a nearly uniform distribution of high and 260 

low spatial frequencies are present in each reconstructed image, while still satisfying the 261 

(spatial) Nyquist criterion when all scan data are combined. 262 

The virtual scanner pipeline is summarized in Figure 4.  263 

Fig 4. A flowchart summarizing the virtual scanner pipeline. 264 

IFFT Reconstruction 265 

The “standard” IFFT reconstruction is used to benchmark the ECA reconstruction. This 266 

“reconstruction” is simply the inverse fast Fourier transform applied to the 𝑘-space dataset 267 

output by the virtual scanner. This procedure represents the “ideal” ultrafast scan: it assumes a 268 

(spatially) Nyquist complete sample is acquired at 3.5s temporal resolution using typical ultrafast 269 

acquisition parameters (see Table 2). Because ultrafast often relies on other methods (like 270 

SENSE and Partial Fourier) to achieve such high temporal resolution [5], [6], [18], we are 271 

essentially benchmarking against an assumed perfect SENSE and Partial Fourier reconstruction. 272 

 273 
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ECA Reconstruction 274 

Our enhancement-constrained acceleration (ECA) reconstruction method penalizes sharp 275 

enhancement between reconstructed time-points and requires that new images match the 276 

measured 𝑘-space data. The formal details of this reconstruction algorithm may be found in 277 

Appendix A and Appendix B, which can be summarized as follows: 278 

1. Partition 𝑘-space data into time intervals of equal length; require that each 279 

measurement constrains only the image reconstructed in the time interval containing 280 

that measurement’s time-tag (Figure 5). 281 

2. Denote the reconstructed image by the timeseries 𝑋 = (𝑋1, … , 𝑋𝑇) and its spatial 282 

Fourier transform as 𝑋̃ = (𝑋̃1, … , 𝑋̃𝑇). Define 283 

(a) A convex, quadratic smoothness penalty on 𝑋 = (𝑋1, … , 𝑋𝑇) applied 284 

separately to each voxel 𝑣 = 1, … , 𝑉 in the spatial domain. When a voxel 285 

enhances smoothly, the penalty is small; when it doesn’t, the penalty is large. 286 

The penalty can be weighted differently on each voxel 𝑣, reflecting spatial 287 

variation in desired enhancement smoothness. 288 

(b) A data fidelity constraint on 𝑋̃ = (𝑋̃1, … , 𝑋̃𝑇), requiring that, for each 𝑡, any 289 

subset of 𝑋̃𝑡 measured during time interval 𝑡 must exactly match the data 290 

acquired during that interval. 291 

3. Solve for the image 𝑋 = (𝑋1, … , 𝑋𝑇) that minimizes the smoothness penalty and 292 

satisfies the data fidelity constraint on 𝑋̃ = (𝑋̃1, … , 𝑋̃𝑇). 293 

Fig 5. An illustration of the 𝒌-space partitioning process. 294 

(Top) The sampling scheme displayed in Figure 3 is overlaid on sample 𝑘-space data. All 295 

𝑘-space measurements in the same time interval constrain the reconstruction of a single 296 

time-point in the accelerated reconstruction. (Bottom) These 𝑘-space points form the 297 

“measured” partition of the reconstructed dataset. The temporal resolution of the 298 

reconstruction determines the size of the measured partition of 𝑘-space points used for 299 

each reconstruction. The higher the acceleration factor 𝛼, the shorter the duration of each 300 

measured partition and the more underdetermined the reconstruction problem. 301 
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Intuitively, we can think of this optimization as a search for the smoothest set of 302 

enhancement curves that are consistent with our measured 𝑘-space data. Formulating the 303 

reconstruction in this way relies heavily on one key assumption: enhancement is smooth on the 304 

timescale of the reconstruction’s temporal resolution. Requiring smoothness on short timescales 305 

does not limit the ability of this algorithm to accurately measure sharp spatio-temporal changes 306 

as in the AIF, since these changes occur on longer timescales. We chose a target temporal 307 

resolution of 0.25 seconds in response to speculations in the literature [12-16] about optimal 308 

temporal resolutions for pharmacokinetic analysis in breast DCE-MRI. 309 

For a formal description of the partitioning process invoked above, see Appendix A. 310 

Since the smoothness penalty optimized during reconstruction is a positive-definite quadratic 311 

form, the reconstruction optimization is convex and has a unique solution. While this solution 312 

can be defined analytically, we calculate it iteratively via conjugate gradient descent. See 313 

Appendix B and Appendix C for further details. Finally, the computation of image updates 314 

requires some amount of regularization to converge; for a discussion on choice of regularization 315 

parameter, see Appendix D. Documentation and demos for the phantom, scanner, and 316 

reconstruction pipelines are available at <github.com/tyo8/ECA_Demo>. 317 

 318 

Data Analysis 319 

As an initial investigation of the ECA reconstruction framework, we compared images 320 

and enhancement curves recovered from ECA and standard IFFT reconstructions. Two 321 

parameters, bolus arrival time (BAT) and initial enhancement slope, were extracted from the 322 

signal enhancement curve of vessel and lesion voxels by ECA and standard IFFT methods. 323 

BAT was measured from time of peak enhancement in vessel voxels. In lesion voxels, 324 

BAT was calculated as the earliest time at which voxels reached or exceeded 20% of their 325 

maximum enhancement over baseline. 326 

To calculate initial slope in vessel voxels, each voxel timeseries was interpolated by a 327 

modified Akima method [49]. The initial slope was the maximum first derivative of the 328 

interpolated AIF curve. In lesion voxels, percent signal enhancement (PSE) versus time was 329 

fitted to a piecewise empirical mathematical model (EMM): 330 

https://github.com/tyo8/ECA_Demo
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𝑃𝑆𝐸(𝑡) = {𝐴 ∗
(𝛼(𝑡 − 𝑡0))

2

1 + (𝛼(𝑡 − 𝑡0))2
 ,     (𝑡 ≥ 𝑡0)

0,                                           (𝑡 < 𝑡0)

 331 

where 𝑡0 is the BAT in lesion voxels, 𝐴 is the upper limit of percent enhancement, and 𝛼 is the 332 

uptake rate; thus, 𝐴𝛼 is the initial enhancement slope. 333 

To assess image preservation, voxel-wise image fidelity was also compared between the 334 

two methods. Ground-truth images are computed by evaluating the signal function at the center 335 

of the temporal window surrounding each reconstructed time point. The distribution of absolute 336 

voxel-wise signal differences between reconstructed and ground-truth images is then computed 337 

and summarized. 338 

 339 

 340 

  341 
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Results 342 

Bolus Arrival Time (BAT) 343 

Sample BAT maps, computed from both the IFFT and ECA reconstructions, are shown in 344 

Figure 6. The images computed from an ECA reconstruction show more accurate and precise 345 

bolus arrival time estimate than do the images computed from an IFFT reconstruction (Figure 346 

7a/b). Absolute error distributions of BAT estimate from ECA and IFFT reconstructions were 347 

compared via a two-sample Kolmogorov-Smirnov test, and BAT estimates were found to be 348 

significantly more accurate in ECA reconstructions (0.01 ≤ 𝑝 ≤ 0.02 in vessels and 0.04 ≤ 𝑝 ≤349 

0.05 in lesions). BAT estimation error distributions are shown (for lesion and vessel voxels) for 350 

all cases in Figure 7a/b. Summary statistics over all cases are shown in Table 3. 351 

Fig 6. Bolus arrival time computed from the case 4 image set. 352 

From left to right: IFFT reconstruction, ECA reconstruction, and ground truth. Times 353 

shown on the color bar are measured in seconds. 354 

Fig 7. Error distributions are shown for all cases. 355 

Distributions for IFFT and ECA are shown in different colors on the same plot. (a) and 356 

(b) show errors in the estimation of the bolus arrival time in milliseconds; (c) and (d) 357 

show the distribution of the proportional voxel error. 358 

Table 3. Median absolute error values over all cases.  359 

              BAT Error (ms)     Voxel Error (%) 360 

 Lesion Vessel 
IFFT 1701 ms 904 ms 
ECA 267 ms 64.6 ms 

 361 

BAT differences are shown separated by case in Figure 8. While the standard IFT 362 

reconstruction showed no substantial difference in bolus arrival time by case, ECA predicted 363 

bolus arrival time substantially better in cases 1, 3, and 4 than in cases 2 and 5. 364 

Fig 8. Box and whisker plots of the error in bolus arrival time, by case number and 365 

reconstruction method. 366 

 Lesion Vessel 
IFFT 0.007% 0.39% 
ECA 0.47% 0.56% 
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Red boxplots (right) are from ECA-reconstructed data; blue boxplots (left) are from 367 

standard IFFT reconstructions. Separate sets of plots are shown for lesion and vessel 368 

voxels. 369 

Images reconstructed from the ECA algorithm show much greater precision in estimation 370 

of bolus arrival time. Errors in BAT have much smaller spread (median absolute deviation) for 371 

ECA reconstructions than for IFFT reconstructions, especially in vessel voxels. Furthermore, the 372 

BAT error distribution is clustered much nearer to 0 in ECA reconstructions than in IFFT 373 

reconstructions (Figure 7a/b), especially in vessel voxels. 374 

Overall, ECA reconstructions were much more successful in recovering bolus arrival 375 

times than IFFT reconstructions. Because bolus arrival time estimates were more accurate with 376 

ECA, we conclude that ECA reconstruction allows for more accurate and more precise bolus 377 

tracking than traditional ultrafast methods. 378 

 379 

Initial Slope 380 

Enhancement curves recovered from reconstructed images closely match simulated 381 

enhancement from the phantoms. Figure 9 plots ground truth versus estimate values for the 382 

initial slope, as derived from both ECA (left) and IFFT (right) reconstructions.  Compared to 383 

standard IFFT, ECA reconstruction more accurately recovers the initial slope of the enhancement 384 

curve in both vessel and lesion voxels. To see this, first note that the coefficient of determination 385 

in both sets of truth-estimate fits is larger for ECA than IFFT; therefore, ECA produces lower-386 

variance estimates of initial slope than IFFT does. Next, compare the slopes and offsets of the 387 

truth-estimate fits. In vessel voxels, IFFT and ECA have similar fit slopes and offsets, and 388 

therefore introduce similar amounts of bias; in lesion voxels, ECA introduces much less bias 389 

than IFFT. Although both methods exhibit greater error when recovering enhancement curves 390 

with larger initial enhancement slope, ECA estimates the initial slope more accurately than 391 

standard IFFT.  392 

Fig 9. Scatter plot between ground truth initial slope and estimated initial slope. 393 
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The panels show ECA and standard IFFT in (a)(b) vessels voxels and (c)(d) lesion 394 

voxels. The red lines and blue lines represent the linear correlations and black dashed 395 

lines show unity. 396 

Image Fidelity 397 

ECA-reconstructed images are highly similar to ground-truth images. A sample error map 398 

is overlaid on a phantom in Figure 10. Voxel-wise error statistic summaries are shown in Figure 399 

11 for the 5 phantoms tested, and a sample enhancing-voxel error distribution is shown in Figure 400 

7c/d. Voxel-wise errors in the IFFT reconstruction were generally smaller than in the ECA 401 

reconstruction, though fidelity errors were very small in both methods. The voxel intensity error 402 

distributions shown in Figure 10 show that the increased temporal resolution comes with at most 403 

a negligible cost in voxel intensity accuracy. 404 

Fig 10. Proportional intensity error per voxel for case 4. 405 

Proportional intensity error is shown from the mean projection over time and through the 406 

volume. From left to right: IFFT reconstruction error, ECA reconstruction error, and the 407 

ground truth image. 408 

Fig 11. Box and whisker plots of the proportional enhancement error, by case and 409 

reconstruction method. 410 

Red boxplots (right) are from ECA-reconstructed data; blue boxplots (left) are from 411 

standard IFFT reconstructions. Separate plots are shown for lesion and vessel voxels. 412 

 413 

Comparison with Standard Methods 414 

Figure 12 juxtaposes a median-quality curve from the ECA reconstruction with the IFFT 415 

reconstruction (which assumes perfect SENSE and Partial Fourier reconstructions) of the same 416 

voxel. Sample curves are shown for constant, vessel, and lesion voxels. 417 

Fig 12. Comparison of a sample constant-signal from standard IFFT and ECA 418 

reconstruction. 419 
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The ECA is more sensitive to noise than the IFFT, but the noise is still small with respect 420 

to the signal. IFFT reconstruction estimates bolus arrival time and peak signal less 421 

accurately than ECA reconstruction. 422 

Overall, the ECA reconstruction captured bolus arrival times in enhancing voxels more 423 

accurately than the IFFT reconstruction, suffering only a small loss of accuracy in estimating the 424 

per-time point image (Table 3, Figure 7c/d, Figure 11). While ECA proved uniformly more 425 

accurate in recovering the BAT in the vessel, ECA and IFFT estimated lesion BAT with similar 426 

bias in two cases; in the other three, ECA estimated the BAT with lower bias and variance. Even 427 

in cases where ECA and IFFT produced similarly biased estimations of BAT, the ECA estimated 428 

the BAT with lower variance (Table 3, Figure 7a/b, Figure 8).   429 



18 
 

Discussion 430 

The results from realistic phantoms reported here demonstrate that sparse uniform 431 

samples of 𝑘-space can be used to reconstruct DCE-MRI breast images with high fidelity and 432 

very high temporal resolution. This allows more accurate arterial bolus tracking and more 433 

accurate measurement of lesion enhancement parameters such as the bolus arrival time and 434 

initial enhancement slope. These important diagnostic parameters have been used to improve 435 

cancer diagnosis ([5], [11], [50], [51]). Since the early phase of enhancement is critical for 436 

distinguishing cancers from background parenchymal enhancement [6], [52], high fidelity high 437 

temporal resolution images produced with ECA may significantly improve identification and 438 

characterization of small cancers. 439 

The ECA method introduced here is based on two primary principles. 440 

(1) If 𝑘-space data is partitioned into small subsets by acquisition time, each subset retains 441 

important kinetic information. 442 

Especially when enhancement is sparse (as in the early phase of contrast uptake), even 443 

highly sub-Nyquist acquisitions contain sufficient information to almost fully constrain 444 

the evolution of contrast kinetics. The UnWRAP sequence used in this study 445 

demonstrates this principle in action, using simple uniform undersampling to sample a 446 

representative bandwidth of spatial frequencies. We believe the UnWRAP 𝑘-space 447 

ordering scheme to be a good choice for sampling the early phase of contrast uptake, but 448 

we emphasize that this principle is applicable to any known/deterministic 𝑘-space 449 

sampling trajectory. 450 

(2) DCE-MRI enhancement is approximately smooth in small time intervals. 451 

Provided kinetic processes are slow on fractional-second timescales and samples are 452 

acquired with sufficient SNR and bandwidth, very few measurements of 𝑘-space are 453 

needed to “tie together” the time-evolution of an image set. This is especially true when 454 

all of the partial 𝑘-space measurements taken together form a Nyquist-complete set. We 455 

designed the UnWRAP acquisition sequence to maximally leverage this principle, but it 456 

is applicable to many undersampled reconstruction methods in DCE-MRI. 457 
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The UnWRAP method introduced here maintains relatively high SNR over each subset of 458 

𝑘-space by sampling a mixture of high and low spatial frequencies. The extent to which both 459 

reconstruction methods preserved voxel-wise intensity suggests the UnWRAP 𝑘-space trajectory 460 

chosen offers some advantages over a standard sequential acquisition. Because it maintains a 461 

uniform frequency density in the scan, the UnWRAP sequence samples the 𝑘-space center often 462 

enough to preserve signal intensity and the 𝑘-space edges often enough to correctly assign signal 463 

to spatial features. As is true for any acceleration method, effective application of the UnWRAP 464 

method requires adequate SNR during each measurement interval. 465 

The results summarized here demonstrate that ECA combined with UNWRAP sampling 466 

has promise for improving breast cancer screening and diagnosis. However, this study had some 467 

limitations: 468 

• This was a simulation study, and it will be critical to test these results in vivo. These tests 469 

are currently underway. 470 

• Motion artifacts were not included in this work. It will be critical to evaluate effects of 471 

motion in future simulations as well as in in vivo studies. 472 

• Neither heart nor background enhancement were modeled in these simulations. It will be 473 

critical to assess the capacity of ECA to reconstruct diagnostically useful enhancement in 474 

the presence of background enhancement. 475 

• T2* effects were not simulated. These effects are significant during the early phase of 476 

contrast media uptake, especially in arteries.  477 

• Other sampling trajectories were not tested; because not all scanners can implement all 478 

undersampling trajectories, it will be important to test ECAs performance with other 479 

types of accelerated acquisitions. 480 

In addition to addressing the study limitations listed above, we suggest several further avenues of 481 

future investigation. First and foremost, ECA requires a thorough characterization of its 482 

performance across a wide range of noise levels. Second, because of the ubiquity of partial 483 

Fourier, parallel imaging, and ML acceleration methods, we will integrate our acceleration 484 

algorithm with popular implementations of these. Finally, we hope to test ECA on a wide variety 485 

of sampling trajectories and use this process to evaluate the optimality of both ECA and these 486 

trajectories in a wider context of DCE-MRI acceleration methods.  487 
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Taken as a whole, the data presented in this work constitute an argument that “sparse + 488 

smooth enhancement” characterize contrast kinetics in breast DCE-MRI to very high precision 489 

during the early phase of contrast media uptake. Smooth enhancement is a stringent condition to 490 

impose on DCE-MRI data and, on its own, encodes a great deal of physiological structure. 491 

Within such a constraint, even a small number of well-chosen measurements can closely 492 

characterize early enhancement in the breast. ECA reconstruction provides a robust framework 493 

to increase diagnostic accuracy and improve understanding of hemodynamics in normal breast 494 

and cancers. 495 

  496 
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Appendix A: Formal Description of Partition Constraints 497 

Suppose a total of N measurements are taken over the course of the scan: denote these as 498 

𝑌 = (𝑦1, … , 𝑦𝑁). Choose a reconstruction temporal resolution such that we have 𝑇 time points in 499 

the reconstructed image. We may identify each measurement with the time 𝑡𝑛 ∈ {1, … , 𝑇} at 500 

which it was taken. For example, if we partition the time duration of the scan into 𝑇 intervals, 501 

then 𝑡𝑛 = 1 indicates the 𝑛th measurement was acquired during the first time interval. We will 502 

also write 𝑣𝑛 ∈ {1, … , 𝑉} to denote the 𝑘-space voxel (i.e., spatial frequency) at which 503 

measurement 𝑛 was acquired. Our method does not require that we observe an equal number of 504 

measurements during each time interval 𝑡 = 1, … , 𝑇, but we typically expect to have 𝑁/𝑇 505 

measurements for each 𝑡. 506 

Let 𝑋 = (𝑋1, … , 𝑋𝑇) be a dynamic timeseries image with 𝑇 time-points, where each static 507 

image 𝑋𝑡 has 𝑉 voxels; this is the unknown sequence of true images (up to spatiotemporal 508 

discretization) that we aim to reconstruct. In a fully sampled regime (𝑁 = 𝑉𝑇), we would 509 

observe the complete 𝑘-space data 𝑋̃𝑡 = ℱ𝑋𝑡 at each time 𝑡 = 1, … , 𝑇, where ℱ is the 𝑉 × 𝑉 510 

discrete Fourier transform matrix. In other words, we would measure (a noisy version of) the 511 

sequence 512 

𝑋̃ = (𝑋̃1, … , 𝑋̃𝑇) = (ℱ𝑋1, … , ℱ𝑋𝑇) = (𝐼𝑇 ⊗ ℱ)𝑋, 513 

where ⊗ denotes the Kronecker product. (Abusing notation, we will interpret 𝑋 and 𝑋̃ as either 514 

𝑉 × 𝑇 matrices or vectors of length 𝑉𝑇, depending on the context.) When reconstructing at 515 

accelerated time resolution (𝑁 < 𝑉𝑇), the measured data is a proper subset of the full timeseries 516 

(i.e., 𝑌 ⊊ 𝑋̃). Define 517 

Ω = ((𝑡1, 𝑣1), … , (𝑡𝑁, 𝑣𝑁)) 518 

as the sequence of (time-index, spatial frequency-index) pairs at which the 𝑘-space 519 

measurements 𝑦1, … , 𝑦𝑁 were taken (i.e., each entry in Ω lies in the set {1, … , 𝑇} × {1, … , 𝑉}). 520 

Then 𝑋̃Ω is the observed part of the Fourier transform of the dynamic image sequence. For each 521 

𝑛, our observation 𝑦𝑛 is the voxel 𝑣𝑛 from the image 𝑋̃𝑡𝑛
, giving the relation 𝑦𝑛 = (𝑋̃𝑡𝑛

)
𝑣𝑛

+522 

noise. The remaining entries in 𝑋̃ (i.e., those in 𝑋̃Ωc) are left unobserved and must be 523 

reconstructed by our algorithm. 524 
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 Our data fidelity constraint stipulates that the observed 𝑘-space data 𝑌 must remain 525 

unaltered by the reconstruction. Therefore, any reconstruction 𝑋̂ of 𝑋 must satisfy 526 

[( 𝐼𝑇 ⊗ ℱ)𝑋̂]
Ω

= 𝑌. (1) 527 

528 
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Appendix B: The Penalty Function 529 

After requiring that each reconstructed image match the 𝑘-space points in the partition 530 

corresponding to its interval, we minimize over a weighted and regularized smoothness penalty 531 

to determine a unique reconstruction. The mathematical details of this process are laid out in this 532 

section. 533 

First, we will define the loss function minimized by our reconstruction optimization: the 534 

discretized curvature. For a given signal 𝑥 = (𝑥1, … , 𝑥𝑇) composed of 𝑇 time points, define the 535 

smoothness penalty function 𝑆 as the 𝑙2-norm of its discrete second derivative: 536 

𝑆(𝑥) =  ∑ |(𝑥𝑡+1 − 𝑥𝑡) − (𝑥𝑡 − 𝑥𝑡−1)|2𝑇−1
𝑡=2 . 537 

Since 𝑆 is a quadratic function of 𝑥, we may write it in terms of a linear operator 𝐷 satisfying  538 

𝑆(𝑥) = 𝑥∗𝐷𝑥. 539 

As a matrix, 𝐷 takes the form 540 

 541 

The operator 𝐷 is poorly conditioned. In fact, it can be shown that the respective supremum and 542 

infimum of eigenvalues of 𝐷 (over all values of 𝑇) are 𝜎𝑚𝑎𝑥(𝐷) = 16 and 𝜎𝑚𝑖𝑛(𝐷) = 0. 543 

Since 𝐷 is (nearly) degenerate and we will later need to invert it, we add a small 544 

parameter 𝜆 (we chose 𝜆 = 10−5) to regularize the operator 𝐷: 545 

𝐷𝜆 = 𝐷 +  𝜆𝐼𝑇 , 546 
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where 𝐼𝑇 is the 𝑇-dimensional identity. Thus, in the reconstruction process, we use the 547 

regularized smoothness penalty 548 

𝑆𝜆(𝑥) = 𝑥∗𝐷𝜆𝑥. 549 

If 𝑋 = (𝑋1, … , 𝑋𝑇) is a dynamic image composed of 𝑇 static images, each with 𝑉 voxels, then 550 

we can extend 𝑆𝜆 to act on 𝑋 by 551 

𝑆𝜆(𝑋) = ∑ 𝑥𝑣
∗𝐷λ

𝑉

𝑣=1

𝑥𝑣, 552 

where 𝑥𝑣 is the timeseries signal at the 𝑣th voxel.  553 

It may also be desirable to penalize a lack of smoothness in some voxels more than in 554 

others. To enforce such a prioritization of “interesting” voxels, we may also include voxel-wise 555 

weighting terms 𝑤𝑣, generating our full loss function ℒ: 556 

ℒ(𝑋) = ∑ 𝑤𝑣𝑥𝑣
∗𝐷λ

𝑉

𝑣=1

𝑥𝑣. 557 

Setting 𝑊 as the 𝑉 × 𝑉 diagonal matrix with entries 𝑤𝑣, we can write the reconstruction 558 

optimization problem as 559 

𝑋̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑋

 { ⟨𝑊, 𝑋𝐷𝜆𝑋∗⟩ ∣∣ [( 𝐼𝑇 ⊗ ℱ)𝑋]Ω = 𝑌 } . (2) 560 

 561 

  562 
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Appendix C: Solutions to the Optimization Problem 563 

General Case: Arbitrary Voxel Weights 564 

In the following section, we will show that the optimization problem posed by the 565 

reconstruction has the following unique solution: 566 

𝑋̂ = [𝐷λ
−1 ⊗ 𝑊−1ℱ∗]∗,Ω ⋅ ([𝐷λ

−1 ⊗ ℱ𝑊−1ℱ∗]Ω,Ω)
−1

⋅ 𝑌, (3) 567 

where, for a 𝑉𝑇 × 𝑉𝑇 matrix 𝑀, 𝑀∗,Ω denotes the 𝑉𝑇 × |Ω| submatrix of 𝑀 with columns 568 

belonging to Ω; similarly, 𝑀Ω,Ω is the |Ω| × |Ω| submatrix of 𝑀 consisting of rows and columns 569 

in Ω. 570 

Since computing this solution for 𝑋̂ requires a large matrix inversion (𝑁 × 𝑁 ∼ 1016), 571 

we implement this computation iteratively. We initialize the solution in 𝑘-space, estimating the 572 

Fourier-transformed image sequence 𝑋̃ by zero-filling around the 𝑁 𝑘-space measurements of 𝑌 573 

(𝑋̃Ω = 𝑌 and 𝑋̃Ωc = 0). We then descend along the conjugate gradient of the smoothness penalty 574 

until we converge to (3). See code for implementation: https://github.com/tyo8/ECA_Demo. 575 

We will now check our solution to the target optimization problem. First, we will show 576 

that (3) satisfies the problem constraints.  577 

[( 𝐼𝑇 ⊗ ℱ)𝑋̂]
Ω

=  [( 𝐼𝑇 ⊗ ℱ)[𝐷λ
−1 ⊗ 𝑊−1ℱ∗]∗,Ω ⋅ ([𝐷λ

−1 ⊗ ℱ𝑊−1ℱ∗]Ω,Ω)
−1

⋅ 𝑌 ]
Ω

 579 

= [𝐷λ
−1 ⊗ ℱ𝑊−1ℱ∗]Ω,Ω ⋅ ([𝐷λ

−1 ⊗ ℱ𝑊−1ℱ∗]Ω,Ω)
−1

⋅ 𝑌  580 

= 𝑌. 581 

Thus, 𝑋̂ is a feasible solution to the optimization problem. 578 

Next, we will show that (3) satisfies first-order optimality conditions. Since 𝐷𝜆 and 𝑊 582 

are both positive-definite matrices, an optimal solution is unique. To see that 𝑋̂ is optimal, we 583 

must show that the gradient of the loss function lies in the span of the gradient of the constraints. 584 

∇Xℒ(𝑋̂) = (𝐷𝜆 ⊗ 𝑊) 𝑋̂ 585 

=  (𝐷𝜆 ⊗ 𝑊) ⋅ [𝐷λ
−1 ⊗ 𝑊−1ℱ∗]∗,Ω ⋅ ([𝐷λ

−1 ⊗ ℱ𝑊−1ℱ∗]Ω,Ω)
−1

⋅ 𝑌 586 

= [(𝐷𝜆 ⊗ 𝑊) ⋅ (𝐷λ
−1 ⊗ 𝑊−1ℱ∗)]

∗,Ω
⋅ ([𝐷λ

−1 ⊗ ℱ𝑊−1ℱ∗]Ω,Ω)
−1

⋅ 𝑌 587 

= [𝐼𝑇 ⊗ ℱ∗]∗,Ω ⋅ ([𝐷λ
−1 ⊗ ℱ𝑊−1ℱ∗]Ω,Ω)

−1
⋅ 𝑌 588 

https://github.com/tyo8/ECA_Demo
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Since [𝐼𝑇 ⊗ ℱ∗]∗,Ω is the gradient of the constraint function, we’ve shown that ∇Xℒ(𝑋̂) lies in 589 

the span of the constraint gradients. It follows that 𝑋̂ is the unique solution to the reconstruction 590 

optimization problem. 591 

 592 

Special Case: Uniform Voxel Weights 593 

When all voxels are uniformly weighted (𝑊 ∝ 𝐼𝑉), the solution simplifies significantly: 594 

𝑋̂ = (𝐼𝑇 ⊗ ℱ∗)𝑌̅,  595 

where 𝑌̅  = [𝐷𝜆
−1 ⊗ 𝐼𝑉]∗,Ω ⋅ ([𝐷𝜆

−1 ⊗ 𝐼𝑉]Ω,Ω)
−1

⋅ 𝑌. 596 

597 
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Appendix D: Regularization in the Optimization Problem 598 

 Recall the penalty function defined above: 599 

𝑆(𝑥) = 𝑥∗𝐷𝑥. 600 

Since the operator 𝐷 is not invertible (and must be inverted to efficiently compute the optimal 601 

solution), we add a small diagonal element 𝜆𝐼𝑇 to 𝐷 to get the regularized penalty function 602 

𝑆𝜆(𝑥) = 𝑥∗𝐷𝜆𝑥. 603 

As with any regularization parameter, different values of 𝜆 offer different trade-offs between the 604 

optimality of the solution and the speed at which it is reached. We hope to choose 𝜆 large enough 605 

that 𝐷𝜆 is well-conditioned and small enough that 𝑆𝜆 −  𝑆 is small compared to 𝑆. Equivalently, 606 

we require that 607 

𝜆−1 ≫
⟨𝑊, 𝑋𝑋∗⟩

⟨𝑊, 𝑋𝐷𝑋∗⟩
 608 

and − log10 𝜆 ≤ 𝑘 for some integer 𝑘 (which should be chosen empirically based on problem 609 

size, system requirements, and the conditioning of the weights matrix 𝑊). We chose 𝜆 = 10−5 610 

because it converged sufficiently quickly and did not significantly alter the penalty function 611 

computed in our experiment. To illustrate the regularization-vs-performance tradeoff, a pair of 612 

plots for different values of 𝜆 in a small-scale (𝑉𝑇 ∼ 106) reconstruction are shown below 613 

(Figure 13). As regularization increases, we converge more quickly to a solution, but that 614 

solution is less accurate. 615 

Fig 13. Reconstruction error and convergence speed as a function of regularization. 616 

(Blue) Error, measured here by normalized mean-square error (MSE), increases with 617 

regularization strength. (Red) Computation time, measured in number of iterations, 618 

decreases with regularization strength.  619 
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