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Abstract

The piezoelectric response of bone at the submicron scale is analyzed under mechanical loadings using the finite element
(FE) method. A new algorithm is presented to virtually reconstruct realistic bone nanostructures, consisting of collagen
fibrils embedded in a hydroxyapatite mineral network. This algorithm takes into account potential misalignments between
fibrils, as well the porous structure of the mineral phase. A parallel non-iterative mesh generation algorithm is utilized to
create high-fidelity FE models for several representative volume elements (RVEs) of the bone with various fibrils volume
fractions and misalignments. The piezoelectric response of each RVE is simulated under three types of loading: the longitu-
dinal compression, lateral compression, and shear. The resulting homogenized stress and electric field in RVEs with aligned
fibrils showed a linear variation with the fibrils volume fraction under all loading conditions. For RVEs with misaligned
fibrils, although more oscillations were observed in homogenized results, their difference with the results of RVEs with
aligned fibrils subject to lateral compression and shear loadings were negligible. However, under longitudinal compression,
the electric field associated with RVEs with misaligned fibrils was notably higher than that of RVEs with aligned fibrils for
the same volume fraction.
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1 Introduction architecture of bone (Rho et al. 1998; Fratzl and Weinkamer

2007), ranging from tropocollagen molecules to bundles of

Human bone is composed of ~40% collagen, ~50% min-
eral, and ~10% of other non-collagenous protein and water
(Genin et al. 2009), although this ratio could vary depend-
ing on age and health conditions. While these constituents
are made of both soft organic and brittle inorganic phases,
the bone exhibits remarkable mechanical properties with a
high strength and toughness (Reilly et al. 1974; Norman
et al. 1995), as well as the ability to repair itself (Taylor
et al. 2007). This is made possible due to the hierarchical
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collagen fibers at the scale of few microns to osteons at the
scale of ~100 pm and finally at the macroscale, where its
length can reach up to ~50 cm (Reznikov et al. 2014). Vari-
ous intrinsic and extrinsic mechanisms at different length
scales are responsible for toughening of the bone (Ritchie
et al. 2009; Launey et al. 2010). Understanding how different
length scales impart these mechanical properties is essential
in the field of tissue engineering and for the design of bioin-
spired materials (Wegst et al. 2015; Yang et al. 2018; San-
tulli 2015). Therefore, several studies have been dedicated
to elucidating the mechanical behavior of bone at different
scales, among which we can mention (Hamed et al. 2010;
Martinez-Reina et al. 2011; Sabet et al. 2016).

At the sub-micron scale, the bone is composed of miner-
alized collagen fibrils with diameters ranging from 80—-100
nm, surrounded by fine hydroxyapatite (HA) mineral crys-
tals (Weiner and Wagner 1998). Mechanical properties of
collagen fibrils have widely been studied via atomic force
microscopy (AFM) (Yang et al. 2008; Shen et al. 2008;
Wenger et al. 2007; Yang 2008; Hang and Barber 2011) and
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modeled using the finite element method (FEM) (Jager and
Fratzl 2000; Sanchez 2013). However, due to the complexity
of the bone internal architecture at such a small scale, proper
characterization of its nanostructure is a challenging task
(Weiner and Traub 1992) that has been the subject of sev-
eral studies in recent years, some resulting in contradictory
outcomes. In some studies, it has been concluded that the
mineral phase is only present in the gap zones of collagen
fibrils (Landis et al. 1996; Weiner et al. 1991; Tong et al.
2003). However, some recent studies have suggested that
more than 70% of minerals is extra fibrillar, where mineral
platelets are surrounding collagen fibrils in a shell-like fash-
ion (McNally et al. 2012, 2013). On the other hand, there
are studies indicating that mineral platelets further aggre-
gate into more complex, irregular structures around collagen
fibrils (Reznikov et al. 2018).

These complexities have entailed the use of simpler
models such as 2D finite element (FE) models (Schwarcz
et al. 2017; Ji and Gao 2004; Bar-On and Wagner 2011)
to study the bone stiffness and strength at the sub-micron
scale, assuming that minerals are arranged in a staggered
manner in a collagen matrix. This arrangement has also been
adopted in a 3D FE model to study the bone stiffness in
Vercher et al. (2014), as well as in several analytical studies
(Zhang et al. 2010; Bar-On and Wagner 2011). The Mori-
Tanaka homogenization approach has also been employed
to study the bone stiffness at this scale (Nikolov and Raabe
2008). More recent studies have used Voronoi tessellation
to generate the 3D collagen-mineral platelet arrangement
to investigate the toughening mechanisms at the submicron
scale (Wang et al. 2018). Damage simulations at this scale
have also been carried out to identify the effect of spatial
arrangement and diameters of collagen fibrils on the fracture
toughness (Wang and Ural 2018).

One of the remarkable characteristics of bone is its piezo-
electricity, arising primarily from the organic component
(collagen fibrils) (Marino et al. 1971; Tofail et al. 2011).
Since the first experimental characterization of the bone
piezoelectricity (Fukada and Yasuda 1964), it has drawn
significant attention as a transduction mechanism to explain
the bone adaptivity to external loadings. More specifically,
the positive charge on the collagen surface piezoelectri-
cally generated in response to external loadings may attract
negatively charged ion clusters of calcium phosphate; thus
collagen piezoelectricity is possibly one of the main con-
tributors to mediate the bone mineralization process. The
fact that the collagen piezoelectricity exhibits anisotropic
properties makes it more appealing to adapt various types of
loading, such as axial compression, bending, twisting, and
shear (Kalinin et al. 2006; De Jong et al. 2015). Although
the piezoelectric property of bone has been experimentally
characterized at the macroscale (Fukada and Yasuda 1964,
Gjelsvik 1973; Bassett 1965) and single-fibrillar scale (i.e.,
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nanoscale) (Minary-Jolandan and Yu 2009; Denning et al.
2017), the physiological importance of the collagen piezo-
electricity has not been fully elucidated. To fill the gap, it is
important to understand how the electric field is generated
under various loading conditions considering the anisotropic
piezoelectric properties of collagen fibrils. Performing such
study also requires taking into account the impact of the
complex heterogeneous structure of the bone at the sub-
micron scale.

While a number of computational studies have been car-
ried out to link the bone nanostructure to its mechanical
behavior and failure response, to the best of the authors’
knowledge, no study exists on numerical analysis of the
bone piezoelectric response at this scale. In this manuscript,
we present an automated computational framework for the
virtual reconstruction, FE modeling, and simulating the
piezoelectric response of the bone at the submicron scale.
We introduce a new reconstruction algorithm relying on the
Centroidal Voronoi Tessellation (CVT) algorithm and Non-
Uniform Rational B-Splines (NURBS) to synthesize 3D
models of the bone nanostructure considering the misalign-
ment between collagen fibrils. Four virtual models with vari-
ous volume fractions, spatial arrangement, and spatial orien-
tation of collagen fibrils are then reconstructed to study the
impact of the nanostructures on the piezoelectric response
of the bone. A parallel version of the meshing algorithm
Conforming to Interface Structured Adaptive Mesh Refine-
ment (CISAMR) is employed to create a high-fidelity FE
model for each nanostructure. A static piezoelectric model is
then utilized to simulate the response of bone nanostructures
under three different loading conditions, namely compres-
sion in the longitudinal and transverse fibers direction, as
well as transverse shear.

The remainder of this manuscript is organized as follows.
The formulation of the problem at the sub-micron scale is
presented in Sect. 2. The CVT-NURBS reconstruction algo-
rithm is introduced in Sect. 3, followed by an overview of the
CISAMR algorithm for creating 3D FE models. A detailed
discussion on piezoelectric response of the nanostructure
along with its implications to bone remodeling is provided in
Sect. 4. Final concluding remarks are summarized in Sect. 5.

2 Problem formulation
2.1 Governing equations

In this section, we introduce the equations governing the
piezoelectric response of materials under the assumptions
of a small electric field and linear elastic material behav-
ior (Madarash-Hill and Hill 2004). In the absence of body
forces, the constitutive equations must simultaneously take
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into account the mechanical equilibrium and the conserva-
tion of electric flux as

€5 = SiOu — dy B 1)
q; = dyyoy + DYE;, 2

where o;; is the Cauchy stress tensor, g; is the electric dis-
placement vector (electric flux density), SE is the fourth-

order material compliance tensor, d:;, is the piezoelectric

constant tensor Dg is the dielectric constant tensor. The
strain tensor €, and the electric field vector E,, are evaluated
based on nodal displacements and electric potential obtained
from the FE approximation, respectively. The constitutive
equations (1) and (2) are solved in conjunction with the
mechanical equilibrium and flux conservation equations,
which are integrated over the FE mesh. Note that in this
work, only collagen fibrils exhibit a piezoelectric response,
meaning corresponding constants do not need to be defined
for the non-piezoelectric mineral phase.

Assume O is a Statistical Volume Element (SVE) of the
bone at the sub-micron scale defined in the coordinate sys-
tem x,,,, with boundary A and outward unit normal vector
n,,,. Characteristic length scales of the upper-scale domain €2
and the lower-scale © are denoted by /,; and [, respectively.
In order to implement the theory of homogenization, these
length scales must satisfy

&= I <1, 3)
I

which ensures the effect of boundary conditions imposed

on O on resulting homogenized properties is negligible

(assumption of constant macroscopic stress/strain). The

Hill-Mandel micro-homogeneity principle at a given mac-

roscopic point can then be written as (Hill 1985)

inf ®y,(ey,) = inf inf— / @, (e +€,) O, @
uy 0| Jo

€m l'lml

where ®@,; = 1eM : o-M is the macroscopic energy density at
that point and D, (eM +e€,) : o, is the average micro-
scopic energy densny in O, i.e., the microscopic domain of
corresponding SVE. Here, €,, and 6,, denote the microscopic
strain and stress tensors, respectively.

After evaluating the response of an SVE (€., and o,,), the
homogenized strain tensor at the corresponding macroscopic
point can be evaluated using the strain averaging theorem as

1
ev(xy) = @ /@ €n(x,) dO. 5)

Similarly, the macroscopic stress tensor and the electric field
vector at this point are given by

o) = o / 6%, d O, ©)

Ey(xy) = ﬁ AEm(xm) de. @)

Note that the assumption of linear behavior allows for the
superposition of the response of the two phases (Martinez-
Ayuso et al. 2017).

3 Automated modeling framework

The bone nanostructure is composed of mineralized colla-
gen fibrils with an average diameter of ~100 nm surrounded
by a mineral phase. Based on the tomography reconstruc-
tion of the bone at this scale presented in McNally et al.
(2013) (Fig 5a, p. 51), shows the mineral phase surround-
ing collagen fibrils in a shell-like fashion. A simplified geo-
metrical model of this complex nanostructure taken from
McNally et al. (2012) is illustrated in Fig. 1a, showing stacks
of mineral plates surrounding each fibril, as well as voids
at junctions of mineral stacks associated with neighboring
fibrils. Such voids can also be discerned in the tomography
image from McNally et al. (2013) as pores that are signifi-
cantly smaller than diameter of collagen fibrils. Based on
these interpretations, we aim to virtually reconstruct 3D
models of the bone nanostructure consisting of aligned/
misaligned collagen fibrils embedded in a porous mineral
matrix. Figure 1b shows a sample SVE reconstructed using
the algorithm developed for this purpose and described in
the remainder of this section. Note that the bone architecture
at this scale is even more complex, e.g., the mineral phase
is composed of mineral platelets. However, because in this
study we are not concerned with local phenomena such as
damage and instead aim to approximate the homogenized
piezoelectric response of the bone, which is averaged over
the entire domain, the assumption made for the reconstruc-
tion of an SVE model similar to that shown in Fig. 1b are
reasonably realistic.

The proposed algorithm for the virtual reconstruction
of bone SVEs at the sub-micron scale consists of three
main phases: (i) a modified Centroidal Voronoi Tessella-
tion (CVT) (Du et al. 1999) to create 2D cross sections of
collagen fibrils embedding within Voronoi cells (Sect. 3.1);
(i1) adding voids at Voronoi vertices (Sect. 3.2); and (iii)
extruding fibrils and voids Non-Uniform Rational B-Splines
(NURBS) representation to create the 3D geometrical model
(Sect. 3.3). Note that the CVT algorithm was chosen for
reconstructing the bone nanostructure to avoid the cluster-
ing of collagen fibrils, which allows replicating in a rela-
tively uniform distribution of fibrils, as seen in healthy bone
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Fig.1 a Simplified geometrical model, including collagen fibrils and
mineral platelets (figure adopted from (McNally et al. 2012)); b SVE
virtually reconstructed using the algorithm introduced in this work

Fig.2 a Voronoi cells generated

Cells selected for elongation

tissue. More importantly, this algorithm facilitates adding
misaligned fibrils to the bone nanostructure by providing
more control on the placement of each fibril and its rela-
tive distances to neighboring fibrils. Further, CVT enables
embedding voids in the mineral phase without overlapping
with existing fibrils using vertices/edges of Voronoi cells to
determine locations of these voids. Next, we describe each
phase in more detail.

3.1 Reconstruction of collagen fibrils

In order to virtually reconstruct the bone nanostructure, we
first create a 2D rectangular domain with lengths /, and /|
that represents a cross section perpendicular to the princi-
pal collagen fibrils direction. This 2D domain is discretized
using the CVT algorithm, which begins by implementing the
Voronoi tessellation using randomly generated seed points.
The number of seed points, Nsp, determines the number of
collagen fibrils, which is evaluated based on their desired
volume fraction V; as

CLLY;

9
wr?

sp ®)
where r is the average radius of collagen fibrils, assumed to
be 50 nm in this study. However, the random spatial arrange-
ment of seed points in the 2D domain prohibits insertion
of collagen fibril without avoiding overlaps between them.
Thus, we iteratively relocate seed points to centroids of their
corresponding Voronoi cells until reaching a uniform dis-
tribution of seed points and Voronoi cells with roughly the
same size, as shown in Fig. 2a.

The seed points generated using the CVT algorithm
serve as initial centroids for the insertion of straight and
misaligned collagen fibrils (c.f. Fig. 2a and b, ensuring no

Cells after elongation
/\

using the CVT algorithm to cre-
ate the raw nanostructure with
cells selected for elongation are
marked with blue centroids; b
Voronoi cells after the elonga-
tion of cells holding misaligned
fibrils. Two of the original cells
before the elongation are shown
using dashed lines
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Original location X

of the fibril
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Fig.3 (Left) Raw nanostructure created using CVT-based algorithm
where fibrils are perfectly aligned; (right) geometric illustration of the
maximum movement algorithm

overlap between them as far as the circular cross section of
each fibril is confined within each Voronoi cell. However,
this results in a highly uniform spatial arrangement of col-
lagen fibrils (no clustering), which is not realistic. Therefore,
in order to introduce more randomness in the SVE nano-
structure, the center point of each fibril is relocated from
the centroid ¢; of the Voronoi cell (seed point) to a new

point ¢, within the Voronoi cell at a randomly selected angle

0 < @ < 2z. The distance between ¢, and ¢, is a randomly

chosen fraction k of the maximum allowable distance, d,,,,

that the fibril can move in the selected direction without

intersecting Voronoi walls, as shown in Fig. 3. The step-by-
step process of evaluating d,,, is as follows:

1. Evaluate the equations of tangents ¢, and ¢, to the fibril’s
cross section that form the angle a with the x-axis.

2. Calculate intersection points of ¢, and ¢, with the Voronoi
walls; then locate the intersection point p,; (In Fig. 3,
corresponding to #,) with the smallest distance from c;.
Also, identify the Voronoi edge x; — X, holding p, and
its angle y with tangent #,.

3. Find point p, located on the fibril circular cross section
such that the radius passing through that makes angle
% — y with ¢, ¢,. Note that the tangent #; passing through
P, is parallel to the Voronoi edge x; — X,.

4. The maximum allowable distance for relocating the col-
lagen fibril is calculated as d,,, = [[p; — P, ||, where p;
is the intersection point of tangents ¢, and #; (cf. Fig. 3).
The pseudocode for calculating d,,,, is presented in
Algorithm 1.

Algorithm 1 (Evaluating maximum allowable distance, dmax, for moving a fibril in a Voronoi cell)

1: function MAX_DIST(c1, 7, @, X)

2 t1,ts < tangent_finder_1(c1,7, )
3 X;,%; < edge_locator(t1, t2,x)
4: P, > Py, — int_points(t1,t2,x;,X;)
5: p; < min dist(p; ,p;,,c1)

6: v« angle(x;,x;j,t1)

7 p, < point_locator(vy,cy, )

8: t3 « tangent_finder_2(c1,7,p,)
9: p; < find_intersection(t1, t3)

10: dmax < dist(py, P3)

11: end function

> Find tangents t1, t2 to fibril forming angle o with z-axis

> Locate vertices x; and x; of Voronoi edges intersecting with ¢1,t2

> Calculate intersections of ¢1 and t2 with Voronoi edges
> Find intersection point p; with minimum distance to c

> Find angle between edge holding p; and corresponding tangent ¢,

™

> Find p, on fibril, whose radius forms angle 5 — 7 with ci1c2

> Find tangents t3 to fibril that passes through point p,
> Find intersection point between tangents t1 and ts
> Calculate dmax as distance between points p; and ps
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Fig.4 Raw nanostructure
created using CVT-based
algorithm, showing the top
(red) and bottom (blue) faces of
collagen fibrils, together with
the geometric illustration of the
maximum movement algorithm
to introduce misalignment in an
elongated Voronoi cell

The relocation algorithm described above can be used to
create the misalignment of collagen fibrils by moving a fibril
from its original location in directions « and 2z — «, which
can represent the top and bottom faces of the fibril in the
final 3D SVE (cf. Fig. 4). Note that because both relocated
positions are still within the walls of each Voronoi cells,
there will be no overlap between neighboring fibrils. How-
ever, especially when attempting to reconstruct SVEs with
a high volume fraction of collagen fibrils, it is not feasible
to create fibrils with a notable misalignment (e.g., > 5°)
as there is not much room for moving each fibril within its
Voronoi cell. Recall that the cells generated using the CVT
algorithm have roughly the same size, which shrinks with
increasing the fibrils volume fraction.

In order to increase the feasible range of fibrils misalign-
ment in the virtual SVE, prior to using the relocation algo-
rithm for creating top/bottom faces of each fibril, we elon-
gate certain Voronoi cells to create more room for this task.
In this approach, the cells are first sorted based on the length
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fibril

Original location

of the fibril

of their longest diagonal. The cells with the longest diago-
nals are then selected and corresponding vertices are moved
apart (c.f. Fig. 2b) to create more space for a misaligned
fibril. Note that two neighboring cells cannot be selected
for elongation, as it might distort the shape of an already
elongated cell. The centers of circles corresponding to the
two faces of the fibrils can then be offset to incorporate the
misalignment. To maximize the angle of misalignment, the
maximum movement scheme presented in Algorithm 1 is
used in directions with angles a and 2z — a. However, rather
than being a randomly chosen angle, @ corresponds to the
angle of the longest diagonal of the elongated cell with the
x-axis (cf. Fig. 4). The pseudocode for the reconstruction of
a 2D cross section of the bone nanostructure considering
the presence of misaligned collagen fibrils is presented in
Algorithm 2. Note that this algorithm allows creating col-
lagen fibrils with up to 20° misalignment in the longitudinal
fibrils direction.

Tangent to the
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Algorithm 2 (Reconstructing virtual 2D SVE with misaligned collagen fibrils)

1: function GENERATE_FIBRILS(Vy, M A, R)
2 v;, Cy — cvt(Vy)

3 if M A == true then

4: C; «sort_longest_diagonal(C;,v;)
5: for (C; = C;(begin); C; # C;(end); C; + +) do
6: if neighbor_elongated() then
7 continue_for_loop()

8: end if

9: C; « elongate_cell(C;, v;)

10: end for

11: end if

12: for (C; = C;(begin); C; # C;(end); C; + +) do
13: r; < radius_selector(R)

14: ¢; < generate_fibril(r;, C;)

15: if elongated then

16: o, k +— move_selector()

17: ¢; < misalign_fibril(e, k, ¢;, C;)
18: continue_for_loop()

19: end if
20: o, k < move_selector()
21: ¢; < move_fibril(a, k, ¢;, C;)
22: end for

23: end function

> Generate fibrils based on desired volume fraction

> Generate CVT based on the desired volume fraction V¢
> Check if fibril misalignment is desired

> Sort cells w.r.t. longest diagonals of the cells

> Check if neighboring cell is already elongated

> Elongate cells whose neighbors are not elongated

> Select radius based on average desired radius R
> Generate fibril at center of the cell

> Select « in longest diagonal direction and relocation fraction k

> misalign fibril using dmax algorithm at a and 27 — «

> randomly select relocation angle o and fraction k&
> Move fibril using maximum movement algorithm

3.2 Creating voids cross sections

After creating the fibrils’ upper/lower surfaces in the 2D
nanostructure, we must incorporate the voids in its mineral
matrix. In this 2D cross section, the voids are generated at
vertices of Voronoi cells, which are surrounded by three
collagen fibrils (cf. Fig. 5a. First, we generate a triangular
bound for each void to ensure it does not overlap with exist-
ing fibrils. For a Voronoi vertex v surrounded by three fibrils
centered at ¢;, ¢,, and ¢; and connected to Voronoi edges 1,,,
1,5 and 1,3, the triangular void bound is generated as follows:

Find intersection points p; of line segments ¢; and ¢;
(i,j = 1,2,3) with each of the shared edges lij (green
nodes in Fig. 5a).

Evaluate the distance between each line segment con-
necting resulting intersections points to centers of cor-
responding circles representing a fibril cross section.
This distance is used to determine whether the triangu-
lar bound is too close/intersecting with any of the fibril
cross sections. For example, in Fig. Sa, the initial bound
is too close to the circle centered at c;.

If the distance between an edge and a fibril is too small,
move that edge inward parallel to itself such that the cor-
responding distance becomes more than = 20 nm (20%
of average fibril diameter). For example, in Fig. 5a, the
edge connecting intersecting points p;5 and p, is relo-
cated to increase the distance between the edge connect-
ing them to the fibril centered at c;.

The algorithm above generates the 2D bound of an
aligned void, i.e., a void surrounded by three aligned col-
lagen fibrils. To more realistically represent a void cross sec-
tion and eliminate sharp vertices of triangular void bounds,
which cause difficulty in creating a high-quality conform-
ing mesh and introduce unrealistic stress concentrations, we
smoothen this shape by filleting its corners. As shown in
Fig. 5d, in order to smoothen vertex A of a triangular bound,
we replace this vertex and portions of edges connected to
that with a circular arc of radius r. First, we generate point
(k. k,) on edge E with length / at distance 0.2] < d < 0.3/
from vertex A. The center of the circle must be placed
at point (m,, m,) such that edge E is tangent to it at point
(k,, ky). Note that the angle between the lines connecting
this center point to vertex A and perpendicular to edge E is
® = % - %“, where 6, is the angle at vertex A. The radius of
the circle can then be evaluated as r = d cot @, which can be
used to determine the coordinate of (m,, my), i.e., apoint at
distance r from (k,, k) and perpendicular to E. Finally, the
additional 5 points shown in yellow in Fig. 5d are generated

on the circular arc, where the coordinate (gg), gg)) of the jth
point (j = 1to 5) is evaluated as

gff) =m, + (k, — m,) cos a; — (ky - my) sin «;, 9)
gy) = m, + (k, — m,) cos a; + (k, —m,) sina;, (10)

— ¥
where @ =7 o,

@ Springer



1696

S.Paietal.

Fig.5 a—c Process of generating
the morphology of the top and
bottom faces of a misaligned
void, which requires d trans-
forming an initial void bound
into a void face by creating
proper NURBS control points

(a)

direction

(0

Additional steps are required to virtually reconstruct a
misaligned void, i.e., a void surrounded by at least one mis-
aligned collagen fibril. In such cases, we first create the void
bound with respect to one of the top/bottom fibril faces that
is closer to the selected Voronoi vertex. Referring to Fig. 5a,
assume the circles centered at ¢, and ¢, represent the top
and bottom faces of a misaligned fibril, respectively. The
initial void bound is created with respect to the face closer
to the Voronoi vertex (in this case, the circle centered at c,).
Therefore, the void bound created using this approach cor-
responds to one of the faces of the misaligned fibril (here,
the top face at ¢,). To generate the void bound corresponding
to the farther face of the fibril (bottom face), we create the
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Top void bound
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Top void
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NURBS control point

Tangent
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(d)

edge p',—p), parallel to and with the same length as p;,—pa;
at a distance of 20 nm to 30 nm from the bottom face of the
fibril. As shown in Fig. 5b, edge p/,—p’, is used to create the
triangular bound for the bottom face of the misaligned void.
Subsequently, the two triangular bounds are smoothened
using the algorithm outlined in the paragraph above to form
the top and bottom faces of the void, as shown in Fig. 5c.

3.3 NURBS representation of fibrils and voids

After incorporating the voids in the 2D nanostructure shown
in Fig. 4, we must extrude that into a 3D geometrical model
of the bone considering the presence of misaligned collagen
fibrils and voids. Note that while the collagen fibrils are
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Fig.6 Using NURBS curve extrusion to reconstruct the 3D morphology of a collagen fibril; b aligned void; and ¢ misaligned void

modeled as continuous fibers, one must take into account
the discrete nature of voids in the longitudinal fibrils direc-
tion (i.e., along z-axis). In this work, we use Non-Uniform
Rational B-Splines (NURBS) (Piegl and Tiller 2012) to
represent the geometry of both the collagen fibrils and the
voids. A NURBS curve, C(u), is a parametric function that
can represent complex geometries using a set of n B-splines
of order p, Mf (w)|?_,, where u is the parametric coordinate.
C(u) is evaluated by interpolating B-spline functions at n
control points with physical (Lagrangian) coordinates X; as

5 xw MY (u)

= ST W

i=1 ij=1""J]

Y

where w; is the weight assigned to each control point.

Given the cylindrical shape of collagen fibrils, their
NURBS representation is rather straightforward. First, we
create 21 equally distanced control points on the top face
of each fibril to characterize its circular shape using a third-
order 2D NURBS curve. This curve is then extruded along
the line segment L., connecting circumferential points of
top and bottom faces of the fibril, resulting in a 3D NURBS
surface, as shown in Fig. 6a. Note that the NURBS extru-
sion is a straightforward task that only requires specifying
coordinates of control points along the extrusion curve (here,
the top and bottom faces of fibrils).

The virtually reconstructed top and bottom void faces
must also be extruded in the z direction to generate dis-
crete 3D voids, each with a randomly selected length of
40nm < [, < 100nm in this direction. The points created
for smoothening triangular void bounds, i.e., (k,, ky) and

(g,(f), g)), are given as NURBS control points in this case.
Evaluating the 3D NURBS parameterization of an aligned
void is rather straightforward, where identical top and bot-
tom NURBS for faces reconstructed in the xy plane can be
extruded to generate the void geometry. However, this sim-
plistic approach yields voids with uniform cross sections
and flat top/bottom faces, which is not realistic. To avoid
this issue, in addition to identical 2D NURBS curves repre-
senting top/bottom faces of a void at distance /,, we create
another copy of this curve in the z direction at distance 0.5/,
from both these faces (cf. Fig. 6b). We also create two addi-
tional copies of the NURBS curve corresponding to the top
(bottom) face, shrunk by 14% and 50% with respect to its
centroid, and place them at distances 0.1/, and 0.17I, further
to the top (bottom) of this face, respectively. The shape of
3D NURBS representation of an aligned void created by
extruding the 7 NURBS curve created using this approach
is illustrated in Fig. 6b.

The algorithm above must be modified to enable creat-
ing the 3D NURBS representation of misaligned voids, as
shown in Fig. 6¢. Similar to an aligned void, the extrusion
algorithm requires creating 5 new NURBS curves in the xy
plane in addition to those previously generated for the top
and bottom faces. For the middle curve at distance 0.5/,
we must first generate an appropriate void bound and then
transform that into a smoothened NURBS. This is achieved
using a similar algorithm as that described in Sect. 3.2 for
creating the void bound for the bottom face, i.e., by sliding
edge p,—Py; along the misaligned fibril to create edge p/,
—p);, (cf. Fig. 5b). The edge p/,—p), of the misaligned fibril is
generated by sliding p,,—p,; by distance 0.5/, in the z direc-
tion along the same oblique angle, followed by creating the
void bound and then the corresponding NURBS curve at
this location. The remaining 4 planar NURBS curves are
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generated with similar scale-down factors (14% and 50%)
and distancing in the z direction (0.1/, and 0.17/,) as those
used for creating aligned voids by applying offsets with
respect to the top and bottom faces of the void in the xy plane
to take into account the effect of misalignment.

The pseudocode for creating the NURBS representation
of voids in the proposed reconstruction algorithm is pre-
sented in Algorithm 3. Figure 7 shows two bone SVEs vir-
tually reconstructed using this algorithm with fibril volume
fractions V, = 45.7% (aligned) and V; = 39.0% (misaligned).

Algorithm 3 (Reconstruction of void geometries)

1: function VOID_GENERATOR(C;, V;)

2 for (V; = V;(begin); V; # Vi(end); V; + +) do
3 ny < layers_selector(Sy)

4: Sy, Cy «— get_connectivity(V;, C;)

5: Cy, Ty «— get_fibril_data(C,)

6: if elongated == true then

7 Cy, Ty < get_nearest_center()

8: P, «— get_intersection(cy, Sy)

9: dist «— eval_dist(cy, Ty, Py)

10: if dist < tol then

11: P, < update_segment_points(P,)
12: end if

13: Cv, Ty «— get_second_center()

14: if dist > 2tol then

15: P, «— update_segment(P,)

16: end if

17: dist — eval_dist(C;, R;, P;)

18: Xy < create_fillet(P,)

19: Xy — extrude(xy,n;)
20: Xy «— round_end(xv,n;)
21: else
22: P, « get_intersection(cy, Sy)
23: dist «— eval_dist(cy, Ty, Py)
24: if dist < tol then
25: P, «— update_segment_points(P,)
26: end if
27: Xy < create_fillet(P,)
28: Xy — extrude(xy,n;)
29: Xy < round_end(xy,n;)
30: end if

31: end for
32: end function

> Loop over each vertex of the vornoi cells

> Select number of voids in z direction for each voronoi vertex
> Get edges and cells connected to the vertices

> Get centers and radius of the fibrils surrounding the vertex
> Check if adjacent cell is elongated

> Update centers with that of nearest profile to vertex

> Intersection of edges and line connecting fibril centers

> Find distance between the intersection points and fibrils

> Move void bound closer to the fibril further from it

> Update centers with that of farther profile to vertex

> Move void bound far from the farther fibril profile closer
> Fillet the triangular void bound

> Extrude to get n; 3D voids

> Round the void ends to get final NURBS

> Intersection of edges and line connecting fibril centers
> Find distance between the intersection points and fibrils

> Move void bound closer to the fibril further from it
> Fillet the triangular void bound

> Extrude to get n; 3D voids
> Round the void ends to get final NURBS
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Fig.7 Two

800 nm X 800 nm X 400 nm
bone SVEs synthesized using
the proposed CVT-NURBS
reconstruction algorithm. Note
that for more clarity, rather than
the mineral matrix, the figure
illustrates the voids present in
this phase
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Table 1 Material properties of collagen fibrils and the mineral phase

Material E (GPa) \% DFm™)

50 x 10712
(Kaygili
etal. 2014)

95 x 10712
(Tomaselli

and Shamos
1973)

Collagen 2.4 (Hang and Barber 2011) 0.3

Mineral 80 (Yuan et al. 2011) 0.28

3.4 Mesh generation

The virtually reconstructed SVEs must then be transformed
into high-quality conforming FE meshes to simulate their
piezoelectric response under different loading conditions. In
this work, we implement the Conforming to Interface Struc-
tured Adaptive Mesh Refinement (CISAMR) (Soghrati et al.
2017; Nagarajan and Soghrati 2018) algorithm to generate the
FE models. CISAMR is a non-iterative meshing algorithm
that transforms a structured background mesh (composed of
tetrahedral elements) into an adaptively refined conforming
mesh ensuring that the aspect ratio of resulting elements is
less than 5. As shown in Fig. 8, this transformation occurs
in four steps: (i) h-adaptive refinement of background ele-
ments intersecting the material interface; (ii) r-adaptivity of
nodes of background elements cut by the interface, during
which some of these nodes are relocated to the interface; (iii)
face-swapping to eliminate cap/sliver-shaped tetrahedrons
with a high aspect ratio that might emerge after performing
r-adaptivity; and (iv) sub-tetrahedralization of nonconforming
background elements, as well as elements with hanging nodes
(created during the h-adaptive refinement phase) to generate
the final conforming mesh. A detailed description of each
phase of the 3D CISAMR algorithm is presented in Nagarajan
and Soghrati (2018).

Figure 9 illustrates a small portion of the conforming
mesh generated using CISAMR for the SVE with mis-
aligned collagen fibrils shown in Figure 7b (V; = 39.0%).
A 320 x 320 x 160 structured background mesh, together
with one level of h-adaptive refinement along fibril and void
surfaces, is utilized to create this mesh. Note that similar
mesh parameters are used for all other SVEs studied in this
work. The resulting conforming mesh for the current SVE
has more than 24 million elements, which corresponds to
~28 million degrees of freedom (DOFs). Note that it would
not be feasible to generate such a massive mesh sequentially
due to the high computational cost and the excessive mem-
ory required for this task. Therefore, we have implemented

@ Springer

the parallel CISAMR algorithm introduced in Liang et al.
(2019) to create this mesh using 64 processors.

4 Results and discussions

In this section, we investigate the piezoelectric response of
the bone under compressive and shear loads through high-
fidelity FE simulations. Eight bone SVEs with dimensions
800nmx 800nmx 400nm (4 aligned and 4 misaligned) were
virtually reconstructed and converted into FE models using
paralle]l CISAMR. The volume fraction of collagen fibrils in
SVEs with aligned fibrils are V, = 30.8%, 36.5%, 41.6%, and
45.7%, while for SVEs with misaligned fibrils V, = 33.8%,
38.2%, 39.0%, and 45.4%. These volume fraction values
are within the typical range found in the human bone tis-
sue i.e., 30% < V; < 45% (Schwarcz et al. 2017). The voids
volume fractions for aligned SVEs are V,,; = 16.6%, 17.1%,
16.4%, and 15.7%, while for SVEs with misaligned fibrils
Vioia = 15.8%, 16.0%, 16.0% and 15.4%. The relatively con-
stant volume fraction of voids in these SVEs allows compar-
ing their piezoelectric behavior only based on the volume
fraction of the collagen fibrils.

Each SVE is analyzed subject to three loading condi-
tions corresponding to those sustained by the bone during
the remodeling process: Longitudinal compression (in the
z direction), lateral compression (in the x direction), and
shear parallel to the xy plane. These loadings are applied
using displacement boundary conditions along respective
faces of the SVE (e.g., in the z direction along the top and
bottom edges under longitudinal compression) to induce a
macroscopic normal or shear strain of eM = 2.5 x 107°. To
avoid rigid body motions, the displacement in one of the
mesh nodes is fully constrained. Also, the initial electric
potential in the domain is set to zero.

The material properties (E, v, and D) of the collagen and
mineral phases used in the FE model are given in Table 1.
A matrix representation of the piezoelectric constant ten-
sor is adopted from Denning et al. (2017), which can be
expressed as

d’ dv, dv.d’, d’. dv

11 %122 P133 Ti12 P13 T3
[d] = d211 d222 d233 d212 d213 d223 : (12)
T2/ A A 1]

dV/
311 7322 7333 7312 313 7323

For collagen fibrils, components of this matrix are given by
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Particles

Background
mesh

Nonconforming
elements
(dark color)

Elements
subjected to
r-adaptivity

(¢) r-adaptivity and face-swap

Fig.8 Construction of a conforming mesh using CISAMR: a ini-
tial structured background mesh; b adaptively refined mesh after the
SAMR phase; ¢ deformed mesh after performing r-adaptivity and

0 0 0 -126210
[d1=[o 0 0 621 12 0|pmV7L
—481 —4810890 0 0

(13)

Note that reducing the 27 components of third-order tensor
d;’k to 18 components in (12) is made possible due to sym-

metry features of this tensor, e.g., d;/m = d3"’12. This condi-

tion can easily be realized from (2), where the symmetry of
the stress tensor o, necessitates the symmetry of d‘.’.’k com-
: v 94; Y

ponents with similar dummy indices (dijk =
Jjk

Adaptiviely
refined
elements

Conforming
elements

SNV
AV o VAV
WAV

VAAN|
Al
RN
O
o

Subdividing
elements with
hanging nodes

(d) Sub-tetrahedfralization

face-swap phases; d final conforming mesh after the completion of
the sub-tetrahedralization process

Figure 10 illustrates the FE approximation of the nor-
mal strain (e33) and the electric potential gradient (E5), both
in the z direction, in the SVEs previously shown in Fig. 7
subject to a longitudinal compression in the z direction.
Given the large number of DOFs associated with FE models
analyzed in this work (> 25 million), all simulations were
conducted in parallel using 48 partitions in the FE software
Abaqus, resulting in a simulation time of approximately
4 hours. As shown in Fig. 10a, although the compressive
load causes an average strain of e;; = —2.5 X 107 in the
SVE with aligned fibrils, there are multiple sites of strain
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Fig. 9 Conforming mesh gener-
ated using parallel CISAMR for
one of the 64 partitions of the
SVE with misaligned collagen
fibrils shown in Fig. 7b

Collagen

concentrations that strongly correlate to the location of
nearby voids. The es; field in the SVE with misaligned fibrils
follow a similar pattern (cf. Figure 10c), although strain con-
centrations are slightly magnified in misaligned fibrils. Also,
as shown in Fig. 10b and d, the variation of E; in both SVEs
follows a similar pattern as e;; in collagen fibrils, i.e., a
higher electric field is observed in regions with higher strain
concentrations.

Variations of homogenized og‘g and Eg’[ versus the volume
fraction of collagen fibrils in all 8 SVEs (4 with aligned and
4 with misaligned fibrils) subject to a longitudinal compres-
sion are shown in Fig. 11a and b, respectively. In both types
of SVE (aligned vs. misaligned fibrils), o-é\g varies linearly
with V,, meaning only the fibrils volume fraction affect
agg and the impact of spatial arrangement and orientation
(alignment) of fibrils is negligible. On the other hand, a clear
distinction is observed between Eg’[—Vf responses of SVEs
with aligned and misaligned fibrils. As shown in Fig. 11b,
although both types of SVEs show a nearly linear increase
in the homogenized electric field with an increase in Vf, for
the same volume fraction, the SVEs with misaligned fibrils
have between 8% and 12% higher E;"I values.

This increase can be explained using (2), which can be
rewritten in the matrix form as

{q} =[d]l{c} + [D{E}. (14)

Recall that in the matrix representation of the stress ten-
SOI, 61 = &y, Oyy = 6y, 033 = 03, 61, —> 04, 013 = G5, and
0,3 = 6. Applying a longitudinal compression in the z
direction on the nanostructure results in lateral stresses &,
and 6, in the collagen fibrils. According to the conserva-
tion of flux equation given in (2), the negative values of
piezoelectric constants d5; and d, leads to the negative term
ds,6, + d3,6,, which in turn reduces E;. Therefore, due to
the smaller lateral stresses (in an average sense) developed in
misaligned collagen fibrils under longitudinal compression,
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Mineral
matrix

corresponding SVEs yield higher values of homogenized
electric field in the z direction.

The simulated normal strain in the x direction, €,;, and
the electric field in the z direction, E;, in two SVEs subject
to a lateral compression in the x direction are illustrated in
Fig. 12. Once again, the footprint of voids on sites of con-
centration of €, and E; in the collagen fibrils is evident in
this figure. However, unlike SVEs subjected to longitudinal
compression, in this case strain concentrations and conse-
quently local electrical field variations have a negligible
difference in aligned and misaligned fibrils (cf. Fig. 12¢
and d). Note that the higher strain/electric field observed in
some of the fibrils is due to the size/location of their nearby
voids and not the spatial orientation of fibrils. Therefore, as
shown in Fig. 13, the difference between homogenized Eg’[
—V response of SVEs with aligned and misaligned fibrils is
less significant in this case. On the other hand, compared
to agg values reported for SVEs under a longitudinal com-
pression, there is a larger discrepancy between o—{"ll values of
SVEs with aligned and misaligned fibrils under lateral com-
pression. In particular, a sudden jump is observable in (TM
—V response of two misaligned SVEs with similar volume
fractions (V, = 38.2% and 39.0%) in Fig. 13a. This kink is
attributed to the anisotropy introduced by the orientation of
misaligned fibrils, meaning when more fibrils lean towards
the loading direction (here, along the x-axis) the SVE shows
a higher stiffness.

Further analysis of the E13V[—Vf responses of SVEs with
aligned collagen fibrils subject to the lateral compression
(cf. Fig. 13b) shows a linear response, which is similar to
that of SVEs under a longitudinal compression. The key
difference is the approximately one order of magnitude
higher value of E%VI associated with the former type of load-
ing. Note that unlike SVEs subjected to longitudinal com-
pression, in this case Eg’l is negative. The substantial dif-
ference between E13V[ values associated with lateral versus
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(¢) Misaligned, Vy = 39.0%

(d) Misaligned, Vy = 39.0%

Fig. 10 Normal strain, €33, and electric field, E5 [V m~'], in the z direction in two SVEs with a,b aligned and c¢,d misaligned collagen fibrils sub-

ject to longitudinal compression

longitudinal loadings can once again be explained using
(Eq. 14). Because the SVE is charge free (the flux vector
{q} is zero), the E; value depends on the product of piezo-
electric constant tensor of collagen fibrils and the stress
tensor as ds,6, + ds,6, + d;365. Since the components
dy; = d3, = —4.81 are much higher than d;; = 0.89, the
magnitude of this term (and thereby E13V[) is higher under a
lateral compression.

Comparing the Eg’l—Vf responses of SVEs with misaligned
fibrils subject to a lateral compression in Fig. f13b with those
under a longitudinal compression (cf. Figure 11b) shows a
number of differences. Unlike the latter loading condition,
for lateral compression, there is a much smaller difference
(< 4%) between homogenized EISVI values associated SVEs
with misaligned and aligned fibrils for the same volume frac-
tion. Also note the oscillatory nature of the E13\4—Vf response

of SVEs with misaligned fibrils in Fig. f13b, where E;"I could
be slightly smaller or larger that of SVEs with aligned fibrils.
Another distinct feature that stands out in this case is the
sharp kink in the Eg’[—Vf response of misaligned SVEs under
a lateral compression, which is compatible with the kink
previously observed in their o-%V]I—Vf response (cf. Figure 13a).

We also studied the impact of SVE nanostructure on its
piezoelectric response subject to a shear force applied in
the transverse fibers direction. The FE approximation of the
shear strain, €5, and the electric field in the y direction, E,,
in the SVE with V;; = 39.0% (misaligned fibrils) are depicted
in Fig. 14. Once again, the effect of voids in the mineral
phase on strain concentrations in the SVE is evident in this
figure. The corresponding variation of homogenized electric
fields in the x and y directions, E}! and E)', versus V; are
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8

Fig. 11 Variation of the homog- %107} %10
enized a normal stress in the -1 " ) i 1.8
z direction, agg [MPa], and b —e— Misaligned a - Mibsaligned
electric field in the z direction, -1.05 | -&- Aligned 1.6} [~ Aligned } a
Eé‘“ [V nm~!], versus the volume J
fraction of collagen fibrils in -1l
SVEs subject to longitudinal e o Lar
compression Zg’ -L15
1.2}
19t L
e
1 .
-1.25+ 4 [ 7
e n’
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13 ‘ ‘ ‘ 0.8 ‘ ‘ A
0.3 0.35 0.4 0.45 0.5 0.3 0.35 0.4 0.45 0.5
Vf Vf
(a) (b)

e (x107°)
 m
-5.2 0.59
(¢) Misaligned: V; = 39.0% (d) Misaligned: V; = 39.0%

Fig. 12 Normal strain, €, and electric field, E; [V m~!], in the z direction in two SVEs with a,b aligned and ¢,d misaligned collagen fibrils sub-
ject to lateral compression

@ Springer



Finite element analysis of the impact of bone nanostructure on its piezoelectric response

1705

2

Fig. 13 Variation of the homog- %10
enized a normal stress in the -5:0
x direction, ¢} [MPa], and b -e- Misaligned
electric field in the z direction, -&- Aligned
EM' [V nm™], versus the volume -6.07
fraction of collagen fibrils in
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4
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Fig. 14 a Shear strain, €5, and b electric field in the y direction, E,, and in an SVE with misaligned fibrils (Vf = 39.0%) subject to shear in the

transverse fibers direction

illustrated in Fig. 15. Note that the homogenized electric
field in the z direction, El3vl has a negligible relative value
in this case and thus not included in this analysis. Studying
Fig. 15 shows no meaningful difference between responses
of SVEs with aligned and misaligned fibrils, although more
fluctuations are observed in the latter compared to the nearly
linear response of the former. In particular, note the kink in
the EIM—Vf response of misaligned SVEs (cf. Figure 15a),
occurring due to the same reasons explained for the kink
observed in Fig. f13b under lateral compression.

It is worth mentioning that magnitudes of EM and EM
in SVEs subjected to a transverse shear is closer to the E3M
obtained under a lateral compression and 7 to 10 times
larger than E3M corresponding to a longitudinal compres-
sive load. Moreover, for a given V;, E;' ~ 2EM, which can

be explained by comparing piezoelectric constants directly
affecting these homogenized fields in (14), as d,s65 =~ 2d, 56
(dys =12,d;5 = 6.21).

Studying the response of SVEs under lateral compres-
sion and shear leadings shows notable electric potentials
are generated along the surface of collagen fibrils in the
x and y directions. This surface charge is important, as it
attracts charged mineral precursors onto the collagen surface
for further mineralization (Ahn and Grodzinsky 2009; Niu
et al. 2017), while E; would be beneficial for the growth
of minerals along the fibril direction. It is well-known that
stereochemistry of collagen polypeptides enables calcium
and phosphate ions to transform nanoplates and grow along
the collagen fibrils direction (z-axis). Charged residues are
considered as a the principal guide for the crystal growth and
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Fig. 15 Variation of the homog- %1078 «1077
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development (Stock 2015; Habraken et al. 2013; Silver and
Landis 2011). In this manner, the additional electric field
in the collagen fibrillar direction may assist the growth of
crystalized minerals. Thus, mechanical stresses in various
directions may provide diverse functions, such as attracting
mineral clusters onto and into collagen fibrils, as well as
assisting the growth of crystalized mineral inside the fibrils.

5 Conclusion

We studied the impact of the nanostructure, i.e., the vol-
ume fraction and spatial orientation of collagen fibrils, on
the piezoelectric response of human bone. A new virtual
reconstruction algorithm was introduced to automatically
generate realistic SVEs of the bone at the sub-micron scale
incorporating fibril misalignment and the voids within the
mineral matrix. Using a parallel non-iterative meshing algo-
rithm named CISAMR, these SVEs were transformed into
high-fidelity FE models consisting of tens of millions of
elements. Eight SVEs with different fibril volume fractions,
half with fully aligned and the other half with misaligned
fibrils, were then reconstructed, meshed, and their piezo-
electric responses were simulated under three loading con-
ditions: longitudinal compression, lateral compression, and
shear in the transverse fibrils directions. Key takeaways from
analyzing the simulation results are summarized below:

1. For all loading conditions, the nonzero component of
homogenized electric field in SVEs with aligned fibrils
(e.g., ESM under lateral compression) linearly varies with
respect to the volume fraction of fibrils, Vf

2. The magnitude of E3M under longitudinal compression is
approximately one order of magnitude smaller than E3M
under lateral compression and E IM/E2M under transverse
shear.

@ Springer

3. While under longitudinal compression, the homogenized
electric field E3M in SVEs with misaligned fibrils is nota-
bly larger than the response of SVEs with aligned fibrils,
under the other two loading conditions, the difference
between the homogenized response of aligned and mis-
aligned SVEs is negligible.

4. The electric fields generated by lateral compression and
shear strains induce electric potentials on a collagen sur-
face, which can increase the zeta-potentials of collagen
fibrils and help attracting charged mineral precursors
onto collagen surface for mineralization.
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