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Abstract
The piezoelectric response of bone at the submicron scale is analyzed under mechanical loadings using the finite element 
(FE) method. A new algorithm is presented to virtually reconstruct realistic bone nanostructures, consisting of collagen 
fibrils embedded in a hydroxyapatite mineral network. This algorithm takes into account potential misalignments between 
fibrils, as well the porous structure of the mineral phase. A parallel non-iterative mesh generation algorithm is utilized to 
create high-fidelity FE models for several representative volume elements (RVEs) of the bone with various fibrils volume 
fractions and misalignments. The piezoelectric response of each RVE is simulated under three types of loading: the longitu-
dinal compression, lateral compression, and shear. The resulting homogenized stress and electric field in RVEs with aligned 
fibrils showed a linear variation with the fibrils volume fraction under all loading conditions. For RVEs with misaligned 
fibrils, although more oscillations were observed in homogenized results, their difference with the results of RVEs with 
aligned fibrils subject to lateral compression and shear loadings were negligible. However, under longitudinal compression, 
the electric field associated with RVEs with misaligned fibrils was notably higher than that of RVEs with aligned fibrils for 
the same volume fraction.
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1 Introduction

Human bone is composed of ∼40% collagen, ∼50% min-
eral, and ∼10% of other non-collagenous protein and water 
(Genin et al. 2009), although this ratio could vary depend-
ing on age and health conditions. While these constituents 
are made of both soft organic and brittle inorganic phases, 
the bone exhibits remarkable mechanical properties with a 
high strength and toughness (Reilly et al. 1974; Norman 
et al. 1995), as well as the ability to repair itself (Taylor 
et al. 2007). This is made possible due to the hierarchical 

architecture of bone (Rho et al. 1998; Fratzl and Weinkamer 
2007), ranging from tropocollagen molecules to bundles of 
collagen fibers at the scale of few microns to osteons at the 
scale of ∼100 μ m and finally at the macroscale, where its 
length can reach up to ∼ 50 cm (Reznikov et al. 2014). Vari-
ous intrinsic and extrinsic mechanisms at different length 
scales are responsible for toughening of the bone (Ritchie 
et al. 2009; Launey et al. 2010). Understanding how different 
length scales impart these mechanical properties is essential 
in the field of tissue engineering and for the design of bioin-
spired materials (Wegst et al. 2015; Yang et al. 2018; San-
tulli 2015). Therefore, several studies have been dedicated 
to elucidating the mechanical behavior of bone at different 
scales, among which we can mention (Hamed et al. 2010; 
Martínez-Reina et al. 2011; Sabet et al. 2016).

At the sub-micron scale, the bone is composed of miner-
alized collagen fibrils with diameters ranging from 80–100 
nm, surrounded by fine hydroxyapatite (HA) mineral crys-
tals (Weiner and Wagner 1998). Mechanical properties of 
collagen fibrils have widely been studied via atomic force 
microscopy (AFM) (Yang et al. 2008; Shen et al. 2008; 
Wenger et al. 2007; Yang 2008; Hang and Barber 2011) and 
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modeled using the finite element method (FEM) (Jäger and 
Fratzl 2000; Sanchez 2013). However, due to the complexity 
of the bone internal architecture at such a small scale, proper 
characterization of its nanostructure is a challenging task 
(Weiner and Traub 1992) that has been the subject of sev-
eral studies in recent years, some resulting in contradictory 
outcomes. In some studies, it has been concluded that the 
mineral phase is only present in the gap zones of collagen 
fibrils (Landis et al. 1996; Weiner et al. 1991; Tong et al. 
2003). However, some recent studies have suggested that 
more than 70% of minerals is extra fibrillar, where mineral 
platelets are surrounding collagen fibrils in a shell-like fash-
ion (McNally et al. 2012, 2013). On the other hand, there 
are studies indicating that mineral platelets further aggre-
gate into more complex, irregular structures around collagen 
fibrils (Reznikov et al. 2018).

These complexities have entailed the use of simpler 
models such as 2D finite element (FE) models (Schwarcz 
et al. 2017; Ji and Gao 2004; Bar-On and Wagner 2011) 
to study the bone stiffness and strength at the sub-micron 
scale, assuming that minerals are arranged in a staggered 
manner in a collagen matrix. This arrangement has also been 
adopted in a 3D FE model to study the bone stiffness in 
Vercher et al. (2014), as well as in several analytical studies 
(Zhang et al. 2010; Bar-On and Wagner 2011). The Mori-
Tanaka homogenization approach has also been employed 
to study the bone stiffness at this scale (Nikolov and Raabe 
2008). More recent studies have used Voronoi tessellation 
to generate the 3D collagen-mineral platelet arrangement 
to investigate the toughening mechanisms at the submicron 
scale (Wang et al. 2018). Damage simulations at this scale 
have also been carried out to identify the effect of spatial 
arrangement and diameters of collagen fibrils on the fracture 
toughness (Wang and Ural 2018).

One of the remarkable characteristics of bone is its piezo-
electricity, arising primarily from the organic component 
(collagen fibrils) (Marino et al. 1971; Tofail et al. 2011). 
Since the first experimental characterization of the bone 
piezoelectricity (Fukada and Yasuda 1964), it has drawn 
significant attention as a transduction mechanism to explain 
the bone adaptivity to external loadings. More specifically, 
the positive charge on the collagen surface piezoelectri-
cally generated in response to external loadings may attract 
negatively charged ion clusters of calcium phosphate; thus 
collagen piezoelectricity is possibly one of the main con-
tributors to mediate the bone mineralization process. The 
fact that the collagen piezoelectricity exhibits anisotropic 
properties makes it more appealing to adapt various types of 
loading, such as axial compression, bending, twisting, and 
shear (Kalinin et al. 2006; De Jong et al. 2015). Although 
the piezoelectric property of bone has been experimentally 
characterized at the macroscale (Fukada and Yasuda 1964; 
Gjelsvik 1973; Bassett 1965) and single-fibrillar scale (i.e., 

nanoscale) (Minary-Jolandan and Yu 2009; Denning et al. 
2017), the physiological importance of the collagen piezo-
electricity has not been fully elucidated. To fill the gap, it is 
important to understand how the electric field is generated 
under various loading conditions considering the anisotropic 
piezoelectric properties of collagen fibrils. Performing such 
study also requires taking into account the impact of the 
complex heterogeneous structure of the bone at the sub-
micron scale.

While a number of computational studies have been car-
ried out to link the bone nanostructure to its mechanical 
behavior and failure response, to the best of the authors’ 
knowledge, no study exists on numerical analysis of the 
bone piezoelectric response at this scale. In this manuscript, 
we present an automated computational framework for the 
virtual reconstruction, FE modeling, and simulating the 
piezoelectric response of the bone at the submicron scale. 
We introduce a new reconstruction algorithm relying on the 
Centroidal Voronoi Tessellation (CVT) algorithm and Non-
Uniform Rational B-Splines (NURBS) to synthesize 3D 
models of the bone nanostructure considering the misalign-
ment between collagen fibrils. Four virtual models with vari-
ous volume fractions, spatial arrangement, and spatial orien-
tation of collagen fibrils are then reconstructed to study the 
impact of the nanostructures on the piezoelectric response 
of the bone. A parallel version of the meshing algorithm 
Conforming to Interface Structured Adaptive Mesh Refine-
ment (CISAMR) is employed to create a high-fidelity FE 
model for each nanostructure. A static piezoelectric model is 
then utilized to simulate the response of bone nanostructures 
under three different loading conditions, namely compres-
sion in the longitudinal and transverse fibers direction, as 
well as transverse shear.

The remainder of this manuscript is organized as follows. 
The formulation of the problem at the sub-micron scale is 
presented in Sect. 2. The CVT-NURBS reconstruction algo-
rithm is introduced in Sect. 3, followed by an overview of the 
CISAMR algorithm for creating 3D FE models. A detailed 
discussion on piezoelectric response of the nanostructure 
along with its implications to bone remodeling is provided in 
Sect. 4. Final concluding remarks are summarized in Sect. 5.

2  Problem formulation

2.1  Governing equations

In this section, we introduce the equations governing the 
piezoelectric response of materials under the assumptions 
of a small electric field and linear elastic material behav-
ior (Madarash-Hill and Hill 2004). In the absence of body 
forces, the constitutive equations must simultaneously take 
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into account the mechanical equilibrium and the conserva-
tion of electric flux as

where �ij is the Cauchy stress tensor, qi is the electric dis-
placement vector (electric flux density), SE

ijkl
 is the fourth-

order material compliance tensor, d�
mij

 is the piezoelectric 
constant tensor D�

ij
 is the dielectric constant tensor. The 

strain tensor �kl and the electric field vector Em are evaluated 
based on nodal displacements and electric potential obtained 
from the FE approximation, respectively. The constitutive 
equations (1) and (2) are solved in conjunction with the 
mechanical equilibrium and flux conservation equations, 
which are integrated over the FE mesh. Note that in this 
work, only collagen fibrils exhibit a piezoelectric response, 
meaning corresponding constants do not need to be defined 
for the non-piezoelectric mineral phase.

Assume Θ is a Statistical Volume Element (SVE) of the 
bone at the sub-micron scale defined in the coordinate sys-
tem �m , with boundary Λ and outward unit normal vector 
�m . Characteristic length scales of the upper-scale domain Ω 
and the lower-scale Θ are denoted by lM and lm , respectively. 
In order to implement the theory of homogenization, these 
length scales must satisfy

which ensures the effect of boundary conditions imposed 
on Θ on resulting homogenized properties is negligible 
(assumption of constant macroscopic stress/strain). The 
Hill-Mandel micro-homogeneity principle at a given mac-
roscopic point can then be written as (Hill 1985)

where ΦM =
1

2
�M ∶ �M is the macroscopic energy density at 

that point and Φm =
1

2
(�M + �m) ∶ �m is the average micro-

scopic energy density in Θ , i.e.,  the microscopic domain of 
corresponding SVE. Here, �m and �m denote the microscopic 
strain and stress tensors, respectively.

After evaluating the response of an SVE ( �m and �m ), the 
homogenized strain tensor at the corresponding macroscopic 
point can be evaluated using the strain averaging theorem as

Similarly, the macroscopic stress tensor and the electric field 
vector at this point are given by

(1)�ij = SE
ijkl
�kl − d

�

mij
Em,

(2)qi = d
�

ijk
�jk + D�

ij
Ej,

(3)𝜉 =
lm

lM
≪ 1,

(4)inf
�M

ΦM(�M) = inf
�M

inf
�m

1

|Θ| ∫Θ

Φm(�M + �m) d Θ,

(5)�M(�M) =
1

|Θ| ∫Θ

�m(�m) d Θ.

Note that the assumption of linear behavior allows for the 
superposition of the response of the two phases (Martínez-
Ayuso et al. 2017).

3  Automated modeling framework

The bone nanostructure is composed of mineralized colla-
gen fibrils with an average diameter of ∼100 nm surrounded 
by a mineral phase. Based on the tomography reconstruc-
tion of the bone at this scale presented in McNally et al. 
(2013) (Fig 5a, p. 51), shows the mineral phase surround-
ing collagen fibrils in a shell-like fashion. A simplified geo-
metrical model of this complex nanostructure taken from 
McNally et al. (2012) is illustrated in Fig. 1a, showing stacks 
of mineral plates surrounding each fibril, as well as voids 
at junctions of mineral stacks associated with neighboring 
fibrils. Such voids can also be discerned in the tomography 
image from McNally et al. (2013) as pores that are signifi-
cantly smaller than diameter of collagen fibrils. Based on 
these interpretations, we aim to virtually reconstruct 3D 
models of the bone nanostructure consisting of aligned/
misaligned collagen fibrils embedded in a porous mineral 
matrix. Figure 1b shows a sample SVE reconstructed using 
the algorithm developed for this purpose and described in 
the remainder of this section. Note that the bone architecture 
at this scale is even more complex, e.g.,  the mineral phase 
is composed of mineral platelets. However, because in this 
study we are not concerned with local phenomena such as 
damage and instead aim to approximate the homogenized 
piezoelectric response of the bone, which is averaged over 
the entire domain, the assumption made for the reconstruc-
tion of an SVE model similar to that shown in Fig. 1b are 
reasonably realistic.

The proposed algorithm for the virtual reconstruction 
of bone SVEs at the sub-micron scale consists of three 
main phases: (i) a modified Centroidal Voronoi Tessella-
tion (CVT) (Du et al. 1999) to create 2D cross sections of 
collagen fibrils embedding within Voronoi cells (Sect. 3.1); 
(ii) adding voids at Voronoi vertices (Sect. 3.2); and (iii) 
extruding fibrils and voids Non-Uniform Rational B-Splines 
(NURBS) representation to create the 3D geometrical model 
(Sect. 3.3). Note that the CVT algorithm was chosen for 
reconstructing the bone nanostructure to avoid the cluster-
ing of collagen fibrils, which allows replicating in a rela-
tively uniform distribution of fibrils, as seen in healthy bone 

(6)�M(�M) =
1

|Θ| ∫Θ

�m(�m) d Θ,

(7)�M(�M) =
1

|Θ| ∫Θ

�m(�m) d Θ.
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tissue. More importantly, this algorithm facilitates adding 
misaligned fibrils to the bone nanostructure by providing 
more control on the placement of each fibril and its rela-
tive distances to neighboring fibrils. Further, CVT enables 
embedding voids in the mineral phase without overlapping 
with existing fibrils using vertices/edges of Voronoi cells to 
determine locations of these voids. Next, we describe each 
phase in more detail.

3.1  Reconstruction of collagen fibrils

In order to virtually reconstruct the bone nanostructure, we 
first create a 2D rectangular domain with lengths lx and ly 
that represents a cross section perpendicular to the princi-
pal collagen fibrils direction. This 2D domain is discretized 
using the CVT algorithm, which begins by implementing the 
Voronoi tessellation using randomly generated seed points. 
The number of seed points, Nsp , determines the number of 
collagen fibrils, which is evaluated based on their desired 
volume fraction Vf as

where r is the average radius of collagen fibrils, assumed to 
be 50 nm in this study. However, the random spatial arrange-
ment of seed points in the 2D domain prohibits insertion 
of collagen fibril without avoiding overlaps between them. 
Thus, we iteratively relocate seed points to centroids of their 
corresponding Voronoi cells until reaching a uniform dis-
tribution of seed points and Voronoi cells with roughly the 
same size, as shown in Fig. 2a.

The seed points generated using the CVT algorithm 
serve as initial centroids for the insertion of straight and 
misaligned collagen fibrils (c.f. Fig. 2a and b, ensuring no 

(8)Nsp =
lxlyVf

�r2
,

Fig. 1  a Simplified geometrical model, including collagen fibrils and 
mineral platelets (figure adopted from (McNally et al. 2012)); b SVE 
virtually reconstructed using the algorithm introduced in this work

Fig. 2  a Voronoi cells generated 
using the CVT algorithm to cre-
ate the raw nanostructure with 
cells selected for elongation are 
marked with blue centroids; b 
Voronoi cells after the elonga-
tion of cells holding misaligned 
fibrils. Two of the original cells 
before the elongation are shown 
using dashed lines

(a) (b)
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overlap between them as far as the circular cross section of 
each fibril is confined within each Voronoi cell. However, 
this results in a highly uniform spatial arrangement of col-
lagen fibrils (no clustering), which is not realistic. Therefore, 
in order to introduce more randomness in the SVE nano-
structure, the center point of each fibril is relocated from 
the centroid �1 of the Voronoi cell (seed point) to a new 

point �2 within the Voronoi cell at a randomly selected angle 
0 < 𝛼 < 2𝜋 . The distance between �1 and �2 is a randomly 
chosen fraction k of the maximum allowable distance, dmax , 
that the fibril can move in the selected direction without 
intersecting Voronoi walls, as shown in Fig. 3. The step-by-
step process of evaluating dmax is as follows:

1. Evaluate the equations of tangents t1 and t2 to the fibril’s 
cross section that form the angle � with the x-axis.

2. Calculate intersection points of t1 and t2 with the Voronoi 
walls; then locate the intersection point �1 (In Fig. 3, 
corresponding to t1 ) with the smallest distance from �1 . 
Also, identify the Voronoi edge �3 − �4 holding �1 and 
its angle � with tangent t1.

3. Find point �2 located on the fibril circular cross section 
such that the radius passing through that makes angle 
�

2
− � with �1�2 . Note that the tangent t3 passing through 

�2 is parallel to the Voronoi edge �3 − �4.
4. The maximum allowable distance for relocating the col-

lagen fibril is calculated as dmax = ‖�3 − �1‖ , where �3 
is the intersection point of tangents t1 and t3 (cf. Fig. 3). 
The pseudocode for calculating dmax is presented in 
Algorithm 1.

Fig. 3  (Left) Raw nanostructure created using CVT-based algorithm 
where fibrils are perfectly aligned; (right) geometric illustration of the 
maximum movement algorithm

Algorithm 1 (Evaluating maximum allowable distance, dmax, for moving a fibril in a Voronoi cell)

1: function max dist(c1, r, α,x)
2: t1, t2 ← tangent finder 1(c1, r, α) � Find tangents t1, t2 to fibril forming angle α with x-axis
3: xi,xj ← edge locator(t1, t2,x) � Locate vertices xi and xj of Voronoi edges intersecting with t1, t2
4: pt1 , pt2 ← int points(t1, t2,xi,xj) � Calculate intersections of t1 and t2 with Voronoi edges
5: p1 ← min dist(pt1 , pt2 , c1) � Find intersection point p1 with minimum distance to c1
6: γ ← angle(xi,xj , t1) � Find angle between edge holding p1 and corresponding tangent t1
7: p2 ← point locator(γ, c1, r) � Find p2 on fibril, whose radius forms angle π

2 − γ with c1c2
8: t3 ← tangent finder 2(c1, r, p2) � Find tangents t3 to fibril that passes through point p2
9: p3 ← find intersection(t1, t3) � Find intersection point between tangents t1 and t2
10: dmax ← dist(p1, p3) � Calculate dmax as distance between points p1 and p3
11: end function
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The relocation algorithm described above can be used to 
create the misalignment of collagen fibrils by moving a fibril 
from its original location in directions � and 2� − � , which 
can represent the top and bottom faces of the fibril in the 
final 3D SVE (cf. Fig. 4). Note that because both relocated 
positions are still within the walls of each Voronoi cells, 
there will be no overlap between neighboring fibrils. How-
ever, especially when attempting to reconstruct SVEs with 
a high volume fraction of collagen fibrils, it is not feasible 
to create fibrils with a notable misalignment (e.g.,  > 5◦ ) 
as there is not much room for moving each fibril within its 
Voronoi cell. Recall that the cells generated using the CVT 
algorithm have roughly the same size, which shrinks with 
increasing the fibrils volume fraction.

In order to increase the feasible range of fibrils misalign-
ment in the virtual SVE, prior to using the relocation algo-
rithm for creating top/bottom faces of each fibril, we elon-
gate certain Voronoi cells to create more room for this task. 
In this approach, the cells are first sorted based on the length 

of their longest diagonal. The cells with the longest diago-
nals are then selected and corresponding vertices are moved 
apart (c.f. Fig. 2b) to create more space for a misaligned 
fibril. Note that two neighboring cells cannot be selected 
for elongation, as it might distort the shape of an already 
elongated cell. The centers of circles corresponding to the 
two faces of the fibrils can then be offset to incorporate the 
misalignment. To maximize the angle of misalignment, the 
maximum movement scheme presented in Algorithm 1 is 
used in directions with angles � and 2� − � . However, rather 
than being a randomly chosen angle, � corresponds to the 
angle of the longest diagonal of the elongated cell with the 
x-axis (cf. Fig. 4). The pseudocode for the reconstruction of 
a 2D cross section of the bone nanostructure considering 
the presence of misaligned collagen fibrils is presented in 
Algorithm 2. Note that this algorithm allows creating col-
lagen fibrils with up to 20◦ misalignment in the longitudinal 
fibrils direction.

Fig. 4  Raw nanostructure 
created using CVT-based 
algorithm, showing the top 
(red) and bottom (blue) faces of 
collagen fibrils, together with 
the geometric illustration of the 
maximum movement algorithm 
to introduce misalignment in an 
elongated Voronoi cell
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Algorithm 2 (Reconstructing virtual 2D SVE with misaligned collagen fibrils)

1: function generate fibrils(Vf ,MA,R) � Generate fibrils based on desired volume fraction
2: vi, Ci ← cvt(Vf ) � Generate CVT based on the desired volume fraction Vf

3: if MA == true then � Check if fibril misalignment is desired
4: Ci ←sort longest diagonal(Ci, vi) � Sort cells w.r.t. longest diagonals of the cells
5: for (Ci = Ci(begin);Ci �= Ci(end);Ci ++) do
6: if neighbor elongated() then � Check if neighboring cell is already elongated
7: continue for loop()
8: end if
9: Ci ← elongate cell(Ci, vi) � Elongate cells whose neighbors are not elongated
10: end for
11: end if
12: for (Ci = Ci(begin);Ci �= Ci(end);Ci ++) do
13: ri ← radius selector(R) � Select radius based on average desired radius R
14: ci ← generate fibril(ri, Ci) � Generate fibril at center of the cell
15: if elongated then
16: α, k ← move selector() � Select α in longest diagonal direction and relocation fraction k
17: ci ← misalign fibril(α, k, ci, Ci) � misalign fibril using dmax algorithm at α and 2π − α
18: continue for loop()
19: end if
20: α, k ← move selector() � randomly select relocation angle α and fraction k
21: ci ← move fibril(α, k, ci, Ci) � Move fibril using maximum movement algorithm
22: end for
23: end function

3.2  Creating voids cross sections

After creating the fibrils’ upper/lower surfaces in the 2D 
nanostructure, we must incorporate the voids in its mineral 
matrix. In this 2D cross section, the voids are generated at 
vertices of Voronoi cells, which are surrounded by three 
collagen fibrils (cf. Fig. 5a. First, we generate a triangular 
bound for each void to ensure it does not overlap with exist-
ing fibrils. For a Voronoi vertex v surrounded by three fibrils 
centered at �1 , �2 , and �3 and connected to Voronoi edges �12 , 
�23 and �13 , the triangular void bound is generated as follows: 

1. Find intersection points �ij of line segments �i and �j 
(i, j = 1, 2, 3) with each of the shared edges �ij (green 
nodes in Fig. 5a).

2. Evaluate the distance between each line segment con-
necting resulting intersections points to centers of cor-
responding circles representing a fibril cross section. 
This distance is used to determine whether the triangu-
lar bound is too close/intersecting with any of the fibril 
cross sections. For example, in Fig. 5a, the initial bound 
is too close to the circle centered at �1.

3. If the distance between an edge and a fibril is too small, 
move that edge inward parallel to itself such that the cor-
responding distance becomes more than ≈ 20 nm (20% 
of average fibril diameter). For example, in Fig. 5a, the 
edge connecting intersecting points �13 and �12 is relo-
cated to increase the distance between the edge connect-
ing them to the fibril centered at �1.

The algorithm above generates the 2D bound of an 
aligned void, i.e.,  a void surrounded by three aligned col-
lagen fibrils. To more realistically represent a void cross sec-
tion and eliminate sharp vertices of triangular void bounds, 
which cause difficulty in creating a high-quality conform-
ing mesh and introduce unrealistic stress concentrations, we 
smoothen this shape by filleting its corners. As shown in 
Fig. 5d, in order to smoothen vertex A of a triangular bound, 
we replace this vertex and portions of edges connected to 
that with a circular arc of radius r. First, we generate point 
(kx, ky) on edge E with length l at distance 0.2l < d < 0.3l 
from vertex A. The center of the circle must be placed 
at point (mx,my) such that edge E is tangent to it at point 
(kx, ky) . Note that the angle between the lines connecting 
this center point to vertex A and perpendicular to edge E is 
Φ =

�

2
−

�A

2
 , where �A is the angle at vertex A. The radius of 

the circle can then be evaluated as r = d cotΦ , which can be 
used to determine the coordinate of (mx,my) , i.e.,  a point at 
distance r from (kx, ky) and perpendicular to E. Finally, the 
additional 5 points shown in yellow in Fig. 5d are generated 
on the circular arc, where the coordinate (g(j)x , g

(j)
y ) of the jth 

point ( j = 1 to 5) is evaluated as

where �j =
2j

5
Φ.

(9)g(j)
x
= mx + (kx − mx) cos �j − (ky − my) sin �j,

(10)g(j)
y
= my + (ky − my) cos �j + (kx − mx) sin �j,
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Additional steps are required to virtually reconstruct a 
misaligned void, i.e.,  a void surrounded by at least one mis-
aligned collagen fibril. In such cases, we first create the void 
bound with respect to one of the top/bottom fibril faces that 
is closer to the selected Voronoi vertex. Referring to Fig. 5a, 
assume the circles centered at �2 and �4 represent the top 
and bottom faces of a misaligned fibril, respectively. The 
initial void bound is created with respect to the face closer 
to the Voronoi vertex (in this case, the circle centered at �2 ). 
Therefore, the void bound created using this approach cor-
responds to one of the faces of the misaligned fibril (here, 
the top face at �2 ). To generate the void bound corresponding 
to the farther face of the fibril (bottom face), we create the 

edge �′
12

–�′
23

 parallel to and with the same length as �12–�23 
at a distance of 20 nm to 30 nm from the bottom face of the 
fibril. As shown in Fig. 5b, edge �′

12
–�′

23
 is used to create the 

triangular bound for the bottom face of the misaligned void. 
Subsequently, the two triangular bounds are smoothened 
using the algorithm outlined in the paragraph above to form 
the top and bottom faces of the void, as shown in Fig. 5c.

3.3  NURBS representation of fibrils and voids

After incorporating the voids in the 2D nanostructure shown 
in Fig. 4, we must extrude that into a 3D geometrical model 
of the bone considering the presence of misaligned collagen 
fibrils and voids. Note that while the collagen fibrils are 

Fig. 5  a–c Process of generating 
the morphology of the top and 
bottom faces of a misaligned 
void, which requires d trans-
forming an initial void bound 
into a void face by creating 
proper NURBS control points

(a) (b)

(c) (d)
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modeled as continuous fibers, one must take into account 
the discrete nature of voids in the longitudinal fibrils direc-
tion (i.e.,  along z-axis). In this work, we use Non-Uniform 
Rational B-Splines (NURBS) (Piegl and Tiller 2012) to 
represent the geometry of both the collagen fibrils and the 
voids. A NURBS curve, �(u) , is a parametric function that 
can represent complex geometries using a set of n B-splines 
of order p, Mp

i
(u)|n

i=1
 , where u is the parametric coordinate. 

�(u) is evaluated by interpolating B-spline functions at n 
control points with physical (Lagrangian) coordinates �i as

where wi is the weight assigned to each control point.
Given the cylindrical shape of collagen fibrils, their 

NURBS representation is rather straightforward. First, we 
create 21 equally distanced control points on the top face 
of each fibril to characterize its circular shape using a third-
order 2D NURBS curve. This curve is then extruded along 
the line segment Lext connecting circumferential points of 
top and bottom faces of the fibril, resulting in a 3D NURBS 
surface, as shown in Fig. 6a. Note that the NURBS extru-
sion is a straightforward task that only requires specifying 
coordinates of control points along the extrusion curve (here, 
the top and bottom faces of fibrils).

The virtually reconstructed top and bottom void faces 
must also be extruded in the z direction to generate dis-
crete 3D voids, each with a randomly selected length of 
40 nm < lz < 100 nm in this direction. The points created 
for smoothening triangular void bounds, i.e.,  (kx, ky) and 

(11)�(u) =

n�
i=1

�iwiM
p

i
(u)∑n

j=1
wjM

p

j
(u)

,

(g
(j)
x , g

(j)
y ) , are given as NURBS control points in this case. 

Evaluating the 3D NURBS parameterization of an aligned 
void is rather straightforward, where identical top and bot-
tom NURBS for faces reconstructed in the xy plane can be 
extruded to generate the void geometry. However, this sim-
plistic approach yields voids with uniform cross sections 
and flat top/bottom faces, which is not realistic. To avoid 
this issue, in addition to identical 2D NURBS curves repre-
senting top/bottom faces of a void at distance lz , we create 
another copy of this curve in the z direction at distance 0.5lz 
from both these faces (cf. Fig. 6b). We also create two addi-
tional copies of the NURBS curve corresponding to the top 
(bottom) face, shrunk by 14% and 50% with respect to its 
centroid, and place them at distances 0.1lz and 0.17lz further 
to the top (bottom) of this face, respectively. The shape of 
3D NURBS representation of an aligned void created by 
extruding the 7 NURBS curve created using this approach 
is illustrated in Fig. 6b.

The algorithm above must be modified to enable creat-
ing the 3D NURBS representation of misaligned voids, as 
shown in Fig. 6c. Similar to an aligned void, the extrusion 
algorithm requires creating 5 new NURBS curves in the xy 
plane in addition to those previously generated for the top 
and bottom faces. For the middle curve at distance 0.5lz , 
we must first generate an appropriate void bound and then 
transform that into a smoothened NURBS. This is achieved 
using a similar algorithm as that described in Sect. 3.2 for 
creating the void bound for the bottom face, i.e.,  by sliding 
edge �12–�23 along the misaligned fibril to create edge �′

12

–�′
23

 (cf. Fig. 5b). The edge �′
12

–�′
23

 of the misaligned fibril is 
generated by sliding �12–�23 by distance 0.5lz in the z direc-
tion along the same oblique angle, followed by creating the 
void bound and then the corresponding NURBS curve at 
this location. The remaining 4 planar NURBS curves are 

Fig. 6  Using NURBS curve extrusion to reconstruct the 3D morphology of a collagen fibril; b aligned void; and c misaligned void
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generated with similar scale-down factors (14% and 50%) 
and distancing in the z direction (0.1lz and 0.17lz ) as those 
used for creating aligned voids by applying offsets with 
respect to the top and bottom faces of the void in the xy plane 
to take into account the effect of misalignment.

The pseudocode for creating the NURBS representation 
of voids in the proposed reconstruction algorithm is pre-
sented in Algorithm 3. Figure 7 shows two bone SVEs vir-
tually reconstructed using this algorithm with fibril volume 
fractions Vf = 45.7% (aligned) and Vf = 39.0% (misaligned).

Algorithm 3 (Reconstruction of void geometries)

1: function void generator(Ci, Vi)
2: for (Vi = Vi(begin);Vi �= Vi(end);Vi ++) do � Loop over each vertex of the vornoi cells
3: nl ← layers selector(Sf ) � Select number of voids in z direction for each voronoi vertex
4: Sv, Cv ← get connectivity(Vi, Ci) � Get edges and cells connected to the vertices
5: cv, rv ← get fibril data(Cv) � Get centers and radius of the fibrils surrounding the vertex
6: if elongated == true then � Check if adjacent cell is elongated
7: cv, rv ← get nearest center() � Update centers with that of nearest profile to vertex
8: Pv ← get intersection(cv, Sv) � Intersection of edges and line connecting fibril centers
9: dist ← eval dist(cv, rv, Pv) � Find distance between the intersection points and fibrils
10: if dist < tol then
11: Pv ← update segment points(Pv) � Move void bound closer to the fibril further from it
12: end if
13: cv, rv ← get second center() � Update centers with that of farther profile to vertex
14: if dist > 2tol then
15: Pv ← update segment(Pv) � Move void bound far from the farther fibril profile closer
16: end if
17: dist ← eval dist(Cj , Rj , Pj)
18: xv ← create fillet(Pv) � Fillet the triangular void bound
19: xv ← extrude(xv, nl) � Extrude to get nl 3D voids
20: xv ← round end(xv, nl) � Round the void ends to get final NURBS
21: else
22: Pv ← get intersection(cv, Sv) � Intersection of edges and line connecting fibril centers
23: dist ← eval dist(cv, rv, Pv) � Find distance between the intersection points and fibrils
24: if dist < tol then
25: Pv ← update segment points(Pv) � Move void bound closer to the fibril further from it
26: end if
27: xv ← create fillet(Pv) � Fillet the triangular void bound
28: xv ← extrude(xv, nl) � Extrude to get nl 3D voids
29: xv ← round end(xv, nl) � Round the void ends to get final NURBS
30: end if
31: end for
32: end function
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Fig. 7  Two 
800 nm × 800 nm × 400 nm 
bone SVEs synthesized using 
the proposed CVT-NURBS 
reconstruction algorithm. Note 
that for more clarity, rather than 
the mineral matrix, the figure 
illustrates the voids present in 
this phase
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3.4  Mesh generation

The virtually reconstructed SVEs must then be transformed 
into high-quality conforming FE meshes to simulate their 
piezoelectric response under different loading conditions. In 
this work, we implement the Conforming to Interface Struc-
tured Adaptive Mesh Refinement (CISAMR) (Soghrati et al. 
2017; Nagarajan and Soghrati 2018) algorithm to generate the 
FE models. CISAMR is a non-iterative meshing algorithm 
that transforms a structured background mesh (composed of 
tetrahedral elements) into an adaptively refined conforming 
mesh ensuring that the aspect ratio of resulting elements is 
less than 5. As shown in Fig. 8, this transformation occurs 
in four steps: (i) h-adaptive refinement of background ele-
ments intersecting the material interface; (ii) r-adaptivity of 
nodes of background elements cut by the interface, during 
which some of these nodes are relocated to the interface; (iii) 
face-swapping to eliminate cap/sliver-shaped tetrahedrons 
with a high aspect ratio that might emerge after performing 
r-adaptivity; and (iv) sub-tetrahedralization of nonconforming 
background elements, as well as elements with hanging nodes 
(created during the h-adaptive refinement phase) to generate 
the final conforming mesh. A detailed description of each 
phase of the 3D CISAMR algorithm is presented in Nagarajan 
and Soghrati (2018).

Figure 9 illustrates a small portion of the conforming 
mesh generated using CISAMR for the SVE with mis-
aligned collagen fibrils shown in Figure 7b ( Vf = 39.0% ). 
A 320 × 320 × 160 structured background mesh, together 
with one level of h-adaptive refinement along fibril and void 
surfaces, is utilized to create this mesh. Note that similar 
mesh parameters are used for all other SVEs studied in this 
work. The resulting conforming mesh for the current SVE 
has more than 24 million elements, which corresponds to 
∼ 28 million degrees of freedom (DOFs). Note that it would 
not be feasible to generate such a massive mesh sequentially 
due to the high computational cost and the excessive mem-
ory required for this task. Therefore, we have implemented 

the parallel CISAMR algorithm introduced in Liang et al. 
(2019) to create this mesh using 64 processors.

4  Results and discussions

In this section, we investigate the piezoelectric response of 
the bone under compressive and shear loads through high-
fidelity FE simulations. Eight bone SVEs with dimensions 
800nm× 800nm× 400 nm (4 aligned and 4 misaligned) were 
virtually reconstructed and converted into FE models using 
parallel CISAMR. The volume fraction of collagen fibrils in 
SVEs with aligned fibrils are Vf = 30.8% , 36.5%, 41.6%, and 
45.7%, while for SVEs with misaligned fibrils Vf = 33.8% , 
38.2%, 39.0%, and 45.4%. These volume fraction values 
are within the typical range found in the human bone tis-
sue i.e.,  30% < Vf < 45% (Schwarcz et al. 2017). The voids 
volume fractions for aligned SVEs are Vvoid = 16.6% , 17.1%, 
16.4%, and 15.7%, while for SVEs with misaligned fibrils 
Vvoid = 15.8% , 16.0%, 16.0% and 15.4%. The relatively con-
stant volume fraction of voids in these SVEs allows compar-
ing their piezoelectric behavior only based on the volume 
fraction of the collagen fibrils.

Each SVE is analyzed subject to three loading condi-
tions corresponding to those sustained by the bone during 
the remodeling process: Longitudinal compression (in the 
z direction), lateral compression (in the x direction), and 
shear parallel to the xy plane. These loadings are applied 
using displacement boundary conditions along respective 
faces of the SVE (e.g.,  in the z direction along the top and 
bottom edges under longitudinal compression) to induce a 
macroscopic normal or shear strain of �M = 2.5 × 10−6 . To 
avoid rigid body motions, the displacement in one of the 
mesh nodes is fully constrained. Also, the initial electric 
potential in the domain is set to zero.

The material properties (E, � , and D) of the collagen and 
mineral phases used in the FE model are given in Table 1. 
A matrix representation of the piezoelectric constant ten-
sor is adopted from Denning et al. (2017), which can be 
expressed as

For collagen fibrils, components of this matrix are given by

(12)[d] =

⎡
⎢⎢⎣

d
�

111
d
�

122
d
�

133
d
�

112
d
�

113
d
�

123

d
�

211
d
�

222
d
�

233
d
�

212
d
�

213
d
�

223

d
�

311
d
�

322
d
�

333
d
�

312
d
�

313
d
�

323

⎤
⎥⎥⎦
.

Table 1  Material properties of collagen fibrils and the mineral phase

Material  E (GPa)  �  D (Fm−1) 

Collagen 2.4 (Hang and Barber 2011) 0.3 50 × 10−12 
(Kaygili 
et al. 2014)

Mineral 80 (Yuan et al. 2011) 0.28 95 × 10−12 
(Tomaselli 
and Shamos 
1973)
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Note that reducing the 27 components of third-order tensor 
d
�

ijk
 to 18 components in (12) is made possible due to sym-

metry features of this tensor, e.g.,  d�
321

= d
�

312
 . This condi-

tion can easily be realized from (2), where the symmetry of 
the stress tensor �jk necessitates the symmetry of d�

ijk
 com-

ponents with similar dummy indices ( d�
ijk

=
�qi

��jk
).

(13)[d] =

⎡
⎢⎢⎣

0 0 0 − 12 6.21 0

0 0 0 6.21 12 0

−4.81 − 4.81 0.89 0 0 0

⎤
⎥⎥⎦
pmV−1.

Figure 10 illustrates the FE approximation of the nor-
mal strain ( �33 ) and the electric potential gradient ( E3 ), both 
in the z direction, in the SVEs previously shown in Fig. 7 
subject to a longitudinal compression in the z direction. 
Given the large number of DOFs associated with FE models 
analyzed in this work ( > 25 million), all simulations were 
conducted in parallel using 48 partitions in the FE software 
Abaqus, resulting in a simulation time of approximately 
4 hours. As shown in Fig. 10a, although the compressive 
load causes an average strain of �33 = −2.5 × 10−6 in the 
SVE with aligned fibrils, there are multiple sites of strain 

Fig. 8  Construction of a conforming mesh using CISAMR: a ini-
tial structured background mesh; b adaptively refined mesh after the 
SAMR phase; c deformed mesh after performing r-adaptivity and 

face-swap phases; d final conforming mesh after the completion of 
the sub-tetrahedralization process
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concentrations that strongly correlate to the location of 
nearby voids. The �33 field in the SVE with misaligned fibrils 
follow a similar pattern (cf. Figure 10c), although strain con-
centrations are slightly magnified in misaligned fibrils. Also, 
as shown in Fig. 10b and d, the variation of E3 in both SVEs 
follows a similar pattern as �33 in collagen fibrils, i.e.,  a 
higher electric field is observed in regions with higher strain 
concentrations.

Variations of homogenized �M
33

 and EM
3

 versus the volume 
fraction of collagen fibrils in all 8 SVEs (4 with aligned and 
4 with misaligned fibrils) subject to a longitudinal compres-
sion are shown in Fig. 11a and b, respectively. In both types 
of SVE (aligned vs. misaligned fibrils), �M

33
 varies linearly 

with Vf  , meaning only the fibrils volume fraction affect 
�M
33

 and the impact of spatial arrangement and orientation 
(alignment) of fibrils is negligible. On the other hand, a clear 
distinction is observed between EM

3
–Vf  responses of SVEs 

with aligned and misaligned fibrils. As shown in Fig. 11b, 
although both types of SVEs show a nearly linear increase 
in the homogenized electric field with an increase in Vf  , for 
the same volume fraction, the SVEs with misaligned fibrils 
have between 8% and 12% higher EM

3
 values.

This increase can be explained using (2), which can be 
rewritten in the matrix form as

Recall that in the matrix representation of the stress ten-
sor, 𝜎11 → �̃�1 , 𝜎22 → �̃�2 , 𝜎33 → �̃�3 , 𝜎12 → �̃�4 , 𝜎13 → �̃�5 , and 
𝜎23 → �̃�6 . Applying a longitudinal compression in the z 
direction on the nanostructure results in lateral stresses �̃�1 
and �̃�2 in the collagen fibrils. According to the conserva-
tion of flux equation given in (2), the negative values of 
piezoelectric constants d31 and d32 leads to the negative term 
d31�̃�1 + d32�̃�2 , which in turn reduces E3 . Therefore, due to 
the smaller lateral stresses (in an average sense) developed in 
misaligned collagen fibrils under longitudinal compression, 

(14){q} = [d]{�̃�} + [D]{E}.

corresponding SVEs yield higher values of homogenized 
electric field in the z direction.

The simulated normal strain in the x direction, �11 , and 
the electric field in the z direction, E3 , in two SVEs subject 
to a lateral compression in the x direction are illustrated in 
Fig. 12. Once again, the footprint of voids on sites of con-
centration of �11 and E3 in the collagen fibrils is evident in 
this figure. However, unlike SVEs subjected to longitudinal 
compression, in this case strain concentrations and conse-
quently local electrical field variations have a negligible 
difference in aligned and misaligned fibrils (cf. Fig. 12c 
and d). Note that the higher strain/electric field observed in 
some of the fibrils is due to the size/location of their nearby 
voids and not the spatial orientation of fibrils. Therefore, as 
shown in Fig. 13, the difference between homogenized EM

3

–Vf  response of SVEs with aligned and misaligned fibrils is 
less significant in this case. On the other hand, compared 
to �M

33
 values reported for SVEs under a longitudinal com-

pression, there is a larger discrepancy between �M
11

 values of 
SVEs with aligned and misaligned fibrils under lateral com-
pression. In particular, a sudden jump is observable in �M

11

–Vf  response of two misaligned SVEs with similar volume 
fractions ( Vf = 38.2% and 39.0% ) in Fig. 13a. This kink is 
attributed to the anisotropy introduced by the orientation of 
misaligned fibrils, meaning when more fibrils lean towards 
the loading direction (here, along the x-axis) the SVE shows 
a higher stiffness.

Further analysis of the EM
3

–Vf  responses of SVEs with 
aligned collagen fibrils subject to the lateral compression 
(cf. Fig. 13b) shows a linear response, which is similar to 
that of SVEs under a longitudinal compression. The key 
difference is the approximately one order of magnitude 
higher value of EM

3
 associated with the former type of load-

ing. Note that unlike SVEs subjected to longitudinal com-
pression, in this case EM

3
 is negative. The substantial dif-

ference between EM
3

 values associated with lateral versus 

Fig. 9  Conforming mesh gener-
ated using parallel CISAMR for 
one of the 64 partitions of the 
SVE with misaligned collagen 
fibrils shown in Fig. 7b
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longitudinal loadings can once again be explained using 
(Eq. 14). Because the SVE is charge free (the flux vector 
{q} is zero), the E3 value depends on the product of piezo-
electric constant tensor of collagen fibrils and the stress 
tensor as d31�̃�1 + d32�̃�2 + d33�̃�3 . Since the components 
d31 = d32 = −4.81 are much higher than d33 = 0.89 , the 
magnitude of this term (and thereby EM

3
 ) is higher under a 

lateral compression.
Comparing the EM

3
–Vf  responses of SVEs with misaligned 

fibrils subject to a lateral compression in Fig. f13b with those 
under a longitudinal compression (cf. Figure 11b) shows a 
number of differences. Unlike the latter loading condition, 
for lateral compression, there is a much smaller difference 
( < 4% ) between homogenized EM

3
 values associated SVEs 

with misaligned and aligned fibrils for the same volume frac-
tion. Also note the oscillatory nature of the EM

3
–Vf  response 

of SVEs with misaligned fibrils in Fig. f13b, where EM
3

 could 
be slightly smaller or larger that of SVEs with aligned fibrils. 
Another distinct feature that stands out in this case is the 
sharp kink in the EM

3
–Vf  response of misaligned SVEs under 

a lateral compression, which is compatible with the kink 
previously observed in their �M

11
–Vf  response (cf. Figure 13a).

We also studied the impact of SVE nanostructure on its 
piezoelectric response subject to a shear force applied in 
the transverse fibers direction. The FE approximation of the 
shear strain, �13 , and the electric field in the y direction, E2 , 
in the SVE with Vf = 39.0% (misaligned fibrils) are depicted 
in Fig. 14. Once again, the effect of voids in the mineral 
phase on strain concentrations in the SVE is evident in this 
figure. The corresponding variation of homogenized electric 
fields in the x and y directions, EM

1
 and EM

2
 , versus Vf  are 

Fig. 10  Normal strain, �
33

 , and electric field, E
3
 [V m−1 ], in the z direction in two SVEs with a,b aligned and c,d misaligned collagen fibrils sub-

ject to longitudinal compression
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Fig. 11  Variation of the homog-
enized a normal stress in the 
z direction, �M

33
 [MPa], and b 

electric field in the z direction, 
EM

3
 [V nm−1 ], versus the volume 

fraction of collagen fibrils in 
SVEs subject to longitudinal 
compression

(a) (b)

Fig. 12  Normal strain, �
11

 , and electric field, E
3
 [V m−1 ], in the z direction in two SVEs with a,b aligned and c,d misaligned collagen fibrils sub-

ject to lateral compression
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illustrated in Fig. 15. Note that the homogenized electric 
field in the z direction, EM

3
 , has a negligible relative value 

in this case and thus not included in this analysis. Studying 
Fig. 15 shows no meaningful difference between responses 
of SVEs with aligned and misaligned fibrils, although more 
fluctuations are observed in the latter compared to the nearly 
linear response of the former. In particular, note the kink in 
the E M

1
–Vf  response of misaligned SVEs (cf. Figure 15a), 

occurring due to the same reasons explained for the kink 
observed in Fig. f13b under lateral compression.

It is worth mentioning that magnitudes of E M
1

 and E M
2

 
in SVEs subjected to a transverse shear is closer to the E M

3
 

obtained under a lateral compression and 7 to 10 times 
larger than E M

3
 corresponding to a longitudinal compres-

sive load. Moreover, for a given Vf  , E M
2

≈ 2E M
1

 , which can 

be explained by comparing piezoelectric constants directly 
affecting these homogenized fields in (14), as d25�̃�5 ≈ 2d15�̃�5 
( d25 = 12 , d15 = 6.21).

Studying the response of SVEs under lateral compres-
sion and shear leadings shows notable electric potentials 
are generated along the surface of collagen fibrils in the 
x and y directions. This surface charge is important, as it 
attracts charged mineral precursors onto the collagen surface 
for further mineralization (Ahn and Grodzinsky 2009; Niu 
et al. 2017), while E3 would be beneficial for the growth 
of minerals along the fibril direction. It is well-known that 
stereochemistry of collagen polypeptides enables calcium 
and phosphate ions to transform nanoplates and grow along 
the collagen fibrils direction (z-axis). Charged residues are 
considered as a the principal guide for the crystal growth and 

Fig. 13  Variation of the homog-
enized a normal stress in the 
x direction, �M

11
 [MPa], and b 

electric field in the z direction, 
EM

3
 [V nm−1 ], versus the volume 

fraction of collagen fibrils in 
SVEs subject to compression in 
the x direction

(a) (b)

Fig. 14  a Shear strain, �
13

 , and b electric field in the y direction, E
2
 , and in an SVE with misaligned fibrils ( Vf = 39.0% ) subject to shear in the 

transverse fibers direction
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development (Stock 2015; Habraken et al. 2013; Silver and 
Landis 2011). In this manner, the additional electric field 
in the collagen fibrillar direction may assist the growth of 
crystalized minerals. Thus, mechanical stresses in various 
directions may provide diverse functions, such as attracting 
mineral clusters onto and into collagen fibrils, as well as 
assisting the growth of crystalized mineral inside the fibrils.

5  Conclusion

We studied the impact of the nanostructure, i.e.,  the vol-
ume fraction and spatial orientation of collagen fibrils, on 
the piezoelectric response of human bone. A new virtual 
reconstruction algorithm was introduced to automatically 
generate realistic SVEs of the bone at the sub-micron scale 
incorporating fibril misalignment and the voids within the 
mineral matrix. Using a parallel non-iterative meshing algo-
rithm named CISAMR, these SVEs were transformed into 
high-fidelity FE models consisting of tens of millions of 
elements. Eight SVEs with different fibril volume fractions, 
half with fully aligned and the other half with misaligned 
fibrils, were then reconstructed, meshed, and their piezo-
electric responses were simulated under three loading con-
ditions: longitudinal compression, lateral compression, and 
shear in the transverse fibrils directions. Key takeaways from 
analyzing the simulation results are summarized below: 

1. For all loading conditions, the nonzero component of 
homogenized electric field in SVEs with aligned fibrils 
(e.g.,  E M

3
 under lateral compression) linearly varies with 

respect to the volume fraction of fibrils, Vf .
2. The magnitude of E M

3
 under longitudinal compression is 

approximately one order of magnitude smaller than E M
3

 
under lateral compression and E M

1
/E M

2
 under transverse 

shear.

3. While under longitudinal compression, the homogenized 
electric field E M

3
 in SVEs with misaligned fibrils is nota-

bly larger than the response of SVEs with aligned fibrils, 
under the other two loading conditions, the difference 
between the homogenized response of aligned and mis-
aligned SVEs is negligible.

4. The electric fields generated by lateral compression and 
shear strains induce electric potentials on a collagen sur-
face, which can increase the zeta-potentials of collagen 
fibrils and help attracting charged mineral precursors 
onto collagen surface for mineralization.
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