
Optimally-secure Coin-tossing against a Byzantine
Adversary

Hamidreza Amini Khorasgani, Hemanta K. Maji, Mingyuan Wang
Department of Computer Science

Purdue University
West Lafayette, Indiana, USA – 47907

Email: {haminikh, hmaji, wang1929}@purdue.edu

Abstract—Ben-Or and Linial (1985) introduced the full infor-
mation model for coin-tossing protocols involving n processors
with unbounded computational power using a common broadcast
channel for all their communications. For most adversarial
settings, the characterization of the exact or asymptotically
optimal protocols remains open. Furthermore, even for the
settings where near-optimal asymptotic constructions are known,
the exact constants or poly-logarithmic multiplicative factors
involved are not entirely well-understood.

This work studies n-processor coin-tossing protocols where
every processor broadcasts an arbitrary-length message once. An
adaptive Byzantine adversary, based on the messages broadcast
so far, can corrupt k = 1 processor. A bias-X coin-tossing
protocol outputs 1 with probability X; otherwise, it outputs 0
with probability (1−X). A coin-tossing protocol’s insecurity is
the maximum change in the output distribution (in the statistical
distance) that a Byzantine adversary can cause. Our objective is
to identify bias-X coin-tossing protocols achieving near-optimal
minimum insecurity for every X ∈ [0, 1].

Lichtenstein, Linial, and Saks (1989) studied bias-X coin-
tossing protocols in this adversarial model where each party
broadcasts an independent and uniformly random bit. They
proved that the elegant “threshold coin-tossing protocols” are
optimal for all n and k. Furthermore, Goldwasser, Kalai, and
Park (2015), Kalai, Komargodski, and Raz (2018), and Haitner
and Karidi-Heller (2020) prove that k = O(

√
n · polylog (n))

corruptions suffice to fix the output of any bias-X coin-tossing
protocol. These results encompass parties who send arbitrary-
length messages, and each processor has multiple turns to reveal
its entire message.

We use an inductive approach to constructing coin-tossing
protocols using a potential function as a proxy for measuring
any bias-X coin-tossing protocol’s susceptibility to attacks in
our adversarial model. Our technique is inherently constructive
and yields protocols that minimize the potential function. It
is incidentally the case that the threshold protocols minimize
the potential function, even for arbitrary-length messages. We
demonstrate that these coin-tossing protocols’ insecurity is a
2-approximation of the optimal protocol in our adversarial
model. For any other X ∈ [0, 1] that threshold protocols cannot
realize, we prove that an appropriate (convex) combination of
the threshold protocols is a 4-approximation of the optimal
protocol. Finally, these results entail new (vertex) isoperimetric
inequalities for density-X subsets of product spaces of arbitrary-
size alphabets.

A full version of this paper is accessible at: https://eprint.
iacr.org/2020/519.pdf

I. INTRODUCTION

Ben-Or and Linial [1], [2] introduced the full information
model to study collective coin-tossing protocols in a seminal
work. Collective coin-tossing protocols upgrade each of the n
processors’ local private randomness into shared randomness
that all processors agree. In this model, all processors have
an unbounded computational power and communicate over
a broadcast channel. This model for the design and analysis
of coin-tossing protocols has close connections with diverse
mathematics and computer science topics like isoperimetric
inequalities over product spaces (refer to the full version for
details).

A bias-X n-processor coin-tossing protocol is an inter-
active protocol where every complete transcript is publicly
associated with output 0 or 1, and the expected output for
an honest execution of the protocol is X ∈ [0, 1]. Given a
bias-X n-processor coin-tossing protocol π and a model for
adversarial corruption and attack, let ε+(π) ∈ [0, 1] represent
the maximum increase in the expected output an adversarial
strategy can cause. Similarly, let ε−(π) ∈ [0, 1] represent
the maximum decrease in the expected output caused by an
adversarial strategy. One defines the insecurity of a protocol
π as ε(π) := max{ε+(π), ε−(π)}. For a fixed X ∈ [0, 1], the
optimal bias-X n-processor protocol minimizes ε(π) among
all bias-X n-processor coin-tossing protocols.

For practical applications, given the tolerance for insecurity,
one needs precise guarantees on the insecurity of coin-tossing
protocols to estimate the necessary number of processors to
keep the insecurity acceptably low. If the insecurity estimates
for the potential coin-tossing protocols involve large latent
constants or poly-logarithmic factors, such a decision needs
to be overly pessimistic in calculating the necessary number
of processors. Consequently, it is essential to characterize coin-
tossing protocols that are either optimal or within a small
constant factor of the optimal protocol for every pair (n,X).
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Model. We study n-processor coin-tossing protocols where
every processor broadcasts a message exactly once (i.e., single-
turn), and there are n rounds. That is, in every round, a
unique processor broadcasts her message in our model. Which
processor speaks in which round and its message distribution
may depend on the previous rounds’ messages. We consider
adaptive Byzantine adversaries who can corrupt k = 1 proces-
sor, i.e., based on the protocol’s evolution, our adversary can
corrupt one processor and fix her message arbitrarily.

Illustrative Example. A threshold coin-tossing protocol
with threshold t ∈ {0, 1, . . . , n + 1} proceeds as follows.
Suppose X ∈ [0, 1] be such that X = 2−n ·

∑n
i=t

(
n
i

)
. For

1 6 i 6 n, the processor-i broadcasts an independent and
uniformly random bit Ci ∈ {0, 1}. The output of this bias-
X coin-tossing protocol is 1 if and only if

∑n
i=1 Ci > t.

Observe that a Byzantine adversary can increase or decrease
the expected output by 2−n

(
n−1
t−1
)

by corrupting k = 1
processor. So, the insecurity of this bias-X threshold coin-
tossing protocol is ε = 2−n

(
n−1
t−1
)
.

In the restriction of our model, where each processor broad-
casts an independent and uniformly random bit, these threshold
protocols are the optimally-secure (even for k > 1) [3]. In
our model (as well as the generalization where an adversary
reveals its message over multiple turns), a Byzantine adversary
can corrupt k = O(

√
n · polylog (n)) processors to (nearly)

fix the output [4]–[6]. Observe that in a threshold protocol,
corrupting k = O(

√
n) processors allows one to fix the output,

and k = o(
√
n) does not suffice. Consequently, the threshold

protocols are near-optimal coin-tossing protocols against high
corruption threshold k. These highly elegant threshold coin-
tossing protocols are believed to be optimal or near-optimal
in diverse adversarial corruption settings.

Summary of Our Results. For k = 1, we prove
that the threshold coin-tossing protocols’ insecurity is a 2-
approximation to the optimal protocol’s insecurity in our
model. For X ∈ [0, 1] that is not realizable by a threshold coin-
tossing protocol, we prove that a convex combination of ap-
propriate threshold coin-tossing protocols is a 4-approximation
to the optimal coin-tossing protocol. These results imply
new vertex isoperimetric inequalities for density-X subsets of
product spaces of arbitrary-size alphabets.

A. Prior Related Works

Binary Alphabet. Lichtenstein, Linial, and Saks [3] con-
sider the restriction where the i-th processor broadcasts an
independent and uniformly random bit xi, where 1 6 i 6 n,
and the adversary can corrupt up to k processors, where
1 6 k 6 n. In this case, the coin-tossing protocol is a
function f : {0, 1}n → {0, 1}. The underlying message space
is {0, 1}n, a product space of a small-size alphabet, and
the probability distribution induced by the transcript is the
uniform distribution over the message space. Note that, for
n-processor coin-tossing protocols, such a protocol’s bias can
only be an integral multiple of 2−n. Therefore, this is a discrete
optimization problem.

Given n, k, and X , they begin with the objective of
minimizing ε+(π) over bias-X n-processor coin-tossing pro-
tocols π. Their characterization of the protocol minimizing ε+,
incidentally, turns out to be identical to the optimal solution
for the vertex isoperimetric inequality over the Boolean hyper-
cube [7]–[9]. Therefore, a threshold protocol1 π is the optimal
protocol and minimizes ε+. The complementary protocol,
which swaps the outputs 0 and 1 of π, is also a threshold
protocol and, consequently, minimizes ε−. So, threshold proto-
cols simultaneously minimize ε+ and ε− and achieve optimal
security. As is evident, this analysis crucially relies on the
message space being the Boolean hypercube.

Significantly altering the output distribution. For sym-
metric functions (i.e., permuting the inputs of the function f
does not change its output), Goldwasser, Kalai, and Park [4]
prove that k = O(

√
n · polylog (n)) corruptions suffice to

completely fix the output of any coin-tossing protocol even
if the protocol has arbitrary-length messages. After that,
Kalai, Komargodski, and Raz [5] remove the restriction of
symmetric functions. Recently, in independent work,2 Haitner
and Karidi-Heller [6] extend this result to multi-turn coin-
tossing protocols in a ground-breaking result. These papers use
global analysis techniques for martingales that are inherently
non-constructive; consequently, they prove the optimality of
threshold protocols up to O(polylog (n)) factors (i.e., the ad-
versary corrupts at most k = O(

√
n · polylog (n)) processors).

B. Challenge for Arbitrary-Length Messages

Our objective is to provide tight insecurity estimates for
the optimal coin-tossing protocols that use arbitrary-length
messages. Let us understand why the technical approach of [3]
fails, and an entirely new approach is needed.

In the full information model, without the loss of generality,
one can assume that all interactive protocols are stateless, and
processors use a new block of private randomness to generate
the next message at any point during the evolution of the
coin-tossing protocol [10], [11]. Furthermore, the security of
processors’ internal state is not a concern, so, without loss
of generality, every processor broadcasts its appropriate block
of randomness whenever it speaks.3 A Byzantine adversary
can corrupt a processor and arbitrarily set its randomness.
So, for an appropriately large alphabet Σ, which depends on
the randomness complexity of generating each message, our
ambient message space is Σn, a product space involving a
large alphabet set.

However, over such product spaces, the objective of mini-
mizing ε+ in isolation does not entail the simultaneous mini-
mization of ε−. Given any n ∈ N and X ∈ [0, 1], there exists a
protocol with (ε+, ε−) = ( 1−X

n , X). Let Σ = {0, 1, . . . , σ−1}

1More generally, protocols that output 1 for all strings smaller in the
simplicial order [9] than a threshold string are the optimal protocols.

2The full version of our paper appeared online on eprint on 05 May, 2020.
3Let π be the original coin-tossing protocol. In the compiled π′, suppose

parties reveal the block of randomness that they use to prepare their next-
message in the protocol π. The new protocol π′, first, emulates the next-
message function of π to generate the entire transcript, and, then, uses π to
determine the output.
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such that (1− 1/σ)n = X , i.e., σ = Θ(n/ log(1/X)). Every
processor broadcasts an independent and uniformly random
message from Σ. The outcome of the coin-tossing protocol
is 0 if some processor broadcasts 0; otherwise, the output is
1. Observe that a Byzantine adversary can corrupt any single
processor to force output 0. However, corrupting one processor
can only increase the expected output by (roughly) (1−X)/n.
Similarly, there is a protocol with (ε+, ε−) = (1 − X, Xn ).
More generally, for product spaces over large alphabets, one
does not expect such a well-behaved isoperimetric inequal-
ity [12], [13].

Finally, global analysis techniques of [4]–[6] analyze the
case of multiple corruptions. The optimal protocol for k = 1
is not apriori related to the optimal protocols robust to multiple
corruptions. Furthermore, the inductive proof technique of
Aspnes [14], [15] is agnostic of the expected output of
the coin-tossing protocol. Consequently, reconstructing the
optimal protocol from the lower-bound on insecurity is not
apparent.

Therefore, we follow the geometric technique of Khoras-
gani, Maji, and Mukherjee [16], which is inherently con-
structive, to obtain tight estimates of the optimally secure
protocols. Ideally, one should find the coin-tossing protocol
that minimizes ε = max{ε+, ε−}; however, this function
does not behave well. So, we consider the proxy objective of
minimizing ε̃ = ε+ +ε−, instead. We characterize the optimal
protocol for this proxy objective, which is a 2-approximation
to the actual objective.

C. Connection to Isoperimetric Inequalities

The connection to isoperimetric inequalities [7]–[9], [13]
(via the expansion of fixed density subset of product spaces)
establishes relevance to theoretical computer science topics
like expander graphs, complexity theory, and error-correcting
codes.

Encoding Security of Coin-tossing Protocols. Every coin-
tossing protocol is equivalent to a subset S of an n-dimension
product space Σn, where the size of the alphabet set σ := |Σ|
depends on the randomness complexity of the coin-tossing
protocol. Likewise, for every subset S ⊆ Σn, one can
define a coin-tossing protocol corresponding to this subset S.
The elements of this product space represent the complete
transcript of the coin-tossing protocol. The i-th coordinate of
an element corresponds to the message sent by processor i,
and the subset S contains all elements of the product space
on which the coin-tossing protocol outputs 1. One considers
the uniform distribution over Σn to sample the elements. This
subsection considers a stronger Byzantine adversary who can
edit one processor’s message after seeing the messages of all
processors.

The discussion in this subsection extends to arbitrary cor-
ruption threshold k. However, for the simplicity of the pre-
sentation, we consider the specific case of k = 1. Let ∂S+

k

be the set of elements in S (the complement of S) that are
at a Hamming distance k = 1 from the set S. Consequently,
the strong Byzantine adversary can change an element from

the set ∂S+
k ⊆ S into some element of S by editing (at most)

k coordinates. If the stronger Byzantine adversary can see all
the messages and then perform the edits, it can increase the
expected output by exactly ε+ =

∣∣∂S+
k

∣∣/σn.
Analogously, one defines the set ∂S−k ⊆ S that contains all

elements at a Hamming distance k = 1 from the set S. So, a
stronger Byzantine adversary can reduce the expected output
by ε− =

∣∣∂S−k ∣∣/σn.
Extremal Graph Theory Perspective. The (width-k) ver-

tex perimeter of the set S, represented by ∂V,kS, is the set of
all elements in S that are at a Hamming distance of at most
k from some element in S. Observe that the perimeter ∂V,kS
is identical to the set ∂S+

k . Similarly, the vertex perimeter of
the set S (which is ∂V,kS) is identical to the set ∂S−k .

Extremal graph theory aims to characterize the optimal set
S of a density-X that minimizes its vertex perimeter. This
optimal set S, in turn, characterizes the bias-X coin-tossing
protocol with the minimum ε+. In Appendix A of the full
version, we see that minimizing ε+ does not automatically
entail the simultaneous minimization of ε− for general Σ.4

That example highlights that the protocol minimizing ε+

resulted in a protocol where the stronger Byzantine adversary
can force the outcome 0 with certainty. Therefore, there is a
disconnect between the cryptographic objective of minimizing
ε = max{ε+, ε−} with the typical objective in extremal graph
theory for large alphabet set Σ.

Cryptography-inspired Extremal Graph Theory. Instead
of minimizing the vertex perimeter of a density-X set S, one
should consider the alternative objective of minimizing the
symmetric perimeter of S defined under various norms.

∂symV,k,`(S) :=
(
|∂V,kS|` +

∣∣∂V,kS∣∣`)1/` .
The ` = ∞ case corresponds to our cryptographic objective;
however, this norm is difficult to analyze. Consequently, we
study the norm ` = 1 as a proxy, which is a 2-approximation
of the norm ` = ∞. Our results provide evidence that such
symmetric perimeters may be more well-behaved in general.

Recall that, in our setting, the element in Σn is exposed one
coordinate at a time, and our Byzantine adversaries cannot go
back to edit previously exposed coordinates. So, our Byzan-
tine adversaries have lesser power than the stronger Byzan-
tine adversaries considered in this section. Consequently, the
minimum achievable insecurity for bias-X n-processor coin-
tossing protocols in our setting lower-bounds the proxy norm
above. For instance, when ` = 1, our results imply that the
symmetric perimeter’s density is 1/

√
n for any dense set S,

irrespective of the size of the alphabet set.
Remark. We identify a density-X set with its corresponding

bias-X coin-tossing protocol. Using the independent bounded
differences inequality for the Hamming distance function
(using Azuma’s inequality [17]) on a constant-density subset S
implies that k = O(

√
n) edits suffice to achieve any constant

4For Σ = {0, 1}, this entailment holds; otherwise, it is not known to hold
in general.
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ε+ and ε−, for any σ.5 However, for small k (for example,
k = 1), obtaining meaningful guarantees on both ε+ and ε− is
not possible for large σ. On the other hand, interestingly, our
results entail that max{ε+, ε−} > 1/

√
n for any σ. This result

lends support to the hypothesis that the symmetric perimeter
is more well-behaved.

II. OUR CONTRIBUTIONS

Let us set up the minimal notations to state our results. For
every partial transcript v, the color of v, represented by xv , is
the expected output of the coin-tossing protocol conditioned
on the partial transcript being v. For example, a complete
transcript has color ∈ {0, 1}, and the color of the empty partial
transcript (i.e., the protocol has not started yet) of a bias-
X coin-tossing protocol is X . The probability pv represents
the probability that the protocol evolution of π generates the
partial transcript v.

Let τ be an attack strategy for a Byzantine adversary
who may corrupt k = 1 processor. Equivalently, τ can be
represented as a collection of pairs of partial transcripts,
namely, {(ui, vi)}`i=1. That is, when a partial transcript uj
(for instance, it consists of the messages from processors
1, 2, . . . , j) happens, the Byzantine adversary shall decide to
corrupt the next processor j + 1 and fix the next partial
transcript to be vi. The score of the attack strategy τ on the
protocol π is

Score (π, τ) :=
∑̀
i=1

pui
· |xui

− xvi |.

The term Score (π, τ) represents the vulnerability of protocol
π under attack strategy τ . Furthermore, we define

Score (π) := sup
τ

Score (π, τ) .

Intuitively, Score (π) represents the insecurity of the protocol
under the most devastating attack, a.k.a., our potential func-
tion.

We emphasize that our score is not identical to the deviation
in output distribution that a Byzantine adversary causes. It is a
2-approximation of that quantity. Define the insecurity as the
maximum change that a Byzantine adversary can cause to the
output distribution. Then, it is evident that the insecurity of π
is at least Score(π)/2, because max{ε+, ε−} > (ε+ + ε−)/2.

For an arbitrary n ∈ N∗ and t ∈ {0, 1, . . . , n + 1}, let
πn,t denote the n-processor t-threshold threshold protocol.
In this threshold protocol, every processor broadcasts an
independent and uniformly random bit. The output of this
threshold protocol is 1 if and only if the total number of ones
in the complete transcript is > t. An n-processor t-threshold
protocol has color 2−n ·

(∑n
i=t

(
n
i

))
.

We prove the following theorem about the threshold proto-
col.

5Even computationally efficient attacks are known to achieve this
bound [18], [19].

Theorem 1: For any bias-X n-processor protocol π∗, where
X = 2−n ·

(∑n
i=t

(
n
i

))
and 0 6 t 6 n+ 1, then

Score(πn,t) 6 Score(π∗).

That is, the threshold protocol is the protocol that minimizes
the score. Equivalently, the insecurity of the threshold protocol
is a 2-approximation of the optimal insecurity in our corruption
model (refer to Corollary 1 of the full version).

Furthermore, for a root color X that does not correspond
to a threshold protocol, we prove the following result.

Theorem 2: Suppose X is a root-color that does not admit
a threshold protocol, and X is inverse-polynomially far from
both 0 and 1. Suppose X is intermediate to the bias of
the threshold protocols πn−1,t and πn−1,t−1. Let π be a
protocol where the first processor decides to run the threshold
protocol πn−1,t or πn−1,t−1 with suitable probability so that
the resulting protocol is a bias-X protocol. Then, we have, for
any bias-X and n-processor coin-tossing protocol π∗,

Score(π) 6 2 · Score(π∗).

That is, the insecurity of this protocol π is a 4-approximation
of the protocols with minimum insecurity against Byzantine
adversaries (refer to Corollary 2 of the full version).

Finally, our results imply isoperimetric inequalities for the
symmetric perimeter.

Corollary 3: For any alphabet Σ and dimension n ∈ N,
let S ⊆ Σn be a density-X subset of Σn. Suppose X ∈
2−n ·

(∑n−1
i=t+1

(
n−1
i

)
,
∑n−1
i=t

(
n−1
i

))
, for some t. Then,

max{∂S+
1 , ∂S

−
1 } >

1

4
· 2−n

(
n− 2

t

)
.

In particular, when X is a constant, it implies that

max{∂S+
1 , ∂S

−
1 } > Θ

(
1/
√
n
)
.

III. TECHNICAL OVERVIEW

The techniques closest to our approach are those introduced
by Aspnes [14], [15] and Khorasgani et al. [16], [20], [21].

Aspnes’ technique [14], [15] tracks the locus of all possi-
ble (ε+, ε−) corresponding to any n-processor k-corruption
threshold protocol. However, the information regarding the
root-color is lost and, consequently, the technique does not
yield the optimal protocol construction. Next, one lower-
bounds this space using easy-to-interpret (hyperbolic) curves
and obtains bounds on the insecurity of any n-processor
protocol with k corruption threshold (against adversaries who
erase the messages of processors).

The technique of Khorasgani et al. [16], [20], [21] uses
a potential function as a proxy to study the actual problem
at hand. They maintain the locus of all n-processor bias-
X protocols that minimize the potential function. Next, they
inductively build the next curve of (n+ 1)-processors bias-X
protocols that minimize the potential function. Their approach
outrightly yields the optimal constructions that minimize the
potential function, and easily handle the case of processors
sending arbitrary-length messages.
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High-level summary of our approach. We use the po-
tential function as introduced in Section II, which is a 2-
approximation of the optimal insecurity against Byzantine
adversaries, for any n-processor bias-X protocol. Let Cn(X)
represent the minimum realizable potential for bias-X n-
processor coin-tossing protocols.

Next, we prove that if an n-processor threshold protocol
has potential δ and bias-X , then the point (δ,X) lies on
the optimal curve Cn(X). Therefore, the potential of these
threshold protocols are 2-approximation of the optimal bias-
X protocol against Byzantine adversaries.

After that, inductively, we prove that the linear interpolation,
denoted by Ln, of the set of points (δ,X) realized by n-
processor threshold protocols with potential δ and root-color
X , where 0 6 t 6 n+ 1, is a lower-bound to the actual curve
Cn(X). Finally, we argue that a linear interpolation of appro-
priate threshold functions yields a protocol with potential that
is 4-approximation of the optimal protocol against Byzantine
adversaries.

The curves and the inductive transformation. Consider
the case of n = 1 and arbitrary bias-X . If X = 0 or X = 1,
then we have C1(X) = 0. If X ∈ (0, 1/2], then we include
that edge that sets the output to 1. This observation creates a
potential of C1(X) = 1−X . Similarly, we have C1(X) = X ,
for all X ∈ [1/2, 1). Our characterization of the curve C1(X)
is complete (refer to Figure 1).

x

y

L1

C1

(
1
2
, 1
2

)

P1,2

P1,1

P1,0

Fig. 1. The (black) dashed curve is L1 and the (blue) solid curve is C1. Note
that P1,t corresponds to the point defined by (1, t)-threshold protocol.

Next, consider the case of n = 2 and bias-X . This case
is sufficient to understand how to inductively build the locus
of the curve Cn+1(X) inductive from Cn(X). Consider any
arbitrary 2-processor bias-X coin-tossing protocol. Suppose
the first processor sends message 1, 2, . . . , `. Let xi, for 1 6
i 6 `, be the expected output conditioned on the first message
being i. At the root of this protocol, we have two options.
Corrupt processor one and send the message that achieves the
highest potential. Or, defer the intervention to a later point in
time.

Corrupting the root of this protocol causes the potential
to become max`i=1|X − xi|. Deferring the intervention to a
later point in time results in the potential becoming at least∑`
i=1 pi · C1(xi), where pi is the probability that processor

1 outputs i. The actual potential of π is the maximum of
these two quantities. Our objective is to characterize the choice

of x1, . . . , x` such that the potential is minimized (refer to
Figure 2).

x

y

Cn(x)

xx1 x2 x3

(x, y1)

(x, y2)

Fig. 2. An intuitive example of the geometric transformation

The solution to this optimization problem motivates the
definition of our geometric transformation,

T (C)(x) := inf
x1,...,x`∈[0,1]
p1,...,p`∈[0,1]
p1+···+p`=1

p1x1+···+p`x`=x

max

(
|x− x1|, . . . , |x− x`|,

∑̀
i=1

pi · C(xi)

)
.

Towards proving our main theorem, at a high-level, we
inductively prove that, if Ln is a lower-bound of the curve
Cn, then Ln+1 := T (Ln) and is a lower-bound of the next
curve Cn+1 = T (Cn). We refer the interested readers to the
full version for more technical details.
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