
Efficient Distributed Coin-tossing Protocols
Hamidreza Amini Khorasgani, Hemanta K. Maji, Himanshi Mehta, Mingyuan Wang

Department of Computer Science
Purdue University

West Lafayette, Indiana, USA – 47907
Email: {haminikh, hmaji, mehta142, wang1929}@purdue.edu

Abstract—Ben-Or and Linial (1985) introduced the full infor-
mation model for coin-tossing protocols involving n-processors
with unbounded computational power using a common broadcast
channel for all their communications. A bias-X coin-tossing
protocol outputs 1 with probability X; otherwise, it outputs 0
with probability (1−X). A coin-tossing protocol’s insecurity is
the maximum change in the output distribution (in the statistical
distance) that an adversary can cause. This work considers
an adversary who monitors the protocol’s communication and
intervenes at most once by restarting the processor who just
broadcast her message. For a given tolerance ε, our objective
is to use the minimum number of processors, ensuring that this
adversary can only change the output distribution by at most ε.

Historically, the “threshold coin-tossing protocols” have been
optimal or asymptotically optimal against various adversary
models. However, for our model, Khorasgani, Maji, and Mukher-
jee (2019) prove the existence of coin-tossing protocols that
achieve the same tolerance as the threshold protocols using a
smaller number of processors. Unfortunately, their protocol is
not computationally efficient.

Towards this objective, for any X ∈ (0, 1) and n ∈ N, this
paper presents computationally efficient coin-tossing protocols
approximating the new protocols of Khorasgani, Maji, and
Mukherjee (2019). This protocol’s running time is linear in the
inverse of the accuracy parameter of this approximation, which
can be set arbitrarily small.

A full version of this paper is accessible at: https://www.cs.
purdue.edu/homes/hmaji/papers/KMMW20.pdf

I. INTRODUCTION

Ben-Or and Linial [1], [2] introduced the full information
model to study collective coin-tossing protocols. In this model,
all processors have an unbounded computational power and
communicate over a broadcast channel. This paper studies
strong adaptive adversaries introduced in [3] where the ad-
versary sees a processor’s message before it decides whether
to corrupt that processor or not. Specifically, we consider the
following model, first proposed in [4].

Representative Motivating Problem: Our Model. Con-
sider an n-processor coin-tossing protocol in the full informa-
tion model where, every round, a unique processor broadcasts
her message. After each processor broadcasts her message,
the output of the protocol ∈ {0, 1} is a deterministic function

Hamidreza Amini Khorasgani, Hemanta K. Maji, Himanshi Mehta, and
Mingyuan Wang are supported in part by an NSF CRII Award CNS–1566499,
NSF SMALL Awards CNS–1618822 and CNS–2055605, the IARPA HEC-
TOR project, MITRE Innovation Program Academic Cybersecurity Research
Awards (2019–2020, 2020–2021), a Purdue Research Foundation (PRF)
Award, and The Center for Science of Information, an NSF Science and
Technology Center, Cooperative Agreement CCF–0939370.

of the broadcast messages. A bias-X coin-tossing protocol
outputs 1 with probability X; otherwise, it outputs 0.

An eavesdropping adversary monitoring the messages in
the broadcast channel may intervene at most once as follows.
After round i, upon seeing the first i broadcast messages, the
adversary decides whether to corrupt processor i or not.1 If
the adversary corrupts the processor, it restarts the processor,
resulting in resampling of its private randomness. A coin-
tossing protocol’s insecurity is the maximum change in the
output distribution that an adversary can cause.

Threshold Protocols. Historically, the elegant threshold
coin-tossing protocols [5]–[7] have proven to be optimal in
various adversarial settings. Consider X ∈ (0, 1) such that
there exists a threshold t ∈ {0, 1, . . . , n + 1} satisfying∑n
i=t

(
n
i

)
·2−n = X . In a threshold-t n-processor coin-tossing

protocol, processor i broadcasts an independent and uniformly
random bit Ci ∈ {0, 1}, where 1 6 i 6 n. The output of the
protocol is 1 if (and only if)

∑n
i=1 Ci > t.

An adversary can increase the expected output by
(
n
t−1
)
·

2−(n+1). To increase the expected output, the adversary shall
restart an arbitrary processor who broadcasts 0. The increase
in the expected outcome corresponds to the scenarios, where
exactly t − 1 1s were broadcast. In these scenarios, by re-
sampling one 0 message, the output of the protocol changes
to 1 with probability 1/2. For the remaining scenarios, the
re-sampling attack on one processor is futile. Hence, any
adversary in our model can increase the expected output by(
n
t−1
)
· 2−(n+1).

Likewise, an adversary can decrease the expected output by(
n
t

)
· 2−(n+1). Consequently, the insecurity of the threshold

protocol is ε = 1
2n+1 ·max

{(
n
t−1
)
,
(
n
t

)}
.

Khorasgani-Maji-Mukherjee Protocol. Recently, Khoras-
gani, Maji, and Mukherjee [8] define new coin-tossing proto-
cols (KMM protocols) using a recursive geometric transforma-
tion (see Section III). These protocols have shown the potential
to achieve lower insecurity than the threshold protocols using
an equal number of processors.

1We state our adversarial model in this manner to be consistent with the
cryptography literature where a strong adversary [3] receives the broadcast
message first and might block this message’s delivery to other parties. In fact,
at round i, when processor i has just prepared its message to broadcast, the
adversary, upon seeing the first i − 1 broadcast messages and also the new
message prepared by processor i, decides whether to corrupt processor i or
not.

2852978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

80
00

Authorized licensed use limited to: Purdue University. Downloaded on June 08,2022 at 16:09:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
INSECURITY OF BIAS-X COIN-TOSSING PROTOCOLS, WHERE X ∈ (0, 1/2]

AND n = 5. COLUMN εTHRESH PRESENTS THE INSECURITY OF THE
THRESHOLD PROTOCOL [5]–[7], AND COLUMN εKMM PRESENTS THE

INSECURITY OF THE KHORASGANI-MAJI-MUKHERJEE PROTOCOL [8].

X εThresh εKMM Improvement

1/32 5/64 ≈ 0.078125 0.0217 . . . 0.05642 . . .

6/32 10/64 ≈ 0.15625 0.0923 . . . 0.06395 . . .

16/32 10/64 ≈ 0.15625 0.1415 . . . 0.01475 . . .

One can precisely compute the insecurity of the KMM pro-
tocols using an exponential-time algorithm. Table I illustrates
this reduction in insecurity for the representative example
of n = 5 and all X ∈ (0, 1/2] realizable by threshold
protocols.2 Before this work, it was unknown whether one can
efficiently implement the KMM protocols. This paper presents
a computationally efficient approximation of the bias-X n-
processor KMM protocol for any X ∈ (0, 1) and n ∈ N.

II. OUR CONTRIBUTIONS

For a bias-X distributed coin-tossing protocol Π, let ε (Π)
represent its insecurity in our model. Let ΠKMM (n,X) repre-
sent the bias-X n-processor KMM protocol (see Section III).
Our contributions are both theoretical and experimental.

Theoretical Results. For any n ∈ N and X ∈ (0, 1),
we present a computationally efficient bias-X n-processor
coin-tossing protocol. Our protocol, denoted by ΠOur (n,X, δ),
is additionally parametrized by an accuracy parameter δ.
Intuitively, the smaller δ is, the more accurately our protocol
ΠOur (n,X, δ) approximates the KMM-protocol ΠKMM (n,X).
The running time of our protocol is linearly dependent on the
inverse of the accuracy parameter δ.

Theorem 1: For any n ∈ N, X ∈ (0, 1), and accuracy
parameter δ ∈ (0, 1), there exists a computationally efficient
bias-X n-processor coin-tossing protocol ΠOur(n,X, δ) s.t.

ε (ΠOur(n,X, δ)) < ε (ΠKMM(n,X)) + nδ.

Furthermore, processor i generates the next message in time
linear in (n− i)/δ, for 1 6 i 6 n.

Note that, Khorasgani et al. [8] show that the insecurity of
the KMM protocol satisfies

ε (ΠKMM(n,X)) >

√
1

2(n+ 1)
·X(1−X).

Consequently, for constant X ∈ (0, 1), when the accuracy
parameter δ � 1

n3/2 , we have

ε (ΠOur(n,X, δ)) 6 (1 + o(1)) · ε (ΠKMM(n,X)) .

Remark 1: We emphasize that one can optimize the protocol
to offload (nearly) the entire computational cost to a one-time
offline precomputation, independent of the bias X of the coin-
tossing protocol. This precomputation step’s running time is

2Bias-X coin-tossing protocols are isomorphic to bias-(1−X) coin-tossing
protocols. Therefore, it suffices to study X ∈ (0, 1/2].

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

·10−2

Fig. 1. For n = 101, the blue circles denote the insecurity of bias-X coin-
tossing protocols that are implementable using a threshold protocol. Versus
the plot of ε (ΠOur(n,X, δ)), for all X ∈ [0, 1/2] and δ = 10−6. Lower
insecurity is better.

n/δ, and the next-message generation of our n′-processors
coin-tossing protocol, where n′ 6 n, takes constant time.
Therefore, this precomputation step enables a processor to
participate in an arbitrary number of coin-tossing protocol
instances involving n′ < n processors; thus, amortizing the
precomputation step’s computational cost over multiple coin-
tossing instances.

Remark 2: The recommended order of setting the parame-
ters of our protocols is as follows. First, decide an upper bound
on the number of processors n. Next, fix a lower bound for
the variance term X(1 − X). Finally, choose a sufficiently
small accuracy parameter δ. Setting the accuracy parameter δ
to be o

(
X(1−X)/n3/2

)
, ensures that the insecurity of our

protocol is within 1+o(1) multiplicative factor of the optimal
achievable insecurity. For instance, when δ = X(1−X)/n2,
the running time of our protocol is n3/X(1−X).

Experimental Results. We implement our protocol and
show that our protocol’s insecurity is observably smaller
than the insecurity of threshold protocols. As a representative
example, Fig. 1 plots our protocol’s insecurity, for n = 101
processors and X ∈ [0, 1/2] with accuracy parameter δ =
10−6. Fig. 1 also plots the insecurity of all bias-X coin-tossing
protocols that can be implemented using a threshold protocol.
Note that the insecurity of our protocol is less than the
insecurity of threshold protocol. This reduction in insecurity is
prominent when X is close to 1/4 (and, by symmetry, when
X is close to 3/4).

Finally, our experiments uncover an exciting phenomenon.
Fig. 2 indicates that the insecurity of our protocols for X =
1/2 tends towards the insecurity of the majority protocol, as
n tends to infinity. This experiment reinforces the conjecture
that the majority protocol is asymptotically optimal.

2853
Authorized licensed use limited to: Purdue University. Downloaded on June 08,2022 at 16:09:20 UTC from IEEE Xplore. Restrictions apply.

100 101 102 103

0.25

0.3

0.35

0.4 Y = 1/
√

2π

Fig. 2. For n ∈ {1, 3, . . . , 1001}, the blue + show the plot of
√
n ·εMaj(n),

the insecurity of the majority coin-tossing protocol. The red dashed line shows
the limit of the insecurity of majority protocol using Stirling’s approximation,
when n→∞. The black ◦ show the plot of

√
n · ε (ΠOur(n,X, δ)), where

X = 1/2 and δ = 10−6. The graph uses log scale on the X-axis.

III. KHORASGANI-MAJI-MUKHERJEE PROTOCOL

Let ΠKMM(n,X), for n ∈ N and X ∈ (0, 1), represent the
bias-X n-processor coin-tossing protocol introduced in [8].
Let An(X), for n ∈ N, be a function with domain [0, 1] that
upper-bounds the insecurity of ΠKMM(n,X).

Base Case. For n = 1, define An(X) = X(1 − X). Let
ΠKMM(n,X) be the 1-processor protocol that broadcasts 1
with probability X; otherwise, the processor broadcasts 0.

Inductive Definition for n > 1. Assume that we
already know the function An−1(X) and the protocols
ΠKMM(n− 1, X) for all X ∈ [0, 1]. Inductively, define the
value An(x) and the protocol ΠKMM(n, x), for any particular
x ∈ [0, 1], as follows.

1) Let Z = x0 ∈ [0, x] be the (unique) solution of the
equation Z +An−1(Z) = x.

2) Let Z = x1 ∈ [x, 1] be the (unique) solution of the
equation Z −An−1(Z) = x.

3) Define An(x) := H.M. (An−1(x0), An−1(x1)), where
H.M.(a, b) := 2ab/(a+b) is the harmonic mean of (a, b).

4) The protocol ΠKMM(n, x) is recursively defined below.
a) Define

p0 :=
An−1(x1)

An−1(x0) +An−1(x1)
, and

p1 := 1− p0.

b) Processor 1 either broadcasts 0 with probability p0, or
broadcasts 1 with probability p1.

c) If the first message is 0, then the remaining processors
{2, 3, . . . , n} implement the protocol ΠKMM(n−1, x0).
Otherwise, if the first message is 1, then the processors
{2, 3, . . . , n} implement the protocol ΠKMM(n−1, x1).

The intuition underlying this recursive definition is illus-

X-axis

Y -axis

An−1

(x, 0)

◦

◦

•
(x,An(x))

π
4

π
4

(x0, 0) (x1, 0)

Fig. 3. A pictorial summary of the definition of curve An. Given curve
An−1, this figure shows how An is defined at x. Probabilities p0 and p1 (in
the definition of protocol ΠKMM(n, x)) are obtained by solving p0 + p1 = 1
and p0x0 + p1x1 = x.

trated by Fig. 3. In general, this geometric transformation,
referred to as T (·), applies to any convex upwards function
C(X) with domain [0, 1] and roots at 0 and 1. The transformed
curve T (C) is defined as follows. Consider Fig. 3, where
one plots C(X) instead of An−1(X). The locus of the point
marked by • defines the point (x, T (C)(x)), and, consequently,
the transformed function T (C).

We emphasize that An(X) upper-bounds the insecurity of
the protocol ΠKMM(n,X). Note that the curves An(X) are
not quadratic except for base case n = 1. Furthermore, for
general n, it seems likely that no elementary function can
express the function An(X). Given the protocol ΠKMM(n,X),
it is possible to compute its insecurity using exhaustive search,
which is used to prepare Table I’s entries.

IV. RELEVANT PRIOR WORKS

In this section, we highlight a few representative coin-
tossing protocols for various security notions.

First, consider a static adversary who corrupts a processor
before the protocol begins. When this particular processor is
supposed to broadcast during the execution of the protocol, the
adversary may restart it. In this case, the following protocol
guarantees that the adversary can increase/decrease the ex-
pected outcome only by Θ(1/n).3 Each processor broadcasts
an independent bit that is 0 with probability c/n and 1 with
probability (1−c/n). The output of the protocol is the AND of
all the broadcast bits. We choose c such that (1−c/n)n = 1/2.
This protocol, irrespective of the processor that the adversary
corrupts, has insecurity c/(2n).

Next, consider an adaptive adversary, one who decides
whether to corrupt a processor based on all broadcast mes-
sages up to that point in time. Our work considers this
model. Historically, majority protocol (threshold protocols,

3This insecurity is optimal up to a constant factor. Note that the expected
outcome before the protocol begins is 1/2 and after the protocol ends is ∈
{0, 1}. Therefore, the expected outcome “jumps” by 1/2 (in the absolute
value) during the protocol execution. Intuitively, by an averaging argument,
there exists a processor whose message results in a jump of Ω(1/n) in the
expected output. Therefore, a static adversary, by corrupting this processor,
changes the output distribution by Ω(1/n).

2854
Authorized licensed use limited to: Purdue University. Downloaded on June 08,2022 at 16:09:20 UTC from IEEE Xplore. Restrictions apply.

in general) are the only known protocol [5]–[7] that are
Θ(1/

√
n) insecure. They are also shown to be asymptotically

optimal [4], [8] up to a constant factor for various other
adversarial settings. However, whether the majority protocol is
the optimal or asymptotically optimal protocol in our model
remains unknown. Recently, Khorasgani et al. [8] show the
existence of protocols whose insecurity has the potential to be
lower than majority. The precise insecurity of their protocols
is not well-understood. Moreover, their protocol is also not
efficiently implementable.

Another exciting security model for coin-tossing protocols
is where the adversary is rushing. For a rushing adversary,
she gets to see every processor’s message before deciding
to intervene. This notion of security is motivated mainly
by considering designing election schemes where changing
one voter’s vote has minimal effect on the result’s overall
outcome. The first setting that has been well-studied is when
the adversary statically corrupts a processor and can arbitrarily
set her broadcast message after observing all other processors’
messages. This problem is the well-known problem of the
influence of variables on boolean functions. When each pro-
cessor broadcasts a uniformly random bit, the tribes function is
asymptotically optimal protocol [9]. However, characterizing
the exact optimal protocol in this setting remains open. Fur-
thermore, the case where parties’ messages can have arbitrary
distribution is not well-understood [10], [11].

For static rushing adversaries, many works consider how
many processors an adversary needs to corrupt to fix the
output. The work of [9] shows that, for any function, an
adversary needs to corrupt at most Θ

(
n

logn

)
processors to

completely bias the output. Ajtai and Linial [12] proved the
existence of Boolean functions that are resilient to Θ

(
n

log2 n

)
,

which almost matches the upper bound. Their randomized
construction was recently made explicit by Chattopadhyay and
Zuckerman [13]. Finally, if one relaxes the setting such that
processors can interact and send multiple messages, the upper
bound of [9] no longer holds. The elegant “baton passing”
protocol [14] and “lightest bin” protocol [15] are known to be
resilient to up to αn corruptions, where α ∈ (0, 1/2).

In the model of adaptive rushing adversaries, Lichtenstein,
Linial, and Saks [16] first showed that if every party sends
a uniform bit, majority protocol (more generally, threshold
protocols) achieves the optimal security. Kalai, Komargodski,
and Raz [17] showed that when parties may send arbitrarily
long messages, an adaptive rushing adversary can corrupt (at
most)

√
npolylog n parties to fix the output completely. Very

recently, Haitner and Karidi-Heller [18] extended this result
to the setting where every party takes multiple turns to speak.

Lastly, Goldwasser, Kalai, and Park [3] proposed a strong
adaptive adversary. That is, the adversary first sees every
processor’s message and, then, adaptively chooses which pro-
cessor to corrupt to set its broadcast message arbitrarily. This
security notion is closely related to the vertex isoperimetric
inequalities [19] for the boolean hypercube.

V. TECHNICAL OVERVIEW

Our protocols are parametrized by an accuracy parameter
δ ∈ (0, 1). Our objective is to maintain approximations
Ãi,δ(X) to the curves Ai(X), for each 1 6 i 6 n, satisfying
the following invariant. Given the curve Ãi−1,δ(X), one
can computationally efficiently (inductively) compute Ãi,δ(X)
without significantly degrading the approximation quality.
Among several possible similarity measures, the L-infinity
norm (‖·‖∞) seems an appropriate choice. For two curves
C and D over the domain [0, 1], define ‖C −D‖∞ 6 ε, if
|C(x)−D(x)| 6 ε, for all x ∈ [0, 1].

We approximate the curve Ai(X) with a piece-wise linear
curve Ãi,δ(X). For simplicity of presentation, assume that
1/δ ∈ N. Our global invariant is that the piece-wise linear
curve Ãi,δ(X), for 1 6 i 6 n, consists of line segments such
that their X-projections are of length δ. Intuitively, the curve
Ãi,δ(X) is implicitly defined by the samples stored as the
following array

S̃i,δ :=
[
Ãi,δ(0), Ãi,δ(δ), Ãi,δ(2δ), . . . , Ãi,δ(1)

]
.

For the rest of the paper, we shall use Ãi,δ to be the piece-wise
linear curve implicitly defined by the array S̃i,δ .

For the base case n = 1, we know that A1(X) = X(1−X).
So, for u ∈ {0, 1, . . . , 1/δ}, we generate the array

S̃1,δ[u] := A1(u · δ).

Next, for the inductive step i > 1, our objective is
to compute the array S̃i,δ from the array S̃i−1,δ . That is,
compute the values of S̃i,δ[u] := T

(
Ãi−1,δ

)
(uδ), where u ∈

{0, 1, . . . , 1/δ} (refer to Fig. 3 for the definition of the geomet-
ric transformation T (·)). A crucial step in this inductive step
is to compute x0 ∈ [0, uδ] such that x0 + Ãi−1,δ(x0) = uδ.
Towards this objective, one needs to identify the unique index
u0 ∈ {0, 1, . . . , u} such that

u0δ + S̃i−1,δ[u0] 6 uδ

(u0 + 1)δ + S̃i−1,δ[u0 + 1] > uδ

Once the index u0 is identified, by linear interpolation, we
obtain the value of x0 and Ãi−1,δ(x0).

The inductive step, also requires the computation of x1 ∈
[uδ, 1] such that x1−Ãi−1,δ(x1) = uδ. Since all the curves are
symmetric about X = 1/2, we have Ãi−1,δ(x1) = Ãi−1,δ(1−
x1). Therefore, solving the above equation is equivalent to
solving (1 − x1) + Ãi−1,δ(1 − x1) = (1/δ − u)δ, which is
identical to the problem of obtaining x0.

Given y0 = Ãi−1,δ(x0), and y1 = Ãi−1,δ(x1), we define

S̃i,δ[u] := T (Ãi−1,δ)(uδ) = H.M.(y0, y1) = 2y0y1/(y0 + y1).

The curve Ãi,δ is implicitly defined by the linearly
interpolating between the points

(
vδ, S̃i,δ[v]

)
and(

(v + 1)δ, S̃i,δ[v + 1]
)
, where v ∈ {0, 1, . . . , 1/δ − 1}.

2855
Authorized licensed use limited to: Purdue University. Downloaded on June 08,2022 at 16:09:20 UTC from IEEE Xplore. Restrictions apply.

�

�

�

�
� � �

�

�

�

�
Ãi−1,δ

u = 6u0 = 2 u1 = 9

◦

◦
•

(
uδ, S̃i,δ[u]

)

x0 x1

δ

Fig. 4. Suppose δ = 1/10. Assume that we already have the piece-wise
linear curve Ãi−1,δ available. The figure shows the computation of S̃i,δ[u]
for the representative value of u = 6.

We remark that the (piece-wise linear) curve Ãi,δ is not
identical to the curve T

(
Ãi−1,δ

)
. However, we shall prove

that the curve Ãi,δ is indeed close to the curve T
(
Ãi−1,δ

)
.

A. Technical Proof Outlines

This section highlights the primary technical lemmas needed
to prove that the approximation does not degrade significantly
during the recursive computations in our protocol.

Lemma 1 (Transformation of close curves is close): Let C
and D be two convex upwards functions over the domain [0, 1]
with roots at 0 and 1. Then, the following inequality holds.

‖T (C)− T (D)‖∞ 6 ‖C −D‖∞ .

Intuitively, if the curves C and D are already close, then their
respective T -transform curves are also close.

Next, we need to define a new operator. Let C be a function
over the domain [0, 1]. A δ-sample of C is the array

[C(0), C(δ), C(2δ), . . . , C(1)] .

Let Sample&Linearize (C, δ) be the piece-wise linear curve
defined by linearly interpolating these sampled points.

Lemma 2 (Linearizing does not harm significantly): Let C
be a convex upwards function over the domain [0, 1]. Suppose
that, for any point x ∈ [0, 1], the line tangent to C at (x,C(x))
has slope ∈ [−1, 1]. Then, the following bound holds.

‖C − Sample&Linearize (C, δ)‖∞ 6 δ/2.

The approximation quality of our algorithm follows from
these results.
1) Note that by Lemma 2, we have

∥∥∥A1 − Ã1,δ

∥∥∥
∞
6 δ/2,

because Ã1,δ = Sample&Linearize (A1, δ).
2) Suppose we already have the guarantee that∥∥∥Ai−1 − Ãi−1,δ∥∥∥

∞
6 ρ. Then, by Lemma 1, we

have
∥∥∥Ai − T (Ãi−1,δ)∥∥∥

∞
6 ρ, because Ai = T (Ai−1).

For the next step, note that we have the following identity

Ãi,δ = Sample&Linearize
(
T
(
Ãi−1,δ

)
, δ
)
.

Therefore, by Lemma 2 and the triangle inequality, we
conclude that

∥∥∥Ai − Ãi,δ∥∥∥
∞
6 ρ+ δ/2.

From the above observations, inductively, it follows that, for
i > 1, ∥∥∥Ai − Ãi,δ∥∥∥

∞
6 iδ/2.

We remark that the exact inductive proof maintains additional
invariants that the curves Ãi,δ are convex upwards, symmetric
around X = 1/2, and their slope ∈ [−1,+1]. We forego
these subtleties in favor of highlighting only the primary ideas
underlying the proof. We refer the readers to the full version
of this paper for more technical details.

B. Running-time Optimizations

For i > 1, the computation of u0 corresponding to every
u ∈ {0, 1, . . . , 1/δ} can be optimized. Our objective is to
compute the array ptri−1[u] = u0 establishing this mapping,
for all u. Note that this mapping is non-decreasing. Therefore,
for each i > 2, one can compute this entire mapping in Θ(1/δ)
time.

C. Our Protocol

The message of processor 1 in the protocol ΠOur(n,X, δ)
is defined as follows.

1) Let Z = x0 ∈ [0, x] be the (unique) solution of the
equation Z + Ãn−1,δ(Z) = x.

2) Let Z = x1 ∈ [x, 1] be the (unique) solution of the
equation Z − Ãn−1,δ(Z) = x.

3) Define

p0 :=
Ãn−1,δ(x1)

Ãn−1,δ(x0) + Ãn−1,δ(x1)
, and

p1 := 1− p0.

4) Processor 1 either broadcasts 0 with probability p0, or
broadcasts 1 with probability p1.

If the first message is 0, then the remaining processors
{2, 3, . . . , n} implement the protocol ΠOur(n−1, x0, δ). Other-
wise, if the first message is 1, then the processors {2, 3, . . . , n}
implement the protocol ΠOur(n− 1, x1, δ).

Precomputation. Processors can precompute the arrays
S̃1,δ, . . . , S̃n,δ and the pointer arrays ptr1, . . . , ptrn−1 in an
offline precomputation step. After that, the next-message gen-
eration takes only constant time.

REFERENCES

[1] M. Ben-Or and N. Linial, “Collective coin flipping, robust voting
schemes and minima of banzhaf values,” in 26th FOCS. IEEE Computer
Society Press, Oct. 1985, pp. 408–416. 1

[2] M. Ben-Or and N. Linial, “Collective coin flipping,” Advances in
Computing Research, 1989. 1

[3] S. Goldwasser, Y. T. Kalai, and S. Park, “Adaptively secure coin-flipping,
revisited,” in ICALP 2015, Part II, ser. LNCS, M. M. Halldórsson,
K. Iwama, N. Kobayashi, and B. Speckmann, Eds., vol. 9135. Springer,
Heidelberg, Jul. 2015, pp. 663–674. 1, 4

[4] R. Cleve and R. Impagliazzo, “Martingales, collective coin flipping and
discrete control processes (extended abstract),” 1993. 1, 4

2856
Authorized licensed use limited to: Purdue University. Downloaded on June 08,2022 at 16:09:20 UTC from IEEE Xplore. Restrictions apply.

[5] M. Blum, “How to exchange (secret) keys (extended abstract),” in 15th
ACM STOC. ACM Press, Apr. 1983, pp. 440–447. 1, 2, 4

[6] B. Awerbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali,
“How to implement bracha’s o (log n) byzantine agreement algorithm,”
Unpublished manuscript, 1985. 1, 2, 4

[7] R. Cleve, “Limits on the security of coin flips when half the processors
are faulty (extended abstract),” in 18th ACM STOC. ACM Press, May
1986, pp. 364–369. 1, 2, 4

[8] H. A. Khorasgani, H. K. Maji, and T. Mukherjee, “Estimating gaps in
martingales and applications to coin-tossing: Constructions and hard-
ness,” in TCC 2019, Part II, ser. LNCS, D. Hofheinz and A. Rosen,
Eds., vol. 11892. Springer, Heidelberg, Dec. 2019, pp. 333–355. 1, 2,
3, 4

[9] J. Kahn, G. Kalai, and N. Linial, “The influence of variables on Boolean
functions (extended abstract),” in 29th FOCS. IEEE Computer Society
Press, Oct. 1988, pp. 68–80. 4

[10] J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson, and N. Linial, “The
influence of variables in product spaces,” Israel Journal of Mathematics,
vol. 77, no. 1-2, pp. 55–64, 1992. 4

[11] Y. Filmus, L. Hambardzumyan, H. Hatami, P. Hatami, and D. Zuck-
erman, “Biasing Boolean functions and collective coin-flipping proto-
cols over arbitrary product distributions,” in ICALP 2019, ser. LIPIcs,
C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, Eds., vol.

132. Schloss Dagstuhl, Jul. 2019, pp. 58:1–58:13. 4
[12] M. Ajtai and N. Linial, “The influence of large coalitions,” Combina-

torica, vol. 13, no. 2, pp. 129–145, 1993. 4
[13] E. Chattopadhyay and D. Zuckerman, “Explicit two-source extractors

and resilient functions,” in 48th ACM STOC, D. Wichs and Y. Mansour,
Eds. ACM Press, Jun. 2016, pp. 670–683. 4

[14] M. E. Saks, “A robust noncryptographic protocol for collective coin
flipping,” SIAM J. Discrete Math., vol. 2, no. 2, pp. 240–244, 1989. 4

[15] U. Feige, “Noncryptographic selection protocols,” in 40th FOCS. IEEE
Computer Society Press, Oct. 1999, pp. 142–153. 4

[16] D. Lichtenstein, N. Linial, and M. Saks, “Some extremal problems
arising from discrete control processes,” Combinatorica, vol. 9, no. 3,
pp. 269–287, 1989. 4

[17] Y. Tauman Kalai, I. Komargodski, and R. Raz, “A lower bound for
adaptively-secure collective coin-flipping protocols,” in 32nd Interna-
tional Symposium on Distributed Computing (DISC 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 4

[18] I. Haitner and Y. Karidi-Heller, “A tight lower bound on adaptively
secure full-information coin flip,” FOCS, 2020. 4

[19] L. H. Harper, “Optimal numberings and isoperimetric problems on
graphs,” Journal of Combinatorial Theory, vol. 1, no. 3, pp. 385–393,
1966. 4

2857
Authorized licensed use limited to: Purdue University. Downloaded on June 08,2022 at 16:09:20 UTC from IEEE Xplore. Restrictions apply.

