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Abstract—Historically, side-channel attacks have revealed par-
tial information about the intermediate values and secrets of com-
putations to compromise the security of cryptographic primitives.
The objective of leakage-resilient cryptography is to model such
avenues of information leakage and study techniques to realize
them securely. This work studies the local leakage-resilience of
prominent secret-sharing schemes like Shamir’s secret-sharing
scheme and the additive secret-sharing scheme against probing
attacks that leak physical-bits from the memory hardware storing
the secret shares.

Consider the additive secret-sharing scheme among k parties
over a prime field such that the prime needs \-bits for its binary
representation, where )\ is the security parameter. We prove
that &£ must be at least w(logA/loglog\) for the scheme to
be secure against even one physical-bit leakage from each secret
share. This result improves the previous state-of-the-art result
where an identical lower bound was known for one-bit general
leakage from each secret share (Benhamouda, Degwekar, Ishai,
and Rabin, CRYPTO-2018).

This lower bound on the reconstruction threshold extends to
Shamir’s secret-sharing scheme if one does not carefully choose
the evaluation places for generating the secret shares. For this
scheme, our result additionally improves another lower bound on
the reconstruction threshold & of Shamir’s secret-sharing scheme
(Nielsen and Simkin, EUROCRYPT-2020) when the total number
of parties is O(\log A/ loglog \).

Our work provides the analysis of the recently-proposed
(explicit) physical-bit leakage attack of Maji, Nguyen, Paskin-
Cherniavsky, Suad, and Wang (EUROCRYPT-2021), namely the
“parity of parity” attack. This analysis relies on lower-bounding
the ‘“discrepancy” of the Irwin-Hall probability distribution.

A full version of this paper is accessible at: https://www.cs.
purdue.edu/homes/hmaji/papers/ AMNNPSW21.pdf

I. INTRODUCTION

Typically, the design and analysis of cryptographic primi-
tives assume cryptosystems as impervious black-boxes, faith-
fully realizing the desired input-output behavior while pro-
viding no additional information. However, real-world im-
plementations and deployments have repetitively proven this
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assumption to be false. Beginning with the works of [1], [2],
several innovative side-channel attacks reveal partial infor-
mation about the intermediate values and stored secrets of
computations (for introductory exposition, refer to [3]-[8]).
These diverse side-channel attacks on fundamental crypto-
graphic building blocks pose a threat to the security of all
cryptographic constructions incorporating them.

To address these concerns, one designs mechanical counter-
measures, hardware solutions, and algorithmic representations
to mitigate known threats [9]-[14]. More generally, leakage-
resilient cryptography formally models such potential avenues
of information leakage (even encompassing attacks beyond
those already known) and securely realizes cryptographic
primitives against adversaries augmented to leverage these
leakage attacks. In the last few decades, a large body of
highly influential research has studied the feasibility and
efficiency of realizing leakage-resilient variants of fundamen-
tal cryptographic primitives against active/passive adversaries
performing leakage statically/adaptively (refer to the excellent
recent survey [15]).

One such fundamental cryptographic primitive is threshold
secret-sharing schemes — an essential component of nearly
all threshold cryptography. A side-channel attack on a secret-
sharing scheme provides the adversary (some restricted or
noisy) access to every party’s secret share. For instance,
a passive adversary can leak a few bits from every secret
share. Consequently, this joint leakage may get correlated
with the secret; thus, compromising its secrecy. This model is
a significant divergence from the (so-called) standard model
where an adversary gets access to only some corrupted parties’
shares. In general, our understanding of the leakage-resilience
of secret-sharing schemes is in a nascent state. The exact char-
acterization of the leakage-resilience of even prominent secret-
sharing schemes like Shamir’s secret-sharing scheme and the
additive secret-sharing scheme are not well-understood.

A locally leakage-resilient secret-sharing scheme ensures
the following guarantee. A (static) adversary chooses leakage
functions for all the secret shares. However, the observed
leakage’s joint distribution is statistically independent of the
secret. Intriguingly, this research direction is closely related
to the fascinating problem of efficiently reconstructing secret
shares of error-correcting codes. For example, the reconstruc-
tion algorithm for Reed-Solomon codes by Guruswami and
Wootters [16] (and follow-up works [17]-[20]) demonstrates
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that leaking even one-bit from each secret share of Shamir’s
secret-sharing over a characteristic 2 field renders it inse-
cure. At the outset, achieving leakage-resilience appears to
be a challenging task. For example, the leakage-resilience of
Shamir’s secret-sharing scheme over prime fields, even when
the adversary leaks m = 1 bit from each secret share, is known
only for reconstruction threshold k£ > 0.867n [21], [22],
where n is the number of parties. The primary hurdle stems
from the fact that the leakage need not entirely determine the
secret; revealing any partial information of the secret suffices
to preclude leakage-resilience.

This work studies the resilience of Shamir’s secret-sharing
scheme and the additive secret-sharing scheme when the secret
shares, which are elements of an arbitrary finite field, are
stored in their natural binary representation in memory hard-
ware. As in the seminal work of Ishai, Sahai, and Wagner [23],
the adversary chooses a bounded number of positions to probe
each of the hardware storing the secret shares. The adversary
receives a noisy version of the bit stored at that physical
address from each probe, where the noise depends on the
device’s thermal noise characteristic (see, for example, [24] for
motivation). Furthermore, the particular choice of the physical-
bit leakage draws inspiration from, for instance, the crucial
role of the studies on oblivious transfer combiners [25]-
[29] in furthering the state-of-the-art of general correlation
extractors [30]—[32], and the techniques in protecting circuits
against probing attacks [23], [33], [34] impacting the study of
leakage-resilient secure computation [15].

Summary of our work. Our work’s objective is to lower-
bound the reconstruction threshold for Shamir’s secret-sharing
scheme and the additive secret-sharing scheme as a function
of the statistical indistinguishability parameter and the thermal
noise parameter. Towards this objective, we study the quality
of local physical-bit leakage attacks on these secret-sharing
schemes [35]. Our technical contribution is the analysis of
the “parity of parity” leakage attack proposed in [35]. This
analysis proceeds by lower-bounding the “discrepancy of the
Irwin-Hall distribution,” which may be of independent interest.

II. OUR CONTRIBUTION

This section introduces some informal definitions to facili-
tate the presentation of our results.

Notation. Fix a prime field I’ of order p. The elements of F'
are naturally represented as A-bit binary strings corresponding
to the elements {0,1,...,p — 1}, where 2’1 < p < 2%
For ¢ € {1,2,..., A}, one can probe the bit at the ¢-th least
significant position from a A-bit representation of an element
of F. For example, ¢ = 1 indexes to the least significant bit
and ¢ = )\ indexes to the most significant bit of the element’s
binary representation.

Our work shall consider secret-sharing schemes among n
parties with a reconstruction threshold k. The secret and the
secret shares are all elements of F'. For asymptotic results, as
per convention, the security parameter is A, the number of bits
representing the secret and the secret shares.

This work considers a (static) adversary who requests m =
1 physical-bit leakage from each secret share. Therefore, the
adversary chooses the leakage function (¢1,¢s,...,¢,), such
that £; € {1,...,A}, forall 1 <i < n. For1l<i<n,letd;
represent the ¢;-th bit in the i-th secret share.

For 1 < i < n,let p; € [0, 1] be the thermal noise parameter
of the hardware storing the i-th secret share. Let b; be a bit that
is p;-correlated with the bit b;. That is, b; = b; with probability
pi; otherwise, b; is an independent and uniformly random bit.
For example, if p; = 1, then b; = b;, and, if p; = 0, then b; is
a uniformly random bit independent of the bit b;. Intuitively,
if the storage hardware has high thermal noise, then b; is less
correlated with the actual bit b;.

A secret-sharing scheme is (1 — €)-secure locally leakage-
resilient secret-sharing scheme against one physical-bit prob-
ing attacks, if, for all secrets 50, s(1) € F, the leakage distri-
butions 51, ... ,Ek ‘8(0) and 51, ... ,Ek ‘5(1) have statisti-
cal distance < . As per convention, the € of a secure secret-
sharing scheme decays faster than any inverse-polynomial in
the security parameter A, represented as £ = negl(\).

Additive secret-sharing scheme results. Let AddSS(k)
be the additive secret-sharing scheme over the finite field ¥
among n = k parties. This secret-sharing scheme provides the
k parties uniformly random secret shares from F' conditioned
on the fact that their sum is the secret s € F. Section 6 of the
full version proves the following technical result.

Theorem 1 (Distinguishing Advantage of the “Parity of
Parity” Leakage Attack). Let ¢; = 1, for all i € {1,... k}.
There exists two secrets 50, sV € F such that the statistical
distance between the leakage distributions (El, . ,Ek‘s(o))

and (Zl, . ,gk‘s(l)) is

k 1 3(k—1)2+1
52(}1’”)'(%—1)!‘ p )

1

In particular, when k is even,

k 1 3(k—1)2+1
”(Hpi)'(%—m‘ P )

We shall interpret this theorem for reconstruction thresh-
olds % such that 2Fk! < p/kQ. To interpret this theorem,
consider the simplification p; = p, a constant, for all ¢ €
{1,...,k}. For this simplification, the lower bound in the

expression above, essentially, reduces to ¢ > @(EZ/—?;)
When p = 1, the bound above is equivalent to k& >
O(T~'(1/e)) = ©(log(1/e)/loglog(1/e) ). More gener-
ally, if all p; = p, then the bound is equivalent to k >
©(log(1/e)/ (loglog(1/e) +log(2/p) ) ).

For the simplicity of presentation, we use p; = 1 to derive
the corollaries below.

The distinction between odd and even k arises from the intervals of interest
having non-integer endpoints. Refer to Section V for the definition of the
intervals of interest.
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Corollary 1. Let AddSS(k) is (1 — negl(X))-secure locally
leakage-resilient secret-sharing scheme against one physical-
bit leakage from each secret share. Then, it must be the case
that k = w(log A/ loglog \).

For the additive secret-sharing scheme, the only previously
known lower bound on k is by [21]. Their bounds are in terms
of the number of parties k, which they treat as the security
parameter. [35] and our work decouple the number of parties
k from the number of bits A in the binary representation of
the prime p, the security parameter in our work. The analysis
technique of [21], in the setting where k and A are decoupled,
implies an identical lower bound on k by leaking one bit
from every secret share. One can simulate this general one-
bit leakage by leaking m = logk physical-bits from each
secret share. However, in contrast, our attack only leaks one
(noisy) physical-bit, a significantly weaker leakage attack and,
consequently, a more serious security threat. As an aside, we
remark that our distinguishing advantage m > 5, the
distinguishing advantage of [21], for all k£ > 2.

Shamir secret-sharing scheme results. ShamirSS(n, k, X )
represents Shamir’s secret-sharing scheme among n par-
ties, reconstruction threshold k, and evaluation places X =
(X1,...,X,). The evaluation places X;, ..., X, are distinct
elements of F*. Let s € F be the secret. The secret-
sharing scheme picks a random polynomial f(Z) € F[Z]/Z*
conditioned on the fact that f(0) = s. For ¢ € {1,...,n}, the
i-th secret share is f(X;).

We prove that, for some adversarially chosen evaluation
places, the “Parity of Parity” leakage attack on Shamir’s secret-
sharing scheme behaves similarly as that on the additive secret-
sharing schemes (refer to Section V-C). Therefore, it achieves
a similar advantage in distinguishing the secrets. In particular,
we prove the following corollary.

Corollary 2. Let p = 1 mod k and o« € F* be such that
{a,a?,...,aF = 1} C F* is the set of k roots of the
equation Z* — 1 = 0. Suppose there exists § € F* such
that {Ba, Ba?,...,Ba* = B} is a subset of the evaluation
places X. If ShamirSS(n, k, X) is (1—negl(\))-secure locally
leakage-resilient secret-sharing scheme against one physical-
bit leakage from each secret share, then it must be the case
that k = w(log A/ loglog \).

Intuitively, the corollary states that if one chooses any
coset F*/G among the evaluation places, where G =
{a,a?,...,0* = 1} is an order k multiplicative subgroup
of F'*, then the reconstruction threshold £ must be high.

This corollary demonstrates that one has to be careful
in choosing the prime p, reconstruction threshold £, and
the evaluation places X; otherwise, Shamir’s secret-sharing
scheme is vulnerable to even m = 1 physical-bit leakage
from every secret share. The only previously known attack
on Shamir’s secret-sharing scheme with arbitrary evaluation

places X is by [36]; however, their leakage is not explicit.

Suppose one is not careful in choosing the parameters of the
ShamirSS and they satisfies the preconditions of the corollary.
For a comparison with known leakage attacks, let us restrict to
m = 1 bit leakage attack from every secret share. [36] implies
that & > n/(A + 1) ~ n/\ using a leakage attack that is
not explicit. Consequently, for n = O(Alog A/ loglog A), our
bound improves the lower bound on k. [35] proved that the
attack of [21] on the additive secret-sharing scheme extends
to Shamir’s secret-sharing scheme.? Therefore, similar to the
discussion above for the additive secret-sharing scheme, our
leakage attack (relying only on noisy physical-bit leakage)
implies an identical lower bound as [21].

III. BACKGROUND AND STATE-OF-THE-ART RESULTS

Following the recent work of Benhamouda, Degwekar,
Ishai, and Rabin [21] (also, independently, introduced by [37]
as an intermediate primitive), there has been a sequence of
works analyzing the leakage-resilience of prominent secret-
sharing schemes and constructing new leakage-resilient secret-
sharing schemes (refer to the full version for the references).
The sequel summarizes the most relevant state-of-the-art
results specific to Shamir’s secret-sharing scheme and the
additive secret-sharing scheme, which are the focus of this
work. A leakage attack has distinguishing advantage ¢ if there
are two secrets such that the joint distributions of the leakage
on the secret shares have statistical distance (at least) .

General Leakage. Guruswami and Wooters [16], presented
an attack that leaks m = 1 bit from each secret share and has
distinguishing advantage ¢ = 1 for Shamir’s secret-sharing
scheme over any characteristic 2 field. Subsequently, for the
additive secret-sharing scheme over prime fields, [21] pre-
sented an attack that leaks m = 1 bit from every secret share
and achieves a distinguishing advantage of ¢ = 1/k*. [22]
extended this attack to any Massey secret-sharing scheme [38]
corresponding to a linear error-correcting code (over prime
fields) such that some subset of k parties can reconstruct the
secret. In particular, this attack extends to Shamir’s secret-
sharing scheme, which is the Massey secret-sharing scheme
corresponding to (punctured) Reed-Solomon codes, with re-
construction threshold k.

Nielsen and Simkin [36] present a probabilistic argument
to construct a leakage attack on any secret-sharing scheme.
For Shamir’s secret-sharing scheme among n parties with
reconstruction threshold k, their result implies the existence
of a leakage function and a secret such that the leakage is
consistent only with that particular secret with probability (at

least) 1/2. Their attack needs m > kr}igkp bits of leakage from

2In more detail, [36] showed that when one picks the leakage function
as a random function, the probability of a unique secret being consistent
with the observed leakage is significant and, hence, a random function has
a significant advantage in distinguishing this unique secret from any other
secret. However, they did not present one deterministic leakage function that
witnesses a significant advantage. Instead, they gave a distribution over such
functions.

3However, the leakage function is highly sophisticated compared to
physical-bit leakage. It needs to perform finite field multiplications.
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each secret share. Consequently, their proof-strategy does not
extend to the case when n = k (for example, the additive
secret-sharing scheme).

Physical-bit Leakage. Suppose the secret and its secret
shares are elements of a prime field of order p. Consider
the scenario where each party stores their secret share in
its natural (fixed length) binary representation corresponding
to the integers {0,1,2,...,p — 1}, and the adversary may
(independently) probe m physical-bits from each secret share.
For clarity, the presentation in this section ignores the thermal
noise parameter. The attack of [21], [22] on the additive secret-
sharing scheme among k parties performs one-bit general
leakage from each secret share and achieves a distinguishing
advantage of (roughly) e = 1/k*. One can simulate this attack
using m = [lg k] physical-bit leakage by probing the m most
significant bits of each secret share. Maji et al. [35] observed
that any leakage attack on the additive secret-sharing scheme
among k parties extends to Shamir’s secret-sharing scheme
with reconstruction threshold k, if the evaluation places to
generate the secret shares are not chosen cautiously.

Maji et al. [35] introduce a new physical-bit leakage attack,
namely, the “parity of parities” attack, on the additive secret-
sharing scheme that leaks only m = 1 bit (the least significant
bit) from each secret share. They analyze this attack for the
special cases of kK = 2 and k = 3 and prove that the advantage
of the attack is (roughly) ¢ = 1/2 and ¢ = 1/4, respectively,
for any prime p. For a few larger values of k, they presented
empirical evidence supporting the conjectured quality of this
physical-bit leakage attack. Our work resolves their conjecture
in the positive and proves that the advantage is (roughly) € =
1/k!, for all k € N.

IV. PARITY OF PARITY ATTACK

This section summarizes the “parity of parity” attack of
Maji et al. [35] on the additive secret-sharing scheme.

Let F' be a prime field of order p > 2. Consider the additive
secret-sharing scheme AddSS(k) among k parties. Let s €
F be the secret, and sy,...,sx € F be the secret shares.
Conditioned on the secret s, the secret shares si,...,Sk_1
are independent and uniformly random over F, and s = s —
(5144 8K-1).

The “parity of parity” attacker chooses the leakage function
(1,...,0,) = (1,...,1). That is, the leakage (b1, ...,by) are
the least significant bits of the secret shares (s1,...,sg). The
idea of the attack is to identify a secret s € F' such that the
correlation between the least significant bit of s and the bit
b1 ®--- & by is maximized. [35] explicitly computed the s
that maximized the correlation for ¥ = 2 and £ = 3, and
experimentally supported their conjecture that this correlation
is lower bound by an exponential decreasing function of k.

V. TECHNICAL OVERVIEW

At the outset, it suffices to assume the thermal noise
parameter p; = 1, for all # € {1,...,n}. That is, the leaked
bit b; is identical to the stored bit b; at the hardware location
¢; that the adversary probes, for all 1 < ¢ < n. After that, one

can reintroduce the thermal noise parameter into the analysis
at the end (see Section V-D).

Let Ng :={0,1,2,...} be the set of all non-negative inte-
gers. Consider AddSS(k) over a prime field F' of order p > 2.
Recall that the secret shares s1, ..., s,_1 € F are independent
and uniformly random over F', and the secret share s, =
s—(s1+ -+ 8k—1), where s € F is the secret. We interpret
$1,...,8k as elements from the set {0,1,...,p — 1} C Ny.
Let the corresponding elements be Sy, ..., Sk € Np.

Now, we have the following identity over Ny. For any secret
s€{0,1,...,p—1} and secret shares Sy, ..., S, there exists
some i € Ny, such that

S1+ S+ + S =s+ip.

An integer has parity O if it is even; otherwise, if it is odd,
its parity is 1. Observe that by @ by B--- D by is the parity
of S1 + S2 +--- + Sk, which is identical to the parity of the
secret s if and only if 7 is even.

Define the following two partitions of the set Ny.

Ssame(s) :=Ng N U lip+s+1,(i+1)p+ s

€L
4 odd

Saifr(s) :=No N U [ip4+s+1,0G+1)p+s]
€L
7 even
Observe that if S; 4+ Sy 4+ + Sk—1 € Seame(s) then by &
-+ @ b will be identical to the parity of s. Furthermore, if
S1+Sy+-+ Sk € Sdiff(s) then by @- - - @ by, will be the
complement of the parity of s.
Our objective is to solve the following optimization prob-
lems. The probability below is over the independent and
uniformly random choices of Si,...,S;—1 € {0,1,...,p—1}.

50— arg max ’ Pr[S1 4+ Sk—1 € Ssame(s)]—
se{0,...,p—1}
Pr[Sy 4+ 4 Sip—1 € Saise(s)] ’
£ = max 1} ’ PI‘[Sl +---+ Sk—l € Ssame(s)}f

s€{0,...,p—

PI"[Sl +o-+ 85,1 € Sdiff(s)] ’

This formulation of the problem has the salient feature that
S1,...,Sk_1 are independent and uniformly random over the
set {0,1,...,p — 1}.* One concludes that there exists a bit
b€ {0,1} such that

1+e¢
2 )
where s1,...,s; are the secret shares of the secret 50,
On the other hand, for a random secret s, the secret shares

S1,...,8; are uniformly and independently chosen random
elements of F'. Therefore, by, ...,b; are independent bits of

Pr[by ®ba ®--- @ b, = b] =

4The |-| sign in the expressions is necessary because for some k the
probability difference may be non-positive for every secret s.
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bias 1/p. Consequently, by convolution, the bias of the bit
by @ @by is 1/p*. That is,

1
pr

DN | =

Pr[by @ ba ®--- B b = b] <

By an averaging argument, there exists a secret s(!) such that

when s1, ..., s, are secret shares of s(!) we have
1 1 1 1
Priby @ba®--- @b, =0 < =+ — < -+ —.
(b1 © by D+ @ by = b] 2+pk 2+p

Consequently, one concludes that the statistical distance be-
tween the distributions (b1,...,b;|s(?) and (by, ..., by|s")
is at least 5 — %. All that remains is to prove that e is
sufficiently large, which is the technical contribution of our
work. The proof follows two high-level steps. First, Sec-
tion V-A presents the calculation of the “discrepancy of Irwin-
Hall distribution” (a terminology introduced in [35]). Finally,
Section V-B characterizes the slight loss in the lower bound
when transitioning from the Irwin-Hall distribution to the

actual (discrete) probability distribution.

A. Normalization: Irwin-Hall Distribution

Let us normalize the Sgame(s) and Sgigr(s) by scaling the
length-p intervals into length-one intervals. Define Ny =
{0,1/p,2/p, ...}, represented by - No. Let = s/p €

{0,1/p,2/p,...,(p—1)/p}. Next, define §Same(§) = % .
Ssame(s) and §diff(§) = le . Sdiff(s). Let §1,§2, .. -,gk—l be

independent and uniformly random distributions over the set

{0,1/p,2/p,...,(p—1)/p}. Our objective is to find
€= max Pr {5'\1 4 §k,1 IS L/S'\same(?)}
5€{0,1/p,...,(p=1)/p}

—Pr [§1 ot S € §diff(§)} ‘

Next, consider the simplification p — oo. For this sim-
plification, observe that (1) s € [0,1), and (2) Si,...,Sk-1
are independent and uniformly random distribution over [0, 1).
The distribution S; +- - -+ Si_1 is the well-studied Irwin-Hall
distribution with parameter (k—1) [39], represented by IHj_1,
over the sample space [0,k — 1). For « € [0,1), observe that

Seame() ==z + U (4,74 1]
i€z
i odd

U Gi+1]

1EZ
1 even

§diff(x) =+

Therefore, our objective is to lower-bound the expression

€:= max ) Pr [IHk_l S §same(x)] —Pr [IHk_l € §diff(m)] ‘,

z€o,1)
namely the discrepancy of the Irwin-Hall distribution.
The non-triviality is to prove that this expression is positive.
If the expression is guaranteed to be positive, then € is at
least 1/(k — 1)! when (k — 1) is odd; otherwise, if (k — 1)

is even, then £ > 1/ (2*~!(k — 1)!). This result follows from
the probability mass distribution function of the Irwin-Hall
probability distribution (refer to Section 4 of the full version).

B. Additive Secret-Sharing Scheme: Lower Bound

The analysis in Section V-A assumed p — oo. Our objective
is to translate this analysis for the lower bound of ¢ to any
finite p. Towards this objective, we prove that for any positive
integer p and k, the k' Trwin-Hall distribution is at most k/p
far from the k& convolutions of the discrete uniform distribution
over the set {0,1/p,...,(p—1)/p}. This observation suffices
to prove that the discrepancy of the Irwin-Hall distribution
and the discrete distribution are (at most) k2 /p far in absolute
value (refer to Section 5 of the full version for details).

C. Shamir’s Secret-Sharing Scheme: Lower Bound

Let F' be a prime field of order p =1 mod k and o € F™*
be an element such that G = {a,a?,...,a* =1} C F* be
the set of all & roots of the equation Z¥ —1 = 0. Observe that
G is a multiplicative subgroup of F*. Consider any g € F*
such that 3G = {Ba,...,Ba* = B} is a coset in F*/G.

Consider ShamirSS(n, k, X) such that the evaluation places
X contains BG. Next, for any j € {1,2,...,k — 1}, the
following identity holds

Z 2 =0.

z€BG

Fix a secret s € F. Let f(Z) € F[Z]/Z* be an arbitrary
polynomial with F'-coefficients of degree < k£ such that
f(0) = s. Based on the identity above, one concludes that

Z f(z) = ks.

z€BG

Without loss of generality, assume that we have evaluation
places X; = Ba,X, = Ba?,..., X, = Ba* = B. So,
the conclusion above implies that the sum of the secret
shares si1,S2,...,Sk is ks. Furthermore, the secret shares
S1,82,...,Sr—1 are uniformly random over F' for ShamirSS
with reconstruction threshold k. These two properties are
identical to the properties of the additive secret-sharing scheme
that we leverage in our leakage attack. Since = +— kx is an
automorphism over F' when k € {1,2,...,p—1}, the leakage
attack on the additive secret-sharing scheme carries over to
Shamir’s secret-sharing scheme.

D. Thermal Noise Parameter

Suppose ¢ is the advantage in predicting the parity of
the secret s(®) from Section V, where there was no thermal
noise. Now, assume that instead of b; our predictor instead
uses b;, which is p;-correlated with the actual physical-bit b;,
for some p; € [0,1]. In this case, relying on results on the
noise operator in discrete Boolean function analysis [40], the
advantage of the new predictor is p;0. Consequently, if the
leakage bits by, ..., by are, respectively, p1, ..., pi correlated
with the actual physical bits by, ..., b, then the advantage of

the predictor using the noisy bits is (Hle ,oi) d.
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