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We develop a mean-field model for an elastic dumbbell that predicts an enhanced

concentration of flexible polyelectrolytes in the center of a microfluidic channel due to

simultaneous application of axial flow and electric fields. Consistent with previous works,

the model indicates that local shear flow stretches and orients a polyelectrolyte molecule

so that electrohydrodynamic interactions within the molecule drive its migration towards

the center of the channel. Unlike previous works, dispersion due to fluctuations of elec-

trohydrodynamic velocity induced by thermal fluctuations of the molecular configuration

is explicitly included in the mean-field model. This electrohydrodynamic dispersion is

comparable with or exceeds diffusivity due to Brownian forces for electric field strengths

commonly used in microfluidic devices. The developed models are in quantitative agree-

ment with Brownian dynamics simulations and in qualitative agreement with experiments.

In particular, competition between the electrohydrodynamic migration and dispersion is

shown to cause a nonmonotonic dependence of the polyelectrolyte concentration in the

channel center on the magnitude of the electric field.

DOI: 10.1103/PhysRevFluids.6.094203

I. INTRODUCTION

Electric fields are commonly utilized to manipulate macromolecular transport within microfluidic

devices for analysis and processing, and researchers continue to discover new and varied ways to

use electric fields within microfluidic devices. For the particular case of polyelectrolyte molecules,

such as DNA, simultaneous application of an axial electric field and pressure-driven flow can cause

a transverse migration and subsequent concentration of polyelectrolytes at either the wall or the

centerline of the channel [1–3]. This migration phenomenon has been used to trap and separate

DNA within a microfluidic device of simple design [4–6].

The transverse migration is caused by electrohydrodynamic interactions between different por-

tions of a polyelectrolyte molecule, i.e., interactions due to disturbances in the fluid flow caused

by an external electric field acting on the charged polymer and its surrounding counterions [7–12].

These interactions are of importance to the dynamics of a polyelectrolyte if the double layer is

large compared to the diameter of the polymer backbone and the molecule is distorted from its

equilibrium isotropic configuration. In the case of migration in a pressure-driven flow, a molecule

not at the center of the channel is stretched and reoriented by a local shear. Then, the electric field

and resulting electrohydrodynamic interactions induce additional components of motion, including

one transverse to the flow and field direction.

When a flexible polyelectrolyte leads a pressure-driven flow upon application of an axial electric

field, the transverse motion is towards the center of the channel, as illustrated in Fig. 1. The
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FIG. 1. Focusing of DNA molecules in the center of a microfluidic channel by simultaneous application of

a pressure-driven flow (blue) and an antiparallel electric field. The electric field causes the negatively charged

DNA molecules to lead the flow (red) and migrate towards the center of the channel (green arrows). The width

σ of the developed concentration profile (black) is determined by competition between the net migration Vy

towards the center and diffusion Dyy away from the center. The diffusivity Dyy contains contributions from

Brownian diffusion and electrohydrodynamic dispersion.

electrohydrodynamic velocity is proportional to the magnitude of the electric field, which suggests

that increasing strength of the electric field should increase concentration of polyelectrolytes in

the center of the channel. However, experiments [3] and simulations [9] show that this trend holds

only for weak electric fields; for sufficiently strong fields, the concentration at the channel center

decreases as the field strength increases. In other words, there is an optimal field strength E∗

corresponding to the smallest width σ of the concentration profile at the channel center.

The kinetic model of Butler et al. [8] predicted a monotonic decrease of the concentration profile

width with increasing electric field for a dumbbell in a pressure-driven flow, in contrast with later

findings [3,9]. More recently, Setaro and Underhill [13] developed an improved kinetic model that

accounts for fluctuations of the end-to-end vector of the dumbbell and predicts a nonmonotonic

dependence of the centerline concentration on the electric field. They attributed this phenomenon to

feedback between the polymer flux and conformation.

To further clarify the physical origin of the minimum value for σ , Kopelevich et al. [14] suggested

an empirical model that includes dispersion due to the electric field. This electrohydrodynamic

dispersion arises from the instantaneous electrohydrodynamic velocity corresponding to each con-

figuration of the fluctuating polyelectrolyte molecule. The average of these instantaneous velocities

corresponds to the migration velocity driving the polymer towards the center of the channel, while

the velocity fluctuations contribute to the effective polymer diffusivity. The electrohydrodynamic

dispersion increases with the strength of the electric field faster than the migration velocity. Since

the profile width σ is determined by competition between the migration towards the center of

the channel and diffusive flux away from the center, σ increases with increasing field strength

for sufficiently strong electric fields. This empirical model was confirmed by Brownian dynamics

simulations for a multibead polymer model [14].

In this paper, we develop explicit mean-field relationships between the dispersion and dynamics

of the internal degrees of freedom of a dumbbell in shearing and pressure-driven flows. The mean-

field model developed for a shearing flow directly connects the electrohydrodynamic dispersion

with the autocorrelation function of instantaneous electrohydrodynamic velocity which, in turn, is
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determined by the end-to-end vector of the dumbbell. For the pressure-driven flow, the mean-field

model is a convection-diffusion equation with the diffusion term containing contributions of both the

Brownian diffusivity and the electrohydrodynamic dispersion. We derive this model by performing

an adiabatic elimination of the internal degrees of freedom from the Fokker-Planck equation for

the harmonic approximation of a dumbbell with short-range electrohydrodynamic interactions.

The resulting equation is consistent with the kinetic theory of Setaro and Underhill [13], but our

derivation clearly demonstrates the contribution of electrohydrodynamic dispersion to the polymer

flux.

In Sec. II, we present Langevin equations for the center of mass and the internal degrees of

freedom of the dumbbell. In Sec. III, we consider the dumbbell in a shearing flow and develop

and validate mean-field relationships between transport properties of the dumbbell and statistics

of its internal degrees of freedom. In Sec. IV, we discuss the mean-field model for the dumbbells

in a pressure-driven flow, demonstrate the generic nature of the dispersion mechanism leading to

the nonmonotonic dependence of the concentration profile width on the electric field strength, and

discuss the effect of the time-scale separation (or lack thereof) on parameters of the mean-field

model. Conclusions are presented in Sec. V.

II. MODEL

The current paper models λ-DNA molecules that were used in the experiments of Arca et al. [3].

These molecules have a contour length of approximately 21 μm, which is substantially larger than

their Kuhn length of 106 nm [15]. Therefore, a λ-DNA molecule is flexible and each bead of its

dumbbell model represents a large number of Kuhn steps so that the beads can be approximated as

spheres.

The dumbbell is suspended in an ambient flow field U∞(R) and a uniform electric field E. The

dynamics of each bead is described by the following Langevin equation:

dRi

dt
= U∞(Ri ) +

1

ζ

(

FC
i + FB

i

)

+ μE
0 E + UE

i , i = 1, 2. (1)

Here, Ri are coordinates of the dumbbell beads, FC
i and FB

i are the conservative and Brownian forces

acting on the ith bead (i = 1, 2), ζ = 6πηa is the friction coefficient of a spherical bead of radius

a in a fluid with viscosity η, μE
0 is the electrophoretic mobility, and UE

i is the electrohydrodynamic

velocity of the ith bead. The Brownian force satisfies the fluctuation-dissipation theorem [16],
〈

FB
i (t )

〉

= 0, (2)

〈

FB
i (t )FB

j (t + τ )
〉

= 2kBT ζ Iδi jδ(τ ), i, j = 1, 2 (3)

where kB is the Boltzmann constant, T is the temperature, I is the 3×3 identity matrix, δi j is the

Kronecker delta, and δ(τ ) is the Dirac delta function.

For simplicity, here we neglect hydrodynamic interactions due to velocity disturbances caused

by Brownian and conservative forces. Effects of these hydrodynamic interactions are explored in

Sec. S1 of Supplemental Material [17], where it is shown that the main conclusions of this paper

remain valid if these interactions are taken into account.

The polymer is assumed to be sufficiently far from the channel walls so that the polymer-wall

interactions are negligible. In this case, the only contribution to the conservative forces FC
i is the

bead-bead interactions and the potential 	 for these forces depends only on the distance between

the beads,

FC
2 = −FC

1 = −
∂	(q)

∂q
≡ FC (q), (4)

where q = R2 − R1 is the end-to-end vector. The dumbbell beads are connected by a freely jointed

chain of NK Kuhn steps of length lK each, with the tension approximated by the finitely extensible
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nonlinear elastic (FENE) force [18],

FC (q) = −
κq

1 − (q/q0)2
, (5)

where q0 = NK lK is the maximum extension of the spring and κ = 3kBT/lK q0 is the spring constant.

For λ-DNA molecules considered in the current paper, NK = 200 and lK = 106 nm [15].

We use the short-range model for electrohydrodynamic interactions [10–12]. Within this model,

the electrohydrodynamic mobility of a dumbbell is approximated by an average of electrohydrody-

namic mobilities of Kuhn steps of the spring connecting the dumbbell beads; electrohydrodynamic

interactions between the Kuhn steps and between the beads are neglected. Both dumbbell beads

have the same electrohydrodynamic velocity, which can be written as

UE
i (q) = EÛE (q), i = 1, 2. (6)

Here,

E =
1 − αμ

1 + 2αμ

2μE
0 E

q2
0

(7)

quantifies the strength E of the electric field and αμ = μE
⊥/μE

|| is the ratio of the electrohydrody-

namic mobilities μE
⊥ and μE

|| of a Kuhn step (modeled as a rod) in the directions perpendicular and

parallel to the rod axis. The normalized electrohydrodynamic velocity is

ÛE (q) =
(3qq − q2I) · Ê

3 − (q/q0)2
, (8)

where Ê = E/E is the direction of the electric field.

In what follows, we nondimensionalize the variables using the characteristic length lc =√
kBT/κ , the characteristic time tc = ζ/κ , the characteristic energy kBT , and the elementary charge

e. The dimensionless values of κ and ζ are 1.

Subtracting and adding the Langevin Eqs. (1) for beads 1 and 2 and using Eqs. (4) and (6), we

obtain the following equations for the end-to-end vector q and the center of mass Rc = (R1 + R2)/2

of the dumbbell:

dq

dt
= (q · ∇)U∞(Rc) + 2FC (q) + FB

q (t ), (9)

dRc

dt
= U∞(Rc) + μE

0 E + EÛE (q) + FB
c (t ). (10)

In writing Eqs. (9) and (10), we kept only the leading order terms of the expansion of U∞(R) around

the dumbbell center of mass. The stochastic forces acting on q and Rc are

FB
q = FB

2 − FB
1 and FB

c = 1
2

(

FB
1 + FB

2

)

, (11)

respectively. These forces have zero mean and their autocorrelation functions are

〈

FB
q (t )FB

q (t + τ )
〉

= 4Iδ(τ ), (12)

〈

FB
c (t )FB

c (t + τ )
〉

= Iδ(τ ), (13)

〈

FB
q (t )FB

c (t + τ )
〉

= 0, (14)

where the last equality indicates that FB
q (t ) and FB

c (t ) are independent of each other.

Equation (10) shows that motion of the polymer center of mass Rc is affected by dynamics

of the internal degrees of freedom q(t ). Random fluctuations of q lead to fluctuations of the

electrohydrodynamic velocity EÛE (q), which give rise to electrohydrodynamic dispersion.

094203-4



ELECTROHYDRODYNAMIC MIGRATION AND DISPERSION …

III. ELECTROHYDRODYNAMIC DISPERSION IN A SHEARING FLOW

In this section we consider the dumbbell in a shearing flow U∞(R) = γ · (R − Rc), where γ is a

position-independent rate-of-strain tensor. We demonstrate that fluctuations of the end-to-end vector

q of the dumbbell yield electrohydrodynamic dispersion and obtain an explicit expression for the

dispersion contribution to the overall diffusivity of the dumbbell. To obtain the relationship between

statistics of the vector q and the electrohydrodynamic dispersion, the average and fluctuating

components of the center of mass position and the electrohydrodynamic velocity are separated,

Rc(t ) = 〈Rc〉(t ) + rc(t ), (15)

ÛE (q(t )) = 〈ÛE 〉 + ûE (q(t )), (16)

where rc(t ) and ûE (q(t )) represent fluctuations of Rc(t ) and ÛE around their mean values. Equation

(9) indicates that the end-to-end vector is independent of the translational motion of the dumbbell in

a shearing flow. Therefore, 〈ÛE 〉 is independent of time and can be obtained by averaging over the

steady-state solution q(t ) of Eq. (9). It then follows from Eq. (10) that the mean and the fluctuating

components of the dumbbell center of mass obey the following equations:

d〈Rc〉
dt

= μE
0 E + E〈ÛE 〉, (17)

drc

dt
= E ûE (q(t )) + FB

c (t ). (18)

We note that U∞(Rc) = 0 for the shearing flow. The right-hand side of Eq. (18) contains two

fluctuating terms. One of these terms, FB
c (t ), corresponds to the usual Brownian force. The other

term, E ûE (q(t )), represents instantaneous deviations of the electrohydrodynamic velocity from its

mean value E〈ÛE 〉. These deviations are caused by fluctuations of the end-to-end vector q(t ) and

give rise to the electrohydrodynamic dispersion.

Integrating Eq. (18), we obtain

rc(t ) − rc(0) =
∫ t

0

[

E ûE (q(s)) + FB
c (s)

]

ds. (19)

Hence, the diffusion tensor of the dumbbell center of mass is

D = lim
t→∞

1

2t
〈[rc(t ) − rc(0)][rc(t ) − rc(0)]〉

= lim
t→∞

1

2t

∫ t

0

∫ t

0

〈{

E ûE (q(s)) + FB
c (s)

}{

E ûE (q(s′)) + FB
c (s′)

}〉

ds ds′

= DE + DB, (20)

where

DE = lim
t→∞

E2

2t

∫ t

0

∫ t

0

〈ûE (q(s))ûE (q(s′))〉ds ds′ (21)

is the electrohydrodynamic dispersion and

DB = lim
t→∞

1

2t

∫ t

0

∫ t

0

〈

FB
c (s)FB

c (s′)
〉

ds ds′ =
1

2
I (22)

is the diffusivity in the absence of the electric field, i.e., the usual Brownian diffusivity. In writing

the last equality in Eq. (20), we took into account that ûE (q(t )) and FB
c (t ) are uncorrelated, since the

random force FB
q (t ) acting on the end-to-end vector q(t ) is not correlated with the Brownian force

FB
c (t ) acting on the center of mass [see Eq. (14)].
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Since ûE is independent of the field strength, Eqs. (20) and (21) demonstrate that the mean square

displacement is increased by a factor proportional to E2 due to fluctuations in the electrohydrody-

namic interactions. To obtain the electrohydrodynamic dispersion, we rewrite Eq. (21) as follows:

DE = lim
t→∞

E2

2t

∫ t

0

∫ t−s

−s

CE(τ )dτ ds =
E2

2

∫ ∞

−∞
CE(τ )dτ. (23)

Here,

CE(τ ) = 〈ûE (q(s))ûE (q(s + τ ))〉 (24)

is the autocorrelation function of ûE (q(t )). The last equality in Eq. (23) was obtained by replacing

the limits of integration in the inner integral by ±∞. This approximation is justified by the time-

scale separation between fluctuations of the end-to-end vector and diffusive motion, so that CE(τ ) ≈
0 for τ on the diffusive time scale.

Dispersion in shearing flows can thus be obtained by solving the Langevin equation (9) for the

end-to-end vector and then computing the integral of the autocorrelation function of the instanta-

neous electrohydrodynamic velocity using the mean-field Eqs. (23) and (24). In the remainder of

this section, we obtain transport properties of the dumbbell in a simple shear flow

U∞(R) = [γ (y − yc), 0, 0]T , (25)

where γ is the shear rate and yc is the y coordinate of the dumbbell center of mass. The electric field

is assumed to be parallel to the flow. At sufficiently small shear rates, the transport properties can

be obtained analytically. In this case, the harmonic approximation to the FENE spring potential (5)

is used:

FC (q) = −q. (26)

In addition, the transverse component of the normalized electrohydrodynamic velocity (8) is ap-

proximated by

Û E
y = qxqy. (27)

For brevity, we refer to the model with the harmonic spring potential Eq. (26) and the leading order

approximation Eq. (27) to the electrohydrodynamic interactions as the “harmonic dumbbell” and

the model with the FENE spring potential Eq. (5) and the electrohydrodynamic interactions given

by Eq. (8) as the “FENE dumbbell.” Note that the harmonic dumbbell model is linear only for the

internal degrees of freedom q, since the electrohydrodynamic interactions influencing motion of the

dumbbell center of mass are nonlinear even in the leading order approximation Eq. (27).

It is shown in Appendix A that, for the harmonic dumbbell, the mean electrohydrodynamic

velocity and dispersion in the transverse direction are

〈

U E
y

〉

(γ , E ) =
Eγ

4
and DE

yy(γ , E ) =
E2

4

(

1 +
5γ 2

16

)

, (28)

respectively. Figure 2 shows the analytical mean-field result (28) as a function of the Weissenberg

number Wi = τrγ , where τr = 1/4 is the relaxation time of the end-to-end distance of the dumb-

bell at equilibrium. We plot the normalized transverse velocity 〈Û E
y 〉 = 〈U E

y 〉/E and dispersion

D̂E
yy = DE

yy/E
2, since these quantities are independent of the magnitude E of the electric field.

Additionally, Fig. 2 compares the analytical result for the harmonic dumbbell with simulation results

for both harmonic and FENE dumbbells. Results of two types of simulations are shown in Fig. 2:

semianalytical mean-field calculations and direct Brownian dynamics simulations.

In the semianalytical mean-field calculations, the Langevin Eq. (9) for the end-to-end vector was

solved numerically. For each set of the system parameters, at least 200 simulations of duration

5000 were performed. The mean transverse velocity 〈Û E
y 〉 was then obtained by averaging the

instantaneous values of the electrohydrodynamic velocity Û E
y (q), with vector q(t ) obtained from the
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FIG. 2. (a) Normalized mean electrohydrodynamic velocity 〈Û E
y 〉 = 〈U E

y 〉/E and (b) normalized electro-

hydrodynamic dispersion D̂E
yy = DE

yy/E
2 in the transverse direction in a simple shear flow. Transport properties

of the harmonic and FENE dumbbell models are shown. Predictions of the analytical mean-field (AMF) model

(28) for the harmonic dumbbell are shown by lines; predictions of the semianalytical mean-field (SMF) model

are shown by open symbols, and results of the Brownian dynamics (BD) simulations are shown by crosses.

numerical solution. The transverse dispersion D̂E
yy was obtained by integrating the autocorrelation

function of the instantaneous velocity [see Eqs. (23) and (24)].

For the Brownian dynamics simulations, the Langevin Eqs. (1) for the individual beads were

integrated numerically. At least 104 simulations of duration 5000 each were performed for each set

of parameters. The mean dumbbell velocity and diffusivity D were then obtained by fitting the mean

displacement and the mean-squared displacement of the dumbbell center of mass to a straight line

[14]. The normalized electrohydrodynamic dispersion was computed as D̂E = (D − DB)/E2, where

the Brownian diffusivity DB was obtained from simulations with no electric field.

As evident from Fig. 2, the mean-field model is in excellent agreement with the Brownian

dynamics simulations. We also verified that DB obtained from the Brownian dynamics simulations

is I/2, in agreement with Eq. (22), and that (D − DB) scales as E2, in agreement with Eqs. (20)

and (21).

Figure 2 shows that the short-range electrohydrodynamic model predicts a monotonic growth

of the mean transverse velocity and dispersion with increasing shear rate. Increasing the shear rate

leads to changes of the dumbbell configuration, including its reorientation and stretching. In partic-

ular, stretching of the dumbbell spring results in increasing electrohydrodynamic velocity predicted

by the short-range model Eq. (8). The harmonic dumbbell approximation is in good agreement with

the full anharmonic model for Wi � 2. For Wi > 2, the harmonic model predicts larger values of

electrohydrodynamic velocity and dispersion, due to a larger stretching of the harmonic spring in

comparison with the FENE spring at high shear rates (see Sec. S2 of Supplemental Material [17]).

IV. EFFECT OF DISPERSION ON CONCENTRATION PROFILES

IN PRESSURE-DRIVEN FLOWS

A. General considerations

As illustrated in Fig. 1, the distribution of polyelectrolytes in a pressure-driven flow is determined

by a balance between the flux towards the channel center due to the electrohydrodynamic migration

Vy = E〈Û E
y 〉 and the flux away from the channel center due to diffusive motion of the polymers.

For a weak electric field, the diffusivity Dyy is dominated by Brownian motion and is essentially

independent of the field strength, whereas the driving force towards the center of the channel is

proportional to E . Therefore, at weak fields, the concentration profile width σ decreases as the field
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strength increases. However, the electrohydrodynamic dispersion DE scales quadratically with the

electric field as shown in the previous section. When the field is sufficiently strong, the diffusive

flux is dominated by the electrohydrodynamic dispersion, which increases faster with E than the

migration velocity E〈Û E
y 〉 does. Therefore, increasing the field strength beyond the optimal value

E∗ leads to wider concentration profiles.

Here we develop a mean-field model for polymer density n in a pressure-driven flow that accounts

for the dispersion and demonstrates a minimum for the profile width σ . The pressure-driven flow

is between two infinite, planar walls located at y = ±H/2. The electric field and the fluid flow are

parallel to the x axis and the shear rate is

γ (y) =
dU ∞

x (y)

dy
= −

4γ̄ y

H
, (29)

where γ̄ is the mean shear rate.

The polymer density n in a fully developed steady-state flow is assumed to satisfy the convection-

diffusion equation,

d

dyc

[

Deff
yy (yc, E )

dn

dyc

− Vy(yc, E )n

]

= 0. (30)

Here, Vy and Deff
yy are the mean migration velocity and the effective diffusivity in the transverse

direction, where Deff
yy contains contributions of both Brownian diffusivity and the electrohydrody-

namic dispersion. If the time scale of the translational motion of the polymer is much slower that

that of its internal dynamics, the polymer configuration adjusts its dynamics to the local shear as the

polymer moves across streamlines of a flow. In this case, the transport properties of the polymer are

fully determined by the local shear, i.e.,

Vy(yc, E ) =
〈

U E
y

〉

(γ (yc), E ) and Deff
yy (yc, E ) = Dss

yy(γ (yc), E ), (31)

where
〈

U E
y

〉

(γ , E ) = E
〈

Û E
y

〉

(γ ) and Dss
yy(γ , E ) = DB

yy(γ ) + E
2D̂E

yy(γ ) (32)

are the migration velocity and diffusivity in the simple shear flow at shear rate γ and the electric

field strength E . The normalized migration velocity 〈Û E
y 〉(γ ), the Brownian diffusivity DB

yy(γ ), and

the normalized electrohydrodynamic dispersion D̂E
yy(γ ) = DE

yy(γ , E )/E2 are independent of E .

It follows from Eq. (30) that

n(yc) ∝ exp

∫ yc

0

Vy(y′, E )

Deff
yy (y′, E )

dy′. (33)

It was shown by Kopelevich et al. [14] that Eq. (33) yields a Gaussian distribution, n ∝
exp(−y2

c/2σ 2), if 〈U E
y 〉 ∝ γ and dependence of Dss

yy on γ is weak in the region of high concentration

of polymers. In this case, the standard deviation of n is determined by the ratio of the velocity and

the diffusivity, σ ∝ (Deff
yy /Vy)1/2. This ratio, according to Eqs. (31) and (32), is given by

Deff
yy

Vy

=
1

〈

Û E
y

〉

(

1

E
DB

yy + ED̂E
yy

)

. (34)

The first and second terms in Eq. (34) are monotonically decreasing and increasing functions of E ,

respectively. Therefore, the ratio Deff
yy /Vy and the profile width σ exhibit a minimum at some optimal

electric field strength E = E∗.

B. Mean-field model for the harmonic dumbbell approximation

The empirical mean-field model (30) was confirmed by Brownian dynamics simulations for a

multibead polymer [14]. We demonstrate in this section that a similar mean-field model can be
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obtained using a more rigorous approach. Specifically, we consider a Fokker-Planck equation that

describes dynamics of all degrees of freedom of the harmonic dumbbell and perform an adiabatic

elimination of the internal degrees of freedom.

In the leading order approximation (26) and (27), the z component of the end-to-end vector q

is decoupled from all other degrees of freedom of the dumbbell and, hence, is omitted from the

analysis. Therefore, in the remainder of this section, q refers to the vector containing only the x and

y components of the end-to-end vector. In addition, only the transverse coordinate yc of the center

of mass needs to be considered, since we focus on the dumbbell distribution in a fully developed

flow. This allows simplification of the Langevin Eqs. (9) and (10) to

dqi

dt
= δixγ (yc)qy − 2qi + F B

q,i(t ), i = x, y, (35)

dyc

dt
= Eqxqy + F B

c,y(t ). (36)

The corresponding Fokker-Planck equation is

∂P

∂t
=

[

1

2

∂2

∂y2
c

+ 2Lq + Lyq

]

P, (37)

where P(q, yc, t ) is the probability density,

Lq =
∂

∂q
·
(

q +
∂

∂q

)

(38)

is the operator describing fluctuations of the end-to-end vector in the absence of shear, and the

operator

Lyq = −γ (yc)qy

∂

∂qx

− Eqxqy

∂

∂yc

(39)

describes coupling between the polymer center of mass and the end-to-end vector. There are two

diffusive terms in Eq. (37): the Brownian diffusion of the dumbbell center of mass represented by

the first term on the right-hand-side of Eq. (37) and random fluctuations of the end-to-end vector q

represented by the operator Lq. The fluctuations of q give rise to the electrohydrodynamic dispersion

through coupling with the center of mass motion described by the operator Lyq.

Similarly to analogous problems using adiabatic elimination [19], q is eliminated from Eq. (37)

by expanding P(q, yc, t ) in terms of eigenfunctions of the operator Lq. As shown below, the leading

term of this expansion corresponds to the equilibrium distribution of the end-to-end vector and the

coefficient for that term corresponds to the number density n(yc, t ) of the dumbbells. Other terms

of the expansion describe deviations from equilibrium and correspond to various moments of the

end-to-end vector. These moments quickly relax towards values determined by n(yc, t ), whereas

the dynamics of n is relatively slow. This allows reducing Eq. (37) for P(q, yc, t ) to a mean-field

equation for n(yc, t ).

To proceed, it is convenient to transform Lq into a self-adjoint operator by first defining

P(q, yc, t ) = C2
0 e−q2/4P̄(q, yc, t ), (40)

where C0 = (2π )−1/4 is a constant that ensures consistent normalization of the probability density,

as shown in Appendix C. Then

LqP = C2
0 e−q2/4L̄qP̄, (41)

where

L̄q = −(b†
xbx + b†

yby) (42)
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is the transformed self-adjoint operator for the equilibrium end-to-end vector dynamics and

bi =
∂

∂qi

+
qi

2
and b

†
i = −

∂

∂qi

+
qi

2
(i = x, y) (43)

are the boson annihilation and creation operators, respectively [19]. The eigenvalues of operators

b
†
i bi are non-negative integers and the zero eigenvalue corresponds to the equilibrium distribution of

the end-to-end vector. Additional properties of these operators and their eigenfunctions are reviewed

in Appendix C.

The coupling operator Lyq is then expressed in terms of the operators bi and b
†
i . Since

∂P

∂qi

= −C2
0 e−q2/4(b†

i P̄) and qi = bi + b
†
i (i = x, y), (44)

we have

LyqP = C2
0 e−q2/4L̄yqP̄, (45)

where

L̄yq = γ (η)(by + b†
y )b†

x − ǫE (bx + b†
x )(by + b†

y )
∂

∂η
(46)

is the transformed operator Lyq. Here, we introduced a scaled variable η = ǫyc for the translational

degree of freedom to highlight separation of length scales between the translational and internal

degrees of freedom of the dumbbell: η = O(1) and ǫ ≪ 1 is the ratio of the average length of the

end-to-end vector to the characteristic length scale of yc (e.g., the profile width σ ). The former is

O(1) at sufficiently small shear rates [see Eq. (A18)]. After these transformations, the Fokker-Planck

Eq. (37) becomes

∂P̄

∂t
=

[

ǫ2

2

∂2

∂η2
+ 2L̄q + L̄yq

]

P̄. (47)

The probability density in terms of the eigenfunctions φk (qi ) of operators b
†
i bi is

P̄(q, η, t ) =
∞

∑

kx,ky=0

ck(η, t )φkx
(qx )φky

(qy), (48)

where k = (kx, ky ). The expansion coefficients ck are directly related to the moments of the distri-

bution of the end-to-end vector q. In particular, it is shown in Appendix C that c00 corresponds to

the probability distribution n of the polymer center of mass and c11 = n〈qxqy〉. In what follows, we

refer to ck as the modes of the end-to-end vector distribution.

Substituting the expansion (48) into Eq. (47), utilizing the relationships (C1), (C3), and (C4), and

taking the inner product with φm, we obtain the following hierarchy of equations:

∂cm

∂t
=

[

ǫ2

2

∂2

∂η2
− 2(mx + my)

]

cm + L̂yq,m({c}), (49)

where m = (mx, my) and the operator

L̂yq,m({c}) =
(

γ − ǫE
∂

∂η

)

m1/2
x

[

m1/2
y cmx−1,my−1 + (my + 1)1/2cmx−1,my+1

]

− ǫE
∂

∂η
(mx + 1)1/2

[

m1/2
y cmx+1,my−1 + (my + 1)1/2cmx+1,my+1

]

(50)

describes coupling between dynamics of the end-to-end vector and motion of the center of mass.

094203-10



ELECTROHYDRODYNAMIC MIGRATION AND DISPERSION …

Equation (49) is similar to the Brinkman hierarchy for the Kramers equation [19]. The first

equation of the hierarchy (49) is

∂n

∂t
=

ǫ2

2

∂2n

∂η2
− ǫE

∂c11

∂η
(51)

(recall that c00 = n). This equation indicates that the spatial distribution of the dumbbells is

determined by the Brownian diffusive flux [the first term on the right-hand side of Eq. (51)] and the

electrohydrodynamic flux determined by the mode c11 = n〈qxqy〉 of the end-to-end vector. Evolution

of the latter is described by the second equation of the hierarchy (49),

∂c11

∂t
=

[

ǫ2

2

∂2

∂η2
− 4

]

c11 + γ (n +
√

2 c02) − ǫE
∂

∂η
[n +

√
2(c02 + c20) + 2c22]. (52)

The infinite hierarchy (49) can be truncated after its second Eq. (52) when the local shear rate is

small, γ (yc) = O(ǫ), and the electric field is weak or moderate, E � O(1). In this case, all cm with

m �= 0 quickly decay towards their quasi-steady-state values determined by the dumbbell density n.

This fast decay is due to the (mx + my)cm terms in Eq. (49); these terms correspond to eigenvalues

of the operator L̄q describing fluctuations of the end-to-end vector q. Equation (49) indicates that

the rate of change of cm with m �= 0 is O(1). On the other hand, Eq. (51) indicates that the rate of

change of n is O(ǫ). Therefore, the nonequilibrium modes cm (m �= 0) relax relatively quickly in

response to a slowly changing n. Hence, we can neglect the time derivatives in Eq. (49) for m �= 0

and perform adiabatic elimination of these fast modes.

The leading order terms of the steady-state version of Eq. (49) then yield c11 = O(ǫ)n and

cm = O(ǫ2)n for m �= (0, 0) and m �= (1, 1). (53)

Rewriting Eq. (52) as

c11 =
1

4

(

γ − ǫE
∂

∂η

)

n + O(ǫ2)n, (54)

we see that, to the leading order, the electrohydrodynamic flux c11 contains contributions of the

electrohydrodynamic migration and dispersion represented by the first and second terms on the

right-hand side of Eq. (54), respectively. Substituting Eq. (54) into Eq. (51), neglecting the O(ǫ3)n

terms, taking the steady-state limit, and returning to the original transverse coordinate yc, we

recover the mean-field convection-diffusion Eq. (30) with the transverse velocity and diffusivity

given by

Vy =
Eγ

4
and Deff

yy =
1

2
+

E2

4
. (55)

Note that the diffusivity differs from that used in the empirical model (31) which assumed that

diffusivity is determined by the local shear. Equation (55) indicates that Deff
yy = Dss

yy(0, E ) = DB
yy +

DE
yy(0, E ), where DB

yy = 1/2 is the Brownian diffusivity [see Eq. (22)] and DE
yy(0, E ) = E2/4 is the

electrohydrodynamic dispersion in the absence of shear [see Eq. (28)].

Substituting Vy and Deff
yy from Eq. (55) and the local shear γ (yc) from Eq. (29) into Eq. (33), we

conclude that the concentration profile is a Gaussian distribution with the variance

σ 2 =
Deff

yy H

γ̄ E
=

H

2γ̄

(

E

2
+

1

E

)

. (56)

In particular, the optimal field strength corresponding to the minimum profile width is E∗ =
√

2.

Equation (56) is consistent with the result of Setaro and Underhill [13] obtained using the method

of moments. Moreover, using relationships similar to Eqs. (C6) and (C8) between the modes cm

and the moments of the end-to-end vector q, one can readily verify that steady-state versions

of the convection-diffusion Eq. (51) and the first-moment Eq. (52) are consistent with equations
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FIG. 3. Standard deviations σ of developed concentration profiles in the pressure-driven flows at (a) Wi =
0.5 and (b) Wi = 4. Results of Brownian dynamics (BD) simulations are compared with the mean-field model

(30) with the diffusivity obtained using the adiabatic elimination [Deff
yy = Dss

yy(0, E )] and the empirical assump-

tion [Deff
yy = Dss

yy(γ (yc ), E )]. To illustrate contributions of the Brownian diffusivity and the electrohydrodynamic

dispersion, predictions of the mean-field models with Deff
yy = DB

yy and DE
yy(0, E ) are also shown.

obtained in [13]. The advantage of the derivation presented in the current paper is that it establishes

a clear connection between fluctuations of the dumbbell configuration and the electrohydrodynamic

dispersion. Furthermore, this approach can be generalized to multibead polymer models and more

complex electrohydrodynamic models, as well as analysis of developing flows.

Figure 3 compares the profile widths σ predicted by the adiabatic elimination Eq. (56), the

empirical mean-field model (31), and results of Brownian dynamics simulations of a dumbbell

in a pressure-driven flow. Data for mean shear rates γ̄ corresponding to Weissenberg numbers

Wi = γ̄ τr = 0.5 and 4 are shown. The dimensionless distance between the channel walls is H = 92,

which corresponds to the channel width in the experiments of Arca et al. [3]. For each set of

system parameters (electric field strength E and mean shear rate γ̄ ), at least 104 trajectories were

simulated. As shown in Fig. 3, the predictions of the adiabatic elimination (56) agree with the

Brownian dynamics results over a wide range of conditions, beyond the small shear and moderate

electric field assumptions made in the derivation of Eq. (56). On the other hand, the empirical

mean-field model (31) increasingly deviates from the Brownian dynamics results as E and γ̄

increase. In addition, Fig. 3 shows asymptotic values of the profile width for E → 0 and → ∞,

which were obtained from the mean-field model (30) with purely Brownian diffusivity (Deff
yy = DB

yy)

and purely electrohydrodynamic dispersion [Deff
yy = DE

yy(0, E )], respectively. These values agree

with the Brownian dynamics results in the corresponding limits, thus confirming that Brownian

diffusivity and electrohydrodynamic dispersion are dominant at very weak and very strong electric

fields, respectively.

Simulations of both the harmonic and FENE dumbbell models were performed. These simu-

lations produced nearly identical results for developed profiles, since the transport properties of

the harmonic and FENE dumbbells agree for Wi � 2 (see Fig. 2) and the developed concentration

profiles are sufficiently narrow to ensure that most of the molecules are located in the region with

small local shear rate. Hence, the harmonic approximation remains valid in the high-concentration

region even for the largest mean shear rate considered in this paper (Wi = 4). Therefore, in what

follows, we focus on the harmonic dumbbell model.

C. Discussion

The transverse velocity Vy of the mean-field model obtained using the adiabatic elimination

[Eq. (55)] is consistent with the empirical mean-field assumption (31) that Vy is determined by
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local shear γ (yc). Namely, Vy corresponds to the transverse velocity in the simple shear flow

which is given by Eq. (28) for the dumbbell model considered here. However, the diffusivity Deff
yy

obtained by the adiabatic elimination is independent of the local shear rate, which deviates from

the empirical mean-field assumption (31) that the effective diffusivity in Eq. (30) should include the

shear-dependent dispersion. This discrepancy is explained, in part, by the small-γ approximation

used in the derivation of Eq. (55), since the γ -dependent term in DE
yy in the simple shear flow

is O(γ 2) [see Eq. (28)]. However, Fig. 3 shows that the zero-shear value of DE
yy yields a better

agreement with Brownian dynamics simulations than the empirical shear-dependent value (31) even

at moderate shear rates.

Despite the quantitative difference between the mean-field models, both qualitatively agree with

the experiment and the simulations and predict that σ (E ) exhibits a minimum at some optimal

E = E∗. The arguments of Sec. IV A explaining the origin of the optimal electric field for the empir-

ical mean-field model still hold for the adiabatic elimination results, since the key requirements for

existence of the optimal field are still satisfied, namely, Vy ∝ E and DE
yy ∝ E2.

For weak electric fields, the adiabatic elimination and the empirical mean-field model yield

nearly identical results that are in quantitative agreement with the Brownian dynamics simulations.

The two mean-field approximations agree at small E because, in this case, the contribution of

the electrohydrodynamic dispersion DE
yy to the overall diffusivity is negligible. In fact, completely

neglecting DE
yy and using the approximation Deff

yy = DB
yy yields essentially the same values of σ

at small E , as shown in Fig. 3. Since the Brownian diffusivity is independent of local shear

[see Eq. (22)], the difference between the adiabatic elimination and the empirical mean-field model

vanishes at small E .

For strong electric fields, substantial differences exist between the two mean-field approaches,

with the adiabatic elimination yielding much better agreement with the Brownian dynamics sim-

ulations. Comparison of Figs. 3(a) and 3(b) reveals that the difference between the mean-field

models becomes more significant as the mean shear rate increases. In the simple shear flow, the

diffusivity is very sensitive to the shear rate [see Fig. 2 and Eq. (28)]. Validity of the adiabatic

elimination result indicates that electrohydrodynamic dispersion is independent of the local shear

rate and corresponds to the dispersion at zero shear rate everywhere in the channel. This in turn

suggests lack of time-scale separation between the translational and internal degrees of freedom of

the dumbbell, i.e., the polymer does not have time to adjust to changes to its local environment as it

traverses the channel at large electric fields.

To confirm this conjecture, we compare time scales of the dumbbell configuration and transport

in the transverse direction. The former is characterized by the relaxation time τr of the end-to-end

distance and the latter is characterized by the migration and diffusion time scales τV and τD defined

as average times that it takes the dumbbell to travel a distance equal to the profile width σ ,

τV =
σ

〈Vy〉y

and τD =
σ 2

2Deff
yy

. (57)

Here,

〈Vy〉y =
∫ H/2

−H/2

n(yc)|Vy(yc)|dyc (58)

is the transverse migration velocity averaged over the concentration profile n(yc) in a fully developed

flow. Note that the number density n(yc) of dumbbells is normalized so that
∫ H/2

−H/2
n(yc)dyc = 1.

The values of Vy(yc) utilized in Eq. (58) were obtained from the mean-field approximation, i.e.,

they were taken to correspond the local shear rate γ (yc). The definition of τD uses the diffusivity

Deff
yy = Dss

yy(0, E ) at zero shear. This choice is motivated by validity of the adiabatic elimination

result, which indicates that the diffusivity of the dumbbell remains equal to Dss
yy(0, E ) throughout
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FIG. 4. Moment M11 = 〈qxqy〉 of the end-to-end vector q obtained from the Brownian dynamics simula-

tions in the pressure-driven flow at Wi = 4 and several E . The empirical mean-field approximation to M11, i.e.,

M11 determined by the local shear, is shown by circles.

the channel. Substituting Eqs. (55), (56), and (58) into Eq. (57), we obtain

τD

τr

=
H

2EWi
and τV =

√
2πτD. (59)

As expected, the transport time scales decrease as the electric field strength increases. When E ≪
H/Wi, the transport time scales substantially exceed the relaxation time scale of the internal degrees

of freedom of the dumbbell, confirming the key assumption of the empirical mean-field model. In

this case, the dumbbell configuration is expected to be determined by the local shear.

However, at strong fields, the transport time scales are comparable with τr and the empirical

mean-field assumption is invalid. For example, at Wi = 4 and E > 10, it takes the dumbbell less time

to travel across the entire concentration profile than for its internal fluctuations to relax. Since the

transport time scales are inversely proportional to Wi, at smaller shear rates the empirical mean-field

assumption remains valid for a wider range of E as evident from comparison of Figs. 3(a) and 3(b).

When the transport time scale is very small, the dumbbell configuration does not adjust to the

local environment and is likely to be similar to the configuration near the peak of the concentration

profile, i.e., at zero shear rate. Since the dumbbell configuration in a shearing flow is not affected

by the electric field [see Eq. (9)], the zero shear rate configuration is identical to the equilibrium

configuration. Hence, the dumbbell degrees of freedom are expected to approach the equilibrium

distribution as E → ∞.

This is confirmed by moments Mkm(yc) = 〈qk
xqm

y 〉(yc) of the end-to-end vector of the dumbbell.

If the empirical mean-field approximation is valid and the dumbbell configuration is determined by

local shear, the value of the moment Mkm at position yc in the pressure-driven flow corresponds to

its value in the simple shearing flow at shear γ = γ (yc). For the harmonic dumbbell approximation,

several moments in the simple shear flow are obtained in Appendix A [see Eq. (A18)].

For a pressure-driven flow, the typical effect of E on the local dumbbell configuration is

demonstrated in Fig. 4, which plots the moment M11 computed for several values of E in the fully

developed flow at Wi = 4. For comparison, the moment values corresponding to the local shear,

M11 = γ (yc)/4, are also shown. It is evident that at small E , M11 is in good agreement with the

empirical mean-field assumption, i.e., the moment in the pressure-driven flow is determined by the

local shear. However, as E increases, the deviation from the empirical mean-field approximation
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increases and M11(yc) approaches its equilibrium value, M11 = 0, as E → ∞. Similar trends are

observed for other moments Mkm and at other mean shear rates (see Figs. S5 and S6 in Supplemental

Material [17]).

This confirms that the fast time scale of the dumbbell transport at large E yields a near-

equilibrium distribution of the dumbbell end-to-end vector, i.e., ck = 0 for all k �= 0 [see Eq. (48)].

In this case, Eq. (52) yields
(

γ − E
d

dyc

)

n = 0. (60)

In other words, the electrohydrodynamic convective and dispersion fluxes are balanced and the

Brownian diffusion flux is negligible. Therefore, n(y) is a Gaussian distribution with the variance

σ 2
0 =

EH

4γ̄
=

DE
yy(0, E )H

γ̄ E
(61)

that corresponds to diffusivity given by the electrohydrodynamic dispersion DE
yy(0, E ) at zero shear.

The profile width given by Eq. (61) is in agreement with the adiabatic elimination prediction (56) in

the limit of E → ∞ (see also Fig. 3). Hence, the adiabatic elimination result is valid even at strong

electric fields, even though its derivation assumed that E � O(1).

V. CONCLUSIONS

Diffusive motion of polyelectrolyte molecules with diffuse double layers in a simultaneous shear

flow and electric field contains two contributions: Brownian diffusion due to collisions between the

polymer and solvent molecules and electrohydrodynamic dispersion caused by fluctuations in the

instantaneous electrohydrodynamic velocity of the polymer due to fluctuations in its configuration.

At sufficiently strong electric fields, the electrohydrodynamic dispersion dominates the diffusive

motion and has a substantial influence on the ability to manipulate polyelectrolyte molecules

in microfluidic devices. For example, it introduces a limit on focusing polyelectrolytes on the

centerline when using a combination of flow and electric fields.

In the current paper we analyzed the electrohydrodynamic dispersion for a dumbbell model of a

polyelectrolyte molecule and developed mean-field models connecting dynamics of the internal

degrees of freedom with the dumbbell transport. The mean-field model (23) and (24) for the

dumbbell in a shearing flow provides a direct relationship between fluctuations of the end-to-end

vector of the dumbbell and the dispersion. In particular, for the harmonic dumbbell, this relationship

yields a simple formula (28) for the dispersion.

For pressure-driven flow in a straight channel, the mean-field model is a convection-diffusion

Eq. (30). For the harmonic dumbbell, we obtained the migration and diffusion terms (55) for

this equation by performing an adiabatic elimination of the internal degrees of freedom of the

dumbbell. The obtained diffusion term contains contributions of both the Brownian diffusivity and

the electrohydrodynamic dispersion. It was demonstrated that the latter contributions arise from

coupling between the fluctuations of the end-to-end vector of the dumbbell and the translational

motion of its center of mass. The developed mean-field model is in agreement with the model

obtained by Setaro and Underhill [13] using the kinetic theory. The derivation presented here

establishes a clear connection between the internal degrees of freedom and transport properties of

the dumbbell. In addition, we demonstrated that the electrohydrodynamic dispersion is responsible

for existence of the optimal electric field for trapping of polyelectrolytes by a combined flow and

electric fields.

Although the current paper focuses on a relatively simple dumbbell model, the main conclusions

are expected to hold for more detailed models of polyelectrolytes. For example, it is shown in Sec.

S1 of Supplemental Material [17] that including hydrodynamic interactions induced by Brownian

and conservative forces into the model yields results very similar to those obtained in the absence of

these interactions. Another improvement of the model would incorporate a more accurate model for
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electrohydrodynamic interactions. The short-range electrohydrodynamic model considered in the

current paper neglects interactions between Kuhn steps of the polyelectrolyte molecule. As shown

in [14], this results in a quantitative discrepancy with experimental data, even when simulating a

multibead polymer model. This necessitates development of a more accurate electrohydrodynamic

model. The mean-field relationship Eqs. (23) and (24) for the shearing flows is readily applicable

to this anticipated future electrohydrodynamic model, since it remains valid as long as Eq. (6) is

satisfied.

Furthermore, the qualitative arguments presented in Sec. IV A show that the mechanism leading

to the optimal electric field strength in a pressure-driven flow is applicable for other models for

electrohydrodynamic interactions. In addition, the adiabatic elimination for pressure-driven flows

presented in Sec. IV B can be adapted to a different electrohydrodynamic model by making an

appropriate change to the operator Lyq describing coupling between the end-to-end vector and the

dumbbell center of mass.

Achieving quantitative agreement with the experiment will require generalizing the current

mean-field approach to multibead polymer models. Although the multibead model still predicts

a nonmonotonic dependence of the profile width on the field strength, comparison between the

dumbbell and multibead models reveals an important difference between their dispersion terms.

Specifically, in the mean-field model (55) for the dumbbell, the dispersion term corresponds to the

zero shear rate. On the other hand, in the empirical model (31) proposed and validated for a 20-bead

polymer model [14], the dispersion term is determined by local shear. This difference is caused

by different time scales of fluctuations of the electrohydrodynamic velocity. In a multibead model,

fluctuations of the electrohydrodynamic velocity are dominated by fast fluctuations of individual

beads and the contribution of the slow fluctuations of the molecule as a whole is very small [14].

Therefore, in the multibead model, the electrohydrodynamic dispersion is less sensitive to local

shear and the degrees of freedom relevant to the dispersion respond quickly to changes in the

flow environment. These degrees of freedom are absent in a dumbbell, which only captures slow

fluctuations of the molecule as a whole.

Therefore, it is expected that a mean-field model for a polymer with a sufficiently large number

of beads is similar to the empirical model (31). A systematic study is therefore needed to determine

dependence of the electrohydrodynamic dispersion on the number of beads in a polymer model and

determine the discretization level necessary for validity of this mean-field model.
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APPENDIX A: TRANSVERSE MIGRATION AND DISPERSION OF THE HARMONIC

DUMBBELL IN A SIMPLE SHEAR FLOW

In this Appendix, we obtain analytical expressions for the electrohydrodynamic migration and

dispersion in the transverse direction in the simple shear flow (25) assuming the harmonic spring

potential (26) and the leading order approximation to the short-range electrohydrodynamic inter-

actions (27). In this case, the Langevin Eq. (9) for the end-to-end vector q(t ) is linear and can be

readily solved analytically:

qx(t ) = qx(0)e−2t +
∫ t

0

e−2(t−s)
[

γ qy(s) + F B
q,x(s)

]

ds, (A1)

qy(t ) = qy(0)e−2t +
∫ t

0

e−2(t−s)F B
q,y(s)ds. (A2)

We are interested in solutions at sufficiently large t so that the influence of the initial conditions [i.e.,

the first terms on the right-hand sides of Eqs. (A1) and (A2)] vanishes. Therefore, in what follows,

we assume that t ≫ 1.
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The expression (A1) for qx contains a contribution of qy. It is convenient to express qx explicitly

in terms of the Brownian force FB
q only. To this end, we substitute Eq. (A2) into Eq. (A1):

qx(t ) =
∫ t

0

e−2(t−s)F B
q,x(s)ds + γ

∫ t

0

∫ s

0

e−2(t−s′ )F B
q,y(s′)ds′ds. (A3)

The double integral in the second term of Eq. (A3) can be reduced to a single integral by exchanging

the order of integration,

∫ t

0

∫ s

0

e−2(t−s′ )F B
q,y(s′)ds′ds =

∫ t

0

∫ t

0

θ (s − s′)e−2(t−s′ )F B
q,y(s′)ds′ds

=
∫ t

0

e−2(t−s′ )(t − s′)F B
q,y(s′)ds′, (A4)

where θ (s) is the Heaviside step function. Substituting Eq. (A4) into Eq. (A3), we obtain

qx(t ) =
∫ t

0

e−2(t−s)
[

F B
q,x(s) + γ (t − s)F B

q,y(s)
]

ds. (A5)

Substituting Eqs. (A2) and (A5) into Eq. (27), we obtain the following expression for the instanta-

neous normalized electrohydrodynamic velocity in the transverse direction:

Û E
y (t ) = qx(t )qy(t ) =

∫ t

0

ds

∫ t

0

ds′e−2(2t−s−s′ )
[

F B
q,x (s) + γ (t − s)F B

q,y(s)
]

F B
q,y(s′). (A6)

Taking into account the fluctuation-dissipation relationship (12), we obtain the following expression

for the mean transverse velocity:

〈

U E
y

〉

= E
〈

Û E
y

〉

= 4Eγ

∫ t

0

e−4(t−s)(t − s)ds =
Eγ

4
. (A7)

The last equality in (A7) was obtained by taking the limit of t → ∞.

To obtain the electrohydrodynamic dispersion, we compute the autocorrelation function of the

normalized electrohydrodynamic velocity [see Eqs. (23) and (24)]. It is convenient to rewrite the

transverse component of the autocorrelation function (24) as follows:

CE
yy(τ ) =

〈

Û E
y (t )Û E

y (t + τ )
〉

−
〈

Û E
y

〉2
. (A8)

Without loss of generality, the derivation below assumes that τ � 0. The first term on the right-hand

side of Eq. (A8) can be written as
〈

Û E
y (t )Û E

y (t + τ )
〉

= 〈qx(t )qy(t )qx(t + τ )qy(t + τ )〉 = I1 + γ 2I2, (A9)

where

I1 =
∫ t

0

ds1

∫ t+τ

0

ds2 e−2(2t+τ−s1−s2 )
〈

F B
q,x(s1)F B

q,x(s2)
〉

〈qy(t )qy(t + τ )〉 (A10)

and

I2 =
∫ t

0

ds1

∫ t+τ

0

ds2 e−2(2t+τ−s1−s2 )(t − s1)(t + τ − s2)
〈

F B
q,y(s1)F B

q,y(s2)qy(t )qy(t + τ )
〉

. (A11)

In writing Eq. (A9) we used the fact that qy is independent of F B
q,x and 〈F B

q,x〉 = 0.

It follows from Eqs. (A2) and (12) that

〈qy(t )qy(t + τ )〉 =
∫ t

0

ds

∫ t+τ

0

ds′e−2(2t+τ−s−s′ )
〈

F B
q,y(s)F B

q,y(s′)
〉

= e−2τ as t → ∞. (A12)
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Substituting this into Eq. (A10) and applying the fluctuation-dissipation theorem (12), we obtain

I1 = 4e−4(t+τ )

∫ t

0

e4sds = e−4τ as t → ∞. (A13)

Substitute Eq. (A2) into Eq. (A11):

I2 = e−4(2t+τ )

∫ t

0

ds1

∫ t+τ

0

ds2

∫ t

0

ds3

∫ t+τ

0

ds4 e2(s1+s2+s3+s4 )(t − s1)(t + τ − s2)

×
〈

F B
q,y(s1)F B

q,y(s2)F B
q,y(s3)F B

q,y(s4)
〉

. (A14)

Integrals of type (A14) are computed in Appendix B. Substituting Eq. (B7) into (A14), we obtain

I2 = 16e−4(2t+τ )

[∫ t

0

ds1

∫ t

0

ds3(t − s1)(t + τ − s1)e4(s1+s3 )

+
∫ t

0

ds1

∫ t+τ

0

ds2(t − s1)(t + τ − s2)e4(s1+s2 )

+
∫ t

0

ds1

∫ t

0

ds2(t − s1)(t + τ − s2)e4(s1+s2 )

]

=
e−4τ (3 + 8τ )

16
+

1

16
as t → ∞. (A15)

Substituting Eqs. (A13) and (A15) into Eq. (A9) and then substituting the result together with

Eq. (A7) into Eq. (A8), we obtain

CE
yy(τ ) =

〈

Û E
y (t )Û E

y (t + τ )
〉

−
γ 2

16
=

(

1 +
γ 2(3 + 8τ )

16

)

e−4τ . (A16)

Thus, the electrohydrodynamic dispersion of the harmonic dumbbell is

DE
yy = E

2

∫ +∞

0

CE
yy(τ )dτ =

E2

4

(

1 +
5γ 2

16

)

. (A17)

The first equality in Eq. (A17) follows from Eq. (23) because diagonal components of the matrix

CE(τ ) are symmetric with respect to time, CE
ii (τ ) = CE

ii (−τ ).

In conclusion of this Appendix, we compute several moments of the end-to-end vector q which

are utilized in verification of the mean-field assumption for the pressure-driven flow (see Fig. 4 and

Figs. S5 and S6 in Supplemental Material [17]):

〈qxqy〉 =
γ

4
,

〈

q2
x

〉

= 1 +
γ 2

8
,

〈

q2
y

〉

= 1,
〈

q2
x q2

y

〉

= 1 +
γ 2

4
. (A18)

APPENDIX B: CALCULATION OF INTEGRAL (A14)

The purpose of this Appendix is to compute the integral

I =
∫ t1

0

ds1

∫ t2

0

ds2

∫ t3

0

ds3

∫ t4

0

ds4 f (s1, s2, s3, s4)〈Ŵ(s1)Ŵ(s2)Ŵ(s3)Ŵ(s4)〉, (B1)

where Ŵ(s) is a random process with Gaussian distribution, zero mean, and the autocorrelation

function 〈Ŵ(s)Ŵ(s + τ )〉 = 4δ(τ ). The challenge in computing this integral is handling the four-

variable correlation when even the two-variable correlation is singular (a δ function). To do this, we

introduce a Wiener process W (s) corresponding to the Brownian force Ŵ(s),

dW (s) = Ŵ(s)ds, (B2)
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and rewrite Eq. (B1) as a limit of the Riemann sum, i.e.,

I =
〈∫ t1

0

dW (s1)

∫ t2

0

dW (s2)

∫ t3

0

dW (s3)

∫ t4

0

dW (s4) f (s1, s2, s3, s4)

〉

= lim
�t→0

N1
∑

i1=0

N2
∑

i2=0

N3
∑

i3=0

N4
∑

i4=0

f (s1, s2, s3, s4)
〈

�Wi1�Wi2�Wi3�Wi4

〉

, (B3)

where N j = [t j/�t], s j = i j�t ( j = 1, . . . , 4), and

�Wi =
∫ (i+1)�t

i�t

Ŵ(s)ds (B4)

is a Gaussian variable with zero mean and autocorrelation

〈�Wi�Wj〉 = 4δi j�t . (B5)

Therefore,
〈

�Wi1�Wi2�Wi3�Wi4

〉

= 16�t2
(

δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3 + 3δi1i2δi1i3δi1i4

)

. (B6)

The last term in Eq. (B6) corresponds to the fourth moment of the Gaussian variable �Wi.

Substituting Eq. (B6) into Eq. (B3), we obtain

I = 16 lim
�t→0

�t2

[

N1∧N2
∑

i1=0

N3∧N4
∑

i3=0

f (s1, s1, s3, s3) +
N1∧N3
∑

i1=0

N2∧N4
∑

i2=0

f (s1, s2, s1, s2)

+
N1∧N4
∑

i1=0

N2∧N3
∑

i2=0

f (s1, s2, s2, s1) +
N1∧N2∧N3∧N4

∑

i1=0

f (s1, s1, s1, s1)

]

= 16

[∫ t1∧t2

0

ds1

∫ t3∧t4

0

ds3 f (s1, s1, s3, s3) +
∫ t1∧t3

0

ds1

∫ t2∧t4

0

ds2 f (s1, s2, s1, s2)

+
∫ t1∧t4

0

ds1

∫ t2∧t3

0

ds2 f (s1, s2, s2, s1)

]

. (B7)

Here, x ∧ y = min(x, y).

APPENDIX C: DETAILS OF ANALYSIS OF THE FOKKER-PLANCK EQUATION

FOR THE HARMONIC DUMBBELL

In this section we summarize properties of eigenfunctions φk of the operators b
†
i bi (i = x, y) that

describe the probability density of the end-to-end vector of the harmonic dumbbell. Here, b
†
i and

bi are the boson creation and annihilation operators defined in Eq. (43). Further information on

properties of these operators is available, e.g., in [19].

The eigenvalues of the operator b
†
i bi are non-negative integers:

b
†
i biφk (qi ) = kφk (qi ), i = x, y, k = 0, 1, 2, . . . . (C1)

The eigenfunction corresponding to zero eigenvalue is

φ0(qi ) = C0e−q2
i /4, (C2)

where the normalization constant C0 = (2π )−1/4 is chosen so that ||φ0|| = 1.

Application of the operators bi and b
†
i to the eigenfunction φk of the operator b

†
i bi transforms φk

into eigenfunctions φk−1 and φk+1, respectively:

biφk (qi ) = k1/2φk−1(qi ), (C3)

b
†
i φk (qi ) = (k + 1)1/2φk+1(qi ). (C4)
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The k1/2 and (k + 1)1/2 factors in these equations ensure that ||φk|| = 1 for all k. Since the operator

b
†
i bi is self-adjoint, its eigenfunctions φk form an orthonormal set.

The coefficients ck of the eigenfunction expansion (48) are directly related to the number density

of the dumbbell center of mass and moments of its end-to-end vector. It follows from Eqs. (40) and

(C2) that

P(q, yc, t ) = P̄(q, yc, t )φ0(qx )φ0(qy). (C5)

Then the number density of the dumbbell is

n(yc, t ) =
∫

P(q, yc, t )dq =
∫

P̄(q, yc, t )φ0(qx )φ0(qy)dq = c00(yc, t ). (C6)

Here, we used the expansion (48) and the fact that the eigenfunctions φk are orthonormal. To obtain

the moment 〈qxqy〉(yc, t ) of the end-to-end vector, we note that

φ1(qi ) = b
†
i φ0 = C0qie

−q2
i /4 = qiφ0(qi ). (C7)

Therefore,

n〈qxqy〉 =
∫

P(q, yc, t )qxqydq =
∫

P̄(q, yc, t )φ1(qx )φ1(qy)dq = c11(yc, t ). (C8)

A similar approach can be used to obtain relationships between other coefficients ck and moments

of the end-to-end vector.
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