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Electrohydrodynamic migration and dispersion of polyelectrolytes
during simultaneous shear flow and electrophoresis
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We develop a mean-field model for an elastic dumbbell that predicts an enhanced
concentration of flexible polyelectrolytes in the center of a microfluidic channel due to
simultaneous application of axial flow and electric fields. Consistent with previous works,
the model indicates that local shear flow stretches and orients a polyelectrolyte molecule
so that electrohydrodynamic interactions within the molecule drive its migration towards
the center of the channel. Unlike previous works, dispersion due to fluctuations of elec-
trohydrodynamic velocity induced by thermal fluctuations of the molecular configuration
is explicitly included in the mean-field model. This electrohydrodynamic dispersion is
comparable with or exceeds diffusivity due to Brownian forces for electric field strengths
commonly used in microfluidic devices. The developed models are in quantitative agree-
ment with Brownian dynamics simulations and in qualitative agreement with experiments.
In particular, competition between the electrohydrodynamic migration and dispersion is
shown to cause a nonmonotonic dependence of the polyelectrolyte concentration in the
channel center on the magnitude of the electric field.

DOI: 10.1103/PhysRevFluids.6.094203

I. INTRODUCTION

Electric fields are commonly utilized to manipulate macromolecular transport within microfluidic
devices for analysis and processing, and researchers continue to discover new and varied ways to
use electric fields within microfluidic devices. For the particular case of polyelectrolyte molecules,
such as DNA, simultaneous application of an axial electric field and pressure-driven flow can cause
a transverse migration and subsequent concentration of polyelectrolytes at either the wall or the
centerline of the channel [1-3]. This migration phenomenon has been used to trap and separate
DNA within a microfluidic device of simple design [4-6].

The transverse migration is caused by electrohydrodynamic interactions between different por-
tions of a polyelectrolyte molecule, i.e., interactions due to disturbances in the fluid flow caused
by an external electric field acting on the charged polymer and its surrounding counterions [7—12].
These interactions are of importance to the dynamics of a polyelectrolyte if the double layer is
large compared to the diameter of the polymer backbone and the molecule is distorted from its
equilibrium isotropic configuration. In the case of migration in a pressure-driven flow, a molecule
not at the center of the channel is stretched and reoriented by a local shear. Then, the electric field
and resulting electrohydrodynamic interactions induce additional components of motion, including
one transverse to the flow and field direction.

When a flexible polyelectrolyte leads a pressure-driven flow upon application of an axial electric
field, the transverse motion is towards the center of the channel, as illustrated in Fig. 1. The
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FIG. 1. Focusing of DNA molecules in the center of a microfluidic channel by simultaneous application of
a pressure-driven flow (blue) and an antiparallel electric field. The electric field causes the negatively charged
DNA molecules to lead the flow (red) and migrate towards the center of the channel (green arrows). The width
o of the developed concentration profile (black) is determined by competition between the net migration V,
towards the center and diffusion D,, away from the center. The diffusivity D,, contains contributions from
Brownian diffusion and electrohydrodynamic dispersion.

electrohydrodynamic velocity is proportional to the magnitude of the electric field, which suggests
that increasing strength of the electric field should increase concentration of polyelectrolytes in
the center of the channel. However, experiments [3] and simulations [9] show that this trend holds
only for weak electric fields; for sufficiently strong fields, the concentration at the channel center
decreases as the field strength increases. In other words, there is an optimal field strength E*
corresponding to the smallest width o of the concentration profile at the channel center.

The kinetic model of Butler et al. [8] predicted a monotonic decrease of the concentration profile
width with increasing electric field for a dumbbell in a pressure-driven flow, in contrast with later
findings [3,9]. More recently, Setaro and Underhill [13] developed an improved kinetic model that
accounts for fluctuations of the end-to-end vector of the dumbbell and predicts a nonmonotonic
dependence of the centerline concentration on the electric field. They attributed this phenomenon to
feedback between the polymer flux and conformation.

To further clarify the physical origin of the minimum value for o, Kopelevich et al. [14] suggested
an empirical model that includes dispersion due to the electric field. This electrohydrodynamic
dispersion arises from the instantaneous electrohydrodynamic velocity corresponding to each con-
figuration of the fluctuating polyelectrolyte molecule. The average of these instantaneous velocities
corresponds to the migration velocity driving the polymer towards the center of the channel, while
the velocity fluctuations contribute to the effective polymer diffusivity. The electrohydrodynamic
dispersion increases with the strength of the electric field faster than the migration velocity. Since
the profile width o is determined by competition between the migration towards the center of
the channel and diffusive flux away from the center, o increases with increasing field strength
for sufficiently strong electric fields. This empirical model was confirmed by Brownian dynamics
simulations for a multibead polymer model [14].

In this paper, we develop explicit mean-field relationships between the dispersion and dynamics
of the internal degrees of freedom of a dumbbell in shearing and pressure-driven flows. The mean-
field model developed for a shearing flow directly connects the electrohydrodynamic dispersion
with the autocorrelation function of instantaneous electrohydrodynamic velocity which, in turn, is
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determined by the end-to-end vector of the dumbbell. For the pressure-driven flow, the mean-field
model is a convection-diffusion equation with the diffusion term containing contributions of both the
Brownian diffusivity and the electrohydrodynamic dispersion. We derive this model by performing
an adiabatic elimination of the internal degrees of freedom from the Fokker-Planck equation for
the harmonic approximation of a dumbbell with short-range electrohydrodynamic interactions.
The resulting equation is consistent with the kinetic theory of Setaro and Underhill [13], but our
derivation clearly demonstrates the contribution of electrohydrodynamic dispersion to the polymer
flux.

In Sec. II, we present Langevin equations for the center of mass and the internal degrees of
freedom of the dumbbell. In Sec. III, we consider the dumbbell in a shearing flow and develop
and validate mean-field relationships between transport properties of the dumbbell and statistics
of its internal degrees of freedom. In Sec. IV, we discuss the mean-field model for the dumbbells
in a pressure-driven flow, demonstrate the generic nature of the dispersion mechanism leading to
the nonmonotonic dependence of the concentration profile width on the electric field strength, and
discuss the effect of the time-scale separation (or lack thereof) on parameters of the mean-field
model. Conclusions are presented in Sec. V.

II. MODEL

The current paper models A-DNA molecules that were used in the experiments of Arca ef al. [3].
These molecules have a contour length of approximately 21 pum, which is substantially larger than
their Kuhn length of 106 nm [15]. Therefore, a A-DNA molecule is flexible and each bead of its
dumbbell model represents a large number of Kuhn steps so that the beads can be approximated as
spheres.

The dumbbell is suspended in an ambient flow field U (R) and a uniform electric field E. The
dynamics of each bead is described by the following Langevin equation:

dR; 00 1 e B E E :

WZU (Ri)+Z(Fi+Fi)+“0E+Ui’ i=1,2. (1
Here, R; are coordinates of the dumbbell beads, Ff: and Ff are the conservative and Brownian forces
acting on the ith bead (i = 1, 2), { = 6mrna is the friction coefficient of a spherical bead of radius
a in a fluid with viscosity 7, u% is the electrophoretic mobility, and U¥ is the electrohydrodynamic
velocity of the ith bead. The Brownian force satisfies the fluctuation-dissipation theorem [16],

(F?@)) =0, 2)

(FP@F}(t + 1)) = 2kgT¢15;;8(T), i,j=1,2 (3)

where kg is the Boltzmann constant, T is the temperature, I is the 3x3 identity matrix, §;; is the
Kronecker delta, and §(7) is the Dirac delta function.

For simplicity, here we neglect hydrodynamic interactions due to velocity disturbances caused
by Brownian and conservative forces. Effects of these hydrodynamic interactions are explored in
Sec. S1 of Supplemental Material [17], where it is shown that the main conclusions of this paper
remain valid if these interactions are taken into account.

The polymer is assumed to be sufficiently far from the channel walls so that the polymer-wall
interactions are negligible. In this case, the only contribution to the conservative forces F¢ is the
bead-bead interactions and the potential ® for these forces depends only on the distance between
the beads,

Fy =—F = —@ =F(q) “)

q
where q = R, — R is the end-to-end vector. The dumbbell beads are connected by a freely jointed
chain of Nx Kuhn steps of length /i each, with the tension approximated by the finitely extensible
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nonlinear elastic (FENE) force [18],
kq
1 —(q/90)*

where go = Nkl is the maximum extension of the spring and k = 3kgT /Ixqy is the spring constant.
For A-DNA molecules considered in the current paper, Ny = 200 and lx = 106 nm [15].

We use the short-range model for electrohydrodynamic interactions [10—12]. Within this model,
the electrohydrodynamic mobility of a dumbbell is approximated by an average of electrohydrody-
namic mobilities of Kuhn steps of the spring connecting the dumbbell beads; electrohydrodynamic
interactions between the Kuhn steps and between the beads are neglected. Both dumbbell beads
have the same electrohydrodynamic velocity, which can be written as

FC(q) = — (5)

Uf(q) =0 (q), i=12 (6)
Here,
1—a, 2uEE
= L9 )
1420, qq

quantifies the strength E of the electric field and o, = p% / /Lﬁ is the ratio of the electrohydrody-

namic mobilities #£ and ,uﬁ of a Kuhn step (modeled as a rod) in the directions perpendicular and
parallel to the rod axis. The normalized electrohydrodynamic velocity is

(3qq —¢*1)-E
3 —(q/q90)*

where E = E/E is the direction of the electric field.

In what follows, we nondimensionalize the variables using the characteristic length /. =
kT [k, the characteristic time z. = ¢/, the characteristic energy kzT, and the elementary charge
e. The dimensionless values of x and ¢ are 1.

Subtracting and adding the Langevin Eqgs. (1) for beads 1 and 2 and using Eqgs. (4) and (6), we
obtain the following equations for the end-to-end vector q and the center of mass R, = (R; + R;)/2
of the dumbbell:

Uf(q) = ®)

‘CIZ_‘: = (q- VIUP(R,) + 2F°(q) + F2 (1), 9
R .
ddtc =U”R,) + pnEE+ EUF(q) + F2(r). (10)

In writing Egs. (9) and (10), we kept only the leading order terms of the expansion of U*(R) around
the dumbbell center of mass. The stochastic forces acting on q and R, are

FY=F) —F] and F?=1(F]+F5), (11)
respectively. These forces have zero mean and their autocorrelation functions are
(FE@F)( + 1)) = 415(2), (12)
(FE@OFE (e + 1)) = 18(7), (13)
(FE()F2(t + 7)) =0, (14)

where the last equality indicates that Fg (t) and Ff(t) are independent of each other.

Equation (10) shows that motion of the polymer center of mass R, is affected by dynamics
of the internal degrees of freedom (7). Random fluctuations of q lead to fluctuations of the
electrohydrodynamic velocity EUZ (q), which give rise to electrohydrodynamic dispersion.

094203-4



ELECTROHYDRODYNAMIC MIGRATION AND DISPERSION ...

III. ELECTROHYDRODYNAMIC DISPERSION IN A SHEARING FLOW

In this section we consider the dumbbell in a shearing flow U®(R) = y - (R — R,), where y is a
position-independent rate-of-strain tensor. We demonstrate that fluctuations of the end-to-end vector
q of the dumbbell yield electrohydrodynamic dispersion and obtain an explicit expression for the
dispersion contribution to the overall diffusivity of the dumbbell. To obtain the relationship between
statistics of the vector q and the electrohydrodynamic dispersion, the average and fluctuating
components of the center of mass position and the electrohydrodynamic velocity are separated,

R.(7) = (R)(t) +rc(7), 15)

UF (q(t)) = (UF) + 0" (q(1)), (16)

where r.(t) and 6 (q(¢)) represent fluctuations of R.(¢) and UF around their mean values. Equation
(9) indicates that the end-to-end vector is independent of the translational motion of the dumbbell in
a shearing flow. Therefore, (UF) is independent of time and can be obtained by averaging over the
steady-state solution q(¢) of Eq. (9). It then follows from Eq. (10) that the mean and the fluctuating
components of the dumbbell center of mass obey the following equations:

R. N

d(R.) = ufE + £(0F), (17)
dt

‘Z — £4"(q(1) + F2(). (18)

We note that U®(R,) = 0 for the shearing flow. The right-hand side of Eq. (18) contains two
fluctuating terms. One of these terms, Ff (), corresponds to the usual Brownian force. The other
term, £af (q(z)), represents instantaneous deviations of the electrohydrodynamic velocity from its
mean value & (fJE). These deviations are caused by fluctuations of the end-to-end vector q(¢) and
give rise to the electrohydrodynamic dispersion.

Integrating Eq. (18), we obtain

t
r.(t) — r.(0) = / [£0° (q(s)) + F2(s)]ds. (19)
0
Hence, the diffusion tensor of the dumbbell center of mass is

1
D= hm —([rL(t) r.(0)][r.(t) — r.(0)])

= lim —/ / 5 (q(s))+Ff(s)}{5ﬁ5(q(s/))+Ff(s/)})dsds/

t—00 t
=DF + DB, (20)
where
D* = lim —f / (0" (q())a" (q(s")))ds ds’ 2D
t—o0 2t
is the electrohydrodynamic dispersion and
= lim — / / (F2(s)F2(s))ds ds' = (22)
t—o0 2t

is the diffusivity in the absence of the electric field, i.e., the usual Brownian diffusivity. In writing
the last equality in Eq. (20), we took into account that @ (q(z)) and Ff (t) are uncorrelated, since the
random force Ffj (t) acting on the end-to-end vector q(¢) is not correlated with the Brownian force

Ff (1) acting on the center of mass [see Eq. (14)].
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Since @F is independent of the field strength, Eqs. (20) and (21) demonstrate that the mean square
displacement is increased by a factor proportional to £2 due to fluctuations in the electrohydrody-
namic interactions. To obtain the electrohydrodynamic dispersion, we rewrite Eq. (21) as follows:

= lim —/ / ACE(t)dr ds = —/ CE(t)dr. (23)
Here,

C* () = (0" (q(s))a" (q(s + 1)) (24)

is the autocorrelation function of 4% (q(¢)). The last equality in Eq. (23) was obtained by replacing
the limits of integration in the inner integral by £oo0. This approximation is justified by the time-
scale separation between fluctuations of the end-to-end vector and diffusive motion, so that CE(r) ~
0 for  on the diffusive time scale.

Dispersion in shearing flows can thus be obtained by solving the Langevin equation (9) for the
end-to-end vector and then computing the integral of the autocorrelation function of the instanta-
neous electrohydrodynamic velocity using the mean-field Eqs. (23) and (24). In the remainder of
this section, we obtain transport properties of the dumbbell in a simple shear flow

U®R) = [y(y —.),0,01", (25)

where y is the shear rate and y, is the y coordinate of the dumbbell center of mass. The electric field
is assumed to be parallel to the flow. At sufficiently small shear rates, the transport properties can
be obtained analytically. In this case, the harmonic approximation to the FENE spring potential (5)
is used:

F(q) = —q. (26)

In addition, the transverse component of the normalized electrohydrodynamic velocity (8) is ap-
proximated by

o
OF = guqy. 27)

For brevity, we refer to the model with the harmonic spring potential Eq. (26) and the leading order
approximation Eq. (27) to the electrohydrodynamic interactions as the “harmonic dumbbell” and
the model with the FENE spring potential Eq. (5) and the electrohydrodynamic interactions given
by Eq. (8) as the “FENE dumbbell.” Note that the harmonic dumbbell model is linear only for the
internal degrees of freedom q, since the electrohydrodynamic interactions influencing motion of the
dumbbell center of mass are nonlinear even in the leading order approximation Eq. (27).
It is shown in Appendix A that, for the harmonic dumbbell, the mean electrohydrodynamic
velocity and dispersion in the transverse direction are
2
(U )y, &) = %V and DE(y. &) = & <1 + 51%) (28)
respectively. Figure 2 shows the analytical mean-field result (28) as a function of the Weissenberg
number Wi = 7,y, where t, = 1/4 is the relaxation time of the end-to-end distance of the dumb-
bell at equilibrium We plot the normalized transverse velocity (U By = (U EY /€ and dispersion

ny = /52 since these quantities are independent of the magnitude & of the electric field.
Additionally, Fig. 2 compares the analytical result for the harmonic dumbbell with simulation results
for both harmonic and FENE dumbbells. Results of two types of simulations are shown in Fig. 2:
semianalytical mean-field calculations and direct Brownian dynamics simulations.

In the semianalytical mean-field calculations, the Langevin Eq. (9) for the end-to-end vector was
solved numerically. For each set of the system parameters, at least 200 simulations of duration

5000 were performed. The mean transverse velocity (U)‘,ri ) was then obtained by averaging the
instantaneous values of the electrohydrodynamic velocity (7}1,5 (q), with vector q(¢) obtained from the
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FIG. 2. (a) Normalized mean electrohydrodynamic velocity (UyE) = (U),E) /€ and (b) normalized electro-
hydrodynamic dispersion DAf} = va /E? in the transverse direction in a simple shear flow. Transport properties
of the harmonic and FENE dumbbell models are shown. Predictions of the analytical mean-field (AMF) model
(28) for the harmonic dumbbell are shown by lines; predictions of the semianalytical mean-field (SMF) model
are shown by open symbols, and results of the Brownian dynamics (BD) simulations are shown by crosses.

numerical solution. The transverse dispersion ﬁfy was obtained by integrating the autocorrelation
function of the instantaneous velocity [see Egs. (23) and (24)].

For the Brownian dynamics simulations, the Langevin Eqgs. (1) for the individual beads were
integrated numerically. At least 10* simulations of duration 5000 each were performed for each set
of parameters. The mean dumbbell velocity and diffusivity D were then obtained by fitting the mean
displacement and the mean-squared displacement of the dumbbell center of mass to a straight line
[14]. The normalized electrohydrodynamic dispersion was computed as DF = (D — D?)/£2, where
the Brownian diffusivity D® was obtained from simulations with no electric field.

As evident from Fig. 2, the mean-field model is in excellent agreement with the Brownian
dynamics simulations. We also verified that D? obtained from the Brownian dynamics simulations
is I/2, in agreement with Eq. (22), and that (D — D?) scales as £2, in agreement with Egs. (20)
and (21).

Figure 2 shows that the short-range electrohydrodynamic model predicts a monotonic growth
of the mean transverse velocity and dispersion with increasing shear rate. Increasing the shear rate
leads to changes of the dumbbell configuration, including its reorientation and stretching. In partic-
ular, stretching of the dumbbell spring results in increasing electrohydrodynamic velocity predicted
by the short-range model Eq. (8). The harmonic dumbbell approximation is in good agreement with
the full anharmonic model for Wi < 2. For Wi > 2, the harmonic model predicts larger values of
electrohydrodynamic velocity and dispersion, due to a larger stretching of the harmonic spring in
comparison with the FENE spring at high shear rates (see Sec. S2 of Supplemental Material [17]).

IV. EFFECT OF DISPERSION ON CONCENTRATION PROFILES
IN PRESSURE-DRIVEN FLOWS

A. General considerations

As illustrated in Fig. 1, the distribution of polyelectrolytes in a pressure-driven flow is determined
by a balance between the flux towards the channel center due to the electrohydrodynamic migration
Vw=~E (Uf) and the flux away from the channel center due to diffusive motion of the polymers.
For a weak electric field, the diffusivity Dy, is dominated by Brownian motion and is essentially
independent of the field strength, whereas the driving force towards the center of the channel is
proportional to £. Therefore, at weak fields, the concentration profile width o decreases as the field
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strength increases. However, the electrohydrodynamic dispersion DF scales quadratically with the
electric field as shown in the previous section. When the field is sufficiently strong, the diffusive
flux is dominated by the electrohydrodynamic dispersion, which increases faster with £ than the
migration velocity £ (UyE) does. Therefore, increasing the field strength beyond the optimal value
&* leads to wider concentration profiles.

Here we develop a mean-field model for polymer density n in a pressure-driven flow that accounts
for the dispersion and demonstrates a minimum for the profile width o. The pressure-driven flow
is between two infinite, planar walls located at y = +H /2. The electric field and the fluid flow are
parallel to the x axis and the shear rate is

dUX (y) _ 4py
y(y) = & - H (29)
where j is the mean shear rate.

The polymer density 7 in a fully developed steady-state flow is assumed to satisfy the convection-
diffusion equation,

d dn
o [D;ﬁ,f(yc, &)y~ Woe s)n} =0. (30)

Here, V, and D;i,f are the mean migration velocity and the effective diffusivity in the transverse
direction, where D;ff contains contributions of both Brownian diffusivity and the electrohydrody-
namic dispersion. If the time scale of the translational motion of the polymer is much slower that
that of its internal dynamics, the polymer configuration adjusts its dynamics to the local shear as the
polymer moves across streamlines of a flow. In this case, the transport properties of the polymer are
fully determined by the local shear, i.e.,

V(e ) = {UF )y ), €) and - D (v, €) = D (y (), €), 31)
where
(U )y, &) =E(Uf )(y) and Dy(y,€) =Dy (y)+EDi(y) (32)

are the migration velocity and diffusivity in the simple shear flow at shear rate y and the electric
field strength £. The normalized migration velocity (UVE )(v), the Brownian diffusivity ny(y), and

the normalized electrohydrodynamic dispersion ﬁyEy(y) = va(y, £)/&? are independent of &.
It follows from Eq. (30) that '

*WoLEe
n(ye) o exp /0 B 50 (33)
It was shown by Kopelevich et al. [14] that Eq. (33) yields a Gaussian distribution, n o
exp(—y?/20?),if (UF) o y and dependence of Df; on y is weak in the region of high concentration
of polymers. In this case, the standard deviation of # is determined by the ratio of the velocity and

the diffusivity, o oc (D)l /Vy)!/2. This ratio, according to Egs. (31) and (32), is given by

Dt 1 /1 N
2 — (=D +EDE ). 34
i, = e %) -

The first and second terms in Eq. (34) are monotonically decreasing and increasing functions of &,
respectively. Therefore, the ratio D$§f /Vy and the profile width o exhibit a minimum at some optimal
electric field strength £ = £*.

B. Mean-field model for the harmonic dumbbell approximation

The empirical mean-field model (30) was confirmed by Brownian dynamics simulations for a
multibead polymer [14]. We demonstrate in this section that a similar mean-field model can be
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obtained using a more rigorous approach. Specifically, we consider a Fokker-Planck equation that
describes dynamics of all degrees of freedom of the harmonic dumbbell and perform an adiabatic
elimination of the internal degrees of freedom.

In the leading order approximation (26) and (27), the z component of the end-to-end vector q
is decoupled from all other degrees of freedom of the dumbbell and, hence, is omitted from the
analysis. Therefore, in the remainder of this section, q refers to the vector containing only the x and
y components of the end-to-end vector. In addition, only the transverse coordinate y. of the center
of mass needs to be considered, since we focus on the dumbbell distribution in a fully developed
flow. This allows simplification of the Langevin Egs. (9) and (10) to

dqi B .
i Sixy Ve)qy — 2qi + F, (), i =x,y, (35)
dy.
Y — £q.q,+ 2 (0). (36)
dt '
The corresponding Fokker-Planck equation is
P Lo + 2L, + Ly, |P, (37)
at [ 29y? R
where P(q, y., t) is the probability density,
ad 0
L,=—-{q+ —) (38)
T aq ( dq

is the operator describing fluctuations of the end-to-end vector in the absence of shear, and the
operator

] 0
Ly, = —)’()’c)flva—qx - gqqua_yc 39

describes coupling between the polymer center of mass and the end-to-end vector. There are two
diffusive terms in Eq. (37): the Brownian diffusion of the dumbbell center of mass represented by
the first term on the right-hand-side of Eq. (37) and random fluctuations of the end-to-end vector q
represented by the operator L,. The fluctuations of q give rise to the electrohydrodynamic dispersion
through coupling with the center of mass motion described by the operator L,,.

Similarly to analogous problems using adiabatic elimination [19], q is eliminated from Eq. (37)
by expanding P(q, y., t) in terms of eigenfunctions of the operator L,. As shown below, the leading
term of this expansion corresponds to the equilibrium distribution of the end-to-end vector and the
coefficient for that term corresponds to the number density n(y., ) of the dumbbells. Other terms
of the expansion describe deviations from equilibrium and correspond to various moments of the
end-to-end vector. These moments quickly relax towards values determined by n(y., ), whereas
the dynamics of n is relatively slow. This allows reducing Eq. (37) for P(q, y., t) to a mean-field
equation for n(y,, t).

To proceed, it is convenient to transform L, into a self-adjoint operator by first defining

P(Q., ye. 1) = C2e T P(q, ye. 1), (40)

where Cy = (2)~!/# is a constant that ensures consistent normalization of the probability density,
as shown in Appendix C. Then

—P/AF
L,P=Cle " /*L,P, (41)
where

Ly = —(bibs + biby) (42)

094203-9



DMITRY I. KOPELEVICH AND JASON E. BUTLER

is the transformed self-adjoint operator for the equilibrium end-to-end vector dynamics and

ad ad ;
b‘:a_q,Jr_ and bj:—a—qi+% (i =xy) 43)
are the boson annihilation and creation operators, respectively [19]. The eigenvalues of operators
blTbi are non-negative integers and the zero eigenvalue corresponds to the equilibrium distribution of
the end-to-end vector. Additional properties of these operators and their eigenfunctions are reviewed
in Appendix C.
The coupling operator Ly, is then expressed in terms of the operators b; and b:f. Since

dP L .
o = —C2e /M (bIP) and ¢ =b;+b| (i=x,y), (44)
qi
we have
Ly,P = Cle 7L, P, (45)
where
Lyy = y(n)(by + b)bL — €€(b, + b)) (by + b;)% (46)

is the transformed operator L,. Here, we introduced a scaled variable n = €y, for the translational
degree of freedom to highlight separation of length scales between the translational and internal
degrees of freedom of the dumbbell: = O(1) and € < 1 is the ratio of the average length of the
end-to-end vector to the characteristic length scale of y. (e.g., the profile width o). The former is
O(1) at sufficiently small shear rates [see Eq. (A18)]. After these transformations, the Fokker-Planck
Eq. (37) becomes

op = < 5+ 2L + L 47
ot |2 an?
The probability density in terms of the eigenfunctions ¢ (q;) of operators b:fb,- is

]

P, n, )= ()%, (ay), (48)

k=0

where k = (k,, ky). The expansion coefficients c; are directly related to the moments of the distri-
bution of the end-to-end vector q. In particular, it is shown in Appendix C that cgy corresponds to
the probability distribution n of the polymer center of mass and c¢i; = n(g.q,). In what follows, we
refer to ¢ as the modes of the end-to-end vector distribution.

Substituting the expansion (48) into Eq. (47), utilizing the relationships (C1), (C3), and (C4), and
taking the inner product with ¢,,, we obtain the following hierarchy of equations:

0Cm

e 92 s i 49
W = 2 8 (my +my) Cm + yq,m({c})’ (49)

where m = (m,, m,) and the operator
A a
Lygm({c}) = <V - 68%)’"}5/2[ 1/zcmx—l my—1 + (my + 1) Cm)—l,m_v-'rl]
9 172 172
- 6g%(’”x 1) [ me+l my—1 + (m + 1) Cie+1, m‘-‘rl] (50)
describes coupling between dynamics of the end-to-end vector and motion of the center of mass.
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Equation (49) is similar to the Brinkman hierarchy for the Kramers equation [19]. The first
equation of the hierarchy (49) is
0 292 0
n_ e ey 5D
ot 2 an? on
(recall that cop = n). This equation indicates that the spatial distribution of the dumbbells is
determined by the Brownian diffusive flux [the first term on the right-hand side of Eq. (51)] and the
electrohydrodynamic flux determined by the mode c¢|; = n{g.q,) of the end-to-end vector. Evolution
of the latter is described by the second equation of the hierarchy (49),

dcrg € 92

ar [ 2 an?

The infinite hierarchy (49) can be truncated after its second Eq. (52) when the local shear rate is
small, y (y.) = O(e), and the electric field is weak or moderate, £ < O(1). In this case, all ¢,, with
m # 0 quickly decay towards their quasi-steady-state values determined by the dumbbell density 7.
This fast decay is due to the (m, + m,)c,, terms in Eq. (49); these terms correspond to eigenvalues
of the operator Lq describing fluctuations of the end-to-end vector q. Equation (49) indicates that
the rate of change of ¢, with m # 0 is O(1). On the other hand, Eq. (51) indicates that the rate of
change of n is O(e). Therefore, the nonequilibrium modes c,, (m # 0) relax relatively quickly in
response to a slowly changing n. Hence, we can neglect the time derivatives in Eq. (49) for m # 0

and perform adiabatic elimination of these fast modes.
The leading order terms of the steady-state version of Eq. (49) then yield ¢;; = O(¢e)n and

9
- 4}11 +y(n+ ﬁcoz) — eE%[n + ﬁ(coz + c20) + 2c22]. (52)

cm=0()n for m#(0,0) and m # (1, 1). (53)
Rewriting Eq. (52) as
1 a
ci = —(y — 65—)?1 + O(e*)n, (54)
4 an

we see that, to the leading order, the electrohydrodynamic flux ¢;; contains contributions of the
electrohydrodynamic migration and dispersion represented by the first and second terms on the
right-hand side of Eq. (54), respectively. Substituting Eq. (54) into Eq. (51), neglecting the O(e3)n
terms, taking the steady-state limit, and returning to the original transverse coordinate y., we
recover the mean-field convection-diffusion Eq. (30) with the transverse velocity and diffusivity
given by

£
V=~ and D =>+—-. (55)

Note that the diffusivity differs from that used in the empirical model (31) which assumed that
diffusivity is determined by the local shear. Equation (55) indicates that D;’jﬁf = D;j(O, &)= ny +
D,(0, &), where Dﬁv = 1/2 is the Brownian diffusivity [see Eq. (22)] and ny(O, E) = &E2/4 is the
electrohydrodynamic dispersion in the absence of shear [see Eq. (28)].

Substituting V;, and D;gf from Eq. (55) and the local shear y (y.) from Eq. (29) into Eq. (33), we
conclude that the concentration profile is a Gaussian distribution with the variance

, DYH H (& 1
o° = e _237<2+5>' (56)
In particular, the optimal field strength corresponding to the minimum profile width is £* = /2.
Equation (56) is consistent with the result of Setaro and Underhill [13] obtained using the method
of moments. Moreover, using relationships similar to Egs. (C6) and (C8) between the modes ¢y,
and the moments of the end-to-end vector q, one can readily verify that steady-state versions
of the convection-diffusion Eq. (51) and the first-moment Eq. (52) are consistent with equations
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FIG. 3. Standard deviations o of developed concentration profiles in the pressure-driven flows at (a) Wi =
0.5 and (b) Wi = 4. Results of Brownian dynamics (BD) simulations are compared with the mean-field model
(30) with the diffusivity obtained using the adiabatic elimination [D;}f,f = D};(0, £)] and the empirical assump-
tion [D;‘:f = DJ (v (¥e), &)]. To illustrate contributions of the Brownian diffusivity and the electrohydrodynamic
dispersion, predictions of the mean-field models with D;f,f = Dﬁv and Df) (0, £) are also shown.

obtained in [13]. The advantage of the derivation presented in the current paper is that it establishes
a clear connection between fluctuations of the dumbbell configuration and the electrohydrodynamic
dispersion. Furthermore, this approach can be generalized to multibead polymer models and more
complex electrohydrodynamic models, as well as analysis of developing flows.

Figure 3 compares the profile widths o predicted by the adiabatic elimination Eq. (56), the
empirical mean-field model (31), and results of Brownian dynamics simulations of a dumbbell
in a pressure-driven flow. Data for mean shear rates y corresponding to Weissenberg numbers
Wi = 71, = 0.5 and 4 are shown. The dimensionless distance between the channel walls is H = 92,
which corresponds to the channel width in the experiments of Arca et al. [3]. For each set of
system parameters (electric field strength £ and mean shear rate 7), at least 10* trajectories were
simulated. As shown in Fig. 3, the predictions of the adiabatic elimination (56) agree with the
Brownian dynamics results over a wide range of conditions, beyond the small shear and moderate
electric field assumptions made in the derivation of Eq. (56). On the other hand, the empirical
mean-field model (31) increasingly deviates from the Brownian dynamics results as £ and
increase. In addition, Fig. 3 shows asymptotic values of the profile width for £ — 0 and — oo,
which were obtained from the mean-field model (30) with purely Brownian diffusivity (D;if =D})

and purely electrohydrodynamic dispersion [D;’f,f = ny(O, £)], respectively. These values agree
with the Brownian dynamics results in the corresponding limits, thus confirming that Brownian
diffusivity and electrohydrodynamic dispersion are dominant at very weak and very strong electric
fields, respectively.

Simulations of both the harmonic and FENE dumbbell models were performed. These simu-
lations produced nearly identical results for developed profiles, since the transport properties of
the harmonic and FENE dumbbells agree for Wi < 2 (see Fig. 2) and the developed concentration
profiles are sufficiently narrow to ensure that most of the molecules are located in the region with
small local shear rate. Hence, the harmonic approximation remains valid in the high-concentration
region even for the largest mean shear rate considered in this paper (Wi = 4). Therefore, in what
follows, we focus on the harmonic dumbbell model.

C. Discussion

The transverse velocity V, of the mean-field model obtained using the adiabatic elimination
[Eq. (55)] is consistent with the empirical mean-field assumption (31) that V; is determined by
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local shear y(y.). Namely, V, corresponds to the transverse velocity in the simple shear flow
which is given by Eq. (28) for the dumbbell model considered here. However, the diffusivity D‘A’ff
obtained by the adiabatic elimination is independent of the local shear rate, which deviates from
the empirical mean-field assumption (31) that the effective diffusivity in Eq. (30) should include the
shear-dependent dispersion. This discrepancy is explained, in part, by the small-y approximation
used in the derivation of Eq. (55), since the y-dependent term in va in the simple shear flow

is O(yz) [see Eq. (28)]. However, Fig. 3 shows that the zero-shear value of DyEy yields a better
agreement with Brownian dynamics simulations than the empirical shear-dependent value (31) even
at moderate shear rates.

Despite the quantitative difference between the mean-field models, both qualitatively agree with
the experiment and the simulations and predict that o (£) exhibits a minimum at some optimal
&€ = &*. The arguments of Sec. IV A explaining the origin of the optimal electric field for the empir-
ical mean-field model still hold for the adiabatic elimination results, since the key requirements for
existence of the optimal field are still satisfied, namely, V, o< € and ny x E2.

For weak electric fields, the adiabatic elimination and the empirical mean-field model yield
nearly identical results that are in quantitative agreement with the Brownian dynamics simulations.
The two mean-field approximations agree at small £ because, in this case, the contribution of
the electrohydrodynamic dispersion ny to the overall diffusivity is negligible. In fact, completely

neglecting ny and using the approximation D;ﬁf = ny yields essentially the same values of o
at small &£, as shown in Fig. 3. Since the Brownian diffusivity is independent of local shear
[see Eq. (22)], the difference between the adiabatic elimination and the empirical mean-field model
vanishes at small £.

For strong electric fields, substantial differences exist between the two mean-field approaches,
with the adiabatic elimination yielding much better agreement with the Brownian dynamics sim-
ulations. Comparison of Figs. 3(a) and 3(b) reveals that the difference between the mean-field
models becomes more significant as the mean shear rate increases. In the simple shear flow, the
diffusivity is very sensitive to the shear rate [see Fig. 2 and Eq. (28)]. Validity of the adiabatic
elimination result indicates that electrohydrodynamic dispersion is independent of the local shear
rate and corresponds to the dispersion at zero shear rate everywhere in the channel. This in turn
suggests lack of time-scale separation between the translational and internal degrees of freedom of
the dumbbell, i.e., the polymer does not have time to adjust to changes to its local environment as it
traverses the channel at large electric fields.

To confirm this conjecture, we compare time scales of the dumbbell configuration and transport
in the transverse direction. The former is characterized by the relaxation time t, of the end-to-end
distance and the latter is characterized by the migration and diffusion time scales ty and 7 defined
as average times that it takes the dumbbell to travel a distance equal to the profile width o,

g 0'2

= d = —. 57
Ty (V},>V an 19)) ZDSJ ( )
Here,
H/2
Vy)y =f n(ye)Vy(ve)ldye (58)
—H/2

is the transverse migration velocity averaged over the concentration profile n(y.) in a fully developed
flow. Note that the number density n(y.) of dumbbells is normalized so that fff/l% n(y.)dy. = 1.
The values of V,(y.) utilized in Eq. (58) were obtained from the mean-field approximation, i.e.,
they were taken to correspond the local shear rate y(y.). The definition of tp uses the diffusivity
Deff = D} (0, &) at zero shear. This choice is motivated by validity of the adiabatic elimination
result Wthh indicates that the diffusivity of the dumbbell remains equal to D} (0, £) throughout
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FIG. 4. Moment M;; = (q.qy) of the end-to-end vector q obtained from the Brownian dynamics simula-
tions in the pressure-driven flow at Wi = 4 and several £. The empirical mean-field approximation to M, i.e.,
M, determined by the local shear, is shown by circles.

the channel. Substituting Egs. (55), (56), and (58) into Eq. (57), we obtain

19} H

. = 25w and 1 =271, %59)
As expected, the transport time scales decrease as the electric field strength increases. When £ <
H /Wi, the transport time scales substantially exceed the relaxation time scale of the internal degrees
of freedom of the dumbbell, confirming the key assumption of the empirical mean-field model. In
this case, the dumbbell configuration is expected to be determined by the local shear.

However, at strong fields, the transport time scales are comparable with 7, and the empirical
mean-field assumption is invalid. For example, at Wi =4 and £ > 10, it takes the dumbbell less time
to travel across the entire concentration profile than for its internal fluctuations to relax. Since the
transport time scales are inversely proportional to Wi, at smaller shear rates the empirical mean-field
assumption remains valid for a wider range of £ as evident from comparison of Figs. 3(a) and 3(b).

When the transport time scale is very small, the dumbbell configuration does not adjust to the
local environment and is likely to be similar to the configuration near the peak of the concentration
profile, i.e., at zero shear rate. Since the dumbbell configuration in a shearing flow is not affected
by the electric field [see Eq. (9)], the zero shear rate configuration is identical to the equilibrium
configuration. Hence, the dumbbell degrees of freedom are expected to approach the equilibrium
distribution as &€ — oo.

This is confirmed by moments My, (y.) = (qfq;”)(yc) of the end-to-end vector of the dumbbell.
If the empirical mean-field approximation is valid and the dumbbell configuration is determined by
local shear, the value of the moment My, at position y. in the pressure-driven flow corresponds to
its value in the simple shearing flow at shear y = y(y.). For the harmonic dumbbell approximation,
several moments in the simple shear flow are obtained in Appendix A [see Eq. (A18)].

For a pressure-driven flow, the typical effect of £ on the local dumbbell configuration is
demonstrated in Fig. 4, which plots the moment M;; computed for several values of £ in the fully
developed flow at Wi = 4. For comparison, the moment values corresponding to the local shear,
M, = y(y.)/4, are also shown. It is evident that at small £, M|, is in good agreement with the
empirical mean-field assumption, i.e., the moment in the pressure-driven flow is determined by the
local shear. However, as & increases, the deviation from the empirical mean-field approximation
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increases and M (y.) approaches its equilibrium value, M;; = 0, as £ — oo. Similar trends are
observed for other moments M}, and at other mean shear rates (see Figs. S5 and S6 in Supplemental
Material [17]).

This confirms that the fast time scale of the dumbbell transport at large £ yields a near-
equilibrium distribution of the dumbbell end-to-end vector, i.e., ¢y = O for all k # O [see Eq. (48)].

In this case, Eq. (52) yields

d

<y -& )n =0. (60)
dye

In other words, the electrohydrodynamic convective and dispersion fluxes are balanced and the
Brownian diffusion flux is negligible. Therefore, n(y) is a Gaussian distribution with the variance

, EH DE(O.H
0'0 = —m—=s—
4y 'z
that corresponds to diffusivity given by the electrohydrodynamic dispersion ny (0, &) at zero shear.
The profile width given by Eq. (61) is in agreement with the adiabatic elimination prediction (56) in

the limit of £ — oo (see also Fig. 3). Hence, the adiabatic elimination result is valid even at strong
electric fields, even though its derivation assumed that £ < O(1).

(61)

V. CONCLUSIONS

Diffusive motion of polyelectrolyte molecules with diffuse double layers in a simultaneous shear
flow and electric field contains two contributions: Brownian diffusion due to collisions between the
polymer and solvent molecules and electrohydrodynamic dispersion caused by fluctuations in the
instantaneous electrohydrodynamic velocity of the polymer due to fluctuations in its configuration.
At sufficiently strong electric fields, the electrohydrodynamic dispersion dominates the diffusive
motion and has a substantial influence on the ability to manipulate polyelectrolyte molecules
in microfluidic devices. For example, it introduces a limit on focusing polyelectrolytes on the
centerline when using a combination of flow and electric fields.

In the current paper we analyzed the electrohydrodynamic dispersion for a dumbbell model of a
polyelectrolyte molecule and developed mean-field models connecting dynamics of the internal
degrees of freedom with the dumbbell transport. The mean-field model (23) and (24) for the
dumbbell in a shearing flow provides a direct relationship between fluctuations of the end-to-end
vector of the dumbbell and the dispersion. In particular, for the harmonic dumbbell, this relationship
yields a simple formula (28) for the dispersion.

For pressure-driven flow in a straight channel, the mean-field model is a convection-diffusion
Eq. (30). For the harmonic dumbbell, we obtained the migration and diffusion terms (55) for
this equation by performing an adiabatic elimination of the internal degrees of freedom of the
dumbbell. The obtained diffusion term contains contributions of both the Brownian diffusivity and
the electrohydrodynamic dispersion. It was demonstrated that the latter contributions arise from
coupling between the fluctuations of the end-to-end vector of the dumbbell and the translational
motion of its center of mass. The developed mean-field model is in agreement with the model
obtained by Setaro and Underhill [13] using the kinetic theory. The derivation presented here
establishes a clear connection between the internal degrees of freedom and transport properties of
the dumbbell. In addition, we demonstrated that the electrohydrodynamic dispersion is responsible
for existence of the optimal electric field for trapping of polyelectrolytes by a combined flow and
electric fields.

Although the current paper focuses on a relatively simple dumbbell model, the main conclusions
are expected to hold for more detailed models of polyelectrolytes. For example, it is shown in Sec.
S1 of Supplemental Material [17] that including hydrodynamic interactions induced by Brownian
and conservative forces into the model yields results very similar to those obtained in the absence of
these interactions. Another improvement of the model would incorporate a more accurate model for
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electrohydrodynamic interactions. The short-range electrohydrodynamic model considered in the
current paper neglects interactions between Kuhn steps of the polyelectrolyte molecule. As shown
in [14], this results in a quantitative discrepancy with experimental data, even when simulating a
multibead polymer model. This necessitates development of a more accurate electrohydrodynamic
model. The mean-field relationship Eqs. (23) and (24) for the shearing flows is readily applicable
to this anticipated future electrohydrodynamic model, since it remains valid as long as Eq. (6) is
satisfied.

Furthermore, the qualitative arguments presented in Sec. IV A show that the mechanism leading
to the optimal electric field strength in a pressure-driven flow is applicable for other models for
electrohydrodynamic interactions. In addition, the adiabatic elimination for pressure-driven flows
presented in Sec. IV B can be adapted to a different electrohydrodynamic model by making an
appropriate change to the operator Ly, describing coupling between the end-to-end vector and the
dumbbell center of mass.

Achieving quantitative agreement with the experiment will require generalizing the current
mean-field approach to multibead polymer models. Although the multibead model still predicts
a nonmonotonic dependence of the profile width on the field strength, comparison between the
dumbbell and multibead models reveals an important difference between their dispersion terms.
Specifically, in the mean-field model (55) for the dumbbell, the dispersion term corresponds to the
zero shear rate. On the other hand, in the empirical model (31) proposed and validated for a 20-bead
polymer model [14], the dispersion term is determined by local shear. This difference is caused
by different time scales of fluctuations of the electrohydrodynamic velocity. In a multibead model,
fluctuations of the electrohydrodynamic velocity are dominated by fast fluctuations of individual
beads and the contribution of the slow fluctuations of the molecule as a whole is very small [14].
Therefore, in the multibead model, the electrohydrodynamic dispersion is less sensitive to local
shear and the degrees of freedom relevant to the dispersion respond quickly to changes in the
flow environment. These degrees of freedom are absent in a dumbbell, which only captures slow
fluctuations of the molecule as a whole.

Therefore, it is expected that a mean-field model for a polymer with a sufficiently large number
of beads is similar to the empirical model (31). A systematic study is therefore needed to determine
dependence of the electrohydrodynamic dispersion on the number of beads in a polymer model and
determine the discretization level necessary for validity of this mean-field model.
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APPENDIX A: TRANSVERSE MIGRATION AND DISPERSION OF THE HARMONIC
DUMBBELL IN A SIMPLE SHEAR FLOW

In this Appendix, we obtain analytical expressions for the electrohydrodynamic migration and
dispersion in the transverse direction in the simple shear flow (25) assuming the harmonic spring
potential (26) and the leading order approximation to the short-range electrohydrodynamic inter-
actions (27). In this case, the Langevin Eq. (9) for the end-to-end vector q(¢) is linear and can be
readily solved analytically:

q:(t) = q(0)e ™ + f e 2y qy(s) + FL (9)]ds, (A1)
0

t
q,(t) = g,(0)e™ + / e 2IES (s)ds. (A2)
0

We are interested in solutions at sufficiently large ¢ so that the influence of the initial conditions [i.e.,
the first terms on the right-hand sides of Eqs. (A1) and (A2)] vanishes. Therefore, in what follows,
we assume thatz > 1.
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The expression (A1) for g, contains a contribution of g,. It is convenient to express g, explicitly
in terms of the Brownian force Fg only. To this end, we substitute Eq. (A2) into Eq. (A1):

t t S
q:(t) = / e IES ()ds +y / / e 20=OFB (s')ds ds. (A3)
0 0 0

The double integral in the second term of Eq. (A3) can be reduced to a single integral by exchanging
the order of integration,

' s t t
f f ef2<rfs'>ny<s/>ds/ds=/ / 0(s —s)e " OF (s)ds'ds
" [ , N )
t

= / e 201 — §HFP (s)ds', (Ad)
0

where 6(s) is the Heaviside step function. Substituting Eq. (A4) into Eq. (A3), we obtain

ge(t) = /0 e*2<’*s>[Fq’?x(s) + vt —)F] (s)]ds. (A3)

Substituting Egs. (A2) and (AS5) into Eq. (27), we obtain the following expression for the instanta-
neous normalized electrohydrodynamic velocity in the transverse direction:

12 t
OF (1) = g:(1)gy(1) = fo ds fo ds'e ¥ O[FL(s) + y(t — )F)()]|FL(s). (A6)
Taking into account the fluctuation-dissipation relationship (12), we obtain the following expression
for the mean transverse velocity:

(vF) = £l0F) = 4ev | 2

t
e M=t — 5)ds = . (A7)
0 4
The last equality in (A7) was obtained by taking the limit of ¥ — oo.
To obtain the electrohydrodynamic dispersion, we compute the autocorrelation function of the
normalized electrohydrodynamic velocity [see Egs. (23) and (24)]. It is convenient to rewrite the
transverse component of the autocorrelation function (24) as follows:

N N AE\2
Cyy () = [0y OO0y (¢t +0) = (UF) . (A8)
Without loss of generality, the derivation below assumes that T > 0. The first term on the right-hand
side of Eq. (A8) can be written as
(0P Ut + 1)) = (qx(0)gy(1)ae(t + T)gy(t + 7)) = I + ¥*h, (A9)
where
t t+t
I = / ds, f dsy e 22HTIEB (5 )FB. (57)) gy (a1 + 7)) (A10)
) ) : :
and

t t+t
b= [ s [ dse T s s EL GO (200,000 ) (AT
0 0

In writing Eq. (A9) we used the fact that g, is independent of £, and (F,) = 0.
It follows from Eqs. (A2) and (12) that

t t+t
(gy()gy(t + 7)) = /0 ds/o a’s’efz(z””*‘H)<Fql?y(s)ny(s’)) =e 2" ast—o00. (Al2)
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Substituting this into Eq. (A10) and applying the fluctuation-dissipation theorem (12), we obtain
t
[ = 440+ f Mds=e* as 1t — o0. (A13)
0
Substitute Eq. (A2) into Eq. (A11):

t t+1 t t+t1
L :ei4(2’+f)/ dsi / dSz/ dS3/ dsg TR _ s\t 47— 55)
0 0 0 0

X FP (s)F (92)F) (s3)FL (s4)). (A14)

Integrals of type (A14) are computed in Appendix B. Substituting Eq. (B7) into (A14), we obtain

t t
L= 16e—4(2f+f)|:/ ds1/ ds3(t — s))(t + T — 51)e* )
0 0
t t+7
+/ ds; / dsy(t —s))(t+ 71— S2)64(51+32)
0 0

: '
+ / dsi / dsy(t —s)(t + 7 — sz)e4(5‘+s2)i|
0 0

e (3 4 81) 1
= 4
16 16
Substituting Eqs. (A13) and (A15) into Eq. (A9) and then substituting the result together with
Eq. (A7) into Eq. (A8), we obtain

as t — oo. (A15)

2 2
A N y y 3 +87)\ _
Ch()=(0F U]t + 1)) — = (1 T )¢ . (A16)
Thus, the electrohydrodynamic dispersion of the harmonic dumbbell is
+00 52 5)/2
E _ 2 E —

The first equality in Eq. (A17) follows from Eq. (23) because diagonal components of the matrix
CE () are symmetric with respect to time, CZ (t) = CE(—1).

In conclusion of this Appendix, we compute several moments of the end-to-end vector q which
are utilized in verification of the mean-field assumption for the pressure-driven flow (see Fig. 4 and
Figs. S5 and S6 in Supplemental Material [17]):

2 2
o= (e =1+1 (A18)

(CIXQy) = %1 <q)2c> =1+

APPENDIX B: CALCULATION OF INTEGRAL (A14)

The purpose of this Appendix is to compute the integral

I = / ds, / ds» / ' ds; / "dss f(s1, 52, 53, s)(CGOT()N6)(s),  (BI)
0 0 0 0

where I'(s) is a random process with Gaussian distribution, zero mean, and the autocorrelation
function (I'(s)['(s + t)) = 45(t). The challenge in computing this integral is handling the four-
variable correlation when even the two-variable correlation is singular (a § function). To do this, we
introduce a Wiener process W (s) corresponding to the Brownian force I'(s),

dW (s) = T'(s)ds, (B2)
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and rewrite Eq. (B1) as a limit of the Riemann sum, i.e.,

I — </0 l dW(Sl)/OZdW(sz)/O3dW(ss)/O“dW(s4)f(s1,sZ,S3,s4)>

Ny N» N3y Ny

= Altigoz););)z)f(sl,52753,54)(AW1'1AWQAVW3AW'4), (B3)
1=V 1n=013=0 1=

where N; = [t;/At],s; =i;At (j=1,...,4),and
(i+1)At

AW, = C(s)ds (B4)
iAt

is a Gaussian variable with zero mean and autocorrelation
(AW, AW;) = 48;; At. (BS)
Therefore,
(AW, AW, AW;, AW, ) = 16At2(8i|i28i3i4 + 8iyiy 8iniy + SiriySinis + 38,158,158, ) - (B6)

The last term in Eq. (B6) corresponds to the fourth moment of the Gaussian variable AW,.
Substituting Eq. (B6) into Eq. (B3), we obtain

‘N1 ANy N3ANy Ny AN3 NyANy
I=16lim AZ| 3" " f(si.s1.s5.8)+ > > fs1.5.51.%)
At—0
=0 i3=0 (1=0 =0
Ni1AN4 N> AN3 NiAN>; AN3 ANy
+ Z Zf(sl,sz,sz,sl)‘l‘ Z f(s1, 51,81, 81)
i1=0 iz=0 ilz()
A 3Ny IAWAYA} I Al
= 16[/ dslf dS3f(sl,sl,S3,S3)+/ dS1/ dsy f(s1, 52, 51, 52)
0 0 0 0
Ny A3
+f dslf dSzf(S],Sz,Sz,S]):|. (B7)
0 0

Here, x A y = min(x, y).

APPENDIX C: DETAILS OF ANALYSIS OF THE FOKKER-PLANCK EQUATION
FOR THE HARMONIC DUMBBELL

In this section we summarize properties of eigenfunctions ¢y of the operators bjbi (i = x,y) that
describe the probability density of the end-to-end vector of the harmonic dumbbell. Here, blT and
b; are the boson creation and annihilation operators defined in Eq. (43). Further information on
properties of these operators is available, e.g., in [19].

The eigenvalues of the operator bj'bi are non-negative integers:

bibipi(q) = ken(q), i=x.y, k=012, ... (ChH
The eigenfunction corresponding to zero eigenvalue is
Po(q:) = Coe /%, (C2)
where the normalization constant Cy = (27r)~/* is chosen so that ||¢|| = 1.

Application of the operators b; and bj to the eigenfunction ¢ of the operator b[Tb,- transforms ¢y
into eigenfunctions ¢,_; and ¢, respectively:

bipi(qi) = k' Pr_1(q0), (C3)

bldi(q) = (k+ 1)1 (q0). (C4)
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The k'/? and (k + 1)'/? factors in these equations ensure that ||¢;|| = 1 for all k. Since the operator
bfb,- is self-adjoint, its eigenfunctions ¢, form an orthonormal set.

The coefficients ¢ of the eigenfunction expansion (48) are directly related to the number density
of the dumbbell center of mass and moments of its end-to-end vector. It follows from Eqgs. (40) and
(C2) that

P(q,yc, 1) = P(q, ye, )$o(q:)0(qy)- (C5)
Then the number density of the dumbbell is

n(ye, 1) = /P(q,yc,t)dq: /P(quc»t)¢0(ch)¢0(qy)dq:COO(yCvt)- (C6)

Here, we used the expansion (48) and the fact that the eigenfunctions ¢, are orthonormal. To obtain
the moment (g,q,)(y., t) of the end-to-end vector, we note that

$1(q:) = bl do = Coqie % "* = qipo(qi). (C7)
Therefore,

n{gxqy) = /P(q,yc,t)qqudq = /P(q,yc,t)qﬁl(qx)qﬁl(qy)dq =cn (e, ). (C8)

A similar approach can be used to obtain relationships between other coefficients ¢ and moments
of the end-to-end vector.
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