
Constructing Locally Leakage-Resilient
Linear Secret-Sharing Schemes

Hemanta K. Maji1(B), Anat Paskin-Cherniavsky2, Tom Suad2,
and Mingyuan Wang1

1 Department of Computer Science, Purdue University, West Lafayette, USA
{hmaji,wang1929}@purdue.edu

2 Department of Computer Science, Ariel University, Ariel, Israel
anatpc@ariel.ac.il, tom.suad@msmail.ariel.ac.il

Abstract. Innovative side-channel attacks have repeatedly falsified the
assumption that cryptographic implementations are opaque black-boxes.
Therefore, it is essential to ensure cryptographic constructions’ security
even when information leaks via unforeseen avenues. One such fundamen-
tal cryptographic primitive is the secret-sharing schemes, which underlies
nearly all threshold cryptography. Our understanding of the leakage-
resilience of secret-sharing schemes is still in its preliminary stage.

This work studies locally leakage-resilient linear secret-sharing
schemes. An adversary can leak m bits of arbitrary local leakage from
each n secret shares. However, in a locally leakage-resilient secret-sharing
scheme, the leakage’s joint distribution reveals no additional information
about the secret.

For every constant m, we prove that the Massey secret-sharing scheme
corresponding to a random linear code of dimension k (over sufficiently
large prime fields) is locally leakage-resilient, where k/n > 1/2 is a con-
stant. The previous best construction by Benhamouda, Degwekar, Ishai,
Rabin (CRYPTO–2018) needed k/n > 0.907. A technical challenge arises
because the number of all possible m-bit local leakage functions is expo-
nentially larger than the number of random linear codes. Our technical
innovation begins with identifying an appropriate pseudorandomness-
inspired family of tests; passing them suffices to ensure leakage-resilience.
We show that most linear codes pass all tests in this family. This Monte-
Carlo construction of linear secret-sharing scheme that is locally leakage-
resilient has applications to leakage-resilient secure computation.
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Furthermore, we highlight a crucial bottleneck for all the analytical
approaches in this line of work. Benhamouda et al. introduced an ana-
lytical proxy to study the leakage-resilience of secret-sharing schemes;
if the proxy is small, then the scheme is leakage-resilient. However, we
present a one-bit local leakage function demonstrating that the converse
is false, motivating the need for new analytically well-behaved functions
that capture leakage-resilience more accurately.

Technically, the analysis involves probabilistic and combinatorial tech-
niques and (discrete) Fourier analysis. The family of new “tests” captur-
ing local leakage functions, we believe, is of independent and broader
interest.

Keywords: Local leakage-resilience · Massey secret-sharing scheme ·
Random linear codes · Shamir’s secret-sharing scheme · Discrete fourier
analysis

1 Introduction

Traditionally, one treats the cryptosystems implementing cryptographic primi-
tives as impervious black-boxes that faithfully realize the intended input-output
behavior and provide no additional information. In the real-world implementa-
tions and deployments, however, this assumption has been repeatedly proven
false. Beginning with the works of Kocher et al. [33,34], several innovative and
sophisticated side-channel attacks reveal partial information about the interme-
diate values and stored secrets of computation (for a summary of the history of
several of these attacks, refer to [10,35,46,48,50,56]). These side-channel attacks
on fundamental cryptographic building blocks like secret-sharing schemes pose
a threat to the security of all cryptographic constructions relying on them.

Towards addressing these concerns, one can design mechanical countermea-
sures, hardware solutions, and algorithmic representation to protect against
known threats [1,5,12,17,20,21]. However, this approach creates unknown risks,
the risk of undiscovered attacks compromising a scheme’s security. On the other
hand, leakage-resilient cryptography formally models potential avenues of infor-
mation leakage and the leakage attacks that an adversary may undertake. This
approach has the benefit that the general model encompasses leakage attacks
beyond those that are already known. Furthermore, one knows the formal secu-
rity guarantees and risks of using such cryptographic schemes. In the last few
decades, there has been a large body of highly influential research on the feasi-
bility and efficiency of realizing leakage-resilient variants of fundamental crypto-
graphic primitives against active/passive adversaries that perform leakage stat-
ically/adaptively (refer to the excellent survey [32]).

One such fundamental cryptographic primitive is secret-sharing schemes,
which are essential to nearly all threshold cryptography. In the (so-called) stan-
dard model, the adversary can corrupt a few parties and obtain their secret-
shares; however, it obtains no additional information about the remaining secret
shares. The security of secret-sharing schemes crucially relies on the fact that the
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corruption threshold is lower than the secret-sharing schemes’ privacy threshold.
However, a side-channel attack on a secret-sharing scheme provides the adversary
a restricted or noisy access to every party’s secret share. For instance, a passive
adversary can leak a few bits from each secret share. Although it has a partial
view of each secret share, the leakages’ joint distribution may be correlated with
the secret to compromise its secrecy.

Our understanding of the leakage-resilience of secret-sharing schemes is still
in its preliminary stage. Even for prominent secret-sharing schemes like Shamir’s
secret-sharing scheme, the exact characterization of the leakage-resilience is not
well-understood. A locally leakage-resilient secret-sharing scheme (LLRSS) [7]
(also implicit in the constructions of [26]) protects against a static passive adver-
sary. The adversary chooses leakage functions from all the secret shares. However,
an LLRSS secret-sharing scheme ensures that the leakage’s joint distribution is
statistically independent of the secret. Guruswami and Wootters’s reconstruction
algorithm [28,29] for Reed-Solomon codes (and follow-up works [18,27,42,52])
demonstrate that Shamir’s secret-sharing scheme on characteristic-2 finite fields
is insecure even when the adversary can leak only one bit from every secret
share. Achieving leakage-resilience seems challenging because the adversary need
not reconstruct the complete secret; obtaining only some partial information
about the secret precludes leakage-resilience. For example, over characteristic-
two fields, if the secret is a linear combination of some parties’ secret shares, then
the adversary can leak only one bit from these secret shares and reconstruct the
least significant bit of the secret. Although this attack does not suffice to recon-
struct the complete secret (which is impossible using entropy arguments), it
suffices to distinguish the secret 0 from secret 1.

There has been a significant amount of research into constructing new
leakage-resilient secret-sharing schemes [3,6,11,13,15,23,24,31,36,41,51]. How-
ever, it seems insurmountable to replace every deployed secret-sharing scheme
with their leakage-resilient version or an entirely new leakage-resilient secret-
sharing scheme. Furthermore, in specific contexts, cryptographic constructions
crucially rely on the secret-sharing scheme’s additional salient features (for exam-
ple, their linearity and algebraic structure); thus, making such a substitution
impossible. Inspired by these concerns, recently, there have been studies on
the leakage-resilience of prominent secret-sharing schemes, like Shamir’s secret-
sharing scheme and the additive secret-sharing scheme [2,14,30,37,39].

A Summary of Our Model and Results. This work studies the leakage-
resilience of Massey secret-sharing schemes [43] corresponding to various linear
codes, for example, random linear codes, Reed-Solomon codes, and the parity
code. We remind the readers that prominent secret-sharing schemes like Shamir’s
secret-sharing scheme and the additive secret-sharing scheme are the Massey
secret-sharing schemes corresponding to (punctured) Reed-Solomon codes and
the parity code. Our work considers m-bit general leakage from each secret share,
where m is a constant.

Result 1. We present a Monte Carlo algorithm for a linear secret-sharing
scheme that is secure against m-bit leakage from each secret share, where m is
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a constant. We prove that the Massey secret-sharing scheme corresponding to a
random linear code is leakage-resilient if k/n is a constant > 1/2. Towards this
objective, the technical challenge is that the number of potential constructions is
exponentially smaller than the number of all such leakage functions. Overcoming
this hurdle requires identifying a significantly smaller set of “tests,” passing them
suffices to guarantee leakage-resilience.

Result 2. Next, we show an explicit leakage function (leaking only m = 1
bit from each secret share) that highlights a significant shortcoming of the ana-
lytic techniques employed in this line of work. Ever since the work of Ben-
hamouda et al. [7], analytic techniques employ a (natural) “proxy analytic func-
tion” to study the leakage resilience of secret-sharing schemes. If this proxy is
small, then the insecurity of the secret-sharing scheme to leakage attacks is small
as well. However, we present an explicit attack demonstrating that the converse
is false, making a case for discovering new (analytically well-behaved) proxies
that represent the insecurity of secret-sharing schemes more accurately.

Result 3. Using the new analytical techniques developed for “Result 1” in our
work, we improve the leakage-resilience guarantees for Shamir’s secret-sharing
scheme for n parties. We prove that if the reconstruction threshold k � 0.8675 ·n
then it is secure against m = 1 bit leakage from each secret share improving the
previous state-of-the-art from k � 0.907·n.1 Independent to our work, the journal
version [9] of [8] also improved the threshold to k � 0.85n.

Result 4. Finally, we note that an attack for additive secret-sharing schemes
proposed by Benhamouda et al. [7] can be extended to all linear secret-sharing
schemes. By this observation, we prove that to achieve 2−λ insecurity, the thresh-
old k must be at least Ω

(
λ

log λ

)
. This generalizes a similar result by Nielsen and

Simkin [44] as their result works only for polynomially large fields while our
result works for fields of arbitrary size.

1.1 Our Contributions

This section introduces some basic definitions to facilitate an intuitive presenta-
tion of our results.

F is a prime field such that |F | needs λ bits for its binary representation, i.e.,
2λ−1 � |F | < 2λ. We interpret λ as the security parameter and, therefore, the
number of parties n = poly(λ). Typically, in cryptography, the objective is to
demonstrate the insecurity of cryptographic constructions is negl(λ), a function
that decays faster than any inverse-polynomial in λ. However, in this work, as
is common in information theory and coding theory literature, all our results
shall further ensure that the insecurity is exponentially decaying in the security
parameter.

Massey Secret-Sharing Scheme. Let C ⊆ Fn+1 be a subset, referred to
as a code. The Masey secret-sharing scheme [43] corresponding to code C secret-
1 The older full version of [8] claims a smaller constant in Theorem 1.2, which is a

consequence of an incorrect calculation. k � 0.907n is an accurate reflection of the
result in their full version.
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shares the secret s ∈ F by choosing a random (c0, c1, . . . , cn) ∈ C conditioned
on c0 = s. The secret share of party i is si = ci, for all i ∈ {1, . . . , n}.

Linear Codes. A vector subspace V ⊆ Fn+1 of dimension (k + 1) is an
[n + 1, k + 1]F -code. A matrix G+ ∈ F (k+1)×(n+1) succinctly represents this
vector space V if the linear span of its rows, represented by 〈G+〉, is identical
to the vector space V . (Punctured) Reed-Solomon codes and parity codes are
linear codes. Fix distinct evaluation places X1, . . . , Xn ∈ F ∗. The set of elements
(f(0), f(X1), . . . , f(Xn) ), for all polynomials f(X) ∈ F [X] of degree < (k + 1),
is the (punctured) Reed-Solomon code. The set of all elements (c0, c1, . . . , cn) ∈
Fn+1 such that c0 + c1 +· · · + cn = 0 is the parity code.

This work considers Massey secret-sharing schemes of linear codes.
Local Leakage-Resilience of Secret-Sharing Schemes. An (n,m)

local leakage function leaks m-bit leakage from each of the secret shares of
the n parties. The output of an (n,m) local leakage function is the joint
distribution of the mn leakage bits. A secret-sharing scheme for n parties is
(m, ε) − locallyleakage − resilient if any (n,m) local leakage function cannot
distinguish whether the secret s(0) ∈ F from the secret s(1) ∈ F based on the
joint leakage distributions, for arbitrary s(0), s(1) ∈ F .

Remark 1. In the literature (e.g., [7]), the following definition of leakage-
resilience has also been considered. The adversary is given some secret shares
explicitly and then allowed to leak from the remaining secret shares. We note
that, for an MDS code G+, the leakage-resilience of Massey secret-sharing cor-
responding to G+ in these two definitions are equivalent as follows.

Suppose G+ is an MDS code of dimension (k + 1) × (n + 1). If the adversary
obtains t shares explicitly, the remaining secret shares is exactly a Massey secret-
sharing scheme corresponding to some G′ of dimension (k + 1 − t) × (n + 1 − t).
Hence, G+ is leakage-resilient to an adversary who obtains t shares explicitly if
and only if Massey secret-sharing corresponding to G′ is leakage-resilient when
the adversary only leaks from every secret share.

In this paper, we only work with G+ that is MDS.2 Therefore, we restrict to
the simple setting where the adversary only leaks from every secret share.

Result 1. Leakage-Resilience of Random Linear Codes. For the pre-
sentation in this section, a random [n + 1, k + 1]F -code is the linear code 〈G+〉
where G+ ∈ F (k+1)×(n+1) is a rank-(k + 1) random matrix. Section 2.2 provides
additional details on efficiently sampling such a matrix.

Corollary 1 (Random Linear Secret-sharing Schemes are Leakage-
resilient). Fix constants m ∈ N, δ ∈ (0, 1), and η ∈ (0, 1). Define n = (1−η) ·λ
and k = (1/2 + δ) · n. Let F be a prime field of order ∈ {2λ−1, . . . , 2λ − 1}. For
all sufficiently large λ, the Massey secret-sharing scheme corresponding to a ran-
dom [n + 1, k + 1]F -code is (m, ε)-locally leakage-resilient, where ε = exp(−Θλ),
except with exp(−Θλ) probability.

2 In particular, our main result considers a random G+, which is MDS with over-
whelming probability.
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We highlight that one can publicly choose the randomness determining G+ once
(say, using a CRS) and use this code for all future applications. With high
probability, as long as the local leakage is � m, the Massey secret-sharing scheme
corresponding to the linear code 〈G+〉 shall be leakage-resilient.3 Intuitively,
the Massey secret-sharing scheme corresponding to a random [n + 1, k + 1]F -
code (where F is a finite field of order > 2λ−1, n = 0.97λ, and k = 0.49λ)
shall be leakage-resilient to arbitrary m-bit local leakages when λ is sufficiently
large (except with exponentially small probability). The threshold of λ being
sufficiently large depends on the choices of m, δ, and η. For example, when m = 1
and using 2000-bit prime numbers, the insecurity of the above scheme is < 2−50.

Efficiency. Linear codes, in contrast to non-linear codes, result in efficient
Massey secret-sharing schemes. In particular, when G+ = [Ik+1 | P ] is in the
standard form, as is the case in this work, then the corresponding Massey secret-
sharing scheme is easy to specify, where Ik+1 ∈ F (k+1)×(k+1) is the identity
matrix. Observe that the secret shares of the secret s ∈ F is

(s, s1, . . . , sn) := (s, r1, . . . , rk) · G+,

where r1, . . . , rk are independently and uniformly distributed over F . Recon-
struction of the secret is efficient as well for this secret-sharing scheme. Suppose
G+

∗,0 = λ1 · G+
∗,j1

+· · · + λt · G+
∗,jt

, where G+
∗,j represents the j-th column of the

matrix G+ and λ1, . . . , λt ∈ F are appropriate constants. Then, parties j1, . . . , jt

can efficiently reconstruct the secret s = λ1 · sj1 + · · · + λt · sjt
, where sj rep-

resents the secret share of party j. Furthermore, any t = k + 1 shall be able to
reconstruct the secret because any (k + 1) columns of a random G+ is full rank,
except with an exponentially small probability.

The efficient reconstruction of the secret depends on parties reporting their
secret shares correctly. If there are (k + 1) publicly identifiable honest parties,
all parties can efficiently reconstruct the secret from these parties’ secret-shares.
Additionally, information-theoretic primitives like message authentication codes
can ensure that malicious parties cannot disclose incorrect secret shares.4 Using
such information-theoretic cryptographic primitives, all parties can efficiently
reconstruct the secret in applications using such secret-sharing schemes.

Applications. Linear secret-sharing schemes have applications in secure multi-
party computation [25,55] due to their additive structure. In particular, an addi-
tive secret-sharing scheme is useful for the secure computation of circuits that use
only addition gates, i.e., the aggregation functionality. The secure computation
protocol proceeds as follows. Party i secret-shares its inputs x(i) using a linear
secret-sharing scheme. Let the secret share of x(i) for party j be x(i,j). Now, party

3 However, as are typical for probabilistic existential results in information theory and
coding theory, one cannot efficiently test whether the sampled G+ is leakage-resilient.

4 This step is necessary because efficient error-correction algorithms for (dense) ran-
dom linear codes shall require incredible breakthroughs in mathematics. In fact, a
lot of cryptography assumes that error-correction for random linear codes is inef-
ficient [47,49]. Efficient error-correction is known only when the matrix G+ has
additional algebraic structures.
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j has the secret shares x(1,j), . . . , x(n,j). Party j defines s(j) :=
∑n

i=1 x(i,j). Now,
the secret shares s(1), . . . , s(n) are secret shares of the sum s = x(1)+· · ·+x(n). If
any (k+1) parties can reconstruct the secret in the linear secret-sharing scheme,
any subset of (k + 1) parties can come online to recover the sum s.

When using our linear secret-sharing scheme5 robust to arbitrary m-bit local
leakage, this secure computation is leakage-resilient to arbitrary m-bit leakage
as well, when k/n is a constant > 1/2. The previous state-of-the-art construc-
tion [7] used Shamir’s secret-sharing scheme and needed k/n � 0.907, which
was a significantly larger fraction. [39] proved the leakage-resilience of Shamir’s
secret-sharing scheme for an extremely restricted family of leakage functions,
namely, the physical-bit leakage function, for every k > 1.

Derandomization. We highlight that we significantly derandomized the space
of all possible codes to demonstrate that a linear code suffices to construct a
leakage-resilient secret-sharing scheme. For example, against active adversaries
who tamper the secret shares, the probabilistic construction of Cheraghchi and
Guruswami [16] used (inefficient) non-linear codes.6

Technical Highlights. At the outset, linear codes as potential candidate con-
structions for leakage-resilient secret-sharing schemes seem far-fetched. Observe
that the set of all possible (n,m) local leakage functions is 2mn|F | � 22

λ

, where m

is a constant, n = poly(λ), and p ≈ 2λ. However, there are only |F |kn ≈ 2poly(λ)

different matrices G+. Typically, the proofs of similar results (see, for example,
[16,22,39]) proceed by “union bound” techniques and need the set of adversarial
strategies to be significantly smaller than the potential choices available for the
construction. One of our work’s key technical contributions is to address this
apparent handicap that our construction faces.

We introduce a new family of “tests” (see Sect. 3) inspired by the various
notions of pseudorandomness [53,54]. We show that if a generator matrix G+

passes all these tests, then the Massey secret-sharing scheme corresponding to
the linear code 〈G+〉 is leakage-resilient (see Sect. 3.3). The advantage here is
that the number of all possible tests is significantly smaller than the number of
choices for choosing G+. Finally, we show that nearly all matrices G+ pass all our
tests (see Sect. 3.2). Lemmas 1 and 2 abstract these two technical innovations,
which, the authors believe, are of potential independent interest in the broader
field of probabilistic analysis. Section 3 presents the proof of this result.

Result 2. A Barrier in the Analytic Modeling. Benhamouda et al. [7]
introduced an analytic proxy (Refer to Eq. 6) for upper bounding the statistical
distance between leakage distributions of different secrets. All the works in this
line of research ([7,39] and this work) essentially study leakage-resilience of the
secret-sharing scheme through this analytic proxy. We present an inherent barrier

5 Additionally, one can use information-theoretic message authentication codes to
avoid incorrect revelation of secret-shares.

6 We note that non-malleability naturally requires the code to be non-linear. However,
our point is that the union bound technique would not have worked if one considers
a very small family of constructions such as linear codes.
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for this proof strategy. We prove that one cannot prove any meaningful result
when the threshold is less than half of the number of parties.

In particular, we present an explicit leakage function �L, which tests whether
the field element is a quadratic residue or not. We prove that for any linear secret-
sharing scheme with threshold k and n parties such that k < n/2, the analytic
proxy with respect to this secret-sharing scheme and our leakage function �L is
at least 1.7 Therefore, using this analytic proxy, it is hopeless to prove leakage-
resilience against general leakage when k < n/2. This result is summarized as
Theorem 1 in Sect. 4.

In light of this, our first result that states a random linear code is leakage-
resilient when k � (12 + δ)n for an arbitrary constant δ ∈ (0, 1/2) is the optimal
result one could hope to obtain using the current proof technique. To obtain
better results, significantly different ideas are required.

We note that the recent work of Maji et al. [39] also employs this analytic
proxy. They show that Shamir’s secret-sharing with random evaluation places
is leakage-resilient even for the most stringent case k = 2 and n = poly(λ).
Their results, however, do not contradict the barrier we present here. They only
consider the family of leakage functions that leak physical-bit when the field
elements are store in their natural binary representations. The counter-example
we present, i.e., testing whether a field element is a quadratic residue or not,
cannot be simulated by leaking a constant number of physical-bits.

Result 3. We prove the following result on the leakage-resilience of Shamir’s
secret-sharing scheme.

Corollary 2. There exists a universal constant p0 such that, for all finite field
F of prime order p > p0, the following holds. Shamir’s secret-sharing scheme
with number of parties n and threshold k is (1, exp(−Θn)-leakage-resilient if
k � 0.8675n.

We improve from the previous state-of-the-art result of k � 0.907n of [7] to
k � 0.8675n. In an independent work, Benhamouda et al. [9] also improved
their results to k � 0.85n. Note that achieving k < n/2 shall enable parties to
multiply their respective secret shares to obtain secret shares of the product of
the secrets.

Technically, we prove this result by employing a more fine-grained (compared
to [7]) analysis on the analytic proxy. Section 5 presents the proof overview.

Result 4. Consider a secret-sharing scheme with n parties and threshold k
over a prime field F of order p that is leakage-resilient to m-bit leakage from each
share. Nielsen and Simkin [44] proved that it must hold that k ·log p � m·(n−k).
Intuitively, they prove this result using an entropy argument.8 Consequently,
their result is inevitably sensitive to the size of the field. They used this result

7 Note that this analytic proxy is used as an upper bound of the statistical distance.
Hence, it gives an inconsequential bound if it is � 1.

8 Note that a secret-sharing scheme contains exactly k ·log p amount of entropy. Hence,
intuitively, the total amount entropy leaked m · n cannot exceed k · log p.
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to show that if the field size satisfies p = poly(n), the threshold k must be at
least Ω (n/ log n).

For linear secret-sharing schemes, we obtain a similar result, independent of
the field size.

Corollary 3. If a linear secret-sharing scheme (over an arbitrarily large field)
with n parties and threshold k is (1, ε)-leakage-resilient, then it must hold that
ε �

(
1
2k

)k. Consequently, if it is (1, exp(−Θn))-leakage-resilient, it must hold
that k = Ω (n/ log n).

We prove our result through a similar attack proposed by [7] (on additive secret-
sharing schemes). A proof of this result is provided in the full version [40].

1.2 Prior Works

Local leakage-resilient secret-sharing schemes were introduced by Benhamouda,
Degwekar, Ishai, and Rabin [7] (also, independently by [26] as an intermediate
primitive). There has been a sequence of works analyzing the leakage-resilience of
prominent secret-sharing schemes [2,14,30,37,39] and constructing new leakage-
resilient secret-sharing schemes [3,6,11,13,15,23,24,31,36,41,51].

There is an exciting connection between repairing a linear code in the dis-
tributed storage setting and the leakage-resilience of its corresponding Massey
secret-sharing scheme [43]. In the distributed storage setting, every coordinate
of the linear code is separately stored. The objective is to repair a block of the
code by obtaining information from all other blocks. For example, Guruswami
and Wootters [28,29] present a reconstruction algorithm that obtains m = 1 bit
from every block of a Reed-Solomon code to repair any block when the field has
characteristic two. These reconstruction algorithms ensure that by leaking m bits
from the secret-shares corresponding to the Massey secret-sharing scheme corre-
sponding to the linear code, it is possible to reconstruct the secret. For example,
the Reed-Solomon reconstruction algorithm of Guruswami-Wootters translates
into a leakage attack on Shamir’s secret-sharing scheme (for characteristic two
fields), the Massey secret-sharing scheme corresponding to a (punctured) Reed-
Solomon code.

However, when working over prime fields, [7] proved that Shamir’s secret-
sharing scheme is robust to m = 1 bit leakage if the reconstruction threshold is
sufficiently high. In particular, their analysis proved that it suffices for the recon-
struction threshold k to be at least 0.907n, where n is the total number of parties.
Moreover, their results extend to arbitrary MDS codes. They complement this
positive result with an attack on the additive secret-sharing scheme that has a
distinguishing advantage of ε � k−k. After that, Nielsen and Simkin [44] present
a probabilistic argument to construct a leakage attack on any Massey secret-
sharing scheme. Roughly, their attack needs m � k log p/(n − k) bits of leakage
from each secret share, where p is the order of the prime field.

Recently, [39] studied a restricted family of leakage on Shamir’s secret-sharing
schemes. The secret-shares, which are elements of the prime field, are represented
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in their natural binary representation and stored in hardware. The adversary
can leak only physical bits from the memory storage. They proved that Shamir’s
secret-sharing scheme with random evaluation places is leakage-resilient to this
leakage family.

2 Preliminaries and Notations

The binary entropy function h2 : [0, 1] → [0, 1] is

h2(p) := − p log2 p − (1 − p) log2(1 − p).

We shall use the following elementary upper bound on the binomial coefficients.

Claim 1 (Estimation of Binomial Coefficients). For all n ∈ N and k ∈
{0, 1, . . . , n}, we have (

n

k

)
� 2h2(k/n)·n.

Proof. Observe that

1 =
(

k

n
+

n − k

n

)n

�
(

n

k

) (
k

n

)k (
1 − k

n

)n−k

=
(

n

k

)
2−h2(k/n)·n.

This completes the proof of the claim.

Our work uses the length of the binary representation of the order of the
prime field F as the security parameter λ. The total number of parties n =
poly(λ) and the reconstruction threshold k = poly(λ) as well. The objective of
our arguments shall be to show the insecurity of the cryptographic constructions
is ε = negl(λ), i.e., a function that decays faster than any inverse-polynomial of
the λ.

We shall also use the following Vinogradov notations for brevity in our analy-
sis (as consistent with, for example, [4]). For functions f(λ) and g(λ), one writes
f(λ) ∼ g(λ) to represent f(λ) = (1 + o(1)) · g(λ), where o(1) is a decreasing
function in λ. Similarly, f(λ) � g(λ) is equivalent to f(λ) � (1 + o(1)) · g(λ).
Finally, f(λ) 
 g(λ) represents that f(λ) = o(1) · g(λ). We explicitly mention
the definitions of these notations because there are multiple interpretations of
these symbols even in the field of analysis.

2.1 General Notation: Vectors, Random Variables, Sets

Let X be a sample space. Particular elements of X are represented using the
small-case letter x. A random variable of sampling x from the sample space X
shall be represented by x.

For any two distributions A and B over the same sample space (which is
enumerable), the statistical distance between the two distributions, represented
by SD(A,B), is defined as 1

2

∑
x |Pr[A = x] − Pr[B = x]|.

A vector �v ∈ Ωn is interpreted as �v = (v1, . . . , vn), where each vi ∈ Ω. For
any I ⊆ {1, . . . , n}, the vector �vI ∈ Ω|I| represents the vector (vi : i ∈ I).

Let (S, ◦) be a group. Let A ⊆ S and x ∈ S be an arbitrary element of S.
Then x ◦ S is the set {x ◦ y : y ∈ S}.
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2.2 Matrices

We adopt the following notations for matrices as consistent with [45].
Let F be a finite field. A matrix M ∈ F k×n has k-rows and n-columns, and

each of its element is in F . For i ∈ {1, . . . , k} and j ∈ {1, . . . , n}, Mi,j represents
the (i, j)-th elements in the matrix M . Furthermore, Mi,∗ represents the i-th row
of M and M∗,j represents the j-th column of M . The transpose of the matrix
M ∈ F k×n is the matrix N ∈ Fn×k such that Mi,j = Nj,i, for all i ∈ {1, . . . , k}
and j ∈ {1, . . . , n}. We represent N = Mᵀ.

Let I ⊆ {1, . . . , k} and J ⊆ {1, . . . , n} be a subset of row and column indices,
respectively. The matrix M restricted to rows I and columns J is represented
by MI,J . If I = {i} is a singleton set, then we represent Mi,J for M{i},J . The
analogous notation also holds for singleton J . Furthermore, G∗,J represents the
columns of G indexed by J (all rows are included). Similarly, G∗,j represents the
j-th column of the matrix G. Analogously, one defines GI,∗ and Gi,∗.

Some parts of the documents use {0, 1, . . . , k} as row indices and {0, 1, . . . , n}
as column indices for a matrix G ∈ F (k+1)×(n+1). We will be explicit in men-
tioning the row and column indices in this work.

Random Matrices. A random matrix M of dimension k × n is a uniformly
random element of F k×n. This sampling is equivalent to choosing every element
Mi,j of the matrix uniformly and independently at random from F , for all i ∈
{1, . . . , k} and j ∈ {1, . . . , n}.

2.3 Codes and Massey Secret-Sharing Schemes

We use the following notations for error-correcting codes as consistent with [38].
Let F be a finite field. A linear code C (over the finite field F ) of length

(n+1) and rank (k +1) is a (k +1)-dimension vector subspace of Fn+1, referred
to as an [n + 1, k + 1]F -code. The generator matrix G ∈ F (k+1)×(n+1) of an
[n+1, k+1]F linear code C ensures that every element in C can be expressed as
�x ·G, for an appropriate �x ∈ F k+1. Given a generator matrix G, the row-span of
G, i.e., the code generated by G, is represented by 〈G〉. A generator matrix G is
in the standard form if G = [Ik+1|P ], where Ik+1 ∈ F (k+1)×(k+1) is the identity
matrix and P ∈ F (k+1)×(n−k) is the parity check matrix. In our work, we always
assume that the generator matrices are in their standard form.

Let C ⊆ Fn+1 be the linear code that G generates. The dual code of C,
represented by C⊥ ⊆ Fn+1, is the set of all elements in Fn+1 that are orthogonal
to every element in C. The dual code of an [n + 1, k + 1]F -code happens to
be an [n + 1, n − k]F -code. The generator matrix H for the dual code of the
[n+1, k+1]F linear code C generated by G = [Ik+1|P ] satisfies H = [−P ᵀ|In−k],
where P ᵀ ∈ F (n−k)×(k+1) is the transpose of the matrix P ∈ F (k+1)×(n−k). For
brevity, we shall refer to the generator matrix H as the dual of the generator
matrix G.

Maximum Distance Separable Codes. The distance of a linear code is the
minimum weight of a non-zero codeword. An [n, k]F -code is maximum distance
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separable (MDS) if its distance is (n − k + 1). Furthermore, the dual code of an
[n, k]F -MDS code is an [n, n − k]F -MDS code.

Massey Secret-Sharing Scheme. Let C ⊆ Fn+1 be a code (not necessarily
a linear code). Let s ∈ F be a secret. The secret-sharing scheme picks a random
element (s, s1, . . . , sn) ∈ C to share the secret s. The secret shares of parties
1, . . . , n are s1, . . . , sn ∈ F , respectively. Below, we elaborate on the Massey
secret-sharing scheme and its properties specifically for a linear code C such
that its generator matrix G+ is in the standard form.

Recall that the set of all codewords of the linear code generated by the
generator matrix G+ ∈ F (k+1)×(n+1) is

{
�y : �x ∈ F k+1, �x · G+ =: �y

} ⊆ Fn+1.

For such a generator matrix, its rows are indexed by {0, 1, . . . , k} and its columns
are indexed by {0, 1, . . . , n}. Let s ∈ F be the secret. The secret-sharing scheme
picks independent and uniformly random r1, . . . , rk ∈ F . Let

(y0, y1, . . . , yn) := (s, r1, . . . , rk) · G+.

Observe that y0 = s because the generator matrix G+ is in the standard form.
The secret shares for the parties 1, . . . , n are s1 = y1, s2 = y2, . . . , sn = yn,
respectively. Observe that every party’s secret-share is an element of the field
F . Of particular interest will be the set of all secret shares of the secret s = 0.
Observe that the secret-shares form an [n, k]F -code that is 〈G〉, where G =
G+

{1,...,k}×{1,...,n}. Note that the matrix G is also in the standard form. The
secret shares of s ∈ F ∗ form the affine space s · �v + 〈G〉, where �v = G+

0,{1,...,n}.
Refer to Fig. 1 for a pictorial summary.

Suppose parties i1, . . . , it ∈ {1, . . . , n} come together to reconstruct the secret
with their, respective, secret shares si1 , . . . , sit

. Let G+
∗,i1

, . . . , G+
∗,it

∈ F (k+1)×1

represent the columns indexed by i1, . . . , it ∈ {1, . . . , n}, respectively. If the
column G+

∗,0 ∈ F (k+1)×1 lies in the span of
{
G+

∗,i1
, . . . , G+

∗,it

}
then these parties

can reconstruct the secret s using a linear combination of their secret shares.
If the column G+

∗0 does not lie in the span of
{
G+

∗,i1
, . . . , G+

∗,it

}
then the secret

remains perfectly hidden from these parties. The perfectly-hiding property is
specific to the case that a linear code is used for the Massey secret-sharing
scheme. In particular, this perfectly-hiding property need not necessarily hold
for Massey secret-sharing schemes that use a non-linear secret-sharing scheme.

In this document, we shall use the “Massey secret-sharing scheme of G+”
to refer to the Massey secret-sharing scheme corresponding to the linear code
generated by the generator matrix G+. The underlying field F , the length of
the code (n + 1), and the rank (k + 1) of the linear code are implicit given the
definition of the generator matrix G+. These parameters, in turn, define the space
of the secret-shares, the total number of parties, and the randomness needed to
generate the secret shares for the Massey secret-sharing scheme, respectively.

Specific Linear Codes. The (punctured) Reed-Solomon code of rank (k+1)
and evaluation places �X = (X1, . . . , Xn) ∈ (F ∗)n, where i �= j implies Xi �= Xj ,
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is the following code. Let f(X) be the unique polynomial with F -coefficients
and degree � k such that f(0) = y0, f(X1) = y1, f(X2) = y2, . . . , f(Xk) = yk,
for any y0, y1, . . . , yk ∈ F . Define ck+1 = f(Xk+1), . . . , cn = f(Xn). The set
of all codewords (y0, y1, . . . , yk, ck+1, . . . , cn) ∈ Fn+1 is an [n + 1, k + 1]F -code.
Furthermore, the mapping

(y0, y1, . . . , yk) → (y0, y1, . . . , yk, ck+1, . . . , cn)

is linear and a generator matrix in the standard form establishes this mapping.

Specific Secret-Sharing Schemes. Shamir’s secret-sharing scheme is the
Massey secret-sharing scheme corresponding to (punctured) Reed-Solomon
codes. Suppose the evaluation places of the (punctured) Reed-Solomon code are
�X = (X1, . . . , Xn) ∈ (F ∗)n. Suppose the secret is s ∈ F . Let f(X) be the unique
polynomial with F -coefficients and degree � k such that f(0) = s, f(X1) =
r1, . . . , f(Xk) = rk. Define the secret shares (s1, . . . , sn), where si = f(Xi), for
all i ∈ {1, . . . , n}.

2.4 Locally Leakage-Resilient Secret-Sharing Scheme

Fix a finite field F and an n-party secret-sharing scheme for secrets s ∈ F ,
where every party gets an element in F as their secret share. An (n,m) local
leakage function �L = (L1, . . . , Ln) is an n-collection of m-bit leakage functions
Li : F → {0, 1}m, for i ∈ {1, . . . , n}. Note that there are a total of 2mn·|F |

different (n,m) local leakage functions. Let �L(s) be the joint distribution of
the (n,m) leakage function �L over the sample space ({0, 1}m)n defined by the
experiment: (a) sample secret shares (s1, . . . , sn) for the secret s, and (b) output
(L1(s1), . . . , Ln(sn)). We emphasize that the secret-sharing scheme and the finite
field F shall be evident from the context. So, we do not include the description
of the secret-sharing scheme and the finite field in the random variables above
to avoid excessively cumbersome notation.

A secret-sharing scheme for n-parties is (m, ε)-locally leakage-resilient secret-
sharing scheme if, for all (n,m) local leakage functions �L = (L1, . . . , Ln) and
secret pairs (s(0), s(1)), the statistical distance between the leakage joint distri-
butions �L(s(0)) and �L(s(1)) is at most ε.

For brevity, we shall say that a generator matrix G is (m, ε)-locally leakage-
resilient if the Massey secret-sharing scheme corresponding to the linear code
generated by G is (m, ε)-locally leakage-resilient.

3 Leakage-Resilience of Random Linear Codes

In this section, we prove Corollary 1. We start by recalling some notations. Refer
to Fig. 1 for a pictorial summary of the notations. The secret shares of 0 is the
vector space

(0, r1, . . . , rk) · G{0,...,k},{1,...,n} ∈ Fn.
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1

Ik −Rᵀ In−k
R

�v

Fig. 1. The matrix on the left is G+ = [Ik+1 | P ], where P is the random matrix
in the shaded region. The indices of rows and columns of G+ are {0, 1, . . . , k} and
{0, 1, . . . , n}, respectively. The blue G = [Ik | R] is a submatrix of G+. The vector
highlighted in red is the vector �v. On the right-hand side, we have the matrix H, where
〈H〉 is the dual code of 〈G〉. (Color figure online)

Observe that this vector space is an [n, k]F -code, represented by 〈G〉, where
G = G+

{1,...,k},{1,...,n}. Each element of 〈G〉 is equally likely to be chosen as the
secret share for the n parties. Next, consider the secret s ∈ F ∗. The secret shares
of s form the affine space

(s, r1, . . . , rk) · G+
∗,{1,...,n} ∈ Fn.

Observe that, one can express this affine space as

s · �v + 〈G〉 ⊆ Fn,

where �v = G+
0,{1,...,n} ∈ Fn.

To demonstrate that the Massey secret-sharing scheme corresponding to the
linear code generated by a generator matrix G+ ∈ F (k+1)×(n+1) is vulnerable
to leakage attacks, the adversary needs to present two secrets s(0), s(1) ∈ F and
an (n,m) local leakage function �L such that the statistical distance between the
joint leakage distributions for these two secrets is large.

First Attempt. Fix an (n,m) local leakage function �L. Let �	 ∈ ({0, 1}m)n be
a leakage value. Let L−1

i (	i) ⊆ F be the subset of i-th party’s secret shares such
that the leakage function Li outputs 	i ∈ {0, 1}m as output. Therefore, we have
si ∈ L−1

i (	i) if and only if Li(si) = 	i. Furthermore, the leakage is �	 if and only
if the secret shares �s belongs to the set

�L−1(�	) := L−1
1 (	1) ×· · · × L−1

n (	n).

So, the probability of the leakage being �	 conditioned on the secret being s(0) is

1

|F |k
·
∣∣∣ s(0) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣ .

Similarly, the probability of the leakage being �	 conditioned on the secret
being s(1) is

1

|F |k
·
∣∣∣ s(1) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣ .
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The absolute value of the difference in the probabilities is, therefore, the following
expression.

1

|F |k
·
∣∣∣∣∣

∣∣∣s(0) · �v + 〈G〉 ∩ �L−1(�	)
∣∣∣ −

∣∣∣s(1) · �v + 〈G〉 ∩ �L−1(�	)
∣∣∣

∣∣∣∣∣.

The statistical distance between the joint leakage distributions is

1
2

· 1

|F |k
∑

��∈({0,1}m)n

∣∣∣∣∣
∣∣∣s(0) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣ −
∣∣∣s(1) · �v + 〈G〉 ∩ �L−1(�	)

∣∣∣
∣∣∣∣∣.

(1)
If the expression in Eq. 1 is � ε for all (n,m) leakage functions �L and all pairs
of secrets s(0) and s(1), then the generator matrix G+ is (m, ε)-locally leakage-
resilient.

Remark 2. Observe that if one can choose �L to ensure that any codeword �c ∈ 〈G〉
that belongs to �L−1(�	) (for some �	) also has �c + s(1) ·�v �∈ �L−1(�	) for some secret
s(1), then the expression in Eq. 1 is identical to 1.

For example, if the finite field is characteristic-2, even with m = 1 bit leakage
from each secret share, an adversary can ensure this condition. The attack works
as follows. Suppose the secret s can be reconstructed by α1s1 +α2s2 + · · ·+αksk

where α1, . . . , αk are fixed field elements and si is the i-th secret share. The
adversary leaks the least significant symbol bi of αisi from the i-th secret share.
Afterwards, the adversary can reconstruct the least significant symbol of the
secret s by computing b1 ⊕ b2 ⊕ · · · ⊕ bk. This leakage attack extends to linear
secret-sharing schemes over finite fields with small characteristics. More specifi-
cally, the above attack generalize to characteristic-p field when the adversary is
allowed to leak �log p� bits from each secret share.

Recall that the number of (n,m) local leakage functions is 2mn·|F |. One
encounters the following hurdle while proceeding by the union bound technique
to prove our result. Suppose that for every leakage function �L there is one gener-
ator matrix such that the statistical distance in Eq. 1 is > ε. Using näıve union
bound technique, one shall rule out 2mn·|F | generator matrices. However, there
are only a total of |F |(k+1)×(n−k) generator matrices. For the event of encounter-
ing generator matrices that are (m, ε)-locally leakage-resilient with high proba-
bility, we shall require

2mn·|F | 
 |F |(k+1)·(n−k) ∼ 2kn·log2|F |.

For simplicity, consider the minimal non-trivial case of m = 1 and k = n(1 −
o(1)). Our result is impossible to prove even for this minimal non-trivial case
where |F | = p � 2λ−1 and m = 1.

Remark 3. We note that the recent result of [39] uses a union bound technique.
In their work, however, they consider physical-bit leakage functions. The total
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number of physical-bit leakage functions is extremely small;9 otherwise, their
approach (despite all the exciting new technical tools) would not have worked.

Remark 4. In the active adversary setting, to the authors’ best knowledge, union
bound (over all possible adversaries) is the only general technique known in the
literature. See, for instance, the probabilistic proofs of the existence of non-
malleable extractors [19] and non-malleable codes [16,22]. The proof of [16] even
employs non-linear codes (which provide significantly more degrees of freedom in
designing the encoding schemes) to push a “union bound based proof” through.

A New Set of Tests. To circumvent the hurdles associated with the näıve
union bound, we propose a new set of tests. We emphasize that it is non-trivial
to prove that if a generator matrix G passes all these tests, then G+ is (m, ε)-
locally leakage-resilient. Section 3.3 elaborates this implication. The inspiration
for these tests stems from the literature in pseudorandomness [53,54].10

Recall that G+ ∈ F (k+1)×(n+1) is the generator matrix of the code, and
G+ = [Ik+1|P ] is in the standard form, where P ∈ F (k+1)×(n−k). The secret
shares of secret 0 is the [n, k]F -code 〈G〉. The matrix G is also in the standard
form, say G = [Ik|R], where R = P{1,...,k}×{1,...,n−k} ∈ F k×(n−k). Then, the
matrix H = [−Rᵀ|In−k] generates the dual code of the code generated by the
matrix G = [Ik|R]. We introduce the matrix H because it is easy to express our
tests using the row-span of H, i.e. 〈H〉.

Fix parameters σ ∈ [0, 1], γ ∈ N, and a ∈ N. The set of all tests Testσ,γ,a

is defined as follows. Every test is additionally indexed by (�V , J), where �V =
(V1, . . . , Vn), each Vi is a size-γ subset of the finite field F , and J is a size-
(1 − σ) · n subset of {1, . . . , n}. A codeword c ∈ Fn fails the test indexed by
(�V , J) if cj ∈ Vj , for all j ∈ J .

The generator matrix H fails the test indexed by (�V , J) if at least an code-
words fail this test. The generator matrix H passes Testσ,γ,a if H does not fail
for any test in Testσ,γ,a.

Lemma 1 (Technical Lemma 1). Let G+ be the generator matrix of an
[n + 1, k + 1]F -code. Consider a Massey secret-sharing scheme corresponding to
the linear code 〈G+〉. Let 〈G〉 be the [n, k]F -code formed by the set of all secret
shares of the secret 0. Let 〈H〉 be the [n, n − k]F -code that is the dual code of
〈G〉. Let Testσ,γ,a be a set of tests, where γ = 2m · T 2 and T ∈ N. If H passes
Testσ,γ,a, 〈H〉 is an MDS code, and σ ∈ (0, 2k/n − 1], then G+ is (m, ε)-locally
leakage-resilient, where

ε = 2−(log2(Cm)·(k/n)−log2(a)−h2(σ))·n + 2−(log2(T )·σ−(σ+k⊥/n)m−h2(σ))·n,

9 For example, consider a physical-bit leakage function that leaks one bit from the
field F . There are log2 |F | such functions. In comparison, there are 2|F | general 1-bit
leakage functions.

10 Intuitively, a set whose correlation with any Fourier character is small can be inter-
preted as a pseudorandom object. On the other side, a large Fourier coefficient
indicates a correlation with a Fourier character; thus, the object is not pseudoran-
dom. In a similar spirit, as we shall explain, our tests find whether a code 〈H〉 has
many codewords with large Fourier coefficients or not.
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and Cm > 1 is a suitable constant depending on m.11

Remark 5. Note that this lemma is where we inherently need k > n/2. Other-
wise, we are unable to pick a σ. We discuss this barrier further when we go into
the proof in Remark 6 and Sect. 4.

In Sect. 3.1, we shall set the parameters properly to ensure the insecurity is
negligible. There are potentially several techniques to prove this result. We prove
this technical lemma using Fourier analysis in Sect. 3.3.

Most Matrices Pass the Tests. Let us do a sanity check first. The total
number of tests in Testσ,γ,a is

(|F |
γ

)n

·
(

n

(1 − σ)n

)
= Θ|F |γ·n · 2h2(σ)·n.

Furthermore, the total number of generator matrices G is |F |k·(n−k). So, it is
plausible that the union bound technique may work for this result.

However, näıve accounting does not suffice. Section 3.2 presents the careful
accounting needed to prove the following result.

Lemma 2 (Technical Lemma 2). Fix constant σ, γ, a. Let p � 2λ−1 be a
prime and limλ→∞ n/λ ∈ (0, 1), where λ is the security parameter. Let G+ be
the generator matrix of an [n + 1, k + 1]F -code in the standard form such that
each element of its parity check matrix is independently and uniformly chosen
from F , where constant k/n ∈ (σ, 1). Consider a Massey secret-sharing scheme
corresponding to the linear code 〈G+〉. Let 〈G〉 be the [n, k]F -code formed by the
set of all secret shares of the secret 0. Let 〈H〉 be the [n, n − k]F -code that is the
dual code of 〈G〉. Then, the following bound holds.

Pr
G+

$←−G+

[H is MDS and passes Testσ,γ,a] = 1 − 2−(1−n/λ)·λ − exp(−Θλ3).

3.1 Parameter Setting for Corollary 1

Before we go into the proof of Lemmas 1 and 2, let us first show how we can
set up the parameters in both lemmas to imply Corollary 1. Let us restate the
corollary first.

Corollary 4. (Restatement of Corollary 1). Fix constants m ∈ N, δ ∈
(0, 1), and η ∈ (0, 1). Define n = (1 − η) · λ and k = (1/2 + δ) · n. Let F
be a prime field of order ∈ {2λ−1, . . . , 2λ − 1}. For all sufficiently large λ, the
Massey secret-sharing scheme corresponding to a random [n + 1, k + 1]F -code
is (m, ε)-locally leakage-resilient, where ε = exp(−Θλ), except with exp(−Θλ)
probability.

The sequence of parameter choices is as follows. We emphasize that all param-
eters below are constants.
11 Refer to the full version [40] for the relation between m and the constant Cm.
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1. We are given the number of bits leaked from each share m and the target
threshold δ as constants. Therefore, Cm > 1 is also fixed as a constant.

2. We shall pick constants σ > 0 and a > 1 arbitrarily satisfying the following
constraints.
(a) σ < min(2δ, 1/2 + δ). This parameter choice ensures that σ < 2k/n − 1

and σ < k/n.
(b) log2(Cm) · (1/2 + δ) − log2(a) − h2(σ) > 0. This choice ensures that the

first part in the expression of ε in Lemma 1 is negligible.
3. Next, we pick any constant T satisfying log2(T ) · σ − (σ + (1/2 − δ)) m −

h2(σ) > 0. This choice ensures that the second part in the expression of ε in
Lemma 1 is negligible.

4. Since we have picked T , this implicitly fixes γ as γ = 2m · T 2.

Clearly, all the steps above are feasible, and we have now fixed all the con-
stants involved. One can verify that all the prerequisites of Lemmas 1 and 2 are
satisfied. Consequently, Lemmas 1 and 2 together imply that the Massey secret-
sharing scheme corresponding to a random linear code is negligibly-insecure with
overwhelming probability.

As a concrete example, suppose m = 1, n = 0.97λ, and k = 0.49λ. In this
case Cm =

√
2, by setting, σ = 0.01, a = 1.5, and T = 250, one can verify that

λ > 2000 ensures that we achieve 2−50-insecurity.12

3.2 Proof of Lemma 2

The proof of Lemma 2 proceeds by a combinatorial argument. Fix a test (�V , J)

in the set of tests Testσ,γ,a. Consider the experiment where G+ $←− G+, and
H ∈ F k⊥×n be the matrix corresponding to G+ as described in the statement
of Lemma 2, where k⊥ = n−k. Our entire analysis is for this distribution of the
matrix H.

Observe that 〈H〉 is a maximum distance separable (MDS) code, with high
probability. We defer the proof of this claim to the full version [40].

Claim 2. The linear codes 〈G〉 and 〈H〉 are maximum distance separable codes,
except with probability (at most) 2n/p = exp(−Θλ).

Henceforth, our analysis shall assume that G+ is random as well as 〈G〉 and 〈H〉
are MDS (without loss of generality). Therefore 〈G〉 is an [n, k]F -MDS code and
〈H〉 is an [n, k⊥]F -MDS code, where k⊥ = n − k. Recall that H = [−Rᵀ|In−k],
where every element of −Rᵀ is independent and uniformly random over F .

Without loss of generality, assume that J = {σn + 1, σn + 2, . . . , n}. Among
the indices in J , let us fix the indices J ′ = {k+1, k+2, . . . , n} as the information
set for the linear code 〈H〉.13 Let us fix a set of witnesses B ⊆ F k⊥

of size an.
12 For similar range of parameter choices, e.g., when n is close to λ, the dominant

failure probability is the probability that a random matrix is not MDS, which is
2n−λ.

13 Since 〈H〉 is MDS, we can pick any k⊥ coordinates to be the information set. We
choose the last k⊥ coordinates (to coincide with the In−k block identity matrix of
H) for simplicity. All remaining coordinates of a codeword in 〈H〉 are derived via a
linear combination of the information set.
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Objective. Over the distribution of 〈H〉, what is the probability that every
codeword c ∈ 〈H〉 such that c restricted to the information set J ′ is in the set B

fails the test (�V , J)? That is, compute the probability of the event “if cJ ′ ∈ B
then cj ∈ Vj , for all j ∈ J .”

Proof for a Weaker Bound. The total number of choices for �V is at most
(|F |γ)n = |F |γ·n. The total number of choices for J is at most

(
n

(1−σ)n

)
= 2h2(σ)·n.

Finally, the total number of sets of witnesses B is at most
(
γk⊥

an

)
.14 Therefore,

the total number of possibilities is

|F |γ·n · 2h2(σ)·n ·
(

γk⊥

an

)
. (2)

Next, fix a column index j ∈ J \ J ′ = {σn + 1, σn + 2, . . . , k}. Pick one
non-zero witness �d(1) ∈ B. Over the randomness of choosing H∗,j , the random
variable �d(1) · H∗,j is uniformly random over the field F . So, the probability of
this coordinate being in Vj is γ/ |F |. This statement is true for all j ∈ J \ J ′

independently. Therefore, for all j ∈ J \J ′, the probability of the j-th coordinate
of the codeword �d(1) · H being in Vj is

(
γ

|F |
)(1−σ)n−k⊥

.

Now, choose a second witness �d(2) ∈ B. Suppose �d(2) is a scalar multiple
of �d(1). In this case, the random variables d(1) · H∗,j and �d(2) · H∗,j are scalar
multiples of each other as well. However, if �d(2) is not in the span of �d(1), then
the random variable �d(2) · H∗,j is uniformly random over the field F and (most
importantly) independent of the random variable �d(1) ·H∗,j . Therefore, the prob-
ability of all coordinates of the codeword �d(2) ·H indexed by j ∈ J \J ′ being in Vj

is (independently) (γ/|F |)(1−σ)n−k⊥
. We highlight that if, indeed, the witnesses

are linearly dependent then the columns are linearly dependent as well. Conse-
quently, identifying linearly independent witnesses seems necessary (not merely
sufficient) for our proof strategy to succeed.

Generalizing this technique, one claims the following result. We defer the
proof to the full version [40].

Claim 3. Fix any r linearly independent �d(1), �d(2), . . . , �d(r) ∈ F k⊥
. For all j ∈

J \ J ′, over the randomness of choosing H∗,j, the distribution of the random
matrix

14 Because there are γ options for every k⊥ information coordinates in 〈H〉. Among

these γk⊥
choices for the information coordinates, one can choose any an of them

as the witness set B.
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(
�d(i) · H∗,j

)j∈J\J ′

i∈{1,2,...,r}

is identical to the uniform distribution over F r×((1−σ)n−k⊥).

Consequently, the probability of all the codewords corresponding to these r lin-
early independent witnesses in B failing the test (V, J) is

[(
γ

|F |
)(1−σ)n−k⊥]r

(3)

Now how many linearly independent witnesses can one identify among an

witnesses of B? Towards this objective, we prove a bound similar in spirit to
matrix rank lower bounds from communication complexity theory. We defer the
proof to the full version [40].

Claim 4 (Rank bound for ‘Bounded-Diversity’ Matrices). Let M ∈
Fu×v, where u = 2αv, be an arbitrary matrix such that each row of this matrix
is distinct. Suppose every column j ∈ {1, . . . , v} of M satisfies

∣∣∣{M1,j ,M2,j , . . . ,Mu,j}
∣∣∣ � γ.

Then, rank(M) � α
log2 γ · v.

Back to Proving Lemma 2. Construct M such that every row of M is a witness
in B. Therefore, the matrix M ∈ Fu×v, where u = an and v = k⊥. Applying
Claim 4 for u = an = 2log2(a)·n and v = k⊥, we get r � log2 a

log2 γ · k⊥. For our end
application scenario, we shall have k⊥ = Θn, and positive constant a and γ � 2.
Therefore, we shall have r = Θn. So, the probability expression in Eq. 3 effec-
tively behaves like |F |−Θn2

. On the other hand, the total number of possibilities

given by Eq. 2 are dominated by |F |γn and
(
γk⊥

an

)
� γk⊥·an

. When n � Θlog λ,
using union bound, one can conclude that the probability of a random 〈H〉 failing
some test (�V , J) with some witness B is 1 − exp(−Θλ).

However, n � Θlog λ is unacceptably small. Our objective is to achieve n =
Θλ. In fact, we have recklessly indulged in significant over-counting. Let us fix
this proof to get the desired bound.

Final Fix. Observe that we do not need to pick B of size an from Vk+1×· · ·×Vn.
For any B, identify the (unique) lexicographically smallest set B̂ ⊆ B of r linearly
independent witnesses. In the analysis presented above, we have significantly
over-counted by separately considering all B ⊇ B̂. To fix this situation, we
consider the argument below that analyzes B̂ to account for all B ⊇ B̂.

Now, fix the (canonical) set B̂ of r linearly independent witnesses. The proof
above says that the probability of a random 〈H〉 failing the test (�V , J) with

some witness B ⊇ B̂ is at most (γ/|F |)((1−σ)n−k⊥)·r. We emphasize that B may
have more linearly independent elements; however, it is inconsequential for our
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analysis. So, we need only to pick B̂ of size r such that the witnesses are linearly
independent of each other. Consequently, the total number of possibilities of
Eq. 2 drastically reduces to the following bound.

|F |γ·n · 2h2(σ)·n ·
(

γk⊥

r

)
, (4)

where r = log2 a
log2 γ · k⊥. Now, we can put together the total number of witnesses of

Eq. 4 with the failure probability of Eq. 3 using a union bound. The probability
that a random 〈H〉 fails some test (�V , I) witnessed by r linearly independent
witnesses in B̂ is at most

|F |γ·n · 2h2(σ)·n ·
(

γk⊥

r

)
·
(

γ

|F |
)((1−σ)n−k⊥)·r

� |F |γ·n · 2h2(σ)n ·���γk⊥·r · γ(1−σ)n·r−��k⊥·r · 1

|F |((1−σ)n−k⊥)r

= |F |γn · 2h2(σ)·n · 2(1−k/n)(1−σ) log2(a)·n2 · 1

|F |(logγ a)(1−k/n)(k/n−σ)·n2 .

In our scenario, we have constant k/n ∈ (σ, 1), constant a, and limλ→∞ n/λ ∈
(0, 1). For these setting of the parameters, the numerator is dominated by the
term 2Θλ2

. Furthermore, we have constant γ, so the denominator is 2Θλ3
. So,

the probability expression above is exp(−Ω (λ)).
To summarize, we incur two forms of failures in our analysis. (1) 〈H〉 is not

MDS, and (2) 〈H〉 fails some test. The probability of the first failure is exp(−Θλ),
and the probability of the second failure is exp(−Ω (λ)).

3.3 Proof of Lemma 1

We prove Lemma 1 using Fourier analysis. The full version [40] provides the
preliminaries of Fourier analysis that suffices for the proofs in this paper.

To begin, let us summarize what we are provided. We are given a fixed
generator matrix H ∈ F k⊥×n, where k⊥ = (n − k). The code 〈H〉 is MDS and
the matrix H passes all tests in Testσ,γ,a, where γ = 2m · T 2.

Consider any (n,m) local leakage function �L = (L1, . . . , Ln), such that each
Li : F → {0, 1}m. Our objective is to prove that this leakage function cannot
distinguish the secret shares of the secret 0 from the secret 1. Fix any i ∈
{1, . . . , n} and leakage 	 ∈ {0, 1}m. Let 1i,� : F → {0, 1} be the indicator function
for Li(si) = 	, where si is the secret share of party i.

Claim 5. Let i ∈ {1, . . . , n} and 	 ∈ {0, 1}m. The size of the following set is at
most T 2.

Bigi,� =
{

α : α ∈ F,
∣∣∣1̂i,�(α)

∣∣∣ � 1/T
}

.
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This result follows from Parseval’s identity, and that function 1i,� has a binary
output. Refer to the full version [40] for a proof of this claim. Given the leakage
function �L = (L1, . . . , Ln) and i ∈ {1, . . . , n}, define the sets

Vi =
⋃

�∈{0,1}m

Bigi,�.

Extend each Vi arbitrarily, if needed, to be of size γ = 2mT 2. Now, we have
defined the �V = (V1, . . . , Vn) corresponding to the leakage function �L.

Algebraization of Leakage-Resilience. Benhamouda et al. [7] showed that
proving that the statistical distance expression in Eq. 1 is smaller than some
quantity is implied by upper-bounding the analytical expression below by the
same quantity. That is,

SD
(
�L(s(0)), �L(s(1))

)

=
1
2

∑
�∈({0,1}m)n

∣∣∣∣∣∣
∑

α∈〈H〉

n∏
i=1

1̂i,�i
(αi) · ωαi·s(0)·vi −

∑
α∈〈H〉

n∏
i=1

1̂i,�i
(αi) · ωαi·s(1)·vi

∣∣∣∣∣∣
(5)

�
∑

�x∈F k⊥ \{0k⊥}

∑
��=(�1,...,�n)∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ . (6)

For completeness, we include proof of this in the full version [40]. We now proceed
to upper bound this expression for an H that passes all tests in Testσ,γ,a.

Remark 6. We emphasize that the analytical expression above is only an upper
bound to the statistical distance. We show that using the expression above as
a proxy to analyze the exact statistical distance encounters some bottlenecks.
Section 4 highlights one such bottleneck.

Upper-Bounding Eq. 6. We partition the elements �x ∈ F k⊥ \ {0k⊥} into two
sets.

Bad :=
{

�x : ∃J s.t. �x �= 0n & �x · H fails the test indexed by (�V , J) ∈ Testσ,γ,a

}
.

We emphasize that J ⊆ {1, 2, . . . , n} is of size (1 − σ)n. The remaining elements
form the subset

Bad =
(
F k⊥ \ {0k⊥}

)
\ Bad.

Next, we upper-bound the expression of Eq. 6 for elements �x ∈ Bad and �x ∈ Bad
separately.
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Upper Bound: Part 1. First we consider the sum of Eq. 6 restricted to �x ∈ Bad.

∑
�x∈Bad

∑
��∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣

=
∑

�x∈Bad

n∏
i=1

∑
�i∈{0,1}m

∣∣∣1̂i,�i
(�x · H∗,i)

∣∣∣

� an2h2(σ)n · max
�x∈Bad

n∏
i=1

∑
�i∈{0,1}m

∣∣∣1̂i,�i
(�x · H∗,i)

∣∣∣ (7)

The last inequality is due to the fact that there are
(

n
(1−σ)n

)
= 2h2(σ)n subsets J ,

and each test indexed by (V, J) has at most an different codewords failing it.15

Next, fix any element �x ∈ Bad. The codeword �x · H has < k⊥ zeroes.16

Therefore, the codeword �x · H has > k elements from F ∗. Using this property,
we claim the following result.

Claim 6. Let 〈H〉 be an [n, n − k]F -MDS code, and �x ∈ F k⊥ \ {0k⊥} be an
arbitrary message. Then, there exists a constant Cm > 1 such that

n∏
i=1

∑
�i∈{0,1}m

∣∣∣1̂i,�i
(�x · H∗,i)

∣∣∣ � C−k
m .

We defer the proof to the full version [40]. Substituting this upper bound in
Eq. 7, we get the following upper bound

2−(log2(Cm)·(k/n)−log2(a)−h2(σ))·n, (8)

which completes the first upper bound. By picking our parameters as in Sect. 3.1,
this upper bound is negligibly small.
Upper Bound: Part 2. Now, it remains to upper-bound

∑

�x∈Bad

∑
��∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ .

The crucial observation about any codeword c = �x·H ∈ Bad is the following. The
number of j ∈ {1, . . . , n} such that cj �∈ Vj is at least σn. For the coordinates
where cj �∈ Vj , we utilize the fact that the magnitude of the Fourier coefficients
contributed in the above expression is at most 1/T . Based on these observations,
using Fourier analysis, we prove the following bound.
15 Since H passes all tests in the set Testσ,γ,a, at most an codewords fail any test

indexed by (�V , J).
16 If the codeword has k⊥ zeroes, we can choose their indices as the information set

(because 〈H〉 is MDS). That implies that the entire codeword is 0n, which contradicts
the fact that Bad has non-zero elements.
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Claim 7. For 0 < σ � 1 − 2k⊥/n, the expression above is upper-bounded by

2−(log2(T )·σ−(σ+k⊥/n)m−h2(σ))·n.

A proof of this claim is provided in the full version [40]. By picking our param-
eters as in Sect. 3.1, this upper bound is negligibly small.

Remark 7. We highlight that if we pick a σ such that σ > 1 − 2k⊥/n, then
näıvely using the analysis above yields an upper bound of

pk⊥−(1−σ)n/2 · 2−(log2(T )·σ−(σ+k⊥/n)m−h2(σ))·n.

The full version [40] of our paper present a proof sketch of this bound. Observe
that the leading term pΘλ forces the choice of T to be ω (1). However, in our
analysis, we crucially rely on T to be a constant.

In particular, if 2k⊥ > n, no suitable σ can be choosen to avoid this bottle-
neck. We discuss this barrier further in Sect. 4.

4 The k > n/2 Barrier

In this section, we discuss why k > n/2 is inherently required for the current
proof techniques (which are common to [7,39] and this work). In particular, we
pinpoint the step where one uses Eq. 6 to upper bound the Eq. 5 as the place
where this barrier arises.17 That is, when one uses the magnitude of the Fourier
coefficients to upper bound the statistical distance as

∑

�x∈F k⊥ \{0k⊥}

∑
��∈({0,1}m)n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ .

To justify our claim, we prove the following theorem.

Theorem 1. There exists a leakage function �L that leaks one bit from each share
such that the following holds. Let 〈G〉 be any [n, k]F code such that k < n/2. Let
〈H〉 be the dual code of 〈G〉. The above equation is lower bounded by 1. That is,

∑

�x∈F k⊥ \{0k⊥}

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ � p(n−2k)/2 > 1.

Consequently, one cannot prove any meaningful upper-bound when k < n/2.

In fact, we identify the leakage function explicitly as follows. Define the set of
quadratic residues as

QR := {α ∈ F : ∃β s.t. β2 = α}.

17 Note that Eq. 5 is an identity transformation of the statistical distance. Hence, the
proof until this step must not produce any barriers.
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Define �L = (L1, . . . , Ln) as for all i ∈ {1, 2, . . . , n},

Li(x) :=

{
1 if x ∈ QR
0 if x /∈ QR .

By standard techniques in the Fourier analysis and the well-known facts about
the quadratic Gaussian sum, one can verify this theorem with this particular
leakage function. We refer the readers to the full version [40] for a detailed
proof.

5 Leakage-Resilience of Shamir’s Secret-Sharing

In this section, we present our result that Shamir’s secret-sharing with threshold
k and n parties is leakage-resilient when k � 0.8675n. This improves the state-of-
the-art result of Benhamouda et al. [7]. In fact, we prove a more general theorem
as follows.

Theorem 2. There exists a universal constant p0 such that, for all finite field
F of prime order p > p0, the following holds. Let G+ be an arbitrary MDS
[n + 1, k + 1]F code such that k � 0.8675n. The Massey secret-sharing scheme
corresponding to G+ is (1, exp(−Θn)-leakage-resilient.

As Shamir’s secret-sharing is a Massey secret-sharing scheme corresponding to
the punctured Reed-Solomon codes, this theorem applies to Shamir’s secret-
sharing directly.

We refer the readers to the full version [40] for a detailed proof. In what
follows, we present an overview of our proof. Starting from the upper bound
Eq. 6, i.e.,

∑

�x∈F k⊥ \{0k⊥ }

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ ,

our main idea is that we shall bound it with the exact information where the
zeros of the codeword (from 〈H〉) are. This is motivated by the fact that the
Fourier coefficient corresponds to 0 has the dominant weight.

Note that since 〈H〉 is an MDS [n, k⊥ = n − k]F -code, a non-zero codeword
from 〈H〉 has at most k⊥−1 zeros. For any collection of indices A ⊆ {1, 2, . . . , n}
such that |A| � k⊥ − 1, let us define set

SA := {�x | a ∈ A ⇐⇒ �x · H∗,a = 0} .

That is, the collection of messages whose codewords satisfy that 0 appears
exactly at those indices from A. Clearly, F k⊥ \

{
0k⊥

}
=

⋃
A : |A|�k⊥−1

SA. We

shall break the summation based on A, i.e.,

∑
A : |A|�k⊥−1

∑
�x∈SA

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ .
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To bound each summation over some A, i.e.,

ΓA :=
∑

�x∈SA

∑
��∈{0,1}n

∣∣∣∣∣
n∏

i=1

1̂i,�i
(�x · H∗,i)

∣∣∣∣∣ ,

we use the following ideas. (Refer to Fig. 2 for notations.)

B1 B2A1 A2 A3

D1 D2 D3

J1 J2 J3

Fig. 2. The dual generator matrix H ∈ F k⊥×n. We pick the first k⊥ columns as J1 and
the second k⊥ columns as J2. Let J3 be the rest of the columns. The set of columns
A = A1 ∪ A2 ∪ A3 is exactly where the codeword will be 0. We pick B1 and B2 to
ensure that |B1| + |A| = |B2| + |A| = k⊥.

We know the codewords are 0 at columns in A = A1 ∪ A2 ∪ A3 and non-zero
at columns outside A. Since �x · H∗,a = 0 for a ∈ A, bounding over columns
from A can be easily handled. Next, we shall use the worst-case bound to bound
the summation over columns from D1 ∪ D2 ∪ D3. Finally, for the columns of
B1 and B2, we let them enumerate all possibilities from F ∗ and bound them
appropriately.

We refer the readers to the full version [40] for the subtleties in the proof.
Overall, we are able to prove that

ΓA �
(π

2

)−(|A|+2k−n)

.

Finally, our upper bound is now

�
∑

A : |A|�k⊥−1

(π

2

)−(|A|+2k−n)

=
k⊥−1∑
i=0

2n
[
h2(i/n)−(i/n+2k/n−1) log2(π

2 )
]
.

Suppose k/n = σ, it suffices to ensure that

max
q∈[0,1−σ)

h2(q) − (q + 2σ − 1) log2(π/2) < 0.

We prove that σ � 0.8675 suffices, which completes the proof of the theorem.
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