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Abstract
Persistent spiking activity in the neocortex was discovered a half century ago as a neural 
substrate of working memory. Research on its brain mechanism has strived for understanding 
a core cognitive function across biological and computational levels. Here I review studies that 
cumulatively lend support to a synaptic theory of recurrent circuits for mnemonic persistent 
activity that depend on various cellular and network substrates, mathematically described by a 
multiple-attractor network model. An attractor state is consistent with temporal variations and 
heterogeneity across neurons in a subspace of population activity. Activity-silent state mechanisms 
are suitable for storing passive short-term memory traces, but not working memory characterized 
by executive control for filtering our distractors, limited capacity and internal manipulation of 
information.
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Mnemonic persistent activity as an atom of cognition
The year 2021 marks the fiftieth anniversary of the discovery that single-cell persistent 
activity is associated with working memory. The story of this discovery began in the 1960s 
when Joaquin M. Fuster happened to make the acquaintance of Larry Ott, an engineer at 
Hughes Aircraft who invented a cryogenic device used to cool the electronic components 
of space satellites. At that time, Fuster was impressed by the studies of C. F. Jacobsen 
and others showing that lesioning the prefrontal cortex (PFC) impaired macaque monkeys’ 
performance in a delayed response task [1, 2]. In a typical delayed response task, a sensory 
stimulus (e.g., green visual object) and an appropriate response (go) are separated by a 
short time interval (delay period). Consequently, the probed behavior depends on working 

Corresponding author: xjwang@nyu.edu. 

HHS Public Access
Author manuscript
Trends Neurosci. Author manuscript; available in PMC 2022 May 10.

Published in final edited form as:
Trends Neurosci. 2021 November ; 44(11): 888–902. doi:10.1016/j.tins.2021.09.001.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



memory, the brain’s ability to hold and manipulate information when sensory stimulation 
is absent [3, 4]. Could Ott’s new gadget help neuroscientists study the brain mechanisms 
supporting working memory? Fuster and his colleague Garrett Alexander adopted the 
cryogenic device to inactivate by cooling circumscribed brain regions of monkeys in a 
delayed response task [5]. They then proceeded to neurophysiological recordings, which 
revealed that a substantial number of prefrontal units showed persistent elevations of firing 
rate during the delay, the memory retention period of the task (for Fuster’s recollection, 
see Box 1). The resulting publication in 1971 [6] and another independent publication that 
same year [7] ushered in additional single-neuron investigations of brain circuits underlying 
working memory.

This article takes stock of the last fifty years of research exploring persistent neural activity 
as it pertains to the foundation of working memory. This work has provided substantial 
support for the multiple-attractor network model of self-sustained mnemonic persistent 
activity. The central tenet of this theory is that a memory representation is not a transient 
signal that passively decays away in time, instead, it corresponds to a dynamically stable 
state of the brain. A working memory system is in turn conceptualized as a neural circuit 
endowed with multiple attractor states encoding different memory items that coexist with a 
baseline state. As an analogy, imagine a hilly golf course with many valleys, akin to a state 
space of neural population activity in a working memory system. The bottom (attractor) of 
a valley (basin of attraction) is “attractive” in the sense that a ball (the position of which 
corresponds to the state of the neural system) naturally rolls down towards it. This way, 
a sufficiently large transient input (hitting hard a ball to the air) can switch the system 
from rest (one valley) to a stimulus-selective mnemonic state (a different valley) which 
remains after stimulus withdrawal; such a state is robust against small perturbations (gentile 
taps of the ball with a club). A subsequent brief but potent signal can switch the system 
back to the resting state, thereby erasing a memory trace. Unlike a golf course, however, 
attractors in a neural system may be characterized by complex spatiotemporal patterns such 
as stochastic network oscillations or propagation waves (sequential activation of different 
neural groups) rather than steady states. Furthermore, the landscape of multiple attractors is 
readily modifiable by a sustained input, which is essential for executive control of working 
memory.

Here, I will first review studies that cumulatively lend support to the recurrent neural 
circuit mechanism of working memory representation, mathematically corresponding to the 
multiple-attractor network model of persistent activity. This theoretical framework predicts 
that (1) mnemonic activity is maintained over time when the delay period duration is varied 
considerably, (2) intracellular current injection cannot switch off persistent activity of a 
neuron engaged in working memory, and (3) after a brief optogenetic perturbation persistent 
activity reverts to the same pattern in the control condition. These predictions have recently 
received experimentally confirmations in behaving animals. In the sections that follow, I 
discuss developments that address some recent challenges to the theory and suggest areas for 
future work.
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An attractor network model of persistent activity
Following the original discovery, studies of single-neuron recording in delay dependent 
tasks have documented persistent activity encoding discrete items (visual objects, categories, 
task rules) [8,9,10,11,12, 13, 14] and continuous space [15,16,17, 18, 19, 20, 21, 22]; 
parametric working memory with monotonical encoding of a behavioral attribute was 
discovered in a vibrotactile delayed discrimination (VDD) task [23]. These experiments 
identified the PFC (especially its superficial layers [24]), the posterior parietal cortex (PPC), 
and other brain regions engaged in working memory representation. Functional magnetic 
resonance imaging (fMRI) uncovered similar brain structures activated by working memory 
in humans [25], also differentially engaging the superficial layers [26]. In close interplay 
with experimentation, neural network models for stimulus-selective persistent activity were 
developed. Following pioneering work [28, 29], self-sustained memory states began to be 
conceptualized as attractor states [30, 31]. Mathematically, an attractor denotes a state of a 
nonlinear dynamical system that is stable such that after a small transient perturbation the 
system will revert to the original state [32].

In the late 90s and early 2000s, the attractor network paradigm was tested using spiking 
neural network models endowed with biologically constrained synaptic connections [37, 
38, 39, 40, 41, 42]. These studies provided initial support for the attractor network model 
(see review in [31]). Has the attractor network model stood the test of time over the last 
twenty years? Biologically, a mnemonic attractor is sustained by reverberatory dynamics 
through feedback loops in a neural assembly [30,31]. One early theoretical prediction was 
that the posited reverberation must be slow and dependent on the NMDA receptors at local 
recurrent excitatory synapses in a working memory circuit [38]. This model prediction 
was confirmed in experiments where iontophoresis of an antagonist for NR2B-subunit 
containing NMDA receptors essentially abolished mnemonic persistent activity in PFC 
neurons recorded from monkeys performing an ODR task [43]. Subsequent studies showed 
that both the NMDA and AMPA receptors contributed to working memory function, with 
the fast AMPA receptors predominantly signaling sensory information [44, 45]. Another 
model prediction was a disinhibitory motif composed of three types of inhibitory neurons 
for gating access to working memory and filtering out distractors [46]. This theoretical 
prediction has been supported experimentally and shown to be a canonical feature of the 
neocortex (reviewed in [47, 48]).

The theoretical finding that NMDA receptors play a critical role in working memory offered 
an example of how a core cognitive function can be elucidated in neuroscience across levels, 
from receptors to recurrent neural circuit dynamics to function. It also explained why low 
dose ketamine, an NMDA receptor antagonist, could induce in healthy subjects working 
memory deficits [49] similar to those observed in schizophrenic subjects, who experience 
NMDA receptor hypofunction [50, 51, 52]. This insight helped prompt the emergence 
of the field of Computational Psychiatry [53, 54]. Slow reverberation is also suitable for 
temporal accumulation of evidence to inform decision-making [55,56, 57], suggesting a 
shared mechanism for working memory and decision-making in “cognitive-type” neural 
circuits [58, 59].
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Rigorous experimental tests of the attractor network model of working memory became 
possible only recently thanks to advances of experimental tools such as cell-type specific 
optogenetic manipulation. In a mouse experiment, subjects learn to associate one of 
two sensory cues to left and right licking responses. The two sensory stimuli may be 
somatosensory (far and near objects that touch whiskers) or auditory (high and low tones; 
Figure 1a). Before the response is allowed to take place, there is a short delay period. 
Single neurons in the premotor area called anterior lateral motor (ALM) cortex display 
elevated firing activity during the delay period. A series of experiments, in close interplay 
with computational modeling, have led to a wealth of information about the underlying 
neural circuit mechanisms supporting short-term memory in this task. First, optogenetic 
inactivation systematically done across the cortex demonstrated that ALM is the crucial 
node for maintaining short-term memory [60]. Second, if persistent activity is a single-cell 
phenomenon rather than maintained by synaptic reverberation, current injection into a cell 
should be able to turn off ongoing persistent activity [61]. This was not found to be the case 
using intracellular recording in behaving animals during a delay period [62], in support of a 
network mechanism. Third, despite optogenetic perturbations that transiently alter the time 
course of the ALM neural firing, the trajectory of population activity converges to one of 
two fixed endpoints in the state space of recorded neural population activity, in support of 
discrete attractor models (Figure 1b) [63, 61]. Fourth, optogenetic inactivation during the 
delay period revealed that thalamo-cortical connections are important for the maintenance of 
delay period activity in the ALM [64].

In this task, because the sensori-motor transformation presumably occurs during external 
stimulation, persistent firing in the premotor area ALM encodes preparation for the 
impending movement rather than sensory working memory. This differs from other tasks, 
like the DMS, which require that delay activity represents the sample stimulus because the 
correct motor response is unknown (and thus cannot be prepared during the delay period). 
Using delay dependent tasks where remembering sensory information is essential, other 
rodent experiments found that frontal and parietal areas are engaged in working memory 
dependent behavior [65]. Results from neural data analyses and experimental manipulations 
combined with modeling lend further support to the attractor network paradigm [66, 67, 68]. 
Moreover, parametric working memory can be modeled as line attractors [69, 70], akin to 
a flat part of a golf course where the ball can stay at a continuum of positions. Finally, 
attractor models have also been extended to account for multiple-item working memory 
[71].

Dynamical coding and heterogenous delay activity
Although the attractor model has received theoretical and empirical support, it has been 
challenged on the ground that mnemonic neural activity often varies substantially over 
a delay period. In a working memory task, neurons in a cortical area tend to display 
temporal variations during the delay period [72, 73]. A relatively small number (5–10%) of 
recorded neurons show strictly tonic persistent activity. Others display time-varying patterns: 
some ramp-up while others ramp down their firing rates in time during the delay [74]. 
The percentage of sampled neurons showing delay period activity can be 30% or higher 
depending on the precise recording location, [11, 75]. Note that a brain region is engaged 
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in many tasks, thus the number of cells activated in a single task could be a small but 
significant fraction of the entire population. In delayed response tasks, persistent activity 
was reduced or absent in error trials [11, 21], in support of its importance at the behavioral 
level.

Critically, temporal changes of delay period activity, per se, are compatible with attractor 
network models. The misconception that an attractor must be in a steady state may result 
from the mere fact that mathematical models are easiest to describe and analyse if attractors 
are steady states [37, 38, 41, 76]. But attractor states do not have to be stationary, as 
illustrated by stimulus-selective attractors characterized by stochastic oscillations [39, 76] 
which have been observed in behaving monkeys during working memory tasks [18]. Chaotic 
attractors [32] may also support persistent activity [77, 78]. In principle, an attractor of 
a dynamical system may display complex spatiotemporal patterns, exemplified by fluid 
turbulence with vortices over many scales in space and time.

A more puzzling finding is that stimulus selectivity of a recorded neuron may be detectable 
only in a brief portion of the delay period, and each cell shows statistically significant 
selectivity at different times ([70] but see [80]). A method to quantify whether a working 
memory representation is stationary or time-varying is to train a linear classifier at time t 
to decode information from recorded neurons, which is then used to decode the stimulus 
at time t0, thus the quality of decoding is shown in a two dimensional “cross-temporal 
classification matrix” [81]. Figure 2a shows such a matrix computed using 600 PFC 
neurons in a monkey delay dependent experiment [82]. During the cue presentation, reliable 
decoding (red to orange color) is confined near the diagonal line, which means that the 
classifier trained at a particular time cannot decode the trial type at a different time. On the 
other hand, during the delay period following the initial cue, good decoding fills a square, 
demonstrating that working memory representation is quite stable over time.

Studies using cross-temporal classification analysis yielded various cross-temporal 
classification matrices [85, 86]. In general, working memory representations are stable over 
time in tasks that mostly involve memory maintenance, but time-varying when information 
processing and manipulation are required during the delay period; sometimes a code is 
stable in a time window, then evolves into time-varying in another time window, yielding a 
mixture of stable code and dynamical code [87].

Can temporal variations of neural activity be compatible with a stable working memory 
representation during a delay period? To address this question, a principal component 
analysis (PCA) was applied to PFC neural trajectories using data from ODR [11] and VDD 
[23] monkey experiments [88]. This analysis revealed that single neurons display various 
temporal patterns in their delay period activities (Figure 3a). However, population coding of 
a stimulus stored in working memory is stable within a subspace where working memory 
coding is stationary, despite considerable temporal changes in the orthogonal subspace 
(Figure 3b). This observation was reproduced in attractor network models [89, 88]. In 
conclusion, temporal variations of delay period neural activities can be reconciled with a 
stable working memory representation over time in a low-dimensional subspace or manifold 
of neural population activity.
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Firing activity in a delay period may move among different neural groups. In rodents, 
several studies found temporal “tiling” of a delay period by transiently active neurons 
[83, 90, 91]. In one mouse experiment, delay period activity of neurons (monitored by 
calcium imaging) in the posterior parietal cortex was transient rather than tonic: each firing 
cell briefly peaked at a different time of the delay period (Figure 2b) [83], demonstrating 
sequential activation of neural groups [92, 93]. Such a delay period activity pattern is 
incompatible with a stationary code. Transient activities were also found in the mice 
anterior agranular insular cortex in another delay dependent experiment [91]. On the other 
hand, in the aforementioned delayed response task (Figure 1), analysis of peak times of 
spiking activity of recorded neurons did not support sequential activation underlying delay 
period information coding [63], and so far no evidence has been reported for delay period 
sequential activity in monkey experiments.

If working memory is indeed represented by a sequence of transiently active neurons, the 
stored information must be read out from different neural groups at different times. In that 
case, would downstream neurons need to constantly change their input weights over time 
for decoding? A simple solution is for readout neurons to receive converging inputs from 
all mnemonic cells. However, in that case, a downstream neuron would display stationary 
persistent activity [92], and so the computational benefit of such a scheme in comparison 
with a stationary code in the first place remains unclear.

Certain types of temporal variations of delay activity are suitable to serve specific functions. 
For instance, ramping activity could reflect anticipated timing of the memory-guided 
[94,95,96]. Corroborative evidence was also reported in a mouse delayed response task [63] 
in which ALM neurons showed ramping activity when the delay duration was fixed but tonic 
persistent activity in trials where the delay duration varied probabilistically and therefore 
was not predictable [61]. Other temporal changes require different explanations, some of 
which may be related to uncontrolled factors in an experiment, such as micro-behavior not 
required to perform the task [97].

Separated from temporal variations of a cell’s firing, delay period activity also varies 
considerably from cell to cell (e.g. Figure 3a). Whereas early models strove for simplicity to 
optimize analysis and interpretations of network behavior, more recent elaborated attractor 
models display considerable cell-to-cell heterogeneities [98, 99, 78, 100, 101, 102]. In the 
brain, heterogeneity could arise from variations of biological properties across individual 
cells in a well-defined population, or/and because a recording is done among several 
subtypes of neurons [54, 103]. Heterogeneity across neurons may also be understood 
in terms of desirable functions such as mixed-selectivity essential for flexible cognitive 
behaviors [104, 105].

Activity-silent states
The key assumption of the attractor model is that a biological working memory circuit 
has distinct stimulus-selective mnemonic attractor states that coexist with a stable resting 
state. Alternatively, and inconsistent with the attractor model, a network may have only a 
single attractor (the resting state) and delay period activity may be genuinely transient: a to-
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be-remembered stimulus perturbs the system to another internal state, from which it returns 
to the resting state after the input offset during a delay period. The return trajectory may 
be slow, but eventually, elevated activity should disappear if the delay period is sufficiently 
long.

The “activity-silent state” model posits that a memorandum can be encoded by “hidden” 
variables unobservable at the level of neuronal spiking [106], in which case there would 
be no need for persistent activity in the form of an attractor state. A plausible biological 
substrate for such activity silent working memory is synaptic short-term facilitation (STF), 
which in rodent cortex is more prominent between excitatory neurons in frontal cortex 
than primary visual cortex [107, 108]. Importantly substantial STF does not automatically 
imply an activity-silent state; instead, it could be required for the maintenance of persistent 
activity [107]. Moreover, persistent activity that depends on STF could be repetition of 
brief population bursts (Figure 3 of [109]), which should still be considered an attractor 
rather than activity-silent state. Thus, “hidden” synaptic variables and spiking are not 
decoupled, and STF can contribute to the maintenance of persistent activity as part of 
synaptic machinery [110]. Interestingly, STF and other slow synaptic or cellular processes 
could induce history dependence across trials [110], which has been observed in monkey 
and human studies [111, 112].

On the other hand, short-term synaptic plasticity (STF) could maintain a short-term memory 
trace even when self-sustained neural spiking dies out [109]. In other words, the activity-
silent state model assumes that a dynamical variable of STF, not observable by spiking 
activity, could mediate short-term memory. Results from neurophysiological tests of this 
idea are not clear cut, partly because interpretations are not straightforward for different 
kinds of measurements, ranging from single-neuron physiology, EEG/MEG to fMRI BOLD 
signal. For instance, in a monkey experiment, LFP displays brief episodes of synchrony at γ 
frequency band (~ 40 Hz), which was interpreted as inconsistent with the sustained activity 
model [113, 114]. However, persistent activity of single cells often coexists with intermittent 
and weak LFP rhythms [115, 116, 117, 118]. Furthermore, brief bursts as the neural 
substrate of working memory representation predict that variability of spike trains would be 
much higher during the delay period than in the resting state. This prediction is contradicted 
by single-cell data from three monkey experiments [119]. A unifying explanation of all these 
data is the theory of sparsely synchronous oscillations, where episodic bursts of network 
coherence coexist with sustained firing of single cells [116, 117], and temporally enhance 
information conveyed by spikes [113, 118].

Nevertheless, the activity-silent scenario has a specific prediction. If a brief stimulus 
activates one of neural assemblies in a network therefore induce STF at their 
interconnections, a later non-selective global signal (a “pinging” of the entire network) 
would “reawaken” selectively that particular neural assembly because its hidden state is 
differentially primed by STF [109]. This prediction has been tested in human experiments. 
In one study, a subject was shown two sample stimuli (a face and a word), followed by 
a delay period when a post-cue instructed which of the two would be probed (e.g. word). 
Then a test (the same or a different word) was shown and the participant responded match 
or nonmatch. The trial continued with a second delay when another post-cue instructed 
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which of the two would be probed next (which might be face or word), a final test stimulus 
was shown, and the subject responded match or nonmatch [84]. Multivoxel patterns from 
the BOLD signal were used to decode each of the items in the initial sample set. It 
was found that category (face or word) decoding by BOLD signal decayed to baseline. 
However, each post-cue “reawakened” significant decoding of the corresponding stimulus 
category (Figure 2c), supporting the idea that information remained in some hidden state not 
detectable by BOLD signal, with the caveat that fMRI measurements are not directly related 
to spiking neural activity. Moreover, transcranial magnetic stimulation (TMS) reactivated 
representation of the latest cued category, consistent with the model prediction about pinging 
a short-term memory system [109]. Similar findings were reported in another experiment 
with two to-be-remembered items, using decoding from EEG and pinging with nonspecific 
visual stimulation [120].

The two experiments [84, 120] were designed on the idea that a stored item can be 
“in” (if cued) or “out of” (when uncued) the focus of internal attention [121, 122]. 
These observations suggest that an item at the center of attention is represented by 
persistent activity, whereas information about another item encoded in a hidden variable 
can be reactivated when it becomes a priority. However, these studies did not distinguish 
behaviorally relevant stimuli from distractors. This is critical because a requirement for 
normal working memory function is the brain’s ability to filter out irrelevant distracting 
sensory flow [39, 41, 123, 124, 22, 125]. Modeling work showed that a synaptic memory 
trace is strongest for the latest shown stimulus because signals of earlier stimuli decay[126]. 
Therefore, it cannot realize working memory in the face of distractors that are presented 
after behaviorally relevant stimulation in the absence of some additional control mechanism.

One argument for the activity-silent state model is that spikes are costly [127], therefore 
realizing a memory trace without spike firing would save energy [106]. If so, in the monkey 
ODR and VDD experiments, PFC neuronal spike firing rates during the delay period should 
be greater than during the baseline state of fixation (“foreperiod”) at the start of a trial. This 
is not true; surprisingly, the distribution of firing rates across the recorded PFC neurons is 
roughly log-normal and the same across behavioral epochs for both experiments (Figure 3c). 
This is also the case for delay period activities in the mouse experiment of [63] (Figure 
3d). Presumably, in a given trial neurons selective for an encoded stimulus have elevated 
spiking activity while others reduce their firing, in such a way that the total population 
activity remains similar to the baseline state. Therefore, the attractor network model for 
persistent activity cannot be discounted, and the activity-silent state model is not favored, on 
the ground of metabolic energy consumption in the brain.

Persistent activity is required for manipulation of information in working 
memory

A functional perspective distinguishes short-term memory (STM), possibly involving the 
hippocampus [128], from working memory for which information is not only maintained 
but also manipulated without direct sensory stimulation [3, 129, 4, 130]. Even simple delay 
dependent tasks may require information manipulation, by transforming a sensory cue into a 
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prospective plan for the future [131, 132]. How can one test computationally the hypothesis 
that maintenance and manipulation of information during a delay period have different 
demands and differentially engage persistent activity? In recent years, tools from machine 
learning have been used to train recurrent neural networks (RNNs) to perform tasks [133]. 
An RNN is initially a “blank slate”, where connection weights are not specific and the 
network is incapable of any function. If a to-be-learnt task involves a mnemonic delay, this 
approach does not make an à prior assumption as to whether an RNN will solve the problem 
by virtue of a persistent activity pattern or an activity-silent state. Therefore, it offers an 
opportunity to investigate which of the two scenarios emerges from training [101].

In the model depicted in Figure 4a, an input layer signals spatial location and direction of 
motion stimuli, and an output layer generates a delayed response. The recurrent network 
between the input and output layers is wired with connections endowed with STF. Some are 
dominated by short-term depression (Figure 4b, left) while others by short-term facilitation 
(Figure 4b, right). The synaptic efficacy is the product of the depression factor and 
facilitation factor. In a motion-direction delayed DMS task, the sample is decoded either 
by recurrent neural population activity or by activity-silent synaptic efficacy. When the delay 
period is short, STF can keep a memory trace of the sample, in which case activity is 
not necessary. Indeed, a trained RNN found the solution with chance-level performance of 
decoding by activity of recurrent units, but decoding by activity increases with gradually 
prolonged delay duration (Figure 4c). This is because when the delay period is long 
compared to the biological time constants of STF, the network can no longer find a solution 
by an activity-silent state scenario, and persistent activity sustained by an attractor state 
emerges from training through experience.

What happens if an RNN is trained to perform a working memory task where information 
must be manipulated during the delay period? In a delayed match-to-rotated-sample 
(DMRS) task, subjects must decide whether the test direction is the same as the sample 
direction rotated by 90 degrees. In this case, even with a short delay, persistent activity 
naturally emerged from training, demonstrating that the amount of persistent activity (hence 
the accuracy of its sample decoding) depends on the behavioral demand for information 
manipulation during the delay period. This conclusion was further confirmed by training 
different RNNs to perform one of nine tasks for which the degree of required information 
manipulation was quantified. Generally, decoding accuracy from recurrent population 
activity increases with the task demand of information manipulation (Figure 4d). These 
findings highlight the importance of distinguishing passive short-term memory traces from 
active working memory: short-term memory traces do not always require persistent activity. 
On the other hand, internal computation is carried out and communicated by spikes; because 
information manipulation is an integral part of working memory at the cognitive level, 
persistent activity is essential for working memory.

Concluding remarks
I have reviewed experimental and theoretical research on selective self-sustained persistent 
activity as a neural substrate for working memory representation. Substantial progress 
has been made in our understanding of the neural circuit mechanisms of persistent 
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activity, through close interactions between experimentation using delay dependent tasks 
and biologically-based computational models. An important concept running through 
this research is attractors, stable states of a dynamical system that may be steady 
states (corresponding to tonic persistent activity) or complex spatiotemporal patterns. The 
workhorse for working memory maintenance is positive feedback, which depends on the 
recurrent synaptic excitation, but single neuronal and synaptic dynamical properties also 
play a role [31, 134]. Feedbacks include both local and long-distance connections such as 
the phonological loop in the case of human speech [135]. The attractor network model 
makes several testable predictions (Box 2). It is a synaptic theory because it mainly relies 
on network reverberations; short-term synaptic plasticity, which depends on neural firing and 
in turn can enhance spiking activity, represents one contributing factor and naturally fits into 
the attractor network model [107, 110, 112]. Alternatively, if a memory trace is encoded 
solely by a hidden state such as synaptic efficacy endowed with short-term plasticity, 
physiological experiments should be able to detect the trace [136, 112]. The energy-saving 
argument in favor of the activity-silent state scenario [106, 114] is inconsistent with the 
conserved totality of neural population spiking activity across different behavioral epochs. A 
hidden-variable mechanism is likely to be sufficient for passive short-term memory but not 
active working memory, because it works only when the delay period is short compared to 
the time constant of the underlying biological process, it does not filter out distractors, and it 
is not suited to subserve information manipulation internally in the brain [101].

In summary, the persistent firing mechanism has withstood challenges as the neural substrate 
of working memory coding. At the same time, recent work also highlights the need to better 
understand the complex spatiotemporal mnemonic processes in a working memory circuit 
and the benefit of distinguishing working memory from passive short-term memory. Efforts 
devoted to understanding the neural circuit mechanism of persistent activity have played a 
major role in revealing the mystery of the prefrontal cortex [59]. Among the most important 
challenges for future research (see Outstanding Questions) is the need to elucidate how 
the PFC works with the rest of brain in distributed working memory and related cognitive 
processes to advance the nascent neuroscience of large-scale brain systems [137, 138, 139, 
126, 140].
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Highlights

Working memory actively engages stimulus-selective persistent activity mathematically 
described as an attractor state of a reverberatory neural circuit.

The attractor network model is compatible with temporal variations of mnemonic neural 
firing in a subspace of population activity.

Sustained activity during working memory coexists with intermittent bursts of frequency-
dependent network synchronization.

There is no increase in the total number of spikes in a neural population during a 
mnemonic delay period compared to a baseline state. Thus, persistent activity is not more 
energetically costly than an alternative memory mechanism using hidden variables.

Activity-silent state mechanisms like synaptic short-term facilitation are suitable for 
the storage of passive memory traces, but not working memory, which also involves 
manipulation of information online in the absence of external stimulation.
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Box 1.

Fuster’s reminiscence

In the late 1960’s we found in my laboratory that by cryogenic inactivation of the lateral 
prefrontal cortex we could produce a reversible deficit in monkeys’ performance of a 
delayed response task, a test of working memory. Thus we reestablished by reversible 
lesion what Jacobsen had established many years before by ablation. The beauty of our 
method was that it allowed us to use each animal repeatedly as its own control. From 
the results of that experiment it became clear to me that the lateral prefrontal cortex was 
critical for the temporary retention of a form of short-term memory that later Baddeley 
called working memory. It was therefore reasonable to expect that the nerve cells in 
that part of the cortex would be actively involved in that form of memory. Because at 
the same time we were becoming proficient at recording with microelectrodes single 
units from chronic animals, it occurred to me that those cells had to undergo recordable 
activity changes during delayed response, that is, during memory retention. With the help 
of my graduate student Gary Alexander, we trained monkeys to perform the delayed-
response task and surgically prepared them for single-cell recording from the prefrontal 
cortex. My expectation was happily fulfilled: a substantial number of prefrontal units 
showed persistent elevations of firing rate during the delay, the memory retention period 
of the task. Never in my scientific life have I experienced a cleaner confirmation of a 
hypothesis (many have failed!), though later it turned out that the sustained delay activity 
reflects the influence of other factors in addition to memory.
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Box 2.

Predictions of an attractor state in contrast to a decaying transient

An attractor as the substrate of an internal brain state is robust against brief and modest 
perturbations, which can be noise, sensory distractors, or intruding thoughts. This can be 
tested experimentally using optogenetic perturbations.

A working memory representation sustained by an attractor is insensitive to the duration 
of a mnemonic time period, which can be varied systematically in an experiment. 
Forgetting is not due to passive decay but interference by other mental processes.

Neurobiologically, an activity-silent memory trace can be instantiated by a purely 
feedforward process. By contrast, the attractor model predicts that memory relies 
on sufficiently strong reverberation through feedback loops on multiple levels in a 
subnetwork of the brain.

The coexistence of multiple attractors enables a working memory circuit to rapidly 
switch between a resting state and an information-specific mnemonic state, in contrast to 
slow transients that cannot be turned off by a brief input.

The attractor network model but not the activity-silent state model is capable of 
filtering out behaviorally irrelevant distractors in working memory, this can be verified 
experimentally using distracting stimuli shown after a behaviorally relevant one is stored 
in working memory.

The landscape of multiple attractors can be modified flexibly by executive control 
signals, which vary depending on cognitive load.
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Outstanding questions

Under what behavioral circumstances is memory instantiated by sequential activation of 
different neural groups, each firing briefly? What is the mechanism for a downstream 
system to readout the stored information at different time points?

What is the precise dynamical nature of persistent activity? How can one distinguish 
an attractor of highly complex spatiotemporal neural activity from slowly decaying 
transients?

What biologically-realistic neural circuit model accounts for the preserved totality of 
neural population activity during rest and active working memory?

During the mnemonic period of a working memory task, is the internal representation 
retrospective about previously shown stimuli or prospective about upcoming events and 
actions? How does the transformation from retrospective to retrospective coding take 
place in a neural circuit?

What is the biological mechanism of history dependence of working memory behavior 
across trials? What would be its functional utility?

How can the limited working memory capacity be explained mechanistically? How is 
the content of working memory controlled and flexibly updated according to behavioral 
demands?

What is the large-scale brain circuit basis of distributed working memory? What would 
constitute an adequate mathematical model of such distributed representation?
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Figure 1: Mnemonic activity in mouse performing a delayed response task.
(a) one of two sensory cues is presented briefly, which can be a high or low tone in 
an auditory task or near or far location of an object on the whisker in a somatosensory 
task. The two stimuli are mapped to left and right licking responses, shown in red and 
blue, respectively. A correct motor response after a delay yields a reward. (b) Population 
activity from ~ 10 simultaneously recorded ALM neurons, projected in the one-dimensional 
subspace optimized for mnemonic representation. Left: control when the choice is correct 
(right, blue). Middle: optogenetic inactivation at the start of the delay period suppresses 
right-selective neural activity, which recovers and the ultimate choice is correct. Right: 
same as middle but this time optogenetic manipulation induces an incorrect response (red, 
left). The ALM decoding still predicts the erroneous movement direction, demonstrating its 
correlate with behavior performance. Reproduced from [61].
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Figure 2: 
Analysis of information coding by delay period activity, (a) Cross-time classification matrix 
of recorded neurons for a remembered item. Classifiers are trained to discriminate trial 
type at time t (y-axis) and tested at time t (x-axis). (b) In a delayed response task, calcium 
imaging of choice-specific cells (one cell per row) in the posterior parietal cortex of a 
behaving mouse. Traces were normalized to each cell’s maximal activity on preferred trials 
and sorted by the peak time. (c) Decoding from human fMRI BOLD signals in a multi-step 
task in which two items were presented as memoranda for each trial. A cue indicated which 
item would be tested by the impending recognition memory probe, followed by the probe, 
then by a second cue, and then a second probe. Red and blue dots: stimulus presentation; 
red triangle: first cue; blue triangle: second cue. After the first cue, decoding by a classifier 
of the first cued item (red) increases whereas that of the uncued item (blue) decays to the 
baseline (grey). Upon the presentation of the second cue, decoded evidence for the two 
categories reversed for the remainder of the trial. Panel (a) is reproduced from [82], (b) from 
[83], (c) from [84].
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Figure 3: 
Coexistence of stable working memory coding and temporal dynamics of delay period 
neural population activity. (a) Six individual neurons are shown for each of two monkey 
experiments using ODR (left) and VDD (right) tasks. Different colors correspond to 
different stimuli. (b) PFC analysis of population activity reveals that coding is stable (traces 
for different colors are distinct) in a subspace of the population activity state space (PC1 and 
PC2), whereas temporal changes are confined in the orthogonal subspace (PC 3). (c) Firing 
rate distributions of PFC neurons in behaving monkeys, plotted with logarithmic scale along 
the x-axis and linear scale along the y-axis for the ODR and VDD experiments, respectively. 
(d) Firing rate distributions of ALM neurons from mice performing a delay dependent task. 
Panels (a-c) are reproduced from [88], (d) from data provided by Nuo Li [63].
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Figure 4: 
A recurrent neural network trained by machine learning to perform working memory tasks. 
(a) Model scheme. (b) Short-term facilitation and short-term depression in response to a 
pulse input. Variable u (red): facilitation factor; x (blue): depression factor, both defined 
between 0 and 1. Synaptic efficacy is proportional to the product ux. (c) After the model 
is trained to perform a delayed match-to-sample (DMS) task, decoding accuracy from the 
recurrent population activity is poor with short delay duration, but gradually increases when 
delay becomes longer than the biological time constants of STF. (d) Scatterplot shows the 
level of persistent neuronal activity, measured as the neuronal decoding accuracy during 
the last 100 ms of the delay (x-axis), versus the level of manipulation (y-axis) across nine 
different tasks (indicated by colored crosses). Adapted from [101].
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