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Keywords: The purpose of this study was to investigate fourth-grade students’ sensemaking of a word
Sensemaking problem. Sensemaking occurs when students connect their understanding of situations with
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existing knowledge. We investigated students’ sensemaking through inductive task analysis of
their strategies and solutions to a problem that involved determining the difference between two
quantities and number of groups within the task. This analysis provided useful themes about
students’ strategy use across the sensemaking domains. Students exhibited three levels of
sensemaking and many different strategies for solving the problem. Some strategies were more
helpful to students in achieving a correct result to the problem. Findings suggest that sensemaking
about problems involving differences and number of groups is difficult for many fourth-grade
students. Among students who did make sense of the problem, those who used efficient strate-
gies with more familiar operations tended to do better than those who used less efficient stra-
tegies or algorithms.

1. Introduction

For more than 40-years, the National Council of Teachers of Mathematics has advocated for mathematics instruction to focus on
problem solving (NCTM; 1980, 1989, 2000, 2014, 2020). A common means to engage students in mathematical problem-solving
experiences is through word problems (Bostic et al., 2016; Levingston et al., 2009; Verschaffel et al., 2007a). Word problems are
an important part of elementary mathematics instruction and assessment (Bostic et al., 2016; Verschaffel et al., 2007a). Understanding
students’ sensemaking during word problem solving is a key to fostering students’ success while problem solving (Pape, 2004).
Problem solving has been a topic of research for many decades and continues to be an object of inquiry (e.g., Matney et al., 2013; Sahin
et al., 2020; Schindler & Bakker, 2020; Verschaffel et al., 2009; Yee & Bostic, 2014).

The problem solving study we present here involved students from the United States of America (USA), which has the added context
of the Common Core State Standards for Mathematics (CCSSM; CCSSI, 2010). In 2010, the majority of states moved to adopt the CCSM,
which were based in research, focused, coherent, and aligned with international benchmarks for the learning of mathematics (Car-
michael et al., 2010; Schmidt & Houang, 2012). Along with these qualities, and directly related to study in this paper, the CCSSM
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established real-life problem solving as something students should be engaging in throughout their K-12 education (CCSSI, 2010).
Furthermore, teachers across states were expected to promote students’ mathematical proficiency by providing opportunities for
students to “make sense of problems and persevere in solving them” (CCSSI, 2010, p. 6). Thus, we desired to inquire about students’
sensemaking during problem-solving following the implementation of the CCSSM.

It is important for the field to continue to conduct problem-solving research with students, as these data can inform us about
students’ struggles and how mathematics instruction may be optimized. Through the investigation shared here, we sought to illu-
minate students’ sensemaking of word problems, the strategic choices students made, and the levels of success those choices afforded
them. We discuss implications of these findings for the mathematics education community.

2. Theoretical frameworks and related literature
This study is framed by notions of problem solving and sensemaking about word problems.
2.1. Problem solving and word problems

Broadly speaking, problem solving “is what you do when you don’t know what to do” (Sowder, 1985, p. 141). From this
perspective, problem solving is a key feature of different types of mathematical engagements, such as, realistic or real-life settings
(Bostic et al., 2016; Matney et al., 2013; Verschaffel et al., 1999), word problems (Bostic et al., 2016; Palm, 2006, 2008; Reed, 1999),
problems that involve discerning mathematical structure and relationships (CCSSI, 2010; Schoenfeld, 1992), application problems
(Verschaffel et al., 1999), and open-ended tasks (Becker & Shimada, 1998; Cifarelli & Cai, 2005). Each kind of mathematical
engagement brings its own affordances and has a place in mathematics education (Verschaffel et al., 2000; Verschaffel et al., 2020).
Problem solving goes beyond the type of thinking needed to solve exercises (Mayer & Wittrock, 2006) and occurs when the task is a
problem, not an exercise (Schoenfeld, 2011).

We utilize Verschaffel and colleagues” (2000) problem-solving framework to consider students’ sensemaking of word problems.
This six-stage framework of problem solving includes: (a) reading the problem, (b) creating a representation of the situation, (c)
constructing a mathematical representation of the situation, (d) arriving at a result from employing a procedure on the representation,
(e) interpreting the result in light of the situational representation [see (b)], and finally, (f) reporting the solution within the problem’s
context. This framework dovetails with the way Verschaffel et al. (1999) characterizes word problems as (a) open, (b) developmentally
complex, and (c) realistic tasks for an individual. Open problems can be solved using multiple developmentally-appropriate strategies.
Problems are developmentally complex for a student when they require productive thinking and are not readily solvable (Schoenfeld,
2011). Complex problems are distinct from exercises; exercises are tasks intended to promote efficiency with a known procedure
(Kilpatrick et al., 2001). Realistic tasks may draw upon real-life experiences, experiential knowledge, and/or believable situations
(Verschaffel et al., 1999).

Generally speaking, word problems are mathematical tasks presented in text, which contain real-life situational background in-
formation (Verschaffel et al., 2000). Arithmetic word problems necessitate the use of the operations of addition, subtraction, multi-
plication, and/or division. For our considerations here, the term ‘word problem’ constitutes a situational mathematics task presented
in text format and necessitating arithmetic operations for its solution. These frameworks for problem solving and word problems
guided our study’s investigation. We were particularly interested in the mathematical strategies students enact as a result of their
sensemaking of arithmetic word problems that have these attributes.

2.2. Sensemaking about multi-step word problems

Sensemaking is when students develop an understanding of a situation or context by connecting it with existing knowledge (NCTM,
2009, p. 4). Students who struggle to comprehend the relationship between textual elements representing the situation will conse-
quently struggle to associate the correct mathematical operations (Nortvedt, 2010; Pape, 2004; Verschaffel et al., 2000). Hence,
problem solving and sensemaking are connected in that “becoming a good mathematical problem solver—becoming a good thinker in
any domain—may be as much a matter of acquiring the habits and dispositions of interpretation and sense-making as of acquiring any
particular set of skills, strategies, or knowledge” (Resnick, 1988, p. 58).

Of particular interest for our study is the notion of students’ ability to decontextualize, meaning, “to abstract a given situation and
represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to
their referents” (CCSSI, 2010, p. 6). As students are sensemaking while problem solving, the ability to decontextualize enables them to
connect the situation being presented in the task to the mathematical operation necessary for a strategy (Verschaffel et al., 1999). This
decontextualization process includes mathematical strategy use, which we define as a mathematical pathway that an individual enacts
while problem solving, and includes both representations and operational procedures (Goldin, 2002). Strategic choices in open
problems are influenced by students’ sensemaking of the context (Matney et al., 2013), their connection between the context and
known applicable arithmetic calculations (Baroody & Dowker, 2003; Kilpatrick et al., 2001; Yee & Bostic, 2014), and their ability to
execute those calculations (Torbeyns et al., 2006; Verschaffel et al., 2007b). A complementary sensemaking attribute is contextual-
ization. Contextualization occurs during sensemaking as students’ reference back to the problem context to check the continued
relevance of their mathematical work (Koestler et al., 2013). Mathematically proficient students use both of these abilities while
sensemaking about the quantities within the situation presented in a word problem (CCSSI, 2010).

Sensemaking occurs at many stages of problem solving (Verschaffel et al., 2009) and some scholars have focused on students’ work
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between the situation and mathematical representations. For instance, Palm’s (2008) qualitative study examining fifth-grade students’
work indicated that students’ engagement with realistic word problems increased the likelihood their problem solving ended with a
correct solution to a problem. Similarly, Yee and Bostic (2014) conducted a qualitative study examining sixth-grade and high school
students” word problem solving and drew a conclusion that more successful problem solvers were flexible with their mathematical
representations during strategy use, often using multiple nonsymbolic representations, compared to peers who employed solely
symbolic representations while problem solving. Taken collectively, the literature provides ideas about students’ strategy use while
problem solving, but few take a critical look at students’ work to explore their mathematical sensemaking of word problems. Hence,
this study aims to fill a needed gap within the problem-solving literature.

As part of students’ sensemaking, they draw upon different representations of the situation within the problem - and its mathe-
matical elements - to organize and externalize their thinking (Cai & Lester, 2005; Goldin, 2002). Misunderstandings while sense-
making can generate barriers for students to successfully problem solve (Yee & Bostic, 2014). In prior research it was demonstrated
that students had a strong tendency to give ‘unrealistic’ solutions to word problems (Greer, 1997; Palm, 2008; Yoshida et al., 1997).
More specific to the context of the study here, students solving arithmetic word problems in school settings tended to use one or more
arithmetic operations involving the quantities in the problem without consideration of the context (Verschaffel et al., 2000). Devel-
opment of sensemaking habits of mind help students develop autonomy, relying on their own reasoning and resources to be more
persistent in problem solving (Mueller et al., 2011; Yackel & Cobb, 1996). Hence, in order for educators to help students become better
problem solvers, it is important for them to know what students are, or are not, making sense of during problem solving.

2.2.1. Making sense of the difference

Some word problems necessitate making sense of a context that requires the difference between two or more quantities. Two
common models for understanding approaches to subtraction are taking away and determining the difference (Selter et al., 2012). In
the take away model, students invoke a strategy involving taking away the subtrahend amount from the minuend, as in 433—379 = 54.
Alternatively, students might notice the relatively close nature of the two numbers (379 and 433) and approach the difference with a
strategy of starting with 379 and determining the difference up to 433. As an example, consider this case where an individual must make
sense of a difference between quantities:

Ashley and Jorge are both collecting unique pencils. Ashley wants to have as many pencils as Jorge. Jorge has 433 and Ashley
has 379. How many more pencils does Ashley need so that Ashley’s collection is the same size as Jorge’s?

To solve this an individual needs to observe that a difference needs to be found. Procedural expectations for finding the difference in
fourth-grade are found in the CCSSM when it says students should “fluently add and subtract multi-digit whole numbers using the
standard algorithm™ (CCSSI, 2010, p. 29). The standard algorithm in the USA operates from a take away perspective. However, there
are many different operational procedures that young children might use to find the difference between two numbers (Caviola et al.,
2018). Students may account for the difference by adding up (Torbeyns et al., 2018), by using a decomposition strategy, or by using a
subtraction procedure other than the standard algorithm. A student’s choice of procedure in the context of finding a difference during
strategy use, such as adding up or a subtraction algorithm, goes beyond their comfort with a particular procedure (Smith-Chant &
LeFevre, 2003). The choice may also be influenced by the problem’s difficulty in terms of the magnitude of the numbers involved
(Caviola et al., 2018) or the necessity of regrouping parts of an operand in order to subtract (Imbo et al., 2007), which relates to how
students initially made sense of the problem.

Students often lack strategic flexibility (Torbeyns et al., 2006) and tend to use the same operational procedure regardless of the
numbers (Selter, 2001). Selter (2001) conducted a qualitative study with 300 third-grade students, exploring how they solved addition
and subtraction tasks that lacked context (e.g., 836—567=?). Results indicated that "43 % of the students did all problems by means of
the [standard] algorithm" (p.160). This included the task: 701—698, which can be much more simply solved by recognizing the
minuend and subtrahend are only three apart. Furthermore, about 75 % of the students used the same operational procedure for
solving every subtraction problem, or about 83 % if you include students who used a second operational procedure on only one out of
six problems. Our work extends from this study by utilizing a multi-step arithmetic word problem. With the CCSSM’s emphasis on
arithmetic strategies and properties of operations in the elementary grades (CCSSI, 2010), part of our investigation inquires about
those strategies students are using to find the difference between quantities in word problems.

2.2.2. Making sense of the number of groups

Relative to addition, subtraction, and multiplication, research on multi-digit division has received limited attention (Hickendorff
et al., 2018). Some word problems necessitate making sense of a context in which the students need to operate with groups of a
particular quantity. “For equal-sized group situations, division can require finding the unknown number of groups (Quotative) or the
unknown group size (Partitive)” (CCSSI, 2010, p. 21). Making sense of the number of groups would be required for the situation posed
in the earlier task with Ashley and Jorge.

Ashley has 54 fewer pencils as Jorge and wants to buy enough pencil packs so that Ashley’s collection is as large as Jorge’s
collection. The pencil packs Ashley likes best come with three pencils per pack. What is the number of pencil packs Ashley needs
to buy to have as many pencils as Jorge?

Making sense of this context necessitates observing the number of groups of 3 composed within 54. Thus, the problem context
dictates a logic that the group size is known, and the number of groups is unknown. Similarly, in this study students were challenged
with a multi-step word problem involving finding a number of groups, opening up an option for students to choose multi-digit division
as part of their overall strategy. The CCSSM indicates that students should be able to solve division problems using “strategies based on
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place value, the properties of operations, and/or the relationship between multiplication and division” (CCSSI, 2010, p. 30).

Calculating the number of groups of a particular size is demanding for upper elementary students (Fagginger Auer et al., 2016;
Hickendorff et al., 2009; Schulz & Leuders, 2018). Similar to making sense of the difference, students enact many different operational
procedures to find the number of groups (Anghileri et al., 2002; Hickendorff, 2013; Hickendorff et al., 2010; Schulz & Leuders, 2018).
Hickendorf et al. (2009) classify these operational procedures in two ways: number-based or digit-based. Number-based operational
procedures allow students to safely underestimate and use simpler facts that they are more familiar with (Kilpatrick et al., 2001). These
procedures include those such as repeated addition and/or subtraction, estimation using multiplication, compensation, and partial
quotients. When students use repeated addition, they repeatedly add the same addend until reaching a desired sum. In the language of
division, they add multiples of the divisor until they reach the dividend. Repeated subtraction then proceeds in the opposite direction
as students repeatedly subtract multiples of the divisor until reaching a desired difference. In a more condensed approach, students
may use multiplication strategies in order to determine the number of multiples that make up the dividend. Students who do this often
start by multiplying the divisor by a number that may be close to the dividend and then proceed using an informed trial and error
approach until they find the number that results in the dividend. In compensation, the dividend or the divisor may be rounded up or
down to a multiple of the divisor. For example, when a student needs to know how many groups of 3 are in 54, they could estimate the
number of groups as 3 x 20 = 60, since 60 is close to 54. Noting this is too large, the student may perform the calculation 60—54 = 6,
and thereby recognize the number of groups of 3 should be 18. This procedure requires students to account for the fact that the
multiplier (in this case 20) represents the number of groups. Lastly, the partial quotients procedure is an approach to division in which
the student decides how many groups of the divisor to subtract from the dividend. The number of groups of the divisor is kept track of
and the process of subtracting multiples of the divisor continues until the entire dividend is comprised. The total number of groups of
the divisor is then summed to find the quotient. The partial quotients method of division is generally a more accessible approach as it
allows for students to use safe underestimations and find the quotient part by part (Kilpatrick et al., 2001).

Digit-based operational procedures, such as the standard division algorithm, rely on students’ procedural fluency in accurately
replicating a procedure. In order for digit-based procedures to be meaningful, students need to develop a conceptual understanding of
why the process works, including an understanding of the base ten system (Kilpatrick et al., 2001). Kilpatrick et al. (2001) claim that
the division algorithm provides a challenge for students because it requires them to find the exact number of copies of the divisor that
can be taken from successive parts of the dividend. This method leaves little room for error. Just as with finding the difference, the
procedures students use when finding the number of groups is largely based on the magnitude of the numbers, preexisting knowledge
of mathematical facts, as well as the procedures that they have learned at home and at school (Kilpatrick et al., 2001).

2.3. The fair task

In this study, we investigate students’ sensemaking of an arithmetic word problem called the Fair Task. The Fair Task is a non-
routine, multi-step, open, complex, realistic, arithmetic word problem that addresses the CCSSM domain of Operations and Alge-
braic Thinking. More specifically, the task addresses elements of Standard 4.0A.3:

Solve multi-step word problems posed with whole numbers and having whole-number answers using the four operations. Assess
the reasonableness of answers using mental computation and estimation strategies including rounding (CCSSI, 2010, p. 29).
The Fair Task was designed for fourth-grade students using the frameworks for problem solving and word problems discussed
earlier. The task comes from a series of problem-solving measures for grades 3-8 (i.e., Problem solving Measures or PSMs). The PSM
series consists of mathematics word problems aligned with the grade level content of the Common Core State Standards for Mathe-
matics (CCSSI, 2010). PSM items have been rigorously explored through multiple validation studies, including think alouds with
students and expert panels with representatively sampled mathematics teachers, mathematicians, and mathematics educators (Bostic
& Sondergeld, 2015; Bostic et al., 2017, 2018, 2019, 2020, 2021). The Fair Task is one of 15 items found on the PSM4 and is shown
below.

Josephine sold tickets to the fair. She collected a total of $1,302 from the tickets she sold. $630 came from the adult ticket sales.
Each adult ticket costs $18. Each child ticket costs $14. How many child tickets did she sell?
The Fair Task incorporates multi-step thinking in the areas of making sense of the difference and making sense of the number of
groups.

2.4. Three key observations of sensemaking in the fair task

In the Fair Task, students encounter a problem context involving the purchase of tickets for children and adults. They are given the
cost of each type of ticket and total values for all child and adult tickets sold. Students must use this information to consider how many
child tickets were sold. In solving this task, students need to determine which pieces of information are relevant and helpful. The $18
cost for adult tickets is not necessary to finding the solution of the number of child tickets sold. On the other hand, the numbers 1302,
630, and 14 are helpful for moving through the problem with three key sensemaking observations, one involving a difference, one
involving groups of 14, and the other involving the connection between groups of 14 and the difference. We have numbered the key
observations (KO) for the sake of convenience, not to prescribe an assumed order through which students must make sense of the
problem.

KO1) Students need to observe that the difference between $1,302 and $630 is the dollar amount brought in by selling child tickets.
This value is $672.
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KO2) Students need to observe that each child ticket is $14 dollars. Hence, there is some number of groups of 14 that would
represent the number of child tickets sold.

KO3) Students need to observe that the number of groups of 14 within the difference of 672 will give them the number of child
tickets sold.

These three key observations demonstrate the constraints and affordances of the Fair Task. Although students’ processes are
constrained by the given conditions and one possible correct answer, decisions on how to account for each of the observations remains
at the mathematical discretion of the problem solver, which invokes an important degree of strategic openness through which students
may approach solving the task. When students make sense of KO1, they may choose to conceptualize the difference as 1302 take away
630 or determine the difference between the two numbers using another strategy. When students make sense of KO2, the context gives
the group size of 14, making the division an unknown number of groups (Quotative) situation. However, students may employ a
number of different strategies for finding the number of groups. We know from prior research (Quintero, 1983) that students struggle
to make sense of multi-step problems involving ratio. Yet, little is known about students’ sensemaking of multi-step problems involving
combinations of operations, such as a difference and a number of groups. Further, less is known about the ways students approach
multi-step arithmetic word problems. The research here works to fill that gap by describing students’ sensemaking for a multi-step
problem and evaluating the patterns of success in their strategic choices.

We wondered what evidence students might demonstrate for sensemaking about each key observation. The multiple elements of
the Fair Task afford students both a challenge and an opportunity to make sense of the context and choose a solution pathway,
strategically. The aims of this manuscript are (a) to describe the sensemaking evidence of fourth-grade students and (b) to investigate
patterns among students’ strategy use for success and connections to sensemaking. More specifically, we inquire about the following
research questions (RQ).

RQ1: What sensemaking is evident from students’ solutions to the Fair Task?

RQ2: What strategies do students use to solve the Fair Task?

RQ3: How do those strategies relate to student success on the Fair Task?

With a better understanding of students’ sensemaking while problem solving and the degree of success that their mathematical
strategies afford them, educators and scholars may be better able to make evidence-based decisions about instruction that promotes
problem solving.

3. Method
3.1. Validity evidence for the fair task

Validation studies for the PSMs that involved the Fair Task adhered to rigorous expectations for developing high quality assess-
ments as framed by the Standards for Educational and Psychological Testing (American Educational Research Association [AERA], et al.,
2014). Necessary and appropriate sources of validity evidence were gathered and analyzed for the Fair Task including test content,
response processes, relations to other variables, internal structure, and consequences from testing/bias (AERA et al., 2014). An expert
panel consisted of professionals including elementary teachers, school instructional leaders, and terminally degreed mathematics
educators and mathematicians familiar with the content and expectations of the CCSSM (CCSSI, 2010). Think alouds were performed
with purposefully and representatively selected students as well as whole-class think alouds (Bostic et al., 2021). The Fair Task was
administered to students in multiple districts over several years, which were representatively and purposefully chosen for their
different student populations, representing diversity of racial and ethnic identities as well as geographic location (i.e., rural, suburban,
and urban). Psychometric analysis in prior validation studies used Rasch analysis (Rasch 1960/1980) to reveal that the Fair Task had a
0.43 logit value, reasonable infit (0.85) and outfit (.73) values, and positive point-biserial values. This logit value within the context of
other PSM4 items led to the impression that this item was moderately difficult. The item discrimination and other psychometric
findings were acceptable (see Bostic et al., 2019; Linacre, 2021). Finally, qualitative (e.g., interview data with respondents and expert
panel) and quantitative findings (e.g., comparisons of different subgroups) indicated that this item had little bias impacting re-
spondents’ outcomes. Detailed information about the development of items in the PSMs, their associated validation process, and each
facet may be found in related publications (i.e., Bostic & Sondergeld, 2015; Bostic et al., 2017, 2018, 2019, 2020, 2021). Robust
validity evidence related to the Fair Task and PSM4 convey assurance that users can feel confident that score interpretations and use of
the tasks with fourth-grade students are appropriately drawn.

3.2. Participants and setting

The 280 participants in this study were fourth-grade students from two school districts in a Midwest state located in the USA using
the CCSSM as the basis for their curricular standards. District A is a rural district and District B is a suburban district. Demographic

Table 1

District Demographics.
District K-12 Student Population Female Male White Non-White Poverty Disability
A 1,915 48.83% 51.17% 83.86% 16.14% 36.14% 15.30%
B 3,530 49.52% 50.48% 60.76% 39.24% 39.38% 13.06%
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information for each district can be found in Table 1. The Fair Task was given to participants as part of the fourth-grade PSM (PSM4) in
the last month of the 2018 academic year. Students worked on the PSM4 individually, in a quiet classroom setting monitored by the
researchers and the students’ classroom teacher. They were not permitted to use calculators and were encouraged to write, draw, and
represent their ideas on the testing paper. Problems were administered on single-sided paper and students were permitted to use both
sides of paper or additional paper. Teachers provided enough time for all students to complete the PSM4, which was typically 90—120
min. The Fair Task was the fifth problem on PSM4. All names of students used in this manuscript are pseudonyms.

3.3. Data and analysis

Participants completed the Fair Task and expressed their problem solving in writing on the PSM4. The written work on the Fair Task
was scanned for ease of analysis. An inductive qualitative analysis (Hatch, 2002) was performed to find thematic (Creswell, 2011)
patterns among the mathematical work of students to illuminate findings related to each research question. In what follows, we share
our seven step process for the enacted inductive analysis.

1 Three researchers read the solutions of all 280 students. The frame for the analysis was evidence of student mathematical sense-
making of the problem related to the three key observations for the Fair Task. Researchers looked for sensemaking as evidenced by
student work that demonstrated understanding of the Fair Task’s context and connected it to some mathematical strategy for
solving the problem at hand.

2 The three researchers reread the 280 students’ solutions and made memos of salient domains.

3 Researchers collaboratively identified salient domains and gave them a code. Each of these domains consisted of particular groups
of strategies.

4 The researchers reread the data and refined and revised salient domains, grouping like strategies and recording which students
calculated correctly, or incorrectly, for their chosen strategy.

5 Each of the three researchers took a specific domain and reread all of the students’ solutions to decide if the domains were sup-
ported by the data. Discrepancies were shared with the research team and discussed for consensus agreement. When appropriate,
the discrepancies were analyzed for their merit within other groupings of strategies or considered as a new strategy. This completed
the analysis for RQ1. The authors created written paragraphs and graphic maps to demonstrate each domain. These are further
explicated and shared in the findings below.

6 Completed domains were analyzed, within and across, for patterns involving students’ solution strategies for the Fair Task. When
patterns among student strategies were found, focused analysis on the participants’ work exhibiting those patterns was conducted.

7 For each pattern, the researchers created an outline expressing relationships within and among domains. This completed the
analysis for RQ2 and RQ3. Data excerpts to support the elements of the outline were selected. A textual outline was made first,
followed by a picture meant to capture the findings.

No Evidence of Sensemaking
86 students

Ko1
Partial Evidence of
Sensemaking
88 students

Fig. 1. Venn diagram showing the relationship between the three levels of sensemaking (Robust, Partial, and No) and the three key observations
(KO) of the Fair Task. KO1-The difference between $1,302 and $630 is the dollar amount brought in by selling child tickets. This value is $672. KO2-
There is a number of groups of 14 that gives the number of child tickets sold. KO3-The number of groups of 14 within the difference of 672 yields the
child tickets sold. The number of students found within each level KO are given.



G. Matney et al. Journal of Mathematical Behavior 65 (2022) 100933
4. Findings

The study here investigates evidence of students’ sensemaking (RQ1), descriptively maps out students’ strategies in relation to their
sensemaking (RQ2), and shares analysis of strategy success (RQ3). Overall, only 50 out of 280 (18 %) students derived a correct result.
These 50 students showed the sensemaking capability, strategic competence, and computational fluency to correctly solve the Fair
Task. We further parse out the aspects students made sense of in the Fair Task.

4.1. RQ 1: evidence of sensemaking

Inductive analysis revealed three qualitatively different levels of student sensemaking. These domains were (i) robust evidence of
sensemaking, (ii) partial evidence of sensemaking, and (iii) no evidence of sensemaking. Students’ sensemaking about the Fair Task
was observed as they demonstrated a mathematical strategy related to one or more key observation(s). Concisely stated, the three key
observations were KO1-The difference between $1,302 and $630 is the dollar amount brought in by selling child tickets. This value is
$672. KO2-There is a number of groups of 14 that gives the number of child tickets sold. KO3-The number of groups of 14 within the
difference of 672 yields the child tickets sold. Fig. 1 shows the connection between the levels of sensemaking, the KOs, and the number
of students identified in each. The figure also conveys that students who exhibited a robust sensemaking are in the intersection of all
three KOs, students who exhibited partial sensemaking are in the other component parts of the KOs, and students who exhibited no
sensemaking fall outside of the three KOs. As students made sense of the problem, some of them also understood the connection be-
tween KO1 and KO2, thus demonstrating sensemaking of KO3. Therefore, sensemaking about KO3 only happened when accompanied
by the first two.

4.1.1. Robust evidence of sensemaking

Robust evidence of sensemaking about the Fair Task indicated attention to all three key observations necessary to solve the
problem. As seen in Fig. 2, 79 out of the 280 students (28 %) provided evidence that they made sense of KO1, KO2, and KO3 and
enacted 14 unique mathematical strategies to derive an answer. Though these strategies varied, all 79 students used a viable strategy
with 50 students arriving at the correct answer and 29 students making some form of minor miscalculation. This suggests that these
students showed evidence of making sense of the difference, the number of groups, and that the number of groups within the
appropriate difference yielded the desired solution.

Fig. 2. Mapping of strategies for students who demonstrated robust evidence of sensemaking in their solving of the Fair Task.
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Fig. 3 offers four samples of student work evidencing robust sensemaking. Students showing robust evidence of sensemaking for
KO1 all implemented the standard algorithm for subtraction to find the difference. Students’ strategic choices varied the most in their
attention to finding the number of groups of 14 (KO2). As seen by their work in Fig. 3, Blanca and Stuart both used multiplication but
Blanca approached it through a partially-linear, tabular representation, while Stuart used single separated multiplications to narrow
down the correct number of groups. Leon and Chioma’s work are examples of the different kinds of division algorithms students
enacted. Student strategies involving finding the difference (KO1) and the number of groups (KO2) will be discussed in more detail in
their own sections below.

4.1.2. Partial evidence of sensemaking

One-hundred-fifteen students demonstrated partial evidence of sensemaking about the Fair Task through their attention to
mathematical work for KO1, KO2, or both KO1 and KO2, but did not show evidence for KO3. Fig. 4 indicates that 115 out of the 280
students (41 %) provided evidence that they made sense of either the difference, the number of groups of 14, or both. However, these
students did not demonstrate evidence of their understanding of the relationship between the number of groups of 14 and the dif-
ference of 1302 and 630, which represented the total value of the child tickets that were sold. These students’ inability to make sense of
KO3 means that, on the whole, they did not enact mathematical strategies that led to a solution for the Fair Task, but many of them did
compute their partial solution correctly. The students in this sensemaking level exhibited eight mathematically different strategies (see
Fig. 4). These strategies will be discussed in more detail in Section 4.2.

Examples of student work demonstrating evidence for partial understanding can be seen in Fig. 5. Saskia’s work shows a student
who found the necessary difference (KO1), but after that was not able to see the necessity of finding groups of 14 (KO2) nor the
relationship between the difference and the number of groups of 14 (KO3). In Jeremy’s work, we saw a student who wanted to find a
number of groups of 14 (KO2), yet did not make sense that there is a portion of the sales that were for the children and therefore did not
find the difference (KO1) and did not connect the difference to the number of groups (KO3). In Topanga’s work, we see a rare example
of a student who showed evidence of having made sense of both the difference (KO1) and the number of groups of 14 (KO2) but
selected the difference as the answer to the question of how many child tickets. Taken collectively, these examples help to illustrate
how students made partial sense of the problem; however, were not able to arrive at the correct mathematical result. Within the partial
level of sensemaking, there were 22 students out of 115 (19.1 %) who, like Saskia, displayed a sense of understanding KO1, but then
moved on to unrealistic solutions involving, addition, subtraction, multiplication, or division. These strategies do not connect in any
way to the situation found in the problem and appear as random attempts to find something that “may” work out serendipitously.
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Fig. 3. Student work samples of different strategies for robust sensemaking of the Fair Task.
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Fig. 4. Mapping of strategies for students who demonstrated partial evidence of sensemaking in their solving of the Fair Task. In this figure we show
that there were 115 total students who showed evidence of partial sensemaking. Although most of the students in this category demonstrated
evidence in either KO1 or KO2, there were 13 students who showed evidence in KO1 and KO2. Therefore, those 13 are accounted for in both the 101
students for KO1 and the 27 students for KO2.

4.1.3. No evidence of sensemaking

Students who displayed no evidence for any of the three key observations were classified in this level of sensemaking. As seen in
Fig. 6, 86 out of the 280 students (31 %) provided no evidence that they had made sense of any of the three key observations. Students
in this level of sensemaking either enacted strategies that would not lead to a correct solution of the Fair Task or gave no evidence of
how they arrived at their solution. The majority of students in this level of sensemaking, 72 out of 86 (83.7 %), used numbers and
operations within the problem in ways that did not align with the problem’s context. For example, 24 of these students subtracted
various numbers given in the problem (e.g., 1302—14 = 1288 or 630—14 = 601).

In Fig. 7, examples of these unrealistic computations are shown. Scott, Mackenzie, and Noah, show computations that are
disconnected from the situation of the Fair Task as they tried to find the number of groups of 630 in 1302 (Scott), add the ticket prices
together and then add that to the total money collected (Mackenzie), or multiply the ticket prices by the total amount of the adult ticket
sales (Noah). Others found the number of groups of 18 within 1302 or 603. When students of this level of sensemaking demonstrated a
mathematical computation, it revealed that they greatly struggled to connect it back to the situation within the problem (i.e., de-
contextualize), limiting their ability to enact a viable strategy for any of the KOs.

4.2. RQ2: students’ strategy use on the fair task

4.2.1. Strategic choices for finding the difference

As students made sense of KO1 involving the difference between 1302 and 630, they had representational and procedural choices to
make. Three strategies were identified in students’ solutions: (1) standard USA subtraction algorithm, which involved a symbolic
representation to perform vertical subtraction by the take away model; (2) determining the difference by adding up, which involved a
symbolic representation of adding up from 630 to arrive at 1302; and (3) number line, which involved determining the difference via
pictorial representation of adding up from 630 to arrive at 1302 using a number line. The standard USA subtraction algorithm was the
most prevalent strategy among students as it was used by 159 of 174 students who made sense of KO1. Adding up from 630, a much less
prevalent strategy than the standard subtraction algorithm, was used by 14 of 174 students who made sense of KO1. Number line was
only used by one student. Although the majority of students who made sense of KO1 used the standard algorithm, a small amount of
procedural flexibility among students was observed through the 15 students who found the difference by alternative means. These
students recognized that they could arrive at the difference by determining how much they needed to add to 630 to arrive at 1302.

4.2.2. Strategic choices for finding the number of groups

Students used a variety of methods to find the number of groups of 14 to represent the number of child tickets sold (KO2). Those
procedures included: (1) repeated subtraction and addition; (2) multiplication (e.g., box method); (3) partial quotients; and (4)
standard USA division algorithm. At times, the use of the standard division algorithm involved supporting computations of repeated
subtraction, repeated addition, and/or multiplication. There were 106 of 280 (38 %) students who provided evidence of sensemaking
about KO2. The number of students using these computation strategies was more uniformly distributed than those involving the
difference (KO1). However, the standard USA division algorithm was still the most prevalent with 48 out of 106 students choosing to
use it to find the number of groups of 14. The other three strategy types had less than half as many students choose to use them.
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Fig. 5. Student work samples of different strategies for partical sensemaking of the Fair Task.

Repeated subtraction and addition, multiplication, and partial quotients, had 17, 18, and 23 students out of 106, respectively. Dif-
ferences in strategies were found depending on whether students had a robust (n = 79) or partial (n = 27) level of sensemaking as can
be seen in Figs. 1 and 3.

4.2.3. Strategic choices for connecting the difference and number of groups

All students who demonstrated sensemaking of KO3 had also given evidence for sensemaking of KO1 and KO2 and showed robust
sensemaking of the Fair Task. Thus, student strategies for demonstrating how the difference and number of groups of 14 connected
within the problem situation depended upon their strategies for both KO1 and KO2. Fig. 3 is a representative sample of the student
strategies resulting in evidence of this connection. Observing the work of Leon, Blanca, Chioma, and Stuart shows how the vast
majority (70 out of 79) of the robust sensemaking students used the standard USA subtraction algorithm to find the difference of 672
and then began to use many different mathematical strategies for finding the number of groups of 14 within 672. For example, Leon
used partial quotients, Blanca used a multiplicative table of groups of 14, Chioma used the standard USA division algorithm, and Stuart
used guess and check multiplication to find the number of groups of 14 within 672. In summary, student strategies for KO3 involved
finding the difference in the exact same way, but from there diverged into a variety of strategies to find the number of groups of 14 in
672.
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7 students did addition of

numbers.

2 students computed 14x18, then some
combination of addition and/or subtraction.

7 students used repeated addition or
subtraction of 14 with no evidence of why.

students used repeated addition or
subtraction of 18.

Fig. 6. Mapping of strategies for students who demonstrated no evidence of sensemaking in their solving of the Fair Task. Although none of the
students in this level of sensemaking exhibited a related successful strategy, they did show unrelated computations. In this figure we share whether
or not students successfully computed their chosen calculations that were unrelated to sensemaking of the problem.

4.3. RQ3: strategical success on the fair task

4.3.1. Student strategical success for finding the difference

In the Fair Task, students encountered a difference between a four-digit number and three-digit number that required at least one
regrouping if done by the standard USA subtraction algorithm. Most students tended to be more successful in finding the difference
when applying the standard subtraction algorithm as part of their strategy. On the other hand, finding the difference proved difficult
for 20 students who recognized KO1 was necessary but made errors in their procedure. Of the 20 observed errors, 16 occurred with the
standard subtraction algorithm and four occurred with adding up. Four types of errors were observed: (1) Copying, (2) Regrouping, (3)
Arithmetic, and (4) Unknown. Four students made a copying error, indicating they wrote down one of the key numbers incorrectly. For
example, one student wrote 630 as 603 in their subtraction. Eight students made a regrouping error while using the standard sub-
traction algorithm. Four students made an arithmetic error. For example, a student might have shown that 10—3 = 9 in the process of
finding the difference with the standard algorithm. Four students made an unknown error, meaning they did not show enough work to
denote the type of error. For example, one student wrote 1302—630 = 668. This incorrect result is probably a combination of
regrouping errors, however, not enough evidence was given to confirm such a categorization.

4.3.2. Student strategical success for finding the number of groups

Table 2 shows the chosen strategies used by participants who showed robust evidence of sensemaking including the number of
participants who found the correct number of groups of 14 there are in 672. The evidence indicated that students who demonstrated
robust sensemaking were most successful with finding the number of groups when using multiplication. They were about equally likely
to be successful when using the standard algorithm or partial quotients to divide and were least successful when using repeated
addition and subtraction. Nine students used repeated subtraction or addition to try to find the number of groups. Eight of the nine
students were unsuccessful as they had difficulty with organization and would denote that they were frustrated by the number of
calculations they needed to do. Some students used shortcuts, such as adding three groups of 14 instead of just one. Though the
students who used addition and subtraction perhaps chose to use an operation that they were more comfortable with, these operations
were also less efficient. The students’ lack of flexibility to switch to a more efficient strategy using multiplication or division inhibited
their success. On the other hand, the 10 students who chose to use multiplication with an educated guess and check approach all
succeeded in finding the correct answer. From our observations of students’ work, this approach required far fewer calculations than
addition and subtraction, and showed students’ flexibility to use multiplication facts familiar to them.

11



G. Matney et al. Journal of Mathematical Behavior 65 (2022) 100933

b |

¢

Mackenzie
Noah

[ |

‘ \ (3%
Y| (YO y 14
= 1302 i3

- an el

e e T

Fig. 7. Student work samples of different strategies for no sensemaking of the Fair Task.

Table 2
Student Strategies attending to Key Observation 2 with rates of computational success.
Strategy Level of Sensemaking Amount of Participants Number of Participants with Correct Computation Percentage Correct
Repeated addition Robust 9 2 22.22%
and subtraction Partial 8 4 50%
Multiplication Robust 11 11 100%
P Partial 7 3 42.86%
- . Robust 39 27 69.23%
Standard Division Algorithm Partial 9 4 44.44%
Partial quotients Robust 20 12 60%
g Partial 3 1 33.33%

Students who showed robust evidence of sensemaking but made computation errors did so in a variety of ways. One error type was
organizational. Students did not accurately keep track of the number of groups of 14 when using repeated addition and subtraction.
There were fifteen students who made errors using the standard division algorithm while finding the number of groups of 14. Five of
those errors revealed that students were unsure of how to use the algorithm, which we termed algorithmic errors. Other categorized
errors while executing the standard division algorithm included seven students who made arithmetic errors, two students who copied
their answer incorrectly, and one student who showed understanding of how to use the algorithm but did not align numbers
appropriately. Students who used the partial quotients strategy made errors involving the remainder, which was a result of their
miscalculation of the number of groups of 14. Two students added the quotient and remainder, whereas three students listed a
remainder as part of their answer showing a lack of attention to making sense of the remainder in context of the problem.

Table 2 also shows the differing success rates among students’ strategies for KO2. Those students exhibiting partial evidence had
not made full sense of the Fair Task like their peers, and this inhibited their success in finding the correct solution. Though these
students gave evidence that they knew they needed to find a number of groups of 14, they were unable to connect the number of groups
to the difference of 672 (KO3). Therefore, the numbers of correct computations listed in Table 2 for the partial sensemaking level do
not reflect the number of students who found the correct answer of 48. Rather, the percentage of correct computations means for their
chosen partial strategy, their computations for finding a number of groups of 14 were correct. If these students had been able to make
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sense of the whole problem, their computational prowess makes it more probable that they would have derived a correct solution to the
overall problem. The largest inhibiting factor for these students was their inability to make sense of KO3. Looking inclusively at the
computational efforts of all the students who demonstrated sense making for finding the number of groups of 14, we can derive from
Table 2 that 64 out of 106 of them correctly computed. That is to say, about 60 % of the students who made sense of KO2 went on to
demonstrate correct calculations involving finding a number of groups of 14.

4.4. Summary of findings

The number of different strategic choices made by students demonstrated the open nature of the Fair Task. Various strategies used
illuminated differences in students’ sensemaking and response to a multi-step word problem. Out of the 174 students who gave ev-
idence for making sense of KO1, 159 of them used the standard algorithm for subtraction, including all of the students who showed
robust evidence of sensemaking. In contrast, KO2 opens up the possibility for division to be used as the students needed to find the
number of groups of 14 that go into 672. However, the students in this study used all four operations to make sense of and solve KO2.
Students’ strategies when sensemaking about KO2 showed that many understood they were able to use properties of operations and the
relationships between the operations in their quest to find the number of groups. Yet, there were differences in the rates of success
among the strategies as only two-thirds of the students using algorithmic processes for division proceeded to get the correct answer
while 100 % of the students using multiplication methods to arrive at the number of groups of 14 arrived at the correct answer. Lastly,
only 28 % of all students were able to demonstrate sensemaking about the connection between KO1 and KO2 and this greatly restricted
the number of students who could successfully solve the problem.

5. Discussion and implications

Expectations for students doing two-step problem solving begins in second and third grade (CCSSI, 2010, p. 19, 23). By
fourth-grade, the expectations rise to multistep word problem solving as indicated by 4.0A.3, “Solve multistep word problems posed
with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be
interpreted (CCSSIL, 2010, p. 29).” The Fair Task appears to offer a substantial challenge for student sensemaking, as it necessitates
finding a difference (KO1), finding a number of groups of 14 (KO2), and understanding the relationship between the two (KO3). Past
research has demonstrated that problem solving is difficult for elementary, middle grades, and secondary students (e.g., Bostic et al.,
2017; Folger & Bostic, 2015; Verschaffel et al., 1999). While only 18 % of participants solving the problem might seem concerning, it is
reasonable within the context of word problem solving. Word problem solving is much more difficult than solving mathematical
exercises (Kilpatrick et al., 2001).

Solving a multi-step word problem involving well known operations may be more difficult for students due to the problem
complexity. Unpacking this further, making sense of word problems involving addition and subtraction should be extremely familiar to
fourth-grade students as it is an expectation of each prior grade, including Kindergarten (CCSSI, 2010, pp. 11, 15, 19, 23). The results of
this study showed that when students are given a multi-step word problem, 106 of the 280 students (37.9 %) were unable to make sense
of a context involving a difference (KO1), which could have been found by either addition or subtraction. Of the 174 students who
displayed evidence of sensemaking for KO1, 20 made minor errors which kept them from finding the correct result. This means that
there were more than five times as many students who struggled with the sensemaking as there were students who made computa-
tional errors. Hence, struggles with sensemaking account for the largest reason why students did not complete KO1 successfully. The
evidence here suggests that although students have had nearly five years of formal education on addition and subtraction, when
encountering those operations in the complexity of a multi-step word problem, many of them struggle to connect the context of the
problem to those operations.

In their consideration of the two subtraction models, take away and determining the difference, Selter et al. (2012) found that
“Using the determining the difference model and the inverse relation between addition and subtraction seems to be efficient; however,
it is rarely being used” (p. 404). They further articulated that this imbalance exists in spite of the empirical research evidence showing
determining the difference’s application to mental strategies, application to all algorithms, and more robust extension to future
mathematical ideas. The research here continues the line of evidence that take away models were most prevalent among students as
159 of the 174 students who made sense of the difference in the Fair Task used the standard USA subtraction algorithm (take away
model) as part of their strategy. Although it is beyond the scope of this study to make claims about students’ instructional environ-
ments, we note that mathematics educators guided by the CCSSM’s movement toward standard algorithm mastery in fourth grade
should be aware of the possible imbalance between the two subtraction models being enacted through instruction. Further research on
the connection between standards and instruction could illuminate the status of student engagement in the two models of subtraction.

Making sense of word problems involving multiplication and division is expected in grades 3 and 4 (CCSSI, 2010, pp. 22, 29). The
finding here showed that when students are engaging in a multi-step word problem containing a key observation involving the number
of groups (K02), 59 % of students were unsuccessful in their sensemaking. Furthermore, drawing from Table 2, we noted that among
those students who did make sense of KO2, only 60 % of them went on to demonstrate correct computations. This adds to the findings
of other studies which have shown that computing the number of groups is difficult for upper elementary students (Fagginger Auer
et al., 2016; Hickendorff et al., 2009).

Accounting for those who were unable to make sense of the connection between the difference and the number of groups (KO3)
increases the percentage of students unable to demonstrate a complete sensemaking of the Fair Task to 71.8 %. The implication of this
finding adds to the current literature because it demonstrates a large difficulty for students during multistep problem solving. That
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being, when students engage in a multi-step word problem, they struggle greatly in determining the connection between two different
mathematical operations within the context of the problem. While our findings contribute additional support for student difficulties in
sensemaking as shown by other studies (Matney et al., 2013; Palm 2008, Pape, 2004; Yee & Bostic, 2014), it provides additional
evidence of the difficulty that students have in making sense of a difference (KO1), a number of groups (KO2), and the connection
between the two (KO3) when encountering these elements in a multi-step word problem. As students persevere through multi-step
word problem solving, mathematics educators should seek to devise instruction that supports students in not only making sense of
two or more operations like subtraction and division, but also how the results of those operations fit together to generate a reasonable
outcome for the problem (i.e., contextualization).

5.1. Familiar and efficient strategies

In contrast to the expectation of student fluency for the standard subtraction algorithm, students in the fourth-grade are still
learning about division and are not yet expected to fluently apply the standard division algorithm. In the Fair Task, students needed to
find the number of groups of 14 found in 672 (KO2), and this opened up a possibility for division. The fourth-grade expectations for
division include being able to find whole-number quotients “using strategies based on place value, the properties of operations, and/or
the relationship between multiplication and division” (CCSSI, 2010, p. 30). Students in this study used all four operations to come to a
solution (see Table 2). Students’ strategies when making sense of KO2 showed that many understood they were able to use properties of
operations and the relationships between the operations to find the quotient. Among those who had robust sense making, the highest
rates of success came from those who devised various multiplicative strategies, such as Blanca and Stuart (Fig. 3). Other students who
chose to add, subtract, or use a division algorithm succeeded at lower rates. This seems to support Torbeyns et al.’s (2018) claim that
the most successful students adapt their strategy choices to the problem at hand. Similarly, these findings extend from Yee & Bostic
(2014) who found that sixth- and tenth-grade students who used multiple strategies while solving a word problem, inclusive of
symbolic and/or nonsymbolic approaches, had greater problem-solving performance than peers who solely used a symbolic approach
like an algorithm. In their prior research, sensemaking artfully informed students’ strategy use and in turn improved how well they
were able to solve word problems. The implication from the present study is that students who chose to use a familiar, well understood,
and efficient operational strategy, had higher rates of success than students who used less efficient strategies and students who used
digit-based methods, such as division algorithms.

5.2. Algorithmic outcomes for division

The majority of students who gave evidence for robust sensemaking approached KO2 using an algorithm to find the number of
groups; 39 used the standard division algorithm and 20 used partial quotients. As indicated in Table 2, students using these two al-
gorithms showed about the same levels of success in arriving at the correct calculation for the number of groups. Although we found
that a similar number of students were successful with both the standard division algorithm and partial quotients, students using the
partial quotients algorithm demonstrated flexibility in choosing values for finding the quotient. These observations seem to support
Kilpatrick et al.’s (2001) claim that the partial quotients method of division provides accessibility for students by allowing them the
opportunity to choose their own values needed to find the number of groups.

5.3. Tendency for unrealistic solutions

Findings from this study align with others, suggesting that one of the reasons students give unrealistic answers is that they enact
“mindless calculations and do not include considerations of the real life aspects of the situations described in the tasks” (Palm, 2008, p.
38). We noticed that when students were unable to make sense of the Fair Task, they most often demonstrated seemingly random
calculations to relate the quantities without a purposeful strategy or knowing the meaning of the operation. In doing so, these students
seem to leave their chances of obtaining the correct solution to serendipity. This finding connects with Verschaffel and colleague’s
(2000) finding that when solving arithmetic word problems in school settings, students tended to use one or more arithmetic oper-
ations involving the quantities in the problem without consideration of the context. Our study extends their finding by observing the
levels of sensemaking and the rate of this phenomena within each level. That being, 19.1 % of students in the partial sensemaking level
and 83.7 % of students in the no sensemaking level enacted unrealistic solutions. As such, it remains difficult to discern if much has
changed with regard to student sensemaking about word problems. The primary difficulty found here was students’ ability to connect
the situation to an appropriate mathematical procedure, which is the decontextualization (CCSSI, 2010) aspect of sensemaking.

6. Future research and limitations

The study here looked at 280 fourth-grade students’ sensemaking and strategies for a multistep word problem addressing the
Operations and Algebraic domain of the CCSSM (CCSSI, 2010). As such, the findings shared here about student sensemaking should be
tempered toward this domain. The focus on fourth-grade students describes a picture of what happens in the continuum of their
education and is not meant to describe the sensemaking at all ages or in all mathematical aspects of elementary children. Similarly, the
Fair Task involves opportunities for students to enact the four operations most focused on during the elementary years. However, as
seen by the KOs, the task is particularly germane to understanding how students make sense of a difference, a number of groups, and
connect those two within the context of the problem. Therefore, further research is needed on students’ sensemaking in other content
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domains, students at other grade levels, and other multistep arithmetic word problem types involving different combinations of
operations.

7. Conclusion

We have provided analysis and mappings of students’ sensemaking and related strategies for solving a multistep word problem.
Sensemaking remains a primary struggle for many students solving word problems. When engaging with the complexities of a multi-
step word problem, students were most successful making sense of the difference (KO1; 62.1 %), but less successful making sense of the
number of groups (KO2; 37.9 %) and the least successful connecting the difference and the number of groups (KO3; 28.2 %). Student
sensemaking remains an area of difficulty in need of attention. The various strategies used by fourth-grade students illuminated
differences in how they made sense of and responded to a multistep word problem. We observed that fourth-grade students are better
able to make sense of the contextual parts of the word problem for operations, like addition and subtraction (KO1), that they have
studied for a long time. Furthermore, among those who robustly made sense of context, they overwhelmingly chose the standard
subtraction algorithm, though a few students still struggled to use it. Still more, it is problematic that more than a third of the students
showed no signs of sensemaking of finding a difference (KO1) at all. Fourth-grade students were less able to make sense of a context
asking them to find a number of groups (KO2) but, as a set of participants, they showed much more flexibility in their strategies to
figure out the number of groups than they did the difference. For those who exhibited robust sensemaking, the strategy of employing
multiplication was found to be more successful than division algorithms. Overall, sensemaking about the context appears to be the area
of greatest struggle. For students to be successful sense makers of arithmetic word problems, they must have conceptual understanding
about the operations, be able to connect those understandings to the context, and then enact their mathematical operations correctly
according to their chosen strategic purpose. The mathematics education community has been considering these ideas for many decades
(NCTM; 1980, 1989, 2000, 2007, 2009, 2014, 2020) and the evidence here shows that much work remains for us as we seek to help
students become better mathematical problem solvers. The findings here support Resnick’ s (1988) assertion that becoming a good
problem solver is as much a matter of sensemaking as it is acquiring any particular set of skills or strategies. More research is needed on
how to help students grow in all of these areas.
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