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Abstract—Concentric tube robots (CTRs) show particular
promise for minimally invasive surgery due to their inherent
compliance and ability to navigate in constrained environments.
Due to variations in anatomy among patients and variations in
task requirements among procedures, it is necessary to customize
the design of these robots on a patient- or population-specific
basis. However, the complex kinematics and large design space
make the design problem challenging. Here we propose a compu-
tational framework that can efficiently optimize a robot design
and a motion plan to enable safe navigation through the patient’s
anatomy. The current framework is the first fully gradient-
based method for CTR design optimization and motion planning,
enabling an efficient and scalable solution for simultaneously
optimizing continuous variables, even across multiple anatomies.
The framework is demonstrated using two clinical examples,
laryngoscopy and heart biopsy, where the optimization problems
are solved for a single patient and across multiple patients,
respectively.

Index Terms—Surgical robotics: steerable catheters and nee-
dles, Optimization and optimal control, Medical robots and
systems, Concentric tube robots

I. INTRODUCTION

ONTINUUM robots offer a number of potential advan-

tages for minimally invasive surgery (MIS).In contrast
to conventional rigid-linked robots, continuum robots have an
infinite number of degrees of freedom, enabling navigation
along highly curved paths [1], [2]. This ability, combined with
their small size, can lead to increased accessibility to hard-
to-reach places deep inside the body [3]. In addition, their
natural compliance can result in increased patient safety and a
decreased risk of significant tissue damage during interaction
with the anatomy [4].

One type of continuum robot, known as a concentric tube
robot (CTR) or active cannula, consists of a set of super-
elastic, pre-curved tubes that are assembled concentrically [5],
[6]. The compliance of the robot depends on the materials and
diameters of the tubes. The relative translation and rotation
of the tubes enable them to bend and twist, and the robot’s
overall shape can be determined based on the bending and
torsional interactions between pre-curved tubes. In general,
CTRs tend to fall into two categories: steerable needles and
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Fig. 1. The proposed gradient-based, computational framework is capable
of both patient- and population-specific concentric tube robot (CTR) design
optimization. The framework simultaneously optimizes a motion sequence
that safely guides the CTR along a collision-free path to reach the surgical
target. An example application, myocardial biopsy, is illustrated here.

teleoperated robotic manipulators [7]. The complex snake-like
motion, along with their small size, has enabled their use in
many medical applications, including neurosurgery [8], lung
biopsy [9], brain tumor surgery [10], and endonasal skull base
surgery [11], [12].

It is not guaranteed that a given CTR design can adopt
all the desired shapes in 3-D space, due to limitations of
its tube geometries and material properties [10]. A single,
generic robot will likely not be sufficient for all procedures or
patients, and a common approach is to instead design a patient-
specific [13] or population-specific [14] robot , as illustrated in
Fig. 1. The design problem for CTRs is especially challenging
due to the complex kinematics that requires solving 3-D beam
bending and twisting problems with boundary conditions [13].
It is therefore not straightforward to design a robot based on
intuition, and the large design space makes it nearly impossible
to manually select a robot design for a particular scenario.
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A. CTR Design Optimization Methods

Several approaches have been developed to try to solve
this design optimization problem [15]. Many optimization
algorithms use a torsionally-rigid model to optimize the tube
length and curvature, while avoiding obstacles in the environ-
ment [16], [17]. Other approaches have taken the torsional
interactions of the tubes into account and optimized the tube
designs in order to reach a set of waypoints [13]. In order to re-
duce the complexity and improve the computational efficiency,
the design space is often reduced and only the tube lengths
and curvatures are considered as design parameters [13], [18],
[19], [20]. The inner and outer tube diameters, which affect
the robot’s size and bending stiffness, are often not included
as design parameters, despite their importance in determining
the equilibrium shape of the robot. To date, the only work that
considers the tube diameters is a gradient-free optimization
framework, which can require long computation times [21].

Planning the motion of the robot is also important in order to
safely navigate through the environment. However, CTR mo-
tion planning involves solving the inverse kinematics problem
multiple times for each deployment step, which is computa-
tionally expensive. Several algorithms have been proposed for
efficiently obtaining a collision-free motion plan [22], [23],
[24]. In addition, approaches that combine both CTR design
and motion planning have also been investigated. One such
method has been to use an optimization-based approach to
plan a collision-free path using a torsionally-rigid model [25],
[26]. A more widely used approach is the application of RRT
sampling-based motion planning methods to search for a safe
motion plan using either a pre-defined robot design [27], or
in combination with a design optimization algorithm [28],
[29]. This method uses a stochastic optimization algorithm to
search in the robot design space, while using a sampling-based
motion planner to explore the configuration space. A recent
approach has extended this work, to guarantee the optimality
of the solutions and to avoid getting stuck in local minima [30].
These previous works represent an important step towards
combining CTR design and motion planning into a single
framework.

B. Gradient-Based Versus Gradient-Free Optimization

Simultaneously optimizing the tube design and joint vari-
ables of a CTR for multiple patient anatomies yields an
optimization problem with at least one-hundred optimization
variables (Table III). This large set of variables includes the
inner diameter, outer diameter, length, curvature, rotation, and
translation for each tube, with the latter two repeated for
each configuration from the starting point to the target for
each anatomy. Each objective and constraint evaluation has
a non-trivial computation time (on the order of seconds),
as this involves running a full CTR kinematic model for
multiple configurations. Thus, it is critical to be able to solve
the optimization problem with a minimal number of model
evaluations.

Fig. 2 illustrates how the computation times for gradient-
based and gradient-free optimizations scale with the number
of optimization variables. In particular, we show results of
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Fig. 2. Optimization algorithm scaling with the number of optimization

variables, computed using the multi-dimensional Rosenbrock problem (shown
in dashed lines), as well as using the proposed path and CTR optimization
problems (shown in solid lines). For all cases, the gradient-free optimizers
(ALPSO, NSGA2) scale quadratically or worse, while the gradient-based
optimizers (SNOPT, SLSQP) scale linearly with finite-difference derivatives
(FD), and better than linearly with analytic derivatives (AN) [31].

a benchmarking study, computed using the multi-dimensional
Rosenbrock problem (shown as dashed lines). The gradient-
free optimizers scale quadratically or worse, and with one-
hundred optimization variables, the gap in the computation
time is several orders of magnitude [31]. Similar studies
have been performed by other authors with comparable con-
clusions [32], [33]. We also compare a gradient-based and
gradient-free approach to solving our proposed optimization
problem in this work (shown as solid lines). Specifically,
we illustrate results from solving the path optimization por-
tion of the framework (described in Section IV-A), as well
as from solving the simultaneous optimization (described
in Section IV-C) for the laryngoscopy clinical example in
Section V-A. The computation time for the path and CTR
design optimization problems show the same trend as the
benchmarking studies. The gradient-free optimizer, ALPSO (a
popular particle swarm optimizer used in previous CTR design
optimizations), has a slope of 2.6, which is quadratic, and the
gradient-based optimizer, SNOPT, has a slope of 1.3, which
is close to linear.

Gradient-free optimizers have many advantages, e.g., insen-
sitivity to initial guess, simplicity of application, and higher
likelihood of finding global minima. However, gradient-based
optimization is more appropriate for the current approach,
which is meant to handle problems with over one-hundred
optimization variables. It should be noted that in order to
enable gradient-based methods, the continuity of the opti-
mization problem must be ensured. Although the majority
of objective functions currently considered for CTR design
optimization are discontinuous and non-differentiable, the pro-
posed framework may help to solve similar problems if the
objective functions and constraints can be reformulated into
differentiable functions.
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C. Contributions

The contributions of this paper are as follows. (1) We
present the first fully gradient-based approach for CTR design
optimization and motion planning. One main advantage of
this approach is the scalability, which yields high efficiency
in solving large-scale optimization problems. It enables the
optimization of any set of continuous optimization variables,
as well as the optimization across multiple anatomies to create
population-specific robots for safe medical interventions. (2)
The proposed tool is modular and open-source, and the code,
along with associated documentation, is available here: https://
ucsdmorimotolab.github.io/CTRoptimization/. The availability
of such a tool can enable other researchers to design CTRs
for their particular application, as well as to compare designs
and optimization methods directly for benchmarking purposes.
(3) We present and integrate two new methods for solving
the challenges of the CTR design optimization problem. First,
the tube plastic deformation is considered for each robot
configuration, which ensures that the tubes remain within the
material strain limit. Second, compared to current approaches
in the literature, we present a more efficient approach to
computing the reachability of a CTR, by simultaneously
solving a number of inverse kinematics problems. It should
be noted that these methods are general and can be added on
top of other optimization frameworks, with the added cost of
increased computation time for gradient-free approaches.

This paper is arranged as follows. The formulation and
definition of the design problem are presented in Section II.
In Section III, we describe an overview of the CTR design
optimization framework, which is based on OpenMDAO (a
software framework for optimization developed by NASA),
along with the modules for optimization of a tube set for
a single patient, or across multiple patients, simultaneously.
Section IV demonstrates the three major steps of our design
method. Section V showcases two clinical examples — myocar-
dial biopsy and larynx surgery — with results obtained using
the proposed approach. Finally, a conclusion and discussion is
presented in Section VI. Table I introduces all variables used
in the paper.

II. DESIGN PROBLEM FORMULATION

CTRs consist of n pre-curved, superelastic tubes that are
nested inside one another. Each tube can be rotated and
translated via the actuators located at their bases, which change
the bending and torsional equilibrium between them. The
optimization variables can be categorized into four subsets,
as shown in Table I: tube design variables, configuration
variables, kinematics variables, and path variables. The robot’s
joint vector is defined as q = [, -+ , @n, 1, -+ , Bn], Where
«; is the base angle of tube 7, (§; is the position of tube 7 with
respect to s = 0, and s represents the arc length of the robot.
The deployed length of tube i is given by L; + 3;, where L; =
Ls, + L, is the total length of tube 7. The CTR design space
can be characterized by the geometric parameters and material
properties of each tube, as shown in Fig. 3. The geometric pa-
rameters include the number of tubes (n), tube curvature (x;),
length of the straight section (L, ), length of the curved section

(Le,), inner diameter (I D;), and outer diameter (OD;). The
material properties include the elastic modulus (F;) and shear
modulus (G;). The discrete variables, including tube number
and material related parameters, are not taken into consider-
ation as optimization variables in the current gradient-based
optimization framework. The tube design vector is given by
d = [k1,Ls,,Le,, ID1,0ODy, ... kn, Ls, , Le, , ID,,OD,],
where d € R°". The robot shape can be described as a
function, ¢(d, q, s). The robot base coordinate frame, B € RS,
includes the base location and orientation and is also consid-
ered an optimization variable.

The goal of the proposed optimization framework is to
search for an optimal design, d*, such that the robot can
navigate through the environment and reach the target without
any collisions. Therefore, there is a need to solve a motion

TABLE I
NOMENCLATURE.

Optimization variables

Tube design variables

ID; Inner diameter of tube i

OD; Outer diameter of tube 7

Ls, Length of straight section of tube %
L, Length of curved section of tube ¢

K Curvature of curved section of tube
Configuration variables

bq Tip angle of tube ¢

Bi Transmission length of tube ¢

B Robot base frame

Path variables
Cp B-spline control points

Model parameters

Dependent parameters

a; Base angle of tube ¢

K; Stiffness tensor of tube %

kit Torsional stiffness of tube ¢

kib Bending stiffness of tube ¢

Y4 Angle between tube ¢ material frame and Rp
* Pre-curvature vector of tube ¢

Bending strain of tube %

Vizy Shear strain of tube %

pp\ B-spline path points

Piip Tip position of the CTR in 3-D space
tr Tangent vector of the CTR tip
Independent parameters

n Number of tubes in the CTR

s Linear abscissa along the CTR backbone
Rp Rotation matrix of the bishop frame
€imazx Material strain limit of tube 4

E; Young’s modulus of tube 7

G; Shear modulus of tube 4

m Number of links in the discretized CTR
h Number of patients

b Number of waypoints

v Number of 3-D points in the anatomy
c Number of B-spline control points

a Number of B-spline path points

S B-spline curve

p Penalty term

A Lagrange multiplier

Rircach Reachable percentage

tw Tangent vector of septum wall

Pdes Desired position of the CTR tip in 3-D space
es3 Unit vector in z-direction

N, Reachable 3-D points in the workspace
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Fig. 3. (a) CTR composed of 3 tubes, each of them consisting of a straight
section followed by a pre-curved section. (b) Illustration of the resultant shape
of the CTR, along with a cross-sectional view of a segment where all 3 tubes
overlap.

planning problem. We chose to use an optimization-based
approach that uses a set of waypoints, 2 € R3, to guide
the robot from the entry point to the target location, while
avoiding collisions. Given a task with b waypoints, we must
then solve b inverse kinematic problems in order to derive a
motion sequence, Q = [q; ... q,]. As a result, a collision-free
motion plan can be found if the robot, ¢(d, Q, s), does not
collide with the anatomy, I', where I" € R3Y is a set of 3-D
points representing the anatomy.

In conclusion, the optimization problem is to find a robot
design d* and a motion plan Q* such that the robot,
c(d*, Q", s), has collision-free deployment. The design space
can finally be modified and written as:

D ={d € R, Q € R*** B ¢ R6}. (1)

III. CTR DESIGN OPTIMIZATION FRAMEWORK

This section describes the mathematical and software frame-
work that provides the building blocks for the sequence of
optimization problems solved in our new CTR design method
(Section 1V). We first describe OpenMDAO, the general-
purpose optimization library with which our framework is
implemented. We then discuss how the CTR kinematic model
is implemented within OpenMDAO, and, lastly, we describe
the formulation of the constraints.

A. OpenMDAO: General-Purpose Optimization Library

OpenMDAO is a NASA-developed open-source Python
library for large-scale optimization with complex models [34].
It provides an interface with which complex models (e.g., CTR
kinematic model) can be broken down and implemented as
a set of modular components that represent smaller units of
computation, therefore simplifying efficient derivative compu-
tation. With gradient-based optimization, derivatives must be
computed accurately since any round-off or truncation can lead
to robustness issues in the optimization algorithm, an increase
in the number of optimization iterations (and thus computation
time), or an inability to converge to the specified termination
criterion. Efficiency in the derivative computation method is
also critical because the difference between a simple, but
slow method (e.g., a finite-difference approximation) and an
advanced, but efficient method (e.g., the adjoint method) is a
factor of n decrease in the computation time, where n is the
number of design variables [35].

However, accurate, efficient derivative computation is espe-
cially challenging since the right choice of method depends
on the model structure. In the CTR kinematics model, for
example, the presence of matrix inversions and explicit time-
marching in the model means that the most efficient method
is a complex combination of the chain rule and the adjoint
method. The challenge of identifying and implementing the
right method for computing derivatives is resolved by the
unified derivatives equation (UDE), a matrix equation that
generalizes the methods for computing derivatives of mod-
els [35]. The chain rule, adjoint method, and all other methods
and hybrids can be derived from this one equation, simply by
making a different choice of which variables to expose and
which to consider as hidden within black-box components. The
practical benefit is that an optimization library can solve the
UDE to effectively automate the computation of model-level
total derivatives from the partial derivatives of each component
of the model [36]. OpenMDAO is an example of such an
optimization library (see Appendix A for more details), and
we use it for our CTR design optimization framework.

The implementation of the CTR optimization in OpenM-
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Fig. 4. Design structure matrix, which represents the structure of the CTR
kinematics model, used in both the sequential and simultaneous optimization
problems, described in Section IV. It consists of the optimization variables
(grey), groups (purple), and the optimizer (yellow).



JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

DAO is shown in a design structure matrix in Fig. 4. The
grey boxes contain the variables that are passed from one
component to another. The CTR optimization consists of an
optimizer, optimization variables, the tube twist group, and
the backbone group. We connect the CTR model with a
commercial sequential quadratic programming (SQP) algo-
rithm called SNOPT [37]. The tube twist group involves the
solution to the ODE:s for the tube angles, while the backbone
group then calculates the backbone position using the tube
angles computed from the tube twist group. These groups are
described in the sections that follow.

B. Tube Twist Group

CTR tubes generally have a proximal straight section and a
distal constant-curvature section, as shown in Fig. 3a, which
is the geometry adopted in our work. Once the tubes are
assembled, as shown in Fig. 5, the CTR can be divided
into a number of links. The overall curvature of each link is
determined based on the geometric and mechanical properties
of the tubes contained in the link [38]. The forward kinematics
problem solves the resultant shape of the robot for a given set
of tubes and joint variables. In order to address the torsion
and bending interaction between the tubes in each link, an
energy minimization approach is used to derive the differential
equations for obtaining the tube angle, 1;(s), along their
length. Assuming no friction, no external loading, and tubes
with transverse isotropy, the differential equations with respect
to the arc length, s, are given by [39]

kib
Fucks = Z kjprikgsin(y; — 1), (2)

Wi =

.. . E;(OD*—ID?
where ¢ is the tube index, k;;, = E:(OD, ~ID;)m

o and k;; =
w are the bending and torsional stiffnesses for
tube ¢ (with E; and G; being the Youngs and shear modulus
of the material of tube i, respectively), k; is Zi:l ib, Ki 1S
the precurvature of tube ¢, and v); is the angle for tube ¢ along
its main axis. We note that derivatives are taken with respect
to the curvilinear abscissa, s, of the robot, if not otherwise
specified.

The presence of gauge freedom, i.e. obtaining the same
robot shape in 3-D space for a different set of design parame-
ters, should be noted. This phenomenon is visible in the set of
Eq. (2), where scaling the tube stiffnesses leaves the system
of equations unchanged. Since the bending and torsional stiff-
nesses are linearly coupled (k;:(1+v;) = ki), we perform our
analysis of gauge freedom on the bending stiffnesses, k;;. The
vector of bending stiffnesses, [lﬁb k‘nb} , 1s of dimension
n, while it is defined by the set of design variables, which
are the tube diameters, [OD; 1D, OD,, ID,], of
dimension 2n. Thus, in order to provide a set of diameters such
that the bending stiffnesses are not linearly scaled, a set of n+1
constraints must be added to the set of tube diameters. This
can be done by fixing some diameter values, or by constraining
the tube clearances between outer and inner diameters of
neighboring tubes to a specific value (instead of a range).
While it can be important in optimization problems to remove
the gauge freedom and ensure a unique solution exists for the

robot shape to design parameters, the SNOPT optimizer used
in our work can handle such optimization problems that lead
to non-unique design parameterizations. Thus, we chose to
constrain a minimal set of tube diameters, based on application
requirements and allow the gauge freedom to remain.

Based on the number of links, a set of differential equations
that considers the boundary conditions, the continuity of the
robot, and the bending and moment equilibrium must be
solved [38], [39]. The boundary conditions at the proximal
ends of the tubes are based on the assumption that the tubes
inside the actuation unit are forced to be straight, where
¥;(0) = a; — Bi¢i(0). Due to the assumption of no friction
between the tubes, there is no axial moment applied from
one tube to another. The distal, free ends of the tubes are
not subjected to any moments, which leads to the set of
boundary conditions 1/Jz(Lz + B;) = 0 at these locations [39].
However, with this set of boundary conditions, the solution to
the kinematics may not be unique, due to the fact that multiple
robot shapes, with different distal angles, are observed in the
case of unstable robots, for the same proximal tube angles, ;.
The alternative approach in order to ensure the uniqueness of
the solution for a given set of boundary conditions is to use
the distal tube angles, instead of the proximal tube angles, as
boundary conditions. The BVP then becomes an initial value
problem (IVP), where the two boundary conditions are set at
the distal ends of the tubes [40]. In summary, the boundary
conditions are now described as in Eq. (3)

Vi(Li + Bi) = ¢i
Yi(Li + Bi) =0,
where ¢; is the distal angle of tube i. Then, the joint values
«; can be easily derived using the relationship ;(0) =
o; — Bih;(0). Unlike the common approach of solving the
BVP, which is typically done using a shooting method [39],
[41], solving the IVP appears to also be more efficient, as it
does not require guessing and iterating the initial condition for
the torsion state in order to satisfy the boundary conditions.
In order to solve the kinematics, an open-source tool, Ozone,
is used to solve the ordinary differential equations (ODEs).
Ozone is built on top of the OpenMDAO environment, and
therefore the derivatives of the ODE integration are also
required. Ozone enables computation of the derivatives across
the time-marching scheme for any multi-stage integrator by
differentiating the general linear methods equations [42].
The ODE solver, a second order implicit integrator Lo-
batto2, integrates along the length of the robot, from s =
L; + 3, to s = 0, using m time steps with the time
marching method. The time steps in the integration process
are analogous to links in our kinematic model. However, based
on the deployed length of each tube, the curvilinear abscissa,
s, of the robot is different among the tubes, leading to a
discontinuity in the implementation when solving for the tube
angle, 1;, from the differential equations. We must address
this problem in order to vectorize the kinematic model in
OpenMDAO.
The solution illustrated in Fig. 5 is to create a m X n matrix,
where m represents the number of links and n is the number
of tubes. Since the inner-most tube has the longest deployed

3)
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Fig. 5. Illustration of a discretized CTR with m links. The ODE solver

integrates from the last link, m, to the first link, for each tube. The virtual
tubes are visualized as dotted lines, and an example of the interpolation of
bending stiffness, k;,, of each tube is shown here. Since tube 3 ends in
between two links (at link 1.4), interpolation of the bending stiffness must be
performed. The equation is shown, where t is the percentage of the tube that
exists in the link.

length in practice, we can consider the tube length of the inner
tube for discretization. The number of links is thus determined
by the total length of the inner tube, L;. In other words, the
entire CTR will be discretized into m links, which begins at
s = 0 and ends at s = L. However, when the inner tube is
not reaching its maximum deployed length, it means that there
will be links where no tube exists. To guarantee continuity
for solving the differential equations, we use the virtual tube
concept in our CTR model [43]. The idea is to extend all distal
ends of the tubes so that they are located at s = L;. Since
the physical end of tube i is located at s = L;, a virtual part
is thus added in the location [L; + B;, L1],% € [1,n]. Zero
bending stiffness and infinite torsional stiffness are applied to
the links where the tubes do not physically exist, in order to
ensure that the virtual part does not affect the overall shape
of the robot.

To implement the virtual tubes in our framework, there
are two challenges to address. First, for our gradient-based
approach, we must ensure continuity in the bending stiffness
and the curvature of the tubes so that they are differentiable.
The hyperbolic tangent function, 1 — tanhz, is chosen to
generate a smooth transition in the stiffness, k;,, from the
physical to virtual section, represented as 1 and 0, respectively.
For the curvature matrix, tanh x is used since the proximal
section of each tube is straight, and the distal section is pre-
curved with curvature ;. The second challenge to address is
the fact that the ends of the tubes are, in general, not aligned
with the ends of the links, as illustrated in Fig. 5. We propose
to use a linear interpolation method for the approximation
for both the stiffness and curvature matrices when solving
the differential equations. In addition, we vectorize the tube
twist group into a 3-D matrix, which includes the number of
links (m), number of tubes (n), and the number of waypoints
(b). The tube twist group is capable of solving b initial value
problems at the same time. It should be noted that the use
of interpolation to remove the discontinuities in the tube
curvature and stiffness (i.e. where the physical tubes end and
the virtual tubes start) introduces some errors in the kinematics
models. However, the interpolation error is small compared to,
for instance, the impact of friction and tube clearance [44], and
can be further reduced by increasing the number of links.

C. Backbone Group

After solving for the tube twist angles, 1;(s), the 3-D
robot shape is reconstructed in Cartesian space. The deformed
curvature vector of the robot from the base to the tip can be
obtained using [39],

u=K! ; K;(Ry,u; — w'ie3), 4)

where K is a 3 x 3 stiffness tensor of tube 7, K = Z?:l K;,
u; is the pre-curvature vector of tube 7, and es is the unit
vector in z-direction, tangent to the robot backbone. Since the
inner tube is the only tube that extends from the proximal end
to the distal end, reconstructing the shape of this tube alone is
sufficient to obtain the robot shape. Two differential equations
for determining the backbone position are as follows:

R = Rq,

P = Regs,
with the initial conditions R(0) = R, (¥1(0)) and p(0) =
0 0 O}T. The same ODE integrator Lobatto2 and time-
marching approach are used to solve the differential equations.
The first differential equation allows us to obtain the backbone
orientation, R € SO(3). The second differential equation
gives us the robot backbone position, p € R3. Since the
deployed length may not align with the link, interpolation of
the robot tip position is also performed.

(&)

D. Constraints

This section presents the primary constraints that are ex-
plicitly enforced in the optimization problem.

a) Kinematic and geometric constraints: The boundary
conditions at the distal ends of the tubes are treated as
constraints in the optimization problem. The torsion at the
tip of each tube, 1/)(.[/2 + f;), is constrained to be zero because
the tubes have free distal ends. In addition, we constrain the
minimum wall thickness of the tubes based on the particular
material and fabrication method. The clearance between each
tube must also be constrained with a lower bound to ensure
that they can be actuated without too much friction, and an
upper bound to limit the impact of tube clearance on the
physical robot shape. In addition, the proximal end of each
tube must be exposed in order to be grabbed by their respective
actuators in physical prototypes, leading to the inequality
Bi — Bi+1 < 0. Finally, we enforce constraints on the exposed
length of the distal end of each tube: (L; + £3;)-(L;—1 + 5i—1)
> 0.

b) Tube plastic deformation constraints: For all opti-
mized robot configurations, it is important for the material
strain to remain in the elastic region to avoid plastic defor-
mation [38]. When the tubes deform to reach an equilibrium
configuration, the material strain changes. Most of the existing
frameworks only consider the pre-curvature limit and enforce
a constraint on the maximum curvature or diameter [45].
However, ensuring no plastic deformation during the entire
surgical operation is critical.

For planar tubes arranged in a plane, the maximum allow-
able curvature can be computed using dkmaz,i = ki —FKeq [38].
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However, tubes aligned in the same plane with opposite curva-
tures represent a worst-case scenario for the strain that may not
happen during operation, and therefore such a formulation may
unnecessarily constrain the robot design. We instead examine
the tube strain for the specific joint values obtained using our
optimization algorithm. To do so, the tube strains are computed
for each link, along the entire tube lengths. In addition to
examining the tube strain related to bending, like in previous
approaches, we also include the strain related to torsion of the
tubes along their lengths. This method assumes that the heat-
treated tube materials, such as Nitinol, have zero strain in the
pre-curved state, before assembly [46], [47].

To ensure that the strain limit for each robot configuration
is under the material strain limit, €;,,42, the principal strains
are computed using Eq. (6) [48]

2 2
€, T € €, — €, Vi,

where €;; and €;, are local bending strains of tube ¢ in the x
and y directions and ;4 is the local shear strain of tube 7.
To compute the bending strain in each link of the tubes, we
assume that each link is planar and has a constant curvature,
and compute the change in arc-length between the tube’s
natural plane and equilibrium plane. To compute the arc length
along the tubes around their entire circumference, before and
after reaching the equilibrium we use the set of Eq. (7) [38]

Xi = Ik, (Ofi sin (0 — 5) + 1)

Ri

Xeq = lieq (Resin (0 — 5 +6) + 1),

Req

(7

where [ is the link length, &; is the curvature of tube i, K4 is
the equilibrium curvature of the robot, OD; is the tube outer
diameter, ¢ is the difference between the tube angle and the
robot equilibrium angle, and # € [0, 27]. The bending strain
€;, 1s then given by

Bending strain Shear strain

Xeq Tube strain (%)

E 5

Original shape
Equilibrium shape

0.5

Fig. 6. Illustration of the change in tube strain of a section of a single tube
of a CTR from its original state to the equilibrium state due to the changes in
arc-length and presence of torsion. x; and xeq, described in Eq. (7) are used
to compute the arc-length around the tube circumference for natural plane
(X;) and equilibrium plane (Xeq), respectively.

‘Xt - Xeq‘

Xi ’
and using the assumption of planar, constant-curvature links,
we have ¢;, = 0. The shear strain ;,, can be computed using
the torsion of the tubes along their lengths. For a circular
hollow tube, the maximum shear strain occurs on the outer
surface. Therefore, the outer diameter O D; of the tube is used,
and the torsional strain is thus given by Eq. (9).

®)

€ =

x

- OD;
Viey = Vi 5

Fig. 6 illustrates both the bending and torsional strain as
computed by Eq. (8) and Eq. (9) for an example tube. Finally,
after computing the principal strains €;, and ¢;,,, we apply the
failure criterion €;,, €;,;, < €imaz [49] to verify that the strain
levels are below that of the material’s limits.

(€))

IV. OPTIMIZATION-BASED CTR DESIGN METHOD

This section presents the details of the optimization frame-
work, which can be decomposed into three steps, as shown
in Fig. 7. The first step is to solve the path-finding problem
independent of the CTR model. The second step solves a
series of sequential optimization problems, each of which
involves finding a configuration that reaches a waypoint along
the previously found path. The third step is the simultaneous
optimization of the CTR tube design and joint variables, that
considers all waypoints simultaneously and uses the results
from the previous step to provide initial guesses.

A. Path Optimization

Path-finding problems are relevant to many robotics appli-
cations. Some of the approaches, including artificial potential
fields, road-map approaches, cell decomposition, and polyno-
mial interpolation, are used to search for a smooth, continuous
and collision-free path for robot navigation [50], [S1]. In this
work, we propose a new formulation that relies on a 3-D B-
spline curve parametrization to optimize the desired path in a
constrained environment. B-splines are often used for curve-
fitting and shape optimization. Here, we optimize the control
points that define the B-spline curve to generate a 3-D path
inside the anatomy, while passing through the starting point
and the target point. A B-spline curve, S(z), is given by a
linear combination of the basis functions, B;(z), and the
3-D control points, c,;, as given by,

n—1
S(.T) = Z cpiBi,k;t(x)a (10)
i=0
where B; 1., are B-spline basis functions of degree k and knots
t. Basis functions are given by,

Bio(z) = {

1 if ¢ <«x
0 otherwise

B, (z) = =k

) titk+1—T
: foort Bik—1(2) + 5

itk+1—tig1 BiJFl,kfl (LC)

(1)
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Fig. 7. Diagram illustrating the workflow of the proposed framework, which enables patient- and population-specific design optimization. For a specific
medical application, four inputs are required from the user in order to optimize a robot design, a series of joint values, and the robot base frame.

@< Start point o Control point
°
[ ]
.A
Path point
o<
°
[ ]
°
\ [ ]
°
\ .
(@) (b) (©)
Fig. 8. Illustration of the path optimization including (a) selection of two

end-points, (b) formation of a straight line that consists of a number of B-
spline path points and control points, and (c) finding a collision-free path.

The starting point and final target point must first be selected
by the user, as shown in Fig. 8a. The other user-defined
parameters are the number of path points (a) and control points
(c). All the points on the B-spline curve will be referred to as
the path points. The algorithm initializes all the control points
and path points on a straight line between the starting point
and target point, as shown in Fig. 8b.

Then to create a collision-free motion plan, a method to
ensure that all the B-spline’s path points remain inside the
particular patient anatomy must be implemented. The current
framework requires the user to import a 3-D model represented
by a triangular mesh, which can be obtained by segmentation
and 3-D reconstruction of MRI or CT scans. Unlike the
discontinuous KD-tree approach that has been used in some
gradient-free frameworks [40], [13], our implementation must
be formulated as a continuous and differentiable function, in
order to be integrated into our gradient-based method. Our
proposed algorithm extracts the point cloud from the imported
mesh and computes the normal of each vertex in order to
implement collision avoidance. We propose a new formulation,
g(x), that can be introduced into this path-finding problem in

TABLE I
BEHAVIOR OF THE FUNCTION, g(z),

Location Close to wall Far from wall

Inside the anatomy
Outside the anatomy

Negative small
Positive small

Negative large
Positive large

Eq. (12),

- - 0.125 ag dp} (@)
fr(@) =Y (D deij(@) PP () | et
i=1 \j=1 (; dpi(r))

g(z)

12)
where a is the number of path points on the B-spline, v is the
number of points in the point cloud representing the anatomy,
and x represents the 3-D position for the path points. The
dc; j(z) function calculates the Euclidean distance between
an anatomical point and a given point. The sign function,
P(z), is used to compute whether this given point is inside the
anatomy or outside. In addition, the 0.125 norm allows distant
anatomical points to be weighted less, therefore focusing on
anatomical points close to the given point. The behavior of the
function g(x) is shown in Table II. When a 3-D point is inside
the anatomy and remains far away from the wall, the smallest
value of the function can be found. In contrast, the function’s
largest value appears if a 3-D point is located outside and
far away from the anatomy. dp;(z) is the Euclidean distance
between path point ¢ and ¢ + 1, and ¢ and €. are the tuning
parameters.

The penalty method is used to solve our path optimization
problem. Once the spline curve is inside the anatomy, the
distances between adjacent path points are forced to be as
equal as possible to ensure a smooth path, as illustrated in
Fig. 8(c).

B. Sequential Optimization

The path points from our path optimization step serve as
an input for the sequential optimization. The user can define
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Fig. 9. TIllustration of the sequential optimization step that aims to guide the
robot to the surgical site safely. The tube design variables are different among
the configurations since each waypoint is solved individually. Both (a) and
(b) show the CTR hitting the waypoints in order to reach the final target, as
visible in (c).

the number of waypoints, b, which will be selected from the
B-spline path points in order to guide the robot to the target
site, represented by the final path point. The robot must avoid
collisions throughout the entire sequence, for each waypoint.
Due to the complexity of the optimization problem, the large
design space considered, and the use of a gradient-based
approach, a good initial guess is needed to ensure convergence.
As a result, the algorithm solves a sequence of optimization
problems for each waypoint independently. Each optimized
robot design and associated joint variables are used as an initial
guess to solve the subsequent optimization problem, as shown
in Fig. 9.

The objective function in this sequential optimization prob-
lem is divided into three sub-functions: f; , fs, and f3. To
compute f1, Eq. (12) will be used, where the function dc; ;(z)
will now be computed as the Euclidean distance between the
point cloud representing the anatomy and the backbone points,
such that increasing ¢ will force the robot to remain inside the
anatomy. In addition, the function dp;(x) is instead used to
equalize the deployed length of each tube in order to prevent
the robot from favoring the deployment of particular tubes over
others. For instance, the optimization algorithm might find a
CTR that only deploys the inner tube to reach certain target
points, resulting in a very long inner tube, which is not an
ideal configuration for practical use.

In addition, in order to reach the desired position in 3-D
space, an inverse kinematics problem must be solved. The
approach is to optimize the robot design and joint variables
so that the Euclidean distance between the robot tip position
and the target position is minimized. The second sub-function,
f2, handles the tip position error, and is given by

)\Hpup Paes |2
IEEE

|| tip d55||2 2
fa(z) = 5( T ) (13)

where p,;), is the robot tip position, pqe is the desired position,
and ||py|| is a normalization term that allows it to be more
generally applicable to other optimization problems by reduc-
ing the manual effort on parameter tuning. We implemented

the Augmented Lagrangian method to handle the tip position
error. By definition, p is the penalty term and A is the Lagrange
multiplier. This approach will obtain the exact solution if we
have a perfect Lagrange multiplier, A\*. Another benefit is
that we can apply a lower value of p, which can give us
the same desired accuracy on the tip position and offer a
better-conditioned Hessian matrix. The function fs5 accounts
for deviations in position and orientation with respect to the
entry point and is given by

_ lI5posliz [|6rot||2
f3(@) = & rspn, € e

(14)

where Jpos and Jdrot are the deviations in the base location
and orientation with respect to an initial user-defined frame,
respectively. €, and €, are the tuning parameters. Jp and or are
the normalization terms. This function ensures that the robot
will remain close to the insertion point defined by the user
while allowing some freedom to adjust the base frame. As a
result, the final objective function can be written as
0= (e

i=1

)i + fo(x)i + f3(2):), (15)

where b is the number of the waypoints. The Augmented La-
grangian method requires solving a sequence of optimization
problems by gradually increasing the tuning parameter until
the solution is found. Thus, in order to reduce the effort of
manually tuning the parameters across different anatomies,
we apply a continuation approach to automatically find the
two best tuning parameters, ( and p, that allow us to reach
the target while avoiding collisions with the anatomy. The
tuning parameters are tuned outside the optimization, instead
of during each iteration. Therefore, the property of continuity
of the objective function is still preserved. The value of ¢ will
be increased if there is a collision between the robot and the
anatomy, and p will be increased if the tip position error is
larger than the tolerance.

C. Simultaneous Optimization

This section presents a new approach that enables op-
timization of the robot design for single or multiple pa-
tient anatomies. The patient-specific simultaneous optimiza-
tion needs to be performed first for each anatomy in order to
solve the population-specific simultaneous optimization.

1) Patient-specific: The simultaneous optimization problem
shares similarities with the sequential optimization problem.
The penalty method and the Augmented Lagrangian method
are used, and all the constraints remain the same. The tube
design variables of the final robot configuration in the sequen-
tial optimization step are used as the initial guess for this
simultaneous optimization, since we already know that it can
reach the target location. However, it is not guaranteed that the
other configurations during robot deployment will satisfy the
constraints, as shown in Fig. 10a. As a result, we propose
a new approach that allows us to optimize a robot design
and a sequence of joint values simultaneously in the same
optimization problem. Note that only one tube set and base
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frame should be optimized since the same robot design will
be used throughout the entire surgical task. The difference
between the robot configurations will therefore be the joint
values. Our framework thus includes another dimension—
the number of robot configurations or waypoints, b. This
allows us to simultaneously optimize the robot design (d),
base frame (B), and the motion plan (Q). Fig. 10 shows
an example before and after the simultaneous optimization
process, and the patient specific optimization algorithm is
shown in Algorithm 1.

2) Population-specific: After the patient-specific simulta-
neous optimization step is performed for each patient, an
extra step can be introduced in order to design a population-
specific robot design that works across multiple patients. To
do so, we can take advantage of the modular approach in

X X
Robot base frame
z z
=1

\ b

A/

( J b2 ©
-
b=3
[ ] - 9
(a) (b)

Fig. 10. (a) Initialization of the simultaneous optimization step is done based
on the final configuration resulting from the sequential optimization step.
Therefore, the first few configurations may not have good initial guesses and
may be unable to initially reach the waypoints with that particular tube design.
(b) After the simultaneous optimization simulation step, a single robot design
that can reach all waypoints and the target, while avoiding collisions with the
anatomy, is found.

Algorithm 1 CTR patient-specific optimization.
Inputs:
I': Anatomical model
S:: Surgical target
d;,i:: Initial robot design
B¢ Initial robot base frame
Outputs:
d*: Robot design
Q*: Motion plan
1. p, < PathOp(T’, S¢)
2: for each p,, €p,,j=1,2...k do
3 while collision = True or tip error > tolerance do
4 d;, tip error <— SeqOpt(d;_1,I',S;, Bjnit)
5: collision «+ CollisionDetection(d;, I")
6
7
8
9

if collision = True then
¢ <+ increase
if tip error > tolerance then
: p < increase p
0: d*,Q « SimOpt(d;. ;,T',S;)
11: return d*, Q

—

OpenMDAO and consider each patient anatomy as a group that
consists of the sub-groups for the CTR kinematics, including
the tube twist and the backbone groups. Once all the groups
are constructed, we can combine them into a model to form
the CTR design optimization problem for multiple patient
anatomies. The optimization procedure is shown in Fig. 7
and is as follows: 1) We solve the patient-specific design
and motion planning problem (using the path, sequential, and
simultaneous optimization steps) from patient 1 to patient h.
2) We average the tube design variables among the patients
and use these as an initial tube design for the population-
specific optimization. 3) We perform a population-specific
simultaneous optimization across multiple patient anatomies
using the following modified objective function,

(16)

fl@) ="

i=1j

b
(fr(@)ig + fa(2)iy + f3(x)ig)

=1

where h is the number of patients and b is the number of

waypoints.

V. CLINICAL EXAMPLES

This section presents three use cases for the proposed
optimization framework that illustrate its ability to optimize
a CTR design and provide a path plan for different patients
and procedures. The general optimization problem statement is
presented in Table III. All optimizations were run on a standard
PC with Intel Core i7-8700, 3.20GHz x 12 and 16GB RAM.

A. Clinical Example 1: Laryngoscopy

Laryngoscopy is a minimally invasive surgery that enables
a close-up view of the larynx, as shown in Fig. 11. Some
conditions, including bloody cough, bad breath, and difficulty
swallowing, may require this procedure to inspect the abnor-
mal area [52]. In addition, it can be used for vocal cord biopsy
and for removing foreign objects [53]. In general, there are two
visualization approaches — indirect and direct laryngoscopy.
Indirect laryngoscopy is considered to be a less invasive
approach, since the surgeon only needs to insert a mirror in
order to get an image of the larynx. However, this method

CTR

\ Tongue

Vocal cord

Trachea

Fig. 11. CTRs have the potential to be used as flexible larynscopes to navigate
through the mouth and into the larynx, where the surgeon can then obtain a
clear view from a camera installed at the tip.
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(b)

(©

(d)

Fig. 12. Timelapse of the optimized CTR deployed in the larynx. The CTR tubes are shown in green (tube 1), blue (tube 2), and orange (tube 3), and the
optimized B-spline path is shown in pink. The pre-defined volume to be swept is represented by red spheres in (d).

has a high learning curve, is more expensive, and obtaining
a clear view may be more difficult [54]. Direct laryngoscopy,
on the other hand, requires a flexible tool that can go inside
the throat to visualize the larynx area for further analysis.
However, the narrow and constrained passage increases the
contact between the surgical tool and the anatomy, often
leading to complications, including infection, bleeding, and
hoarseness [55].

A new flexible robotic scope, Flex Robotic System
(Medrobotics, Raynham, USA), was introduced in 2015. It

is a steerable scope, ranging from 18 mm to 28 mm in
diameter, that can be used by the surgeon to navigate through
the anatomy [56]. CTRs have the potential to be used as a
steerable laryngoscope and would provide the surgeon with a
more miniaturized system. The view angle and the shape of
the robot can be controlled in order to obtain a desired set
of images, while ensuring the absence of collisions with the
anatomy. During operation, it is important to have a complete
and clean view of the vocal cord area, making the reachability
of the CTR an important goal.

TABLE III
THE OPTIMIZATION PROBLEM STATEMENT.

Optimization quantity

Description Lower* Variable Upper*
Path  Sequential Simultaneous
iocti fi(@) (Bq. (12) ;
Objective (1) (Eq. (15)) v v
Path control points Cp cXx3
Inner Diameter (mm) 0 ID; 3.5 n—1 n—1
Outer Diameter (mm) 0 OD; 3.5 n n
Curved section length (mm) 0 Le; n n
Optimization  Straight section length (mm) 0 L n n
variables Tube curvature (mm~—1) 0 K n n
Tube rotation at tip (rad) bi n bxnxh
Tube translation (mm) B 0 n bxnxh
Robot base frame (3-D position and orientation) B 6 6 X h
Total (e.g. ¢ = 25,n = 3,b=10,h = 1) 75 26 80
Start point Sp 3
Final point f, 3
Tube clearance (mm) 0.1 ID; —OD;_1 0.16 n—1 n—1
Constraints ~ Tube wall thickness (mm) 0.05 (OD; —ID;)/2 n n
Distal exposed length (mm) 0 (Li + B)-(Li—1 + Bi—1) n—1 bx (n—1)xh
Proximal exposed length (mm) Bi — Bit+1 0 n—1 bx(n—1)xh
Material strain (Nitinol) 0 €; 0.08 n x 2 n X hx2
Tip orientation (example 2) 0 tw - tr 0 1 h
Total (e.g. n =3,b=10,h=1) 6 16 52

*: the absence of a value means that the corresponding optimization variable or constraint has no lower or upper bound.



JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Previous work aiming to maximize the percent coverage in
a particular volume or workspace, W, mainly used a forward
kinematics model with sampled joint values to generate robot
configurations [11], [19], [57]. The percentage of the volume
swept was then computed as the ratio of voxels containing tip
positions, over the total number of voxels. Such approaches
were inefficient as many robot configurations with tip positions
far away from the desired volume were computed. A more
recent approach used an inverse kinematics model, enabling
the computation of only the robot configurations reaching
desired positions in 3-D space [58]. However, a torsionally-
rigid kinematic model was used, which lacks generality for
robot designs where tubes experience torsion. Finally, there
have been a few methods proposed for incorporating a motion
plan needed to reach the desired 3-D volume to be swept [29],
[30].

We present a new approach that takes advantage of the
proposed framework and can efficiently solve the & CTR
inverse kinematics problems simultaneously. We reformulate
the reachability problem into an inverse kinematics problem
with distance minimization between the robot tip position and
the target positions inside the pre-defined volume. Thus, we
generate a number of points, IV, that are inside the workspace
W € R3, which are uniformly distributed inside the pre-
defined volume. The reachable percentage of the optimized
tube design, d*, is given by,

Ny

Rreach(d*) = W? (17)

where N, is the number of 3-D points that are considered
reachable.

In this laryngoscopy example, the user pre-defined param-
eters are the tube number (n = 3), the number of links
(m = 50), the tube material (Nitinol, where ¢,,,,. ~ 8%, and
E = 80 GPa [59]), the number of waypoints (b = 10), the
number of B-spline control points (¢ = 25), and the number
of B-spline path points (¢ = 100). In addition, we select tube
clearances between 0.1 mm to 0.16 mm for Nitinol tubes,
which is standard for most CTR prototypes. The wall thickness
is set to be 0.05 mm. I D is selected to be 0.66 mm, based on
a camera (minnieCam-XS, Enable, Inc.) that could be used for
this application. Finally, a set of points (/N = 10) are selected
and distributed inside a pre-defined volume, represented by
a sphere with a diameter of 12 mm. These extra points are
treated as additional waypoints that the tip needs to reach
in the simultaneous optimization step. Therefore the total
number of configurations to solve becomes b = 20. The
optimization quantity can be computed from Table III. This
overall problem includes a total of 140 optimization variables
and 91 constraints.

The deployment sequence in Fig. 12 shows that the op-
timized CTR can safely navigate through the anatomy by
following the B-spline curve path (represented in pink) from
the mouth to the vocal cords. Fig. 12d also shows the 10 robot
configurations that can reach the pre-defined points inside the
volume. The reachable percentage, R, .cqch, 1s calculated using
Eq. (17) to be 60 %, based on a tip position tolerance of 2 mm.

12
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Fig. 13. The optimized joint values in the Laryngoscopy example, starting

from the first waypoint and ending at the target point. (a) Shows the tube base
angles of each tube during deployment, and (b) shows their translations.

The optimized tube design parameters are reported in Ta-
ble IV. Fig. 13 shows the optimized joint values that form a
safe motion plan during deployment. Since the joint values of
the robot configurations from waypoints 11 to 20 are optimized
in order to reach target points in a pre-defined volume that is
relatively small, the translation (57, has only small variations
between configurations.

In addition, we confirmed the accuracy of our kinematics
model implementation that requires an interpolation, as pre-
viously explained. For the optimized tube set with 50 links,
the average tip position error compared to the exact kinematics
model is less than 3 mm, corresponding to 0.2 — 1% of the arc
length. The computation time for the laryngoscopy example is
6 hours and 35 minutes.

TABLE IV
OPTIMIZED TUBE DESIGN VARIABLES

Optimal values

Variable Computation time
Tube 1 Tube 2 Tube 3

ID (mm) 0.66 0.88 1.29

OD (mm) 0.76 1.16 3.31

Ls (mm) 162.98 130 84.79 6 hr, 35 mins

L. (mm) 114.77 70.33 79.28

K (mm~1) 0.0038 0.0174 0.0028
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Right jugular

Right atrium

B Right ventricle

Fig. 14. Tllustration of the relevant anatomy for myocardial biopsy procedures.
The CTR would be inserted from the right jugular close to the neck, and it
would navigate through the right atrium in order to take the tissue sample
from the septum inside the right ventricle.

B. Clinical Example 2: Myocardial Biopsy

Myocardial biopsy, also known as heart biopsy and cardiac
biopsy, is a minimally invasive procedure that removes a
small sample of heart tissue located in the right ventricular
septum. The use of this diagnostic technique is primarily for
the detection of heart disease and the monitoring of cardiac
transplantation rejections [60]. Typically, a miniature catheter,
ranging from 1.5 mm to 4 mm in diameter, is manually
deployed into the heart via the right jugular vein [61]. To
visualize the catheter, most procedures are performed using
fluoroscopy, which can result in substantial radiation and large
sampling errors. Alternatives include the use of cardiovascular
magnetic resonance (CMR) and echocardiography. However,
the challenges in visualization of the soft tissue and the
catheter tip directionality [62] result in uncertainties that can
lead to an increased risk for the patient’s safety. The com-
plications in the biopsy procedure includes carotid puncture,

(b)

Fig. 15.
optimized in order to safely navigate through the jugular vein and right atrium to reach the right ventricle. (d) shows the final configuration that reaches the
surgical target.

bleeding, and arterial damage.

The use of advanced surgical tools can help to reduce patient
discomfort, tissue damage, and risks of complications [63].
CTRs, in particular, have the potential to be used for heart
biopsies due to their flexibility and steerability. The complex
and constrained environment requires a specific robot design
that can navigate along a collision-free path from the jugular,
through the atrium and ventricle, in order to reach the septum,
as shown in Fig. 14. In addition, one task-specific constraint is
the orientation of the robot tip, since it can reduce the user’s
effort and patient’s risk when taking the sample tissue [64].
Thus, based on the suggestion from clinicians at the University
of California, San Diego, the desired angle between the tip and
the septum is set to 90°. The tip orientation constraints can
be written as

tw tr =0, (18)

where t,, is the tangent vector of the septum wall where the
target is located and ¢, is the tangent vector of the robot tip.

In this myocardial biopsy example, the user pre-defined
parameters are the tube number (n = 3), the number of links

(m = 50), the tube material (Nitinol, which has a strain
TABLE V

OPTIMIZED TUBE DESIGN VARIABLES.

Variable Optimal values Computation time
Tube 1 Tube 2 Tube 3

ID (mm) 0.60 0.87 1.14

OD (mm) 0.76 0.99 2.31

Ls (mm) 200.79 127.31 85.00 7 hr, 33 mins

L. (mm) 127.31 120.42 93.98

k (mm~1)  0.0115 0.0104 0.0042

(c) ()]

Tllustration of the obtained deployment sequence for the biopsy procedure. The design parameters and joint values of the three-tube CTR are
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Fig. 16. The optimized joint values from the first waypoint to the target point
of the Myocardial biopsy example are shown here. (a) shows the rotation of
the each tube (b) shows the translation of each tube

limit, €,,4. ~ 8% and E = 80 GPa [59]), the number of
waypoints (b = 10), the number of B-spline control points
(c = 25), and the number of B-spline path points (a = 100).
ID; is chosen to be 0.6 mm due to the size of the biopsy
forceps. The wall thickness and the tube clearance are remain
the same as previous example. The optimization quantity can
be computed from Table III. This overall problem includes
a total of 80 optimization variables and 52 constraints. The
final result is presented in Fig. 15. The deployment sequence
of the optimized CTR from the initial configuration to the final
configuration is shown in Fig. 15a - 15d. As seen in Fig. 15d,
the CTR can reach the final surgical target, with a tip position
error of 2 mm and at an angle of 84° between the robot tip
and the septum wall.

The optimized robot design, d*, is presented in Table V.
Tube 1 and tube 2 have higher optimized curvatures (x; and
ko) compared to tube 3, whose curvature (k3) is close to
the lower bound (x = 0). The joint values of each tube
are illustrated in Fig. 16. It can be seen that the tubes
have significant changes in rotation towards the end of the
deployment. In addition, tube 1 is the only tube with significant
translation during the deployment. The average interpolation
error with the optimized tube sets is 0.2-1.2% of the arc length
with 50 links. The computation time of the entire optimization,
including the path, sequential and patient-specific simultane-
ous optimization, is 7 hours and 33 minutes.

C. Clinical Example 3: Design Across Multiple Anatomies

The previous two examples demonstrated that the frame-
work can successfully optimize a robot design for a specific

patient anatomy. In some scenarios, it could be beneficial
to have a population-specific robot, or one that would work
across multiple patient anatomies. Having a single robot design
could be feasible if the surgical task is the same and the
population is sufficiently similar, at least with regards to the
anatomy in the area of interest.

For this example, we selected three sets of CT images,
which we reconstructed into 3-D meshes. The user-defined
parameters remained the same, with m = 50, n = 3, b = 10.
The only new parameter is the number of patients, h = 3.
Therefore, this optimization problem has a total number of 212
optimization variables and 146 constraints for the population-
specific simultaneous optimization. The results are shown in
Fig. 17, where the left column shows the three robot designs,
including three tube sets and cross-sectional view of the robots,
resulting from the patient-specific simultaneous optimization
step. The right column in Fig. 17 shows the final robot

Patient-specific
Patient 1

o
|

Patient 2

Population-specific

Patient 3

It

Fig. 17. The result of the population-specific (h = 3) design optimization
is illustrated. Three patient’s heart model was selected in this example.
The patient-specific simultaneous optimization was performed individually,
as shown on the left. The final population-specific robot design showing the
robot can safely deploy through three different anatomies.

TABLE VI
OPTIMIZED TUBE DESIGN VARIABLES.

Optimal values

Variable Computation time
Tube 1  Tube 2 Tube 3

ID (mm) 0.60 0.84 1.4 Patient 1: 7 hr, 33 min

OD (mm) 0.70 1.29 2.15 Patient 2: 8 hr, 15 min

Ls (mm) 199.61 127.41 85.35 Patient 3: 6 hr, 24 min

L. (mm) 164.37 118.66 92.56 Final opt.: 4 hr, 27 min

x (mm~1) 0.0037 00156 0.0073
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Fig. 18. The optimized joint values from the first waypoint to the target

point of the three patient anatomies are shown here. (a) shows the rotation of
each tube for each anatomy (b) shows the translation of each tube for each
anatomy.

design visualized in three patient anatomies with two viewing
angles. This example demonstrates the ability of our proposed
approach to handle the variations between three anatomical
models and find a robot design that can reach the target with
an average of 3.2 mm of tip position error. Also, the angle
between the robot tip and the septum wall was 93° on average,
which satisfies the requirements. The optimized tube design
variables for the three anatomies are shown in Table VI.

It should be noted that although customized Nitinol tubes
might be expensive, the cost is generally a secondary concern
to functionality and safety in medical procedures. Moreover, 3-
D printed tubes and other low-cost materials could instead be
used as an alternative solution [65]. As shown in Fig. 18, the
optimized joint variable, 3, for each patient is almost identical
throughout deployment. The only noticeable difference among
the three patients is the value of o towards the end of the
deployment sequence. In particular, differences in the rotation
of tube 1 can be seen in the side view of the three anatomies in
Fig. 17. Qualitatively, the geometry of patient 3 is noticeably
different from the other two, including the more tortuous
nature of the jugular vein. Although the target can still be
reached for all patients, future work should include methods
for grouping patients into populations based on anatomical
similarities.

VI. CONCLUSION

We presented a gradient-based optimization approach that
is based on the modular and unified derivative framework,

OpenMDAO. The gradient-based approach allows us to effi-
ciently solve large scale optimization problems without adding
assumptions or reducing the design space. We introduced a
new method consisting of three major steps, which can solve
the CTR patient-specific and population-specific design opti-
mization and motion planning, simultaneously. The new for-
mulation of the anatomical and plastic deformation constraints
are integrated into the optimization problem. In addition, due
to the modular approach, the framework is highly general,
and offers an efficient way to formulate new optimization
problems by customizing task-specific constraints, objectives,
and patient numbers. Furthermore, the proposed framework
can be applied to different patients and surgical tasks and
requires a very low number of inputs from the user.

As part of our future work, we plan to integrate CTR
stability, as well models that consider the external loading,
tube clearance, and friction. Taking these effects into account
can help guarantee safety during deployment in a real-world
setting. There is also a need to investigate a new formulation
for the collision avoidance with the anatomy that does not
rely on computing the entire point cloud, which is computa-
tionally expensive. In addition, the computation time can be
reduced by parallelizing the algorithm across anatomies and
configurations.
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APPENDIX: DERIVATIVE COMPUTATION IN OPENMDAO

The OpenMDAO optimization library uses an object-
oriented programming paradigm to facilitate the modular im-
plementation of complex models, in a manner that facilitates
derivative computation.

The hierarchy of classes in OpenMDAO consists of compo-
nents, groups, the model, and the problem. In OpenMDAOQO,
the user performs all the computations using components.
The components are organized into a hierarchy using groups.
The user specifies connections between outputs and inputs of
components to form the complete analysis, which is called the
model. With this architecture, the user can easily change the
objective and constraints, as well as intermediate computations
by switching to different components.

OpenMDAO automates the computation of total derivatives
using the unified derivatives equation (UDE). The UDE unifies
the adjoint method, chain rule, and all other known methods
for computing discrete derivatives of models using a single
matrix equation, given by [36]

ORdv ORTdv™

ovdr = v dr’
where v is the concatenated vector of the model’s inputs,
outputs, and the states; R is a vector-valued function that acts
as a residual function for v; r is simply the output of the R
function; and Z is the identity matrix.

19)
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The significance of the UDE is that different choices of the
v vector (at different levels of model decomposition) leads
to different methods for computing derivatives. For instance,
excluding all states and treating the model as a black-box
function mapping inputs to outputs yields the trivial result
that the total derivatives are equal to the partial derivatives.
Alternatively, considering a model in which the states are
explicitly defined and have no feedback loops yields a linear
equation that, when applying back-substitution, yields the
chain rule. Yet another example is defining v as the inputs,
outputs, and a single vector of state variables—block solution
of the UDE with this definition of v yields the adjoint method.

Remark: By “solution of the UDE”, we are referring to
the solution of the multiple-right-hand-side linear system that
is defined by Eq. (19). Choosing the left or right equality
in Eq. (19) amounts to a choice of the commonly known
forward or reverse modes of differentiation. In the forward
mode, solving the left equality for the ith column yields the
derivatives of all variables in v with respect to the ¢th variable,
while in the reverse mode, solving the right equality for the
ith column yields the derivatives of the ith variable with
respect to all variables in v. In this work, we use the reverse
mode, because it yields the full gradient vector for one output
(objective or constraint) at the cost of a single linear solution,
and this cost does not increase with the number of optimization
variables.

The inputs, outputs, and states mentioned previously are
defined here from the perspective of the optimization model,
rather than that of the overall framework (shown in Fig. 7).
The model’s inputs consist of optimization variables, as well
as parameters that are fixed during optimization. The model’s
outputs consist of the objective and constraint variables of the
optimization problem, and the model’s states consist of all
other intermediate variables computed within the model in the
process of mapping the inputs to the outputs. In the sequential
and simultaneous optimization problems shown in Table III,
the inputs would include all the optimization variables listed
in the table for the respective problem, the outputs would
include the objective (f(x)) and all the constraints listed in the
table for the respective problem, and the states would include
all intermediate variables in the model, e.g., tube angle, v;,
rotation matrix, R, backbone position, p, and tube stiffnesses,
kjib and kjit.

The residual function, R, is defined differently for inputs,
outputs, and states. For an input, such as k;, that takes
on a value of 1 in a particular optimization iteration (for
instance), the residual would be defined as x; — 1, such that
when the function yields zero, x; = 1, as desired. For an
output or an explicitly defined state, such as bending strain
(€i, = |Xi — Xeql/X:), the residual would be defined as ¢;, —
IXi — Xeql/x:- For a state that is implicitly defined, such as the
tube pre-curvature (u = K377 K;(Ry,ul — ijes)), the
residual function would be Ku — Y7 | K;(Ry,uf — ies).
Again, the residual is defined in this way so that when
the residual evaluates to zero, the desired solution is ob-
tained for state u. In the case of the residual definition,
Ku->"  K;(Ry,u; —1;e3), the significance of rearranging
to remove the matrix inverse is that due to this choice, solving

the UDE is equivalent to the adjoint method. Otherwise,
if we kept the matrix inverse, applying the finite-difference
method to compute the partial derivatives of u would require
n applications of the matrix inverse where n is the size of the
matrix.

In our model, we have a mix of explicitly and implicitly
defined states. Therefore, when OpenMDAO solves the UDE
to compute derivatives, this process is equivalent to applying a
mixture of the chain rule and the adjoint method, which is the
desired (most efficient) approach for our model. However, the
complexity of our model would have made manual formulation
and implementation of the chain rule and adjoint equations
a very laborious and error-prone process, which our use of
OpenMDAO has automated.

Because of OpenMDAQ’s use of the UDE, the model is
implemented as a set of small units of code—the components
described previously. The analytical partial derivative of each
output with respect to each input needs to be provided to
OpenMDAO. Since each small unit performs relatively simple
computations, the partial derivatives are easy to compute.
OpenMDAQO then assembles the OR /Jv Jacobian matrix from
these partial derivatives of each component and solves the
UDE.
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