
1 
 

Slimming Neural Networks Using Adaptive 
Connectivity Scores 

Madan Ravi Ganesh, Dawsin Blanchard, Jason J. Corso, Senior Member, IEEE, 
and Salimeh Yasaei Sekeh, Member, IEEE 

 
 
 

Abstract—In general, deep neural network (DNN) pruning 
methods fall into two categories: 1) Weight-based determinis-   
tic constraints, and 2) Probabilistic frameworks. While each 
approach has its merits and limitations there are a set of  
common practical issues such as, trial-and-error to analyze 
sensitivity and hyper-parameters to prune DNNs, which plague 
them both. In this work, we propose a new single-shot, fully auto- 
mated pruning algorithm called Slimming Neural networks using 
Adaptive Connectivity Scores (SNACS). Our proposed approach 
combines a probabilistic pruning framework  with  constraints 
on the underlying weight matrices, via a novel connectivity 
measure, at multiple levels to capitalize on  the  strengths  of 
both approaches while solving  their  deficiencies.  In  SNACS,  
we propose a fast hash-based estimator of Adaptive Conditional 
Mutual Information (ACMI), that uses a weight-based scaling 
criterion, to evaluate the connectivity between filters and prune 
unimportant ones. To automatically determine the limit up to 
which a layer can be pruned, we propose a set of operating 
constraints that jointly define the upper pruning percentage limits 
across all the layers in a deep network. Finally, we define a novel 
sensitivity criterion for filters that measures the strength of their 
contributions to the succeeding layer and highlights critical filters 
that need to be completely protected from pruning. Through our 
experimental validation we show that SNACS is faster by over 
17x the nearest comparable method and is the state of the art 
single-shot pruning method across three standard Dataset-DNN 
pruning benchmarks: CIFAR10-VGG16, CIFAR10-ResNet56 and 
ILSVRC2012-ResNet50. 

Index Terms—Neural Network Compression, Pruning, Mutual 
Information, Multivariate Dependency Measure, Sensitivity. 

 

I. INTRODUCTION 

Critical real-world applications like autonomous vehicle 
navigation [1], [2] and simultaneous machine translation [3], 
[4] demand real-time response [5] without any compromise  
in performance. Proposed solutions in these application do- 
mains are implicitly bound to constraints brought forward by 
restricted space and memory availability on custom hardware 
implementations. These factors are at odds with the general 
research design goal of high performance in deep neural 
networks (DNN), which is often achieved by increasing the 
overall size and capacity of the DNN. The trade-off between 
these constraints has brought increased attention to the field of 
DNN pruning [6], [7], whose main objective is to maintain an 
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adequate level of performance, often within a few percent of 
the original DNN, while only using a fraction of its memory or 
FLOPs. Of course, the adequacy of any level of performance 
depends on the specific application, but the general goal 
nevertheless remains critical. 

There are two main approaches to pruning: 1) deterministic 
constraints on weight matrices [8]–[10] and 2) probabilistic 
frameworks [11]–[13]. Methods based on deterministic con- 
straints on weight matrices are straightforward to implement 
and do leverage the underlying structure of the weight matri- 
ces, but they often do not account for the downstream impact 
of pruning filters. On the other hand, probabilistic frameworks 
focus on reducing the redundancy between layers using infor- 
mation theoretic measures or variational bayesian inference but 
are not fast or efficient at modelling the sensitivity of filters   
at an individual level. In a sense, the two types of method are 
converses: one’s weakness is remedied by the other. Yet, to 
the best of our knowledge, there has been no recent work    
that combines both approaches and improves upon them. 
Further, there are many unresolved practical issues among both 
approaches, e.g., the labor intensive process of analyzing the 
sensitivity of different layers to pruning or imposing an upper 
limit on pruning percentage for each layer and the amount of 
resources and time spent in iteratively pruning DNNs. 

To that end, we are able to unify the benefits of both 
methods while mitigating their respective drawbacks: we pro- 
pose Slimming Neural networks using Adaptive Connectivity 
Scores (SNACS)  as a hybrid single-shot pruning approach.   
In SNACS, we introduce the Adaptive Conditional Mutual 
Information (ACMI) measure, which incorporates weights as  
a scaling function within the framework of conditional mutual 
information [14], [15]. The ACMI measure evaluates the 
connectivity between pairs of filters across adjacent layers and 
prunes unimportant filters. In this work, we explore weight and 
activation-based scaling functions. 

To remove the manual effort involved in setting the upper 
pruning percentage limit of layers, we define a set of operating 
constraints to automatically evaluate them. The constraints are 
based on the degradation in quality of activations at various 
levels of compression. Additionally, we encapsulate the im- 
portance of a filter using our proposed Sensitivity criterion, 
defined as the sum of a filter’s contributions (normalized 
weights) to filters in the succeeding layer. Using this measure, 
we curate a subset of relatively less sensitive filters that can  
be pruned based on their connectivity scores while we protect 
highly sensitive filters from any form of pruning. We highlight 
all the main components of SNACS in Fig. 1. 
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Fig. 1: Illustration of the three major components of SNACS that help prune connections between layer l and l + 1. First, we 
propose the hash-based ACMI estimator to compute the connectivity scores between filters in layer l + 1 and all the filters 
in layer l. These connectivity scores are thresholded to obtain the set of filters that need to be pruned. Next, to protect the 
network from being irregularly/excessively pruned, we use a custom set of operating constraints, based on the degradation of 
activation quality at various pruning levels, to decide on the upper pruning percentage limit for layer l + 1. Finally, we compute 
the sensitivity of filters in l + 1 as the sum of normalized weights between chosen filters in layer l + 1 and all the filters in 
layer l + 2. We sort and threshold the sensitivity values to create a subset of sensitive filters which should be protected from 
pruning. Combining the information from all three components we prune layer l + 1. 

 
Overall, we summarize our contributions in this work below, 
• We propose a hybrid single-shot pruning approach, 

SNACS, which takes advantage of both a probabilistic 
pruning framework and simple weight-based constraints. 

• In SNACS, we propose the use of Adaptive Conditional 
Mutual Information (ACMI) as a way to measure the 
connectivity between filters and derive its hash-table- 
based implementation, 

• In the interest of simplifying the process of defining 
upper pruning percentage limits of layers in a DNN, we 
propose a set of operating constraints to help automate 
their definition, and 

• We apply a custom notion of Sensitivity in filters, using 
their contribution to succeeding layers, to prioritize the 
pruning of largely insensitive filters while protecting 
highly sensitive ones. 

By incorporating our contributions within the SNACS frame- 
work, we improve the overall run-time of the pruning al- 
gorithm by upwards of 17 , increase the accuracy of the 
estimator, create an entirely automated pruning pipeline while 
offering state of the art performance in single-shot pruning of 
DNNs. 

II. RELATED WORKS 

In the following subsections, we discuss prior works in 
pruning and mutual information (MI) estimators, as well as 
methods at their intersection. Among pruning approaches there 
are two broad categories: 1) methods that use a deterministic 
constraint on the weight matrices, and 2) methods that use a 
probabilistic framework to reduce the redundancy and main- 
tain the flow of information between layers. Within the first 
category of methods, there is a subset that enforces sparsity by 

modifying the objective function while the remaining directly 
apply constraints on the weight matrices. 

 
A. Deterministic Constraints on Weight Matrix 

Direct Constraint on Weight Matrices: Some of the earliest 
works in pruning used the second-order relationship between 
the objective function and weights of the network to eval-   
uate and remove unimportant values [16], [17]. Since then,  
several advancements in the form of directly thresholding 
weights [10], [18] or using the . 1 constraint to define the 
importance of filters [19] have been proposed. A more recent 
subset of methods have adopted data-driven logic to derive the 
importance of filter weights. Two such methods are ThiNet [9] 
and NISP [20], where the reconstruction of outcomes with the 
removal of weights is posed as a post-training objective. By 
virtue of how direct constraints are placed on weight matrices, 
they often do not account for the downstream impact of 
pruning or are built on the assumption of a purely deterministic 
relationship between filters. Instead, we use the combination of 
a weight-based scaling function and filter connectivity within 
a probabilistic framework to maintain the flow of information 
between layers and overcome these issues. 
Modification of Objective Function: Inducing sparsity in 
weight matrices by modifying the objective function involves 
imposing a strong constraint on how weights develop during 
training. Constraints range from simple methods, such as 
single or multiple ln norms [21] on channel outputs, simple 
patterned masks to regulate group sparsity [22], and optimiza- 
tion over group-lasso-based objective functions [8], [23], to 
more complicated ideas like balancing individual vs. group  
sparsity constraints [24], [25] and adding discrimination-aware 
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losses at intermediate layers to enhance and easily identify 
important channels [26]. 

More recent methods combine the idea of modifying the 
objective function with more abstract concepts like meta- 
learning [27], where sparsity inducing regularizers are used   
to learn latent vectors that help  decide  on  the  weight  val- 
ues directly or GANs, where an adversarial pruned network 
generator optimizes a loss based on  the  features  derived  
from the original network [28]. To  provide a controlled set   
up to study and compare the effects of pruning a network 
against its original counter-part, we avoid strong comparisons 
against methods that modify the objective function. Apart from 
optimizing over a fundamentally different objective function, 
which are harder to optimize, these methods require multiple 
iterations of pruning and fine-tuning built-in to their setup, 
while we use only a single pruning and retraining step while 
targeting a simple objective function. 

 
B. Probabilistic Frameworks 

Pruning approaches that use a probabilistic frameworks can 
be divided into bayesian and non-bayesian methods. Bayesian 
methods apply a variational bayesian inference perspective to 
pruning, with a focus on estimating the posterior distribution 
of weights using ELBO [29], [30]. While they offer a theo- 
retically sound perspective to pruning, they require a strong 
assumption on the prior distribution of weights which induces 
sparsity across the network. Further, their performances on 
large-scale datasets have more room to grow. 

The non-bayesian approach to pruning focuses on using 
information theoretic measures, with minimal assumptions 
and widespread applicability when compared to the bayesian 
methods. These include, Luo and Wu [13], in which entropy  
of activations is used as a measure of importance of a filter, 
VIBNet [12], where the information bottleneck principle is 
used to minimize the redundancy between adjacent layers and 
MINT [11], in which geometric conditional MI is used to 
determine the dependencies between filter pairs in adjacent 

direct estimators for Renyi-entropy and MI [33], [34], and 
Henze-Penrose divergence measure [35] have been proposed. 
They provide manageable run-time complexity while avoid- 
ing direct knowledge  of  the  density  function.  Crucial  to  
the functioning of many direct  estimation  methods  is  the  
use of graph-theoretic ideas, such as the Nearest Neighbour 
Ratios [36], which uses the k-NN graph to estimate MI, and 
the minimum spanning tree used to estimate the GMI [37].  
These graph-based approaches help make the evaluation of  
MI computationally tractable. While most methods fall into 
either plugin or direct categories, recent work has focused on 
the development of a hybrid approach [38]. This approach 
combines the fast run-time implementation of hash-tables with 
an error convergence rate akin to plugin methods, thus merging 
the advantages of both the estimation approaches. 

 
III. ALGORITHM AND COMPONENT DESCRIPTION 

In the following subsections, we outline SNACS’s algo- 
rithm. This is followed by details of the ACMI measure and the 
set of constraints that automatically define the upper pruning 
percentage limits of layers in a DNN. The final sub-section 
explains our notion of sensitivity, which identifies and protects 
important filters from being pruned. 

 
A. Notation 

We assume that a given DNN has a total of L layers where, 
• SENSITIVE FILTERS() : Function that returns the indices 

of a subset of filters that need to be protected from 
pruning, computed using sensitivity (Section III-E). 

• Fi : Activations from the selected filter i in layer 
l + 1. 

• N (l+1) : Total number of filters in layer l + 1. 
• SF (l+1) : The set of filter indices whose values are pruned 

from the weight vector. 
• η() : Connectivity score between two filters computed 

using ACMI (Section III-C). 
(l) (l) 

layers. While they are adept at reducing redundancy and 
maintaining the flow of information between layers, they are 
slightly slow and inefficient at modelling the sensitivity of 
individual filters to pruning. In SNACS, we propose the use of 
ACMI which improves the speed of dependency computations 
for MI as well as the accuracy of the estimates. Further, by 
highlighting sensitive filters that need to remain un-pruned and 
jointly defining the upper pruning percentage limit of layers 
we obtain additional gains when pruning a DNN. 

 
C. Multivariate Dependency Measures 

Approaches for estimating multivariate dependencies using 
MI can be broadly classified  into  two  categories:  plugin  
and direct estimation. Plugin estimators like Kernel Density 
Estimators (KDEs) [31], KNN estimators [32], and others [33], 
[34] form the bulk of early works in computing multivariate 
dependency. However, plugin estimators need to accurately 
estimate the probability density function of input variables.  
This, when combined with their large run-time complexity, 
renders them highly un-scalable. To  overcome these issues, 

• Fj    : The set of all filters excluding Fj in layer l. 
• δ: Threshold on connectivity scores to ensure only strong 

connections are retained. 
• γ(l+1) : Upper limit on pruning percentage for layer l + 1 

defined using the constraints in Section III-D. 
 

B. Algorithm 
The overall goal of our algorithm is to find the set of filters 

that contribute minimally to the flow of information between 
layers and prune their values from the weight matrix. We apply 
SNACS between every pair of adjacent layers in a pre-trained 
DNN where, 

• We identify a subset of sensitive filters in layer l + 1 that 
need to be protected from pruning and iterate over the 
remaining insensitive filters in layer l + 1. 

• To measure the connectivity score, η, between filters in 
layers l and l + 1 we apply our proposed hash-based 
ACMI estimator on the activations from each set of filters. 
An example of this is shown in Fig. 2. The connectivity 
score evaluates the strength of the relationship between 
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Fig. 2: Example of computing ACMI, η(), between activations of filters in layers l + 1 and l. In each η() computation, the 
arrows indicate the filters between which we compute the connectivity score while taking into consideration the activations 
from the remaining filters in layer l. These steps are repeated for every possible pair of filters except for highly sensitive filters 
in layer l + 1, where η need not be computed since their connections (lines between filters) are not pruned. 

 
two filters in the context of contributions from all the 
remaining filters in layer l. 

• If the connectivity score is lower than a threshold level δ, 
and the number of pruned filters do not exceed the pre- 
determined upper limit, denoted by γ(l+1), we add the 
index of the filter to SF (l+1) . The weights for retained and 

 

 
 

Algorithm 1: SNACS pruning between filters of layers 
(l, l + 1) 

 
 

for Every pair of layers (l, l + 1), l 1, 2, . . . , L 1 
do 

Compute γ(l+1); 
for F (l+1), i ∈ {1, 2, . . . N (l+1)} \ 

protected filters/neurons are untouched while the weights 
for the entire kernel/elements are zeroed out for pruned 
filters/neurons. 

In the practical implementation of Alg. 1 the value of δ is 
determined by thresholding η  values from a chosen layer so 
as to remove sufficient weights and match the predetermined 

 

i    
SENSITIVE FILTERS 1, 2, . . . N (l+1) do 

Initialize SF (l+1) = ∅; 
for F (l), j ∈ 1, 2, . . . N (l) do  

Compute η(F (l+1), F (l) F (l)); 
if 

(
η(F (l+1), F (l)|F (l)) ≤ δ and 

γ . Once we prune the filters that contribute the least across 
all the layers of the DNN, we proceed to re-training the 
network using a setup that mirrors the training phase of the 

i |S 
then 

 
(l+1) 
i |/(N (l+1)N (l)) < γ(l+1)

)
 

pre-trained DNN. Across Alg. 1, we note that SNACS does  
not contain a continual feedback loop to update weights when 
pruning. Instead, we take only a single retraining pass after  
pruning. Compared to iterative pruning approaches, which 
often continually fine-tune to compensate for the performance 
lost due to pruning, SNACS falls firmly in the domain of 
single-shot pruning methods. 

SF (l+1) = SF (l+1) ∪ index(Fj ) 
end 

end 
end 

end 
 

 

where   dPXY  
X  Y is the Radon-Nikodym derivative, and g : 

C. Adaptive Conditional Mutual Information (0, ∞) 1→ R is a convex function and g(1) = 0. Note that 
In the following subsection, we introduce Adaptive Mutual when dPXY 

X Y → 1 then Iϕ → 0. The overall bounds on the 

Information, a non-linear dependency measure that is based on 
AMI measure are given by, 

the f -divergence measure [15], [39], extend it to a conditional 
formulation and discuss the hash-table-based estimator used 
to compute ACMI. 

0 ≤ Iϕ 
1 

(X, Y ) ≤ 2 P
 E 
X PY 

ϕ(X, Y )  dPXY    + 1 . (2) 
dPXPY 

 
Definition: Let X and Y be Euclidean spaces and let PXY be 
a probability measure on the space X Y. Here, PX and PY 
define the marginal probability measures. Similar to [14], for 
given function (x, y) X  Y  ϕ(x, y)   0, the Adaptive  
Mutual Information (AMI), denoted by Iϕ(X; Y ), is defined 
as, 

I (X; Y ) = E  
 
ϕ(X, Y )g 

(
 dPXY 

Jl 

, (1) 
  

An explanation of how we arrive at these bounds is provided 
in Appendix A. 

 
Adaptive Conditional Mutual Information: Let X, Y and Z 
be Euclidean spaces and let PXY Z be a probability measure 
on the space X Y Z. We presume PXY |Z, PX|Z, and PY |Z 
are the joint and marginal conditional probability measures, 
respectively. PZ defines the marginal probability measure on 

 the space Z. Following [14], the Adaptive Conditional Mutual 
Y P X P 

l 
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i 
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ϕ rk rik rjk 

Information (ACMI), denoted by Iϕ(X; Y |Z), is defined as, 
I (X; Y |Z) = E ϕ(X, Y, Z)g 

(
 dPXY |Z 

Jl 

. 
 

1.00 
ϕ 

PZ P 
 

X|Z PY |Z dPX|Z PY |Z  
(3) 

 

0.80 

In this paper, we focus on the particular case of g(t) = (t−1)
2

 
 

so I ∈ [0, 1]. Note that when ϕ = 1 
2(t+1) 0.60 

becomes the conditional geometric MI measure proposed in 
[40]. Next we propose a hash-based estimator of ACMI to 
approximate the connectivity score between filters. 

 
Hash-based  Estimator  of  ACMI:  Consider N  i.i.d samples 
{
(X , Y , Z )

}N      drawn from P        , which is defined on the 
 

 

 
0.40 

 
 

0.20 
 
 

0.00 20.00 40.00 60.00 80.00 100.00 
Pruned (%) 

space X   Y   Z. We  define a dependence graph G(X, Y, Z) as a directed multi-partite graph, consisting of three sets of nodes 
V , U , and W , with cardinalities denoted as V , U , and W , 
respectively and with the set of all edges EG. The variable 
W here is different from the DNN weight matrix. Following 
similar arguments to [38], we map each point in the sets X = 
X1, . . . , XN , Y = Y1, . . . , YN , and Z = Z1, . . . , ZN 

to the nodes in the sets V , U , and W , respectively, using the 
hash function H. 

Here, H(x) = H2(H1(x)),  where  the  vector  valued  
hash  function  H1  :  Rd Zd is defined as H1(x) = 
[h1(x), . . . , h1(xd)], for x = [x1, . . . , xd] and h1(xi) = xi+b   

, for a fixed E > 0, and random variable b     [0, E]. The 
random hash function H2 : Zd F is uniformly distributed 
on the output F = 1, 2, . . . , F where for a fixed tunable 
integer cH , F = cHN . 

After the projection of values on to the dependence graph 
G(X, Y, Z), we define the following cardinality, 

Nijk = #{(Xt, Yt, Zt) s.t.  H(Xt) = i, (4) 
H(Yt) = j, H(Zt) = k}, 

which is the number of joint  collisions  of  the  nodes 
(Xt, Yt, Zt) at the triple (vi, uj, ωk). Let Nik, Njk, and Nk  
be the number of collisions at the vertices (vi, ωk), (uj, ωk), 
and ωk, respectively. By using Nijk, Nik, Njk, and Nk, we 
define the following ratios, 

Fig.  3:  The  selection  process  for  upper  pruning percentage limits for each layer of the DNN is based on using a fixed 
threshold (dotted line) over the SVM model’s performance 
such that the weighted sum of Pruned(%) allocated to each  
layer, the x coordinate where the threshold intersects the curve 
latest, matches the overall sparsity τ . 

 
The proof of Theorem 1 is available in the Appendices. 

 
Implementation: Overall, X, Y, Z denote sets of activations 
derived from different filters and we obtain a scalar value 
(connectivity score) as the outcome of the ACMI estimator   
in (6). The flexibility in defining function ϕ offers a way to 
connect the probabilistic framework of MI to existing weight- 
based pruning approaches. In Section IV, we explore a variety 
of options for ϕ and empirically determine that a function 
defined on the weight matrix helps achieve the highest pruning 
performance in our experiments. 

 
D. Definition of Upper Pruning Percentage Limit of Layers 

To protect different layers of the DNN from being exces- 
sively pruned, we propose a set of operating constraints to 
automate the joint definition of the upper pruning percentage 
limits of every layer in the DNN. Our approach is based on 
trends in the degradation of the quality of activations when a 

rijk 
:= Nijk , r 

N ik 
:= Nik , r 

N jk 
:= Njk , r 

N k 
:= Nk . (5) 

N 
layer is pruned to varying extents. At each layer, we collect the 
performances of an SVM model with an RBF kernel (α(l)), 

Finally, using the above ratios we propose the following hash- 
based estimator of the ACMI measure (3): 

I (X; Y |Z) = ϕ(i, j, k) rik rjk g 
( 

rijk rk 
J 

, (6) 

 

trained on a subset of activations from the un-pruned version 
of the layer and tested on the same subset from the pruned 
version of the layer at various compression levels c, where      
c ∈ {1, 2, 3 . . . 99}. Here, the ground-truth labels from the 

summed over all edges eijk of G(X, Y, Z) having non-zero 
ratios. 

Theorem 1. For given g(t) = (t−1)
2 
and under the assump- 

tions: (A1) The support sets X, Y, and Z are bounded. (A2) 
The function ϕ is bounded. (A3) The continuous marginal, 
joint, and conditional density functions are belong to Hölder 
continuous class, [41]. For fixed dX, dY , and dY , as N 
we have 

I ϕ(X; Y |Z) −→ Iϕ(X; Y |Z),   a.s. (7) 

layers, we cycle through performances between 100 0% to 
find the optimal threshold value such that the sum of compres- 
sion levels of all the layers dictated by the selected threshold 
adds up to our overall target pruning percentage. Each individ- 
ual layer’s pruning percentage is dictated by the highest com- 
pression level where the SVM model’s performance exceeds 
the chosen threshold. The general trend we observe is higher 
the compression level, lower is the SVM model’s performance. 
Thus, picking smaller performance thresholds leads to the 
selection of higher compression levels in a layer. We select the 

eijk ∈EG 

× × 

Selection process of 
   

Conv27 

    Conv33 
       Conv41 

Conv51 

S
V

M
 m

od
el

 a
cc

ur
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y 

ϕ , the ACMI in (3) 

dataset are used to train the SVM model. 
Once we have the performance of SVM models across all 
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highest compression level from a range of possible values to 
avoid noisy and inconsistent behavior in SVM performances. 
Mathematically, we optimize, 

L 

τ = β(l)γ(l), (8) 
l=1 

where β(l) is ratio of  number  of  parameters  in  layer  l  to 
the total number of parameters across the entire DNN and τ 
denotes the desired pruning percentage across the entire DNN. 
Fig. 3 illustrates this process using an example of 4 layers. 

It is important to note that the statistics computed from the 
SVM models across all layers can be executed in parallel,      
at an average of 36s per SVM model. This is an important 
distinction when compared to prior work where optimization 
involves computing the permutation of pruning percentages 
across various layers (order of 99l). Across each such permuta- 
tion, the entire network needs to be retrained/fine-tuned, which 
can take anywhere from a couple of hours (CIFAR-10) to a 
week (ILSVRC-2012). This cost is significantly higher when 
compared to the simple forward pass across the DNN and 
training time for an RBF-SVM model used in our approach. 
Our core contribution in this work is a systematic approach   
to decide the upper pruning percentage limits across all layers 
of the DNN. Previous works often relegate this information to 
the final chosen values without disclosing how they arrived at 
them. We provide the γ values of all layers for each DNN 
architecture used in the experiments in our supplementary 
materials. 

E. Sensitivity of Filters 
A common assumption made during pruning is that all filters 

in a layer have the same downstream impact and hence can be 
characterized solely using the magnitude of their weights. In 
contrast, probabilistic pruning approaches like MINT [11] aim 
to maintain the flow of information between a pair of layers 
but they consider all filters to be equally important. Taking 
into account each filter’s impact on succeeding layers is an 
effective tool to assess their importance and protect filters that 
contribute the majority of information from being pruned. 

We define a sensitivity criterion, λ(Fl+1), that can be used 
to sort filters in their order of importance. Using this, we 
curate a subset of filters that are critical and hence need to be 
protected from pruning while the remaining filters are pruned 
using the steps in Alg. 1. To evaluate the sensitivity of filters 
in layer l + 1, we look at the weight matrix of its downstream 
layer l +2, W (l+2), and assess the contributions from filters in 
l + 1 to those in l + 2. Here, W (l+2) RN (l+2)×N (l+1)×H×W , 
where H, W are the height and width of the filters in layer 
l + 2. For a given filter, the sum of normalized contributions 
across all the filters in l +2 is its overall sensitivity, λ(F (l+1)). 
It is defined as, 

N (l+2) 

Here, C(l+2) is the normalization constant used to relate the 
weights of filters from l + 1 contributing to the same filter in 
l + 2 and W (l+2) is the weight matrix of l + 2 averaged over 
the height and width. 

Once we obtain the order of sensitivity values for filters    
in a given layer, we define a threshold of highly sensitive 
filters that remain un-pruned, after empirically comparing the 
improvement in performance at similar pruning levels with 
and without protecting sensitive filters. This is critical to 
ensure that only sensitive filters, which contribute a majority 
of the information downstream, remain untouched. This in turn 
helps improve the overall compression performance since less 
sensitive filters can be pruned more without compromising the 
quality of information flowing between layers too much. After 
empirically comparing the degradation in performance of the 
SVM model used to define the upper pruning percentage limits 
for layers, between the case when all the filters are pruned and 
when we protect a variable percentage of sensitive filters, we 
determine the set of highly sensitive filters to protect and return 
their indices to Alg. 1. 

 
IV. EXPERIMENTAL RESULTS 

We  divide our results into three subsections, formatted as  
an ablative study. Section IV-A focuses on the evaluation of 
run-time and choice of ϕ, to highlight the impact of using   
our ACMI estimator in place of the MST-based  estimator 
used in [11]. Here, the upper pruning limits are manually 
defined, with the help of artificial limits placed on the SVM 
model accuracy, to mimic prior work. In Section IV-B, we 
detail the results of applying SNACS (ACMI + Automated 
upper pruning percentage limits) across three Dataset-DNN 
combinations. Within this section we focus on drawing strong 
comparisons against single-shot pruning approaches while also 
highlighting how competitive SNACS is amongst approaches 
that use a modified objective function or iterative pruning. 
Finally, in Section IV-C we discuss the impact of adding our 
sensitivity measure as a way to prioritize and fully protect 
important filters from being pruned. 

 
Dataset-DNN: We use three standard Dataset-DNN combi- 
nations to evaluate and compare our approach to standard 
baselines. They are, CIFAR10 [42]-VGG16 [43], CIFAR10- 
ResNet56 [44] and ILSVRC2012 [45]-ResNet50. A detailed 
breakdown of each dataset and the experimental setup used in 
each experiment is included in the supplementary materials. 

 
Metric: We use the following metrics to compare perfor- 
mances, 

• Pruning (%): The percentage of parameters removed 
when compared to the total number of parameters in the 
un-pruned DNN (Conv and FC only), 

• Test Accuracy (%): The accuracy on the testing set, after 

λ(Fl+1) = 
f

 

c=1 

W (l+2)(fc, i)
/
C(l+2)(fc), (9) 

N (l+1) 

re-training for pruned networks, 
• Memory (Mb): The amount of memory consumed to store 

the weight matrices in “CSR” format. 
where  C(l+2)(fc) = 

f

 

p=1 

W-(l+2)(fc, fp). (10) • FLOPs Reduced (%): The percentage of FLOPs reduced 
when compared to the un-pruned DNN. 
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exp( −weights  ) 84.46 

accuracy ≥ −weights93.43%. ϕ = exp(
  )    

exp(− weights     act      ) 76.99 

l l 

× 

≥ 

2 

2 

l l 

× 

TABLE I: We compare the maximum compression perfor- 
mance of a variety of ϕ functions when maintaining a test 

2 
 

 2 
and we use this in all further experiments 

Φ  function Pruned (%) 
constant = 1   84.02 

weights  2 84.12 
weights2 84.17 

2 
2 

lactl2  76.13 
lweightsl2 lactl2  82.59 

2 
2 
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Apart from the above metrics, we also use run-time to compare 
speed of estimators. A high quality method must have high  
compression performance while maintaining a test accuracy 
relatively close to the baseline. 

 
A. Evaluation of Estimator 
Run-time Comparison: We provide a comparison between 
the run-time taken to compute the dependency scores across 
convolution layer 9 in VGG16 using our proposed ACMI 
estimator and the MST-based estimator used in MINT [11]. 
For this experiment, we use three distinct estimators, the MST- 
based estimator from MINT, our ACMI estimator with ϕ = 1 
and ϕ = weight 2. Here, weight values are re-scaled between 
[0, 1]. To provide a fair comparison, we adopt the grouping 
concept introduced in MINT. From Fig. 4 we make two 
important observations, 1) run-time increases with an increase 
in group-size across both estimators, and 2) relative to the run- 
time from the MST-based estimator, our estimator is faster by 
at least 17 . Thus, we show that our estimator significantly 
reduces the overall run-time required to compute conditional 
MI across a DNN. Further, the run-time for one of the largest 
computational bottlenecks is massively reduced irrespective of 
the scaling function used in ACMI. 

 
Selection of  ϕ: There are number of potential functions  
we can associate with ϕ. In Table I, we illustrate a variety  
of functions and their performance, w.r.t. the Pruning (%) 
while maintaining an accuracy 93.43% in the VGG16- 
CIFAR10 setup. Between Section IV-A and MINT [11] the 
main differences are the inclusion of ACMI and the manual 
definition of upper pruning percentage limits using artificially 
capped SVM model accuracies (0.8). From Table I, we observe 
that most variants of ϕ outperform MINT, including ϕ = 1. 
Furthermore, we find that ϕ = exp( −weights ) performs the 
best when compared to all the options for ϕ we explore. Thus, 
we set this as the default ϕ throughout all further experiments. 

 
B. Large-scale Comparison 

When compared to existing single-shot pruning methods, 
from Table II we observe that SNACS outperforms all  of  
them by a significant margin to establish new SOTA per- 
formances. Our consistently high results establish our hybrid 
pruning framework as one of the top performing single-shot 

(a) Run-time comparison across MST and ACMI measures 
 
 

Estimator run-time comparison 
 

2.5 
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0.0 
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Group Size 
(b) Run-time comparison across various ϕ 

Fig. 4: (4a) When comparing run-times between the MST- 
based estimator used in MINT [11] and our hash-based ACMI 
estimator, our estimator provides up to 27 speedup in run- 
time. (4b) Across different selections of the scaling function  
in our estimator, the run-times scale similarly as the number  
of groups increase. 

 
 

algorithms. A combination of improved estimates from the 
hash-based ACMI estimator (Table I) and the joint definition 
of upper pruning percentage limits for each layer in the DNN 
are the main contributors to our high performance. 

Fig. 5 helps put SNACS’s performance in perspective of 
pruning approaches that use either sparsity inducing objective 
functions or iterative re-training setups. In general, we expect 
a decrease in performance  with  an  increase  in  the number 
of parameters pruned. Often, iterative approaches achieve the 
highest compression while suffering minimal drop in testing 
accuracy, with methods that use joint optimization sprinkled 
across the entire range of Pruning (%) values. Single-shot 
methods are often the weakest performers given that they get 
the fewest attempts to account for the loss in accuracy after 
pruning. However, across each dataset-DNN  combination,  
our algorithm is highly competitive with the best pruning 
approaches regardless of variations in optimizers, iterative 
pruning pipelines, modified objective functions or layer-by- 
layer fine-tuning. SNACS remains competitive at large pruning 
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TABLE II: Using a single train-prune-retrain cycle, SNACS is among the top performers across all the Dataset-DNN 
combinations. Baselines are ordered according to increasing Pruning (%) 

 

Method Pruning (%) Test Accuracy (%) FLOPs Reduced (%) 

Baseline N.A. 93.98 N.A. 
l1-norm [19] 64.00 93.40 34.18 

CIFAR-10 Variational Pruning [29] 73.34 93.18 39.29 
VGG16 SSS [23] 73.80 93.02 41.60 

MINT [11] 83.46 93.43 N.A. 
Network Slimming [21] 88.52 93.80 50.94 
X-Nets [46] 92.33 93.00 N.A. 
Bayesian Compression [30] 94.50 91.00 N.A. 
SNACS 96.16 91.06 67.85 

Baseline N.A. 92.55 N.A. 
CIFAR-10 l1-norm [19] 13.70 93.06 27.28 
ResNet56 Variational Pruning [29] 20.49 92.26 20.17 

NISP [20] 42.60 93.01 43.61 
FSDP [47] 50.00 92.64 N.A. 
MINT [11] 57.01 93.02 N.A. 
SNACS 68.59 93.38 37.61 

Baseline N.A. 76.13 N.A. 
ILSVRC2012 SSS [23] 38.82 71.82 43.04 
ResNet50 NISP [20] 43.82 71.99 44.01 

MINT [11] 49.62 71.05 N.A. 
X-Nets [46] 50.00 72.85 50.00 
SNACS 55.10 74.65 41.73 
SNACS 59.61 73.60 46.63 
SNACS 64.26 72.90 51.65 
SNACS 68.80 72.36 56.79 
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Fig. 5: Comparison of single-shot (green) vs. non single-shot (red) pruning approaches across our benchmarks. SNACS, despite 
being a single-shot approach, is highly competitive with the best performing iterative methods. 
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Fig. 6: On observing the compression performance per layer in the ILSVRC2012-ResNet50 experiment, SNACS is able to 
achieve high Pruning (%) while focusing only on the middle and latter layers and avoiding the early layers. Interestingly, the 
pattern of pruning in MINT and SNACS is extremely different. 

TABLE III: By saving a small percentage of sensitive filters, we can further improve the overall Pruning (%) while maintaining 
high Test Accuracy 

 
 

ResNet56 

Method Pruning (%) Test Accuracy (%) 

Baseline  N.A.  92.55 

levels despite using a single prune-retrain step. 

An important distinction between our pruning approach and 
other single-shot methods we compare against is that we avoid 
pruning early layers to a large extent, as shown in Fig. 6. 
Given that a large portion of FLOPs are concentrated in the 
early portion of the network, the percentage of FLOPs reduced 
by our SNACS is slightly lower when compared to methods 
like X-Nets, which preemptively prunes the network before 
training, or SSS, which optimizes a different objective function 
altogether. Interestingly, on closer inspection of Fig. 6, we 
observe minimal correlation between the patterns of high and 
low γ values achieved in MINT and our work. While MINT 
showcases minimal pruning in the early and middle set of 
layers, SNACS focuses on the middle and final set of layers, 
avoiding the early layers. We believe this variation stems from 
the fact that γ values in MINT were co-opted from prior works 
where the focus on individual layers while in SNACS the joint 
definition of γs helps capture trends across multiple layers 
while trying to optimize the performance-sparsity tradeoff. 

 
 

We observe that when using SNACS DNNs are more 
forgiving when pruning layers closer to the output than input 
since the retraining phase allows them to overcome the loss of 
abstract concepts learned in later layers but not fundamental 
structures, when compressing the earlier layers of the network. 
Our observations are matched by the discriminant scores in 
[47] and the median oracle ranking statistics per layer from 
[48]. However, these observations are in direct contrast to 
previous works which identify that portions of the network 
closer to the input are often pruned first [23], [28]. We 
hypothesize that their outcomes stem from the modification  
of the objective function and subsequent training of baseline 
networks whereas our approach and those in [47], [48] focus 
on removing filters based on a pre-defined criterion without 
the modification of the loss function. 

 
C. Sensitivity-based Pruning 

Experiments in Sections IV-A and IV-B assumed that all 
filters contributed equally to the information flow downstream 

MINT [Ganesh et al. 2020] 
ACMI + Custom Upper Pruning Limits 
SNACS (ours) 

P
ru

ne
d 

(%
) 

CIFAR-10 SNACS (ours) 68.59 93.38 
SNACS + sensitivity (ours) 68.96 93.41 
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w/o Sensitivity with Sensitivity 

 

Input Filter Indices Input Filter Indices 
(a) Convolution 35 

w/o Sensitivity with Sensitivity 
 

Input Filter Indices Input Filter Indices 
(b) Convolution 46 

Fig. 7: Illustrations of filters retained (white) and pruned (black) w/o and with sensitivity based pruning. When protecting 
important filters from pruning, all its associate connections are maintained (red highlight). An interesting impact of sensitivity   
is that the connections pruned can be completely modified compared to its counterpart w/o pruning. This is illustrated by the 
pruning mask of convolution 46. 

 
TABLE IV: Deviating the % of filters saved from our opti- 
mal constraints forces lower sparsity levels with bad testing 
performance. Optimal values are highlighted in bold 

 
 

Layer % Saved Sparsity (%) Test Accuracy (%) 

layer as well as a stark difference in how it is pruned. All 
these observations put together lead to an overall improvement 
in the Pruning (%) with the inclusion of sensitivity, while 
maintaining high Test Accuracy (%) as shown in Table III. 

 

30 
34 

15.03 
15.03 

92.83 
93.05 

Across the results presented in Table III, the percentage of 
filters protected from pruning are maintained at an optimal 

38 14.35 92.88 level. We determine the optimal combination of high sparsity 
Layer 28 45 55.07 93.41 and accuracy by constraining the % of filters saved to a value 

50 
54 

48.92 
45.89 

92.71 
93.24 such that SVM model performance is higher than the case 

60 39.74 93.10 when no filters are protected. The performance comparison is 
25 26.97 92.97 restricted to SVM model only and no re-training is necessary. 
30 54.83 93.13 When we relax this constraint (Table IV), we observe that 
35 

Layer 44 
48.55 
58.17 

93.28 
93.41 the performance levels drop by a significant amount while 

 
 
 
 
 

and hence, the connectivity scores were the only constraint 
used for pruning. In  this  section,  we  highlight  the  impact 
of using the  sensitivity  criterion  to  prioritize  the  pruning  
of relatively weaker filters while protecting more sensitive 
filters from pruning on the CIFAR10-ResNet56 experimental 
setup. In Figs. 7a and 7b, we illustrate the 2D pruning masks 
generated by our algorithm, where the colors black and white 
represent filters that are removed and retained, respectively, 
and we observe three distinct behaviours. Firstly, when a filter 
is protected from pruning, an entire row representing all of   
its associated connections, are retained. Secondly, in addition 
to this we also observe an increase in the number of weights 
pruned from filters that are not protected. This is illustrated  
by an increase in the number of black pixels overall. Finally, 
when the sensitivity criterion is applied to layers which were 
previously not pruned to a large extent (Fig. 6 Convolution  
32, 34, and many others) we observe a complete restructure  
in the way filters are pruned. Fig. 7b highlights this trend, 
which showcases an increase in the overall pruning of the 

V. CONCLUSION 

Overall, we propose a novel DNN pruning algorithm called 
SNACS which uses ACMI to measure the connectivity be- 
tween filters, a simple set of operating constraints to automate 
the definition of upper pruning percentage limits of layers in a 
DNN and a sensitivity criterion that helps protect a subset of 
critical filters from pruning. SNACS provides a faster overall 
run-time and improves accuracy in the estimation process, 
offers state-of-the-art levels of compression using a single 
train-prune-retrain cycle while the  sensitivity  criterion  can  
be used to further boost the compression performance. An 
important direction of future work is to extend this algorithm 
to an iterative approach and incorporate it into the training 
phase. Doing so would help reduce the overall training time 
while achieving extreme levels of sparsity. Additionally, char- 
acterizing the pruned networks using a multitude of events like 
adversarial attacks, calibration error and many others could 
shed light on how close such networks are to being deployed 
in the real-world. 
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40 
45 53.58 92.96 the sparsity level is lower than expected. This highlights the 
50 

52.5 
48.99 
45.92 

93.50 
92.86 

necessity of maintaining our constraints in order to obtain the 
optimal combination of high sparsity with accuracy. 
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APPENDIX A 
BOUNDS ON AMI 

Recall the definition of AMI (Eqn. 1). For the particular 
case of g, g(t) = (t−1)

2 
, we have 

 
 

This is because all three V ,  U , and  W  are upper bounded  
by O(E−d). Note that E is a function of N . Additionally from 
[38] we infer the following results: 

2(t+1) 
  ( Jl E E  

()   

 

2 E 
PX PY 

t 

ϕ(X, Y )h  dPXY , (12) 
dPXPY 

 
Note that (19) is implied based on the fact that V(αijk) 
O(1/N ) which is proved by applying Efron-Stein inequality 

where h(t) =   t + 1 . When dPXY  
X Y 

= 1, then the minimum under assumptions (A1) and (A3), similar to arguments in 
Lemma 7.10 from [38]. In addition, we have value of Iϕ is zero. Further, when PXY and PXPY have no 

overlapping space then the second term in (11) becomes zero. 
Therefore, bounds on Iϕ is given as, 

  
rijk 

l
 

 
E[rijk] 

()
 1 
  

 
(20) 

1 
0 ≤ Iϕ(X, Y ) ≤ E 

 
ϕ(X, Y ) 

(
 dPXY 

+ 1
Jl  

. (13) 
E 

αijk 
= 

E[α 
+ O , 

ijk] N 
2 PX PY 

 
APPENDIX B 

dPXPY 

PROOF OF THEOREM 1 
Recall our estimator in Section III-C, E rijk 

αijk = P (E≤1) E
 rijk 
αijk 

 
1 

ijk 

I (X; Y |Z) = 
 

 
 

ϕ(i, j, k) α g 
( 

rijk 
J 

, (14) + P (E>1)E 
  

rijk  |E>1
l 

, (21) 
ϕ 

eijk ∈EG rik rjk 

ijk αijk 
ijk αijk 

ijk 

where αijk = r . The expectation of I ϕ is derived as 
 

 

where by using similar arguments as in Eqn. 56 from [38], 
 

k 
 

( J 
 

we ha ve P (E≤1) = 1−O( 1/(EdN )). Therefore, P (E>1) = 

E  ϕ(i, j, k) α 
g rijk 

1E   (15) 
 

 
O(    1/(EdN )).  Further  the  second  term  in  Eqn.  21  is  the 

eijk ∈EG 

= 
  E ϕ(i, j, k) α 

g 
( 

rijk 
J 

1E 
l 

, (16) 

following section, that is upper bounded by O(    1/(EdN )). 
Let xD and xC respectively denote the discrete and contin- 

     
where Eijk is the event that there is an edge between the 
vertices vi, uj, and ωk in the dependency graph G(X, Y, Z). 
Let hash function H map the N i.i.d points X , Y , and Z 

. Also let fXC (xC) and pXD (xD) respectively denote density 
and pmf functions of these components associated with the 
probability measure PX . Let X have dC and dD, Y have 

to  ̃ 1 , ˜ , and ˜ k k k di ,di , and Z have dii , dii
 as their continuous and discrete Xk Yk Zk. Following the notations used in [38], we C    D C D 

denote E=1 be the event that there is exactly one vector from 
X̃i   that  maps  to  vi  using  H2.  Similarly,  we  define  E=1 and 
E=1. We denote E=1 := E=1 ∩ E=1 ∩ E=1 and let E=1 be 

components, respectively. Then it can be shown that, 
 

E[rijk|E≤1] = P (XD = xD, YD = yD, ZD = zD) 
the complement set of E=1. d +di +d

ii
 

ijk 
We simplify Eqn. 16 by splitting it into two parts: without 

collision  and  due  to  collision.  Based  on  the  law  of  total 
E C C C (f (xC, yC, zC|xD, yD, ZD) + ∆(E, q, γ)) , (22) 

expectation we have, where densities have bounded derivatives up to the order q 0 
and  belong  to  the  Hölder  continuous  class  with  smoothness 

= 
eijk ∈EG 

P (E=1|Eijk) parameter γ. Note that  ∆(E, q, γ) 0 as N . Now from 
Eqns. 50, 51, and 53 in [38] and from Eqn. 19, 20 above, 
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under assumptions (A1) and (A3), we derive 
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 E ϕ(i, j, k) αijk g αijk 
1Eijk, Eijk . (17) where H(x) = i, H(y) = j, H(z) = k, and as N → ∞, 

Step 1 Bias on w/o collision: Similar to Lemma 7.3 in [38], 
we derive, 

( J 
 

 
 

   
 

∆ (E, q, γ) −→ 0. 

Step 2 Bias because of collision: Let X = 
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bias because of collision of H, which will be proved in the 

eijk ∈EG 

ijk αijk 
ijk 

ijk 

ijk l 

, Z = respectively denote distinct outputs 



12 
 

  
ijk 

( J     

ijk 

   

  
  

  

   

  

( J 
≤

 

( J     

( 

) 

1    ˜ r̃ ∈ A  E , 
E , X = x, Y = y,ijk  ijk 

      

NikNjk >1 
   

≤   
  

αijk 
ijk ijk ϕ(i, j, k) Nijk  Eijk, Eijk, X = x̃, Y = ỹ, 
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of H1 with the N i.i.d points Xk, Yk, Zk as inputs. We denote 
LXY Z  := |X  ∪ Y  ∪ Z |, LXZ  := |X  ∪ Z |, and LY Z  := |Y  ∪ Z |. 

 
 

If we extend our discussion to all the possible mappings from 
H1 we obtain, 

Bϕ : = 
eijk ∈EG 

P (E=1 |Eijk)    = O  1 p 
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(24) 

where E>1 = E>1 ∩ E>1 ∩ E>1, and E>1 is the event that Z̃ = z̃
  J

. (28) 
ijk i j k i ˜ Let us define, 

there are at least two vectors from Xi that map to vi using 
H2. Once again, using the law of total expectation, then the 
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l J 

Let  Mr,  be  the  number  of  the  input  points  (X, Y, Z) 
mapped  to  (X̃r, Ỹr, Z̃r).  Therefore  for  i, j, k  we  can  rewrite 
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i,j,k∈F 
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1Eijk, Eijk   . (25) Similarly M i , M- , and M   are defined the number of the input 

The equality in Eqn. 25 is obtained based on Bayes error and 
g = 0 on the event Eijk. Now recalling Eqn. 18, using Eqn. 13 

points mapped to (X̃r, Z̃r), (Ỹs, Z̃s), and Z̃t, respectively and 
we can write 

we bound the last line in Eqn. 25 by, LXZ LY Z 
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We first find the denominator of Eqn. 34 first. We define a = 1 
when i = j = k and a = 3 for the case i /= j /= k: 

O E Mr1E>1, Eijk, X̃  = x̃, 

ijk 
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Next we find the probability terms: 
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)

 

By using Eqns. 40, 39, and 37 in Eqn. 33 we obtain an upper 
bound on bias with collision: 
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( (
 1 

J L XY Z 1 

  

P 
(

E>1|X̃  = x̃, Ỹ  = ỹ, Z̃ = z̃
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≤ O 

(
 1 

J . (42) 

Z̃ = z̃ 
( 1 

 

 

E N 

) Hence as N −→ ∞, the bias estimator due to collision tends 

 
1  >1  ˜ ˜ ˜ 

    P 
(

s ∈ Ajk1E>1, X̃  = x̃, Ỹ  = ỹ, Z̃ = z̃
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)
 

 
 

Nk
i  respectively as the number of the input points (X, Y, Z), 

k 

= O 
( 

1
 

k J 

. (39) 

(X, Z),  (Y, Z),  and  Z  mapped  to  the  bins  (X̃i, Ỹj , Z̃k), 
(X̃i, Z̃k), (Ỹj , Z̃k), and Z̃k  using H1. We define the notations 

Next  assume  that  X̃v  = Ỹv  = Z̃v   for  v = r, s, t,  therefore 
H2(X̃v ) = H2(Ỹv ) = H2(Z̃v ), for v = r, s, t. Then 
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COMPLEXITY OF SNACS 
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We simplify the first term in Eqn. 17 as, where h(t) = g(t)/t and Eqn. 46 is derived by borrowing 
Lemma 7.9 from [38]. Hence from Eqn. 46 and Eqn. 17, and 
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APPENDIX C 
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plexity of SNACS into two parts, 1) the complexity of the 
hash-based ACMI estimator, and 2) the complexity of Algo- 
rithm 1 in the main paper. 

g 
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By extending the discussion provided in [38], we find that 
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(i)r(k) Nr

i
(j)r(k) EdN  

(44) 

the estimation process is dependent on two main factors, the 
total number of samples, N , and the dimensionality of each 
sample. From the original paper, we find that the compu- 
tational complexity is linearly dependent on the number of 
samples as well as the dimensionality of the samples. In our (l) 

Nr
i
(i)r(j)r(k)Nr

i
(k) setup the dimensionality of a sample is capped by Fj which 

β(r(i), r(j), r(k)) = 
r(i)r(k) 

. 
Nr

i
(j)r(k) 

includes activations from all the filters in a layer excluding 
j. The exact value of this variable is dependent on the neural 

Therefore the last line in Eqn. 44 is equal to 
network architecture over which ACMI is calculated. 

 
B. Complexity of Algorithm 1 (Main Paper) 
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There are 2 primary factors which affect the complexity 
of Algorithm 1 in the main paper, 1) the number of groups 
associated with each layer l and l + 1, and 2) the total number 

g
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β(r(i), r(j), r(k))
)  

+ O    1  
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of layers in the DNN.  The  internal  double  FOR  loop has 
an upper bound of O(N (l)N (l+1)) if the number of groups defined matches the number of filters in each layer. The outer 
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 FOR loop, used to iterate over pairs of adjacent layers, is 
executed a total of L − 1 times. 

+ O  1 , (45) 
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APPENDIX D 
VALIDATING THE ESTIMATOR 

In this section we validate the MSE performance of the 
ACMI estimator across various dimensionalities and total 
number of samples to asses the trends in estimation accuracy. 

β(s(X), s(Y ), s(Z)) = 
s(X)s(Z) 

 
The expression in Eqn. 45 equals: 

. 
Ns

i
(Y )s(Z) 

 
A. Setup 

To observe the performance of the estimator when the 
number of samples are varied, we set the dimensionality of 

= EPXY Z 
E ϕ(s(X), s(Y ), s(Z)) g 

β(s(X), s(Y ), s(Z)) 

(
β(s(X), s(Y ) 

X, Y to one  and  Z  to  two.  This  setup  is  used  to  mimic  
the  dimensionality  difference,  at  a  small  scale,  in  our  ex- 
periments.  We  vary  the  number  of  samples  in  the  range 

, s(Z))  X = x, Y = y, Z = z + O  1  
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500, 1000, 5000, 10000, 15000, 20000, 25000 . To observe 
the impact of a change in dimensionality on the estimator’s  
performance, we restrict the total number of samples to 5000 
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A. Complexity of hash-based estimator 
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+ O EdN , (46) distribution where the covariance matrix is set as the identity 
function and µ is zero. 
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for training, split as 5000 images/class,  and  10000  images 
for testing where there are 1000 images/class. Each image      
in the dataset is originally 32   32   3. For preprocessing,    
we randomly crop the image after padding 4 pixels, then we 
randomly flip the image horizontally before normalizing its 
values using mean (0.4914, 0.4822, 0.4465) and std. (0.2470, 
0.2435, 0.2616) for each channel respectively. During testing, 
the images are only normalized and provided to the DNN. 

 
B. ILSVRC2012 

This dataset contains 1000 different classes of images 
totalling to about 1.2 million images overall for training and 
50000 images for validation. The number of images per class 
varies between 732 to 1300. For preprocessing, we randomly 
crop the image in to 224 224 3, then we randomly flip the 
image horizontally before normalizing its values using mean 
(0.485, 0.456, 0.406) and std. (0.229, 0.224, 0.225) for each 
channel respectively. During testing, we resize the original 
image to 256 256 3, take a center crop of size 224 224 3 
before normalizing it and providing it to the DNN. 

 
APPENDIX F 

EXPERIMENTAL SETUP 

Throughout our experiments we use three major Dataset- 
DNN combinations, CIFAR10-VGG16, CIFAR10-ResNet56 
and ILSVRC2012-ResNet50. Table V lists the main hyper- 

Fig. 8: (Fig. 8a) An increase in the number of samples while 
dimensionality of input variables are held constant shows 
steadily decreasing MSE. (Fig. 8b) Increasing the dimension- 
ality of input variables while the total number of samples are 
constant shows a steady decline of the MSE. Overall, the 
trends observed in both experiments match the expectations 
from a valid estimator. 

 

B. Results 
Fig. 8 shows the results of our experiments where in Fig. 8a, 

we observe the steady decrease in MSE as the number of 
samples are increased. This matches our expectation of  a  
good estimator where an increase in the number of samples 
improves the overall estimation accuracy and thus, reduces the 
MSE. Fig. 8b illustrates the steady increase in MSE when the 
number of samples are held constant but the dimensionality  
of the input variables grows larger. Further, the trends from 

2 
2 

2 
inclusion of a scaling term improves the overall performance. 
Thus, our observations match the expected trends from a valid 
estimator. 

parameters used to train the VGG16 and ResNet56 networks 
and obtain their baseline performances. Pre-trained weights for 
ILSVRC2012-ResNet50 are used to compute ACMI values. 
Table VI list the basic hyper-parameters used to retrain the 
VGG16, ResNet56 and ResNet50 networks and obtain their 
final performance. 

TABLE V: Training setups used to obtain pre-trained network 
weights 

 
 

VGG16 ResNet56 

Epochs 300 300 
Batch Size 128 128 
Learning Rate 0.1 0.01 
Schedule 90, 180, 260 150, 225 
Optimizer  SGD  SGD 
Weight Decay 0.0005 0.0002 
Multiplier 0.2 0.1 

TABLE VI: Base retraining setup used to obtain final perfor- 
mance listed in Table 1 of main paper 

A. CIFAR10 

APPENDIX  E 
DATASET AND PREPROCESSING 

This dataset is a 10 class subset of the original 80 million 
tiny images dataset. The dataset split contains 50000 images 

2 
||act||2 

ACMI (  = exp( 2 )) 

  ACMI ( = 1) 

2 
||act||2 

ACMI (  = exp( 2 )) 

  ACMI ( = 1) 

M
SE

 
M

SE
 

VGG16 ResNet56 ResNet50 

Epochs 300 300 100 
Batch Size 128 128 64 
Learning Rate 0.1 0.1 0.1 
Schedule [90, 180, 260] [90, 180, 260] [30, 60, 90] 
Optimizer SGD SGD SGD 
Weight Decay 0.0005 0.0005 0.0001/0.00003 
Multiplier 0.1 0.2 0.1 
Label Smoothing 0.35 0.15 0.9 
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TABLE VII: Hyper-parameters specific to the ϕ function used final performance the best possible  final performance 93.43%. 
Here, act refers to the activations and γ values are represented as % 

2 2 2 

1 lweightsl2 lweightsl2 exp( − weights 2 ) lactl lweightsl2 lactl2 exp(− weights 2 act 2 ) 
 

 

 
δ 0.9865 0.9925 0.9925 0.988 0.995 0.880 0.919 
γ(1) 00.00 00.00 00.00 00.00 00.00 00.00 00.00 
γ(2) 00.00 00.00 00.00 00.00 00.00 00.00 00.00 
γ(3) 21.02 21.02 21.02 21.02 00.00 41.01 36.03 
γ(4) 51.02 51.02 51.02 51.02 96.02 56.03 61.03 
γ(5) 61.03 51.02 51.02 71.02 51.02 61.03 56.03 
γ(6) 86.03 91.01 91.01 86.03 96.02 81.03 86.03 
γ(7) 91.01 91.01 91.01 91.01 86.03 86.03 96.02 
γ(8) 91.01 91.01 91.01 91.01 91.01 91.01 86.03 
γ(9) 96.02 96.02 96.02 96.02 96.02 96.02 91.01 
γ(10) 91.01 91.01 91.01 91.01 91.01 96.02 96.02 
γ(11) 91.01 91.01 91.01 91.01 91.01 91.01 81.03 
γ(12) 66.01 66.01 66.01 66.01 61.03 61.03 71.02 
γ(13) 91.01 91.01 91.01 91.01 91.01 91.01 86.03 
γ(14) 00.00 00.00 00.00 00.00 00.00 00.00 00.00 

Pruned (%) 84.02 84.12 84.17 84.46 76.13 82.59 76.99 

 
A. Procedure for Upper Pruning Percentage Limit of Layers 

Across all the experiments, when using our set of operating 
constraints to define γ, we collect the performance of an SVM 
model across c ∈ {1, 2, . . . , 99}. 

B. Evaluation  of Estimator 
a) Run-Time: To compare the improvement offered by 

our hash-based ACMI estimator, we choose the Minimum 
Spanning Tree-based (MST) CMI estimator from MINT [11] 
as the nearest competitive baseline. In this experiment, we ap- 
ply both estimators over the 9th convolution layer of VGG16. 
To ensure fair comparison, we use ACMI with ϕ = 1 as well 
as weights 2 where weights are scaled to be between [0, 1] 
within each layer, use the grouping formulation introduced in 
MINT as well as a manual threshold δ on the ACMI values. 
Here, we vary G values for both the layer l and l + 1 (8 and 
9) over 16, 32, 64, 128 and 256. We use an average run-time 
from 10 trials, except for groups 128 and 256 for the MST- 
based estimator for which we use 2 trials. Most importantly, 
we set 200 samples per class which results in a total of 2000 
samples of activations used by the estimators. 

b) Selection of ϕ: We implement a number of possible 
functions and evaluate them over the CIFAR10-VGG16 ex- 
perimental setup. The exact hyper-parameters used to obtain 
ACMI values and obtain the final test accuracy are provided 
in Tables VI, and VII. We maintain G = 64 throughout these 
experiments. The retraining performances are based on the 
highest Pruned (%) at which the model has a test accuracy 
that matches or exceeds 93.43% (from MINT). 

 
C. Large Scale Comparison 

The basic setup to obtain the final results presented  in  
Table 2 of the main paper is listed under Table VI. The main 
differences in the pruning setup between these experiments 
and the ones listed under Estimator evaluation are, 1) we avoid 
using a separate δ parameter and instead prune layers up to 

γ(l), and 2) we use label smoothing [49]. Below, we list the γ 
values obtained through our set of operating constraints used 
to define the upper pruning percentage limit for all layers in 
the DNN. 

For VGG16, γ values from convolution layer 1 to the final 
linear layer are 0, 0, 0.8599, 0.9799, 0.9799, 0.9799, 0.9799, 
0.9799, 0.9799, 0.9699, 0.9499, 0.8399, 0.9099, 0. 

For ResNet56, γ values from convolution layer 1 to the final 
linear layer are 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.699, 0.4794, 0.1591, 0.539, 0.3691, 
0.9794, 0.089, 0.7392, 0.2695, 0.7294, 0.8896, 0.8398, 0.6699, 
0.9699, 0.8698, 0.899, 0.2399, 0.9499, 0.3498, 0.899,  0.7199, 
0.8898, 0.9199, 0.9599, 0.9699, 0.9799, 0.9799, 0.9799, 0. 

For ResNet50, γ values from convolution layer 1 to the 
final linear layer are 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 75.99, 65.99, 67.99, 96.99, 52.99, 82.99, 66.99, 
78.99, 78.99, 51.99, 16.99, 67.99, 63.99, 76.99, 87.99, 66.00, 
87.99, 92.99, 82.99, 73.99, 69.99, 93.99, 52.99, 95.99, 60.99, 
78.99, 84.99, 57.00, 84.99, 80.99, 85.99, 34.99, 68.99, 94.00, 
80.00, 87.00, 70.99, 79.99, 91.99, 98.00, 0.0, 0.0. 

 
D. Sensitivity-based Pruning 

When using sensitivity-based pruning for ResNet56, we 
observe both an increase and decrease in final γ  values used  
to achieve higher Pruned (%) when compared to the case 
without sensitivity. In Table VIII we highlight the difference  
in γ values achieved in each case.  It  is  important  to  note 
that while γ values represent the limit up to which layers 
should be pruned, in our implementation we obtain this point 
by selecting η value just below the point which triggers the 
fail-safe. Hence, layers with a skew in the distribution of η 
values tend to be pruned more. 
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TABLE VIII: Comparison of γ values in CIFAR10-ResNet56 
when sensitive filters are protected 

 

w/o Sensitivity with Sensitivity 

γ(27) 0.699 0.699 
γ(28) 0.4794 0.4394 
γ(29) 0.1591 0.5507 
γ(30) 0.5390 0.7041 
γ(31) 0.3691 0.5117 
γ(32) 0.9794 0.1796 
γ(33) 0.089 0.3183 
γ(34) 0.7392 0.6611 
γ(35) 0.2695 0.4287 
γ(36) 0.7294 0.8261 
γ(37) 0.8896 0.7739 
γ(38) 0.8398 0.8198 
γ(39) 0.6699 0.799 
γ(40) 0.9699 0.9299 
γ(41) 0.8698 0.7927 
γ(42) 0.899 0.8999 
γ(43) 0.2399 0.2299 
γ(44) 0.9499 0.8957 
γ(45) 0.3498 0.5817 
γ(46) 0.899 0.8898 
γ(47) 0.7199 0.7099 
γ(48) 0.8898 0.8759 
γ(49) 0.9199 0.8813 
γ(50) 0.9599 0.9599 
γ(51) 0.9699 0.9699 
γ(52) 0.9799 0.9699 
γ(53) 0.9799 0.9799 
γ(54) 0.9799 0.9799 

Compression(%) 68.59 68.96 
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