
1

Slimming Neural Networks Using Adaptive
Connectivity Scores

Madan Ravi Ganesh, Dawsin Blanchard, Jason J. Corso, Senior Member, IEEE,
and Salimeh Yasaei Sekeh, Member, IEEE

Abstract—In general, deep neural network (DNN) pruning
methods fall into two categories: 1) Weight-based determinis-
tic constraints, and 2) Probabilistic frameworks. While each
approach has its merits and limitations there are a set of
common practical issues such as, trial-and-error to analyze
sensitivity and hyper-parameters to prune DNNs, which plague
them both. In this work, we propose a new single-shot, fully auto-
mated pruning algorithm called Slimming Neural networks using
Adaptive Connectivity Scores (SNACS). Our proposed approach
combines a probabilistic pruning framework with constraints
on the underlying weight matrices, via a novel connectivity
measure, at multiple levels to capitalize on the strengths of
both approaches while solving their deficiencies. In SNACS,
we propose a fast hash-based estimator of Adaptive Conditional
Mutual Information (ACMI), that uses a weight-based scaling
criterion, to evaluate the connectivity between filters and prune
unimportant ones. To automatically determine the limit up to
which a layer can be pruned, we propose a set of operating
constraints that jointly define the upper pruning percentage limits
across all the layers in a deep network. Finally, we define a novel
sensitivity criterion for filters that measures the strength of their
contributions to the succeeding layer and highlights critical filters
that need to be completely protected from pruning. Through our
experimental validation we show that SNACS is faster by over
17x the nearest comparable method and is the state of the art
single-shot pruning method across three standard Dataset-DNN
pruning benchmarks: CIFAR10-VGG16, CIFAR10-ResNet56 and
ILSVRC2012-ResNet50.

Index Terms—Neural Network Compression, Pruning, Mutual
Information, Multivariate Dependency Measure, Sensitivity.

I. INTRODUCTION

Critical real-world applications like autonomous vehicle
navigation [1], [2] and simultaneous machine translation [3],
[4] demand real-time response [5] without any compromise
in performance. Proposed solutions in these application do-
mains are implicitly bound to constraints brought forward by
restricted space and memory availability on custom hardware
implementations. These factors are at odds with the general
research design goal of high performance in deep neural
networks (DNN), which is often achieved by increasing the
overall size and capacity of the DNN. The trade-off between
these constraints has brought increased attention to the field of
DNN pruning [6], [7], whose main objective is to maintain an

Madan Ravi Ganesh is with the Department of Electrical and Computer

Engineering, University of Michigan, Ann Arbor, MI, USA.
Dawsin Blanchard and Salimeh Yasaei Sekeh are with the School of

Computing and Information Science, University of Maine, ME, USA.
Jason J. Corso was previously with the University of Michigan and is

currently with the Stevens Institute for Artificial Intelligence, Stevens Institute
of Technology, NJ, USA

adequate level of performance, often within a few percent of
the original DNN, while only using a fraction of its memory or
FLOPs. Of course, the adequacy of any level of performance
depends on the specific application, but the general goal
nevertheless remains critical.

There are two main approaches to pruning: 1) deterministic
constraints on weight matrices [8]–[10] and 2) probabilistic
frameworks [11]–[13]. Methods based on deterministic con-
straints on weight matrices are straightforward to implement
and do leverage the underlying structure of the weight matri-
ces, but they often do not account for the downstream impact
of pruning filters. On the other hand, probabilistic frameworks
focus on reducing the redundancy between layers using infor-
mation theoretic measures or variational bayesian inference but
are not fast or efficient at modelling the sensitivity of filters
at an individual level. In a sense, the two types of method are
converses: one’s weakness is remedied by the other. Yet, to
the best of our knowledge, there has been no recent work
that combines both approaches and improves upon them.
Further, there are many unresolved practical issues among both
approaches, e.g., the labor intensive process of analyzing the
sensitivity of different layers to pruning or imposing an upper
limit on pruning percentage for each layer and the amount of
resources and time spent in iteratively pruning DNNs.

To that end, we are able to unify the benefits of both
methods while mitigating their respective drawbacks: we pro-
pose Slimming Neural networks using Adaptive Connectivity
Scores (SNACS) as a hybrid single-shot pruning approach.
In SNACS, we introduce the Adaptive Conditional Mutual
Information (ACMI) measure, which incorporates weights as
a scaling function within the framework of conditional mutual
information [14], [15]. The ACMI measure evaluates the
connectivity between pairs of filters across adjacent layers and
prunes unimportant filters. In this work, we explore weight and
activation-based scaling functions.

To remove the manual effort involved in setting the upper
pruning percentage limit of layers, we define a set of operating
constraints to automatically evaluate them. The constraints are
based on the degradation in quality of activations at various
levels of compression. Additionally, we encapsulate the im-
portance of a filter using our proposed Sensitivity criterion,
defined as the sum of a filter’s contributions (normalized
weights) to filters in the succeeding layer. Using this measure,
we curate a subset of relatively less sensitive filters that can
be pruned based on their connectivity scores while we protect
highly sensitive filters from any form of pruning. We highlight
all the main components of SNACS in Fig. 1.

ar
X

iv
:2

00
6.

12
46

3v
3

[c
s.C

V
] 1

7
D

ec
 2

02
1

2

×

|| ||

Fig. 1: Illustration of the three major components of SNACS that help prune connections between layer l and l + 1. First, we
propose the hash-based ACMI estimator to compute the connectivity scores between filters in layer l + 1 and all the filters
in layer l. These connectivity scores are thresholded to obtain the set of filters that need to be pruned. Next, to protect the
network from being irregularly/excessively pruned, we use a custom set of operating constraints, based on the degradation of
activation quality at various pruning levels, to decide on the upper pruning percentage limit for layer l + 1. Finally, we compute
the sensitivity of filters in l + 1 as the sum of normalized weights between chosen filters in layer l + 1 and all the filters in
layer l + 2. We sort and threshold the sensitivity values to create a subset of sensitive filters which should be protected from
pruning. Combining the information from all three components we prune layer l + 1.

Overall, we summarize our contributions in this work below,
• We propose a hybrid single-shot pruning approach,

SNACS, which takes advantage of both a probabilistic
pruning framework and simple weight-based constraints.

• In SNACS, we propose the use of Adaptive Conditional
Mutual Information (ACMI) as a way to measure the
connectivity between filters and derive its hash-table-
based implementation,

• In the interest of simplifying the process of defining
upper pruning percentage limits of layers in a DNN, we
propose a set of operating constraints to help automate
their definition, and

• We apply a custom notion of Sensitivity in filters, using
their contribution to succeeding layers, to prioritize the
pruning of largely insensitive filters while protecting
highly sensitive ones.

By incorporating our contributions within the SNACS frame-
work, we improve the overall run-time of the pruning al-
gorithm by upwards of 17 , increase the accuracy of the
estimator, create an entirely automated pruning pipeline while
offering state of the art performance in single-shot pruning of
DNNs.

II. RELATED WORKS

In the following subsections, we discuss prior works in
pruning and mutual information (MI) estimators, as well as
methods at their intersection. Among pruning approaches there
are two broad categories: 1) methods that use a deterministic
constraint on the weight matrices, and 2) methods that use a
probabilistic framework to reduce the redundancy and main-
tain the flow of information between layers. Within the first
category of methods, there is a subset that enforces sparsity by

modifying the objective function while the remaining directly
apply constraints on the weight matrices.

A. Deterministic Constraints on Weight Matrix

Direct Constraint on Weight Matrices: Some of the earliest
works in pruning used the second-order relationship between
the objective function and weights of the network to eval-
uate and remove unimportant values [16], [17]. Since then,
several advancements in the form of directly thresholding
weights [10], [18] or using the . 1 constraint to define the
importance of filters [19] have been proposed. A more recent
subset of methods have adopted data-driven logic to derive the
importance of filter weights. Two such methods are ThiNet [9]
and NISP [20], where the reconstruction of outcomes with the
removal of weights is posed as a post-training objective. By
virtue of how direct constraints are placed on weight matrices,
they often do not account for the downstream impact of
pruning or are built on the assumption of a purely deterministic
relationship between filters. Instead, we use the combination of
a weight-based scaling function and filter connectivity within
a probabilistic framework to maintain the flow of information
between layers and overcome these issues.
Modification of Objective Function: Inducing sparsity in
weight matrices by modifying the objective function involves
imposing a strong constraint on how weights develop during
training. Constraints range from simple methods, such as
single or multiple ln norms [21] on channel outputs, simple
patterned masks to regulate group sparsity [22], and optimiza-
tion over group-lasso-based objective functions [8], [23], to
more complicated ideas like balancing individual vs. group
sparsity constraints [24], [25] and adding discrimination-aware

100

80

20
11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

i

(l+1)

losses at intermediate layers to enhance and easily identify
important channels [26].

More recent methods combine the idea of modifying the
objective function with more abstract concepts like meta-
learning [27], where sparsity inducing regularizers are used
to learn latent vectors that help decide on the weight val-
ues directly or GANs, where an adversarial pruned network
generator optimizes a loss based on the features derived
from the original network [28]. To provide a controlled set
up to study and compare the effects of pruning a network
against its original counter-part, we avoid strong comparisons
against methods that modify the objective function. Apart from
optimizing over a fundamentally different objective function,
which are harder to optimize, these methods require multiple
iterations of pruning and fine-tuning built-in to their setup,
while we use only a single pruning and retraining step while
targeting a simple objective function.

B. Probabilistic Frameworks

Pruning approaches that use a probabilistic frameworks can
be divided into bayesian and non-bayesian methods. Bayesian
methods apply a variational bayesian inference perspective to
pruning, with a focus on estimating the posterior distribution
of weights using ELBO [29], [30]. While they offer a theo-
retically sound perspective to pruning, they require a strong
assumption on the prior distribution of weights which induces
sparsity across the network. Further, their performances on
large-scale datasets have more room to grow.

The non-bayesian approach to pruning focuses on using
information theoretic measures, with minimal assumptions
and widespread applicability when compared to the bayesian
methods. These include, Luo and Wu [13], in which entropy
of activations is used as a measure of importance of a filter,
VIBNet [12], where the information bottleneck principle is
used to minimize the redundancy between adjacent layers and
MINT [11], in which geometric conditional MI is used to
determine the dependencies between filter pairs in adjacent

direct estimators for Renyi-entropy and MI [33], [34], and
Henze-Penrose divergence measure [35] have been proposed.
They provide manageable run-time complexity while avoid-
ing direct knowledge of the density function. Crucial to
the functioning of many direct estimation methods is the
use of graph-theoretic ideas, such as the Nearest Neighbour
Ratios [36], which uses the k-NN graph to estimate MI, and
the minimum spanning tree used to estimate the GMI [37].
These graph-based approaches help make the evaluation of
MI computationally tractable. While most methods fall into
either plugin or direct categories, recent work has focused on
the development of a hybrid approach [38]. This approach
combines the fast run-time implementation of hash-tables with
an error convergence rate akin to plugin methods, thus merging
the advantages of both the estimation approaches.

III. ALGORITHM AND COMPONENT DESCRIPTION

In the following subsections, we outline SNACS’s algo-
rithm. This is followed by details of the ACMI measure and the
set of constraints that automatically define the upper pruning
percentage limits of layers in a DNN. The final sub-section
explains our notion of sensitivity, which identifies and protects
important filters from being pruned.

A. Notation

We assume that a given DNN has a total of L layers where,
• SENSITIVE FILTERS() : Function that returns the indices

of a subset of filters that need to be protected from
pruning, computed using sensitivity (Section III-E).

• Fi : Activations from the selected filter i in layer
l + 1.

• N (l+1) : Total number of filters in layer l + 1.
• SF (l+1) : The set of filter indices whose values are pruned

from the weight vector.
• η() : Connectivity score between two filters computed

using ACMI (Section III-C).
(l) (l)

layers. While they are adept at reducing redundancy and
maintaining the flow of information between layers, they are
slightly slow and inefficient at modelling the sensitivity of
individual filters to pruning. In SNACS, we propose the use of
ACMI which improves the speed of dependency computations
for MI as well as the accuracy of the estimates. Further, by
highlighting sensitive filters that need to remain un-pruned and
jointly defining the upper pruning percentage limit of layers
we obtain additional gains when pruning a DNN.

C. Multivariate Dependency Measures

Approaches for estimating multivariate dependencies using
MI can be broadly classified into two categories: plugin
and direct estimation. Plugin estimators like Kernel Density
Estimators (KDEs) [31], KNN estimators [32], and others [33],
[34] form the bulk of early works in computing multivariate
dependency. However, plugin estimators need to accurately
estimate the probability density function of input variables.
This, when combined with their large run-time complexity,
renders them highly un-scalable. To overcome these issues,

• Fj : The set of all filters excluding Fj in layer l.
• δ: Threshold on connectivity scores to ensure only strong

connections are retained.
• γ(l+1) : Upper limit on pruning percentage for layer l + 1

defined using the constraints in Section III-D.

B. Algorithm
The overall goal of our algorithm is to find the set of filters

that contribute minimally to the flow of information between
layers and prune their values from the weight matrix. We apply
SNACS between every pair of adjacent layers in a pre-trained
DNN where,

• We identify a subset of sensitive filters in layer l + 1 that
need to be protected from pruning and iterate over the
remaining insensitive filters in layer l + 1.

• To measure the connectivity score, η, between filters in
layers l and l + 1 we apply our proposed hash-based
ACMI estimator on the activations from each set of filters.
An example of this is shown in Fig. 2. The connectivity
score evaluates the strength of the relationship between

4

(

∈ −

i

j

(l)

dP P

dP P

 (Jl

×

∈ × 1→ ≥
× ×

i j j

j j

ϕ dPXPY

({ })

|

i i

Setup:

Layer

() ())

Layer

Filter in layer Conditional Filter in layer Filter in layer Sensitive filter in layer Selected Filter

Fig. 2: Example of computing ACMI, η(), between activations of filters in layers l + 1 and l. In each η() computation, the
arrows indicate the filters between which we compute the connectivity score while taking into consideration the activations
from the remaining filters in layer l. These steps are repeated for every possible pair of filters except for highly sensitive filters
in layer l + 1, where η need not be computed since their connections (lines between filters) are not pruned.

two filters in the context of contributions from all the
remaining filters in layer l.

• If the connectivity score is lower than a threshold level δ,
and the number of pruned filters do not exceed the pre-
determined upper limit, denoted by γ(l+1), we add the
index of the filter to SF (l+1) . The weights for retained and

Algorithm 1: SNACS pruning between filters of layers
(l, l + 1)

for Every pair of layers (l, l + 1), l 1, 2, . . . , L 1
do

Compute γ(l+1);
for F (l+1), i ∈ {1, 2, . . . N (l+1)} \

protected filters/neurons are untouched while the weights
for the entire kernel/elements are zeroed out for pruned
filters/neurons.

In the practical implementation of Alg. 1 the value of δ is
determined by thresholding η values from a chosen layer so
as to remove sufficient weights and match the predetermined

i
SENSITIVE FILTERS 1, 2, . . . N (l+1) do

Initialize SF (l+1) = ∅;
for F (l), j ∈ 1, 2, . . . N (l) do

Compute η(F (l+1), F (l) F (l));
if

(
η(F (l+1), F (l)|F (l)) ≤ δ and

γ . Once we prune the filters that contribute the least across
all the layers of the DNN, we proceed to re-training the
network using a setup that mirrors the training phase of the

i |S
then

(l+1)
i |/(N (l+1)N (l)) < γ(l+1)

)

pre-trained DNN. Across Alg. 1, we note that SNACS does
not contain a continual feedback loop to update weights when
pruning. Instead, we take only a single retraining pass after
pruning. Compared to iterative pruning approaches, which
often continually fine-tune to compensate for the performance
lost due to pruning, SNACS falls firmly in the domain of
single-shot pruning methods.

SF (l+1) = SF (l+1) ∪ index(Fj)
end

end
end

end

where dPXY
X Y is the Radon-Nikodym derivative, and g :

C. Adaptive Conditional Mutual Information (0, ∞) 1→ R is a convex function and g(1) = 0. Note that
In the following subsection, we introduce Adaptive Mutual when dPXY

X Y → 1 then Iϕ → 0. The overall bounds on the

Information, a non-linear dependency measure that is based on
AMI measure are given by,

the f -divergence measure [15], [39], extend it to a conditional
formulation and discuss the hash-table-based estimator used
to compute ACMI.

0 ≤ Iϕ
1

(X, Y) ≤ 2 P
 E
X PY

ϕ(X, Y) dPXY + 1 . (2)
dPXPY

Definition: Let X and Y be Euclidean spaces and let PXY be
a probability measure on the space X Y. Here, PX and PY
define the marginal probability measures. Similar to [14], for
given function (x, y) X Y ϕ(x, y) 0, the Adaptive
Mutual Information (AMI), denoted by Iϕ(X; Y), is defined
as,

I (X; Y) = E

ϕ(X, Y)g

(
 dPXY

Jl

, (1)

An explanation of how we arrive at these bounds is provided
in Appendix A.

Adaptive Conditional Mutual Information: Let X, Y and Z
be Euclidean spaces and let PXY Z be a probability measure
on the space X Y Z. We presume PXY |Z, PX|Z, and PY |Z
are the joint and marginal conditional probability measures,
respectively. PZ defines the marginal probability measure on

 the space Z. Following [14], the Adaptive Conditional Mutual
Y P X P

l

F

i

5

E

1→

{ }
1→

l J ∈

| | | | | |

{ } { } { }

c

−

2(t+1)

→ ∞

i i i i=1 XY Z

ϕ rk rik rjk

Information (ACMI), denoted by Iϕ(X; Y |Z), is defined as,
I (X; Y |Z) = E ϕ(X, Y, Z)g

(
 dPXY |Z

Jl

.

1.00
ϕ

PZ P

X|Z PY |Z dPX|Z PY |Z
(3)

0.80

In this paper, we focus on the particular case of g(t) = (t−1)
2

so I ∈ [0, 1]. Note that when ϕ = 1
2(t+1) 0.60

becomes the conditional geometric MI measure proposed in
[40]. Next we propose a hash-based estimator of ACMI to
approximate the connectivity score between filters.

Hash-based Estimator of ACMI: Consider N i.i.d samples
{
(X , Y , Z)

}N drawn from P , which is defined on the

0.40

0.20

0.00 20.00 40.00 60.00 80.00 100.00
Pruned (%)

space X Y Z. We define a dependence graph G(X, Y, Z) as a directed multi-partite graph, consisting of three sets of nodes
V , U , and W , with cardinalities denoted as V , U , and W ,
respectively and with the set of all edges EG. The variable
W here is different from the DNN weight matrix. Following
similar arguments to [38], we map each point in the sets X =
X1, . . . , XN , Y = Y1, . . . , YN , and Z = Z1, . . . , ZN

to the nodes in the sets V , U , and W , respectively, using the
hash function H.

Here, H(x) = H2(H1(x)), where the vector valued
hash function H1 : Rd Zd is defined as H1(x) =
[h1(x), . . . , h1(xd)], for x = [x1, . . . , xd] and h1(xi) = xi+b

, for a fixed E > 0, and random variable b [0, E]. The
random hash function H2 : Zd F is uniformly distributed
on the output F = 1, 2, . . . , F where for a fixed tunable
integer cH , F = cHN .

After the projection of values on to the dependence graph
G(X, Y, Z), we define the following cardinality,

Nijk = #{(Xt, Yt, Zt) s.t. H(Xt) = i, (4)
H(Yt) = j, H(Zt) = k},

which is the number of joint collisions of the nodes
(Xt, Yt, Zt) at the triple (vi, uj, ωk). Let Nik, Njk, and Nk
be the number of collisions at the vertices (vi, ωk), (uj, ωk),
and ωk, respectively. By using Nijk, Nik, Njk, and Nk, we
define the following ratios,

Fig. 3: The selection process for upper pruning percentage limits for each layer of the DNN is based on using a fixed
threshold (dotted line) over the SVM model’s performance
such that the weighted sum of Pruned(%) allocated to each
layer, the x coordinate where the threshold intersects the curve
latest, matches the overall sparsity τ .

The proof of Theorem 1 is available in the Appendices.

Implementation: Overall, X, Y, Z denote sets of activations
derived from different filters and we obtain a scalar value
(connectivity score) as the outcome of the ACMI estimator
in (6). The flexibility in defining function ϕ offers a way to
connect the probabilistic framework of MI to existing weight-
based pruning approaches. In Section IV, we explore a variety
of options for ϕ and empirically determine that a function
defined on the weight matrix helps achieve the highest pruning
performance in our experiments.

D. Definition of Upper Pruning Percentage Limit of Layers

To protect different layers of the DNN from being exces-
sively pruned, we propose a set of operating constraints to
automate the joint definition of the upper pruning percentage
limits of every layer in the DNN. Our approach is based on
trends in the degradation of the quality of activations when a

rijk
:= Nijk , r

N ik
:= Nik , r

N jk
:= Njk , r

N k
:= Nk . (5)

N
layer is pruned to varying extents. At each layer, we collect the
performances of an SVM model with an RBF kernel (α(l)),

Finally, using the above ratios we propose the following hash-
based estimator of the ACMI measure (3):

I (X; Y |Z) = ϕ(i, j, k) rik rjk g
(

rijk rk
J

, (6)

trained on a subset of activations from the un-pruned version
of the layer and tested on the same subset from the pruned
version of the layer at various compression levels c, where
c ∈ {1, 2, 3 . . . 99}. Here, the ground-truth labels from the

summed over all edges eijk of G(X, Y, Z) having non-zero
ratios.

Theorem 1. For given g(t) = (t−1)
2
and under the assump-

tions: (A1) The support sets X, Y, and Z are bounded. (A2)
The function ϕ is bounded. (A3) The continuous marginal,
joint, and conditional density functions are belong to Hölder
continuous class, [41]. For fixed dX, dY , and dY , as N
we have

I ϕ(X; Y |Z) −→ Iϕ(X; Y |Z), a.s. (7)

layers, we cycle through performances between 100 0% to
find the optimal threshold value such that the sum of compres-
sion levels of all the layers dictated by the selected threshold
adds up to our overall target pruning percentage. Each individ-
ual layer’s pruning percentage is dictated by the highest com-
pression level where the SVM model’s performance exceeds
the chosen threshold. The general trend we observe is higher
the compression level, lower is the SVM model’s performance.
Thus, picking smaller performance thresholds leads to the
selection of higher compression levels in a layer. We select the

eijk ∈EG

× ×

Selection process of

Conv27

 Conv33
 Conv41

Conv51

S
V

M
 m

od
el

 a
cc

ur
ac

y

ϕ , the ACMI in (3)

dataset are used to train the SVM model.
Once we have the performance of SVM models across all

6

i

∈

i

-

i -

highest compression level from a range of possible values to
avoid noisy and inconsistent behavior in SVM performances.
Mathematically, we optimize,

L

τ = β(l)γ(l), (8)
l=1

where β(l) is ratio of number of parameters in layer l to
the total number of parameters across the entire DNN and τ
denotes the desired pruning percentage across the entire DNN.
Fig. 3 illustrates this process using an example of 4 layers.

It is important to note that the statistics computed from the
SVM models across all layers can be executed in parallel,
at an average of 36s per SVM model. This is an important
distinction when compared to prior work where optimization
involves computing the permutation of pruning percentages
across various layers (order of 99l). Across each such permuta-
tion, the entire network needs to be retrained/fine-tuned, which
can take anywhere from a couple of hours (CIFAR-10) to a
week (ILSVRC-2012). This cost is significantly higher when
compared to the simple forward pass across the DNN and
training time for an RBF-SVM model used in our approach.
Our core contribution in this work is a systematic approach
to decide the upper pruning percentage limits across all layers
of the DNN. Previous works often relegate this information to
the final chosen values without disclosing how they arrived at
them. We provide the γ values of all layers for each DNN
architecture used in the experiments in our supplementary
materials.

E. Sensitivity of Filters
A common assumption made during pruning is that all filters

in a layer have the same downstream impact and hence can be
characterized solely using the magnitude of their weights. In
contrast, probabilistic pruning approaches like MINT [11] aim
to maintain the flow of information between a pair of layers
but they consider all filters to be equally important. Taking
into account each filter’s impact on succeeding layers is an
effective tool to assess their importance and protect filters that
contribute the majority of information from being pruned.

We define a sensitivity criterion, λ(Fl+1), that can be used
to sort filters in their order of importance. Using this, we
curate a subset of filters that are critical and hence need to be
protected from pruning while the remaining filters are pruned
using the steps in Alg. 1. To evaluate the sensitivity of filters
in layer l + 1, we look at the weight matrix of its downstream
layer l +2, W (l+2), and assess the contributions from filters in
l + 1 to those in l + 2. Here, W (l+2) RN (l+2)×N (l+1)×H×W ,
where H, W are the height and width of the filters in layer
l + 2. For a given filter, the sum of normalized contributions
across all the filters in l +2 is its overall sensitivity, λ(F (l+1)).
It is defined as,

N (l+2)

Here, C(l+2) is the normalization constant used to relate the
weights of filters from l + 1 contributing to the same filter in
l + 2 and W (l+2) is the weight matrix of l + 2 averaged over
the height and width.

Once we obtain the order of sensitivity values for filters
in a given layer, we define a threshold of highly sensitive
filters that remain un-pruned, after empirically comparing the
improvement in performance at similar pruning levels with
and without protecting sensitive filters. This is critical to
ensure that only sensitive filters, which contribute a majority
of the information downstream, remain untouched. This in turn
helps improve the overall compression performance since less
sensitive filters can be pruned more without compromising the
quality of information flowing between layers too much. After
empirically comparing the degradation in performance of the
SVM model used to define the upper pruning percentage limits
for layers, between the case when all the filters are pruned and
when we protect a variable percentage of sensitive filters, we
determine the set of highly sensitive filters to protect and return
their indices to Alg. 1.

IV. EXPERIMENTAL RESULTS

We divide our results into three subsections, formatted as
an ablative study. Section IV-A focuses on the evaluation of
run-time and choice of ϕ, to highlight the impact of using
our ACMI estimator in place of the MST-based estimator
used in [11]. Here, the upper pruning limits are manually
defined, with the help of artificial limits placed on the SVM
model accuracy, to mimic prior work. In Section IV-B, we
detail the results of applying SNACS (ACMI + Automated
upper pruning percentage limits) across three Dataset-DNN
combinations. Within this section we focus on drawing strong
comparisons against single-shot pruning approaches while also
highlighting how competitive SNACS is amongst approaches
that use a modified objective function or iterative pruning.
Finally, in Section IV-C we discuss the impact of adding our
sensitivity measure as a way to prioritize and fully protect
important filters from being pruned.

Dataset-DNN: We use three standard Dataset-DNN combi-
nations to evaluate and compare our approach to standard
baselines. They are, CIFAR10 [42]-VGG16 [43], CIFAR10-
ResNet56 [44] and ILSVRC2012 [45]-ResNet50. A detailed
breakdown of each dataset and the experimental setup used in
each experiment is included in the supplementary materials.

Metric: We use the following metrics to compare perfor-
mances,

• Pruning (%): The percentage of parameters removed
when compared to the total number of parameters in the
un-pruned DNN (Conv and FC only),

• Test Accuracy (%): The accuracy on the testing set, after

λ(Fl+1) =
f

c=1

W (l+2)(fc, i)
/
C(l+2)(fc), (9)

N (l+1)

re-training for pruned networks,
• Memory (Mb): The amount of memory consumed to store

the weight matrices in “CSR” format.
where C(l+2)(fc) =

f

p=1

W-(l+2)(fc, fp). (10) • FLOPs Reduced (%): The percentage of FLOPs reduced
when compared to the un-pruned DNN.

7

exp(−weights) 84.46

accuracy ≥ −weights93.43%. ϕ = exp(
)

exp(− weights act) 76.99

l l

×

≥

2

2

l l

×

TABLE I: We compare the maximum compression perfor-
mance of a variety of ϕ functions when maintaining a test

2

 2
and we use this in all further experiments

Φ function Pruned (%)
constant = 1 84.02

weights 2 84.12
weights2 84.17

2
2

lactl2 76.13
lweightsl2 lactl2 82.59

2
2

Estimator run-time comparison

70

60

50

40

30

20

10

0
50 100 150 200 250

Group Size
Apart from the above metrics, we also use run-time to compare
speed of estimators. A high quality method must have high
compression performance while maintaining a test accuracy
relatively close to the baseline.

A. Evaluation of Estimator
Run-time Comparison: We provide a comparison between
the run-time taken to compute the dependency scores across
convolution layer 9 in VGG16 using our proposed ACMI
estimator and the MST-based estimator used in MINT [11].
For this experiment, we use three distinct estimators, the MST-
based estimator from MINT, our ACMI estimator with ϕ = 1
and ϕ = weight 2. Here, weight values are re-scaled between
[0, 1]. To provide a fair comparison, we adopt the grouping
concept introduced in MINT. From Fig. 4 we make two
important observations, 1) run-time increases with an increase
in group-size across both estimators, and 2) relative to the run-
time from the MST-based estimator, our estimator is faster by
at least 17 . Thus, we show that our estimator significantly
reduces the overall run-time required to compute conditional
MI across a DNN. Further, the run-time for one of the largest
computational bottlenecks is massively reduced irrespective of
the scaling function used in ACMI.

Selection of ϕ: There are number of potential functions
we can associate with ϕ. In Table I, we illustrate a variety
of functions and their performance, w.r.t. the Pruning (%)
while maintaining an accuracy 93.43% in the VGG16-
CIFAR10 setup. Between Section IV-A and MINT [11] the
main differences are the inclusion of ACMI and the manual
definition of upper pruning percentage limits using artificially
capped SVM model accuracies (0.8). From Table I, we observe
that most variants of ϕ outperform MINT, including ϕ = 1.
Furthermore, we find that ϕ = exp(−weights) performs the
best when compared to all the options for ϕ we explore. Thus,
we set this as the default ϕ throughout all further experiments.

B. Large-scale Comparison

When compared to existing single-shot pruning methods,
from Table II we observe that SNACS outperforms all of
them by a significant margin to establish new SOTA per-
formances. Our consistently high results establish our hybrid
pruning framework as one of the top performing single-shot

(a) Run-time comparison across MST and ACMI measures

Estimator run-time comparison

2.5

2.0

1.5

1.0

0.5

0.0
50 100 150 200 250

Group Size
(b) Run-time comparison across various ϕ

Fig. 4: (4a) When comparing run-times between the MST-
based estimator used in MINT [11] and our hash-based ACMI
estimator, our estimator provides up to 27 speedup in run-
time. (4b) Across different selections of the scaling function
in our estimator, the run-times scale similarly as the number
of groups increase.

algorithms. A combination of improved estimates from the
hash-based ACMI estimator (Table I) and the joint definition
of upper pruning percentage limits for each layer in the DNN
are the main contributors to our high performance.

Fig. 5 helps put SNACS’s performance in perspective of
pruning approaches that use either sparsity inducing objective
functions or iterative re-training setups. In general, we expect
a decrease in performance with an increase in the number
of parameters pruned. Often, iterative approaches achieve the
highest compression while suffering minimal drop in testing
accuracy, with methods that use joint optimization sprinkled
across the entire range of Pruning (%) values. Single-shot
methods are often the weakest performers given that they get
the fewest attempts to account for the loss in accuracy after
pruning. However, across each dataset-DNN combination,
our algorithm is highly competitive with the best pruning
approaches regardless of variations in optimizers, iterative
pruning pipelines, modified objective functions or layer-by-
layer fine-tuning. SNACS remains competitive at large pruning

ACMI (
ACMI (ight||2)
MST-based [Ganesh et al.

17x
24x 32x

18x

2020]

= ||we
= 1)

x 27

R
un

 T
im

e (
ho

ur
s)

R

un
 T

im
e (

ho
ur

s)

2 2

ACMI (= 1)

 ACMI (= ||we ight||2)

8

TABLE II: Using a single train-prune-retrain cycle, SNACS is among the top performers across all the Dataset-DNN
combinations. Baselines are ordered according to increasing Pruning (%)

Method Pruning (%) Test Accuracy (%) FLOPs Reduced (%)

Baseline N.A. 93.98 N.A.
l1-norm [19] 64.00 93.40 34.18

CIFAR-10 Variational Pruning [29] 73.34 93.18 39.29
VGG16 SSS [23] 73.80 93.02 41.60

MINT [11] 83.46 93.43 N.A.
Network Slimming [21] 88.52 93.80 50.94
X-Nets [46] 92.33 93.00 N.A.
Bayesian Compression [30] 94.50 91.00 N.A.
SNACS 96.16 91.06 67.85

Baseline N.A. 92.55 N.A.
CIFAR-10 l1-norm [19] 13.70 93.06 27.28
ResNet56 Variational Pruning [29] 20.49 92.26 20.17

NISP [20] 42.60 93.01 43.61
FSDP [47] 50.00 92.64 N.A.
MINT [11] 57.01 93.02 N.A.
SNACS 68.59 93.38 37.61

Baseline N.A. 76.13 N.A.
ILSVRC2012 SSS [23] 38.82 71.82 43.04
ResNet50 NISP [20] 43.82 71.99 44.01

MINT [11] 49.62 71.05 N.A.
X-Nets [46] 50.00 72.85 50.00
SNACS 55.10 74.65 41.73
SNACS 59.61 73.60 46.63
SNACS 64.26 72.90 51.65
SNACS 68.80 72.36 56.79

94.5

94.0

93.5

93.0

92.5

92.0

91.5

tion

93.5

93.0

92.5

92.0

91.0

65 70 75 80 85 90 95
Pruned (%)

(a) CIFAR10-VGG16

91.5

20 40 60 80 100
Pruned (%)

(b) CIFAR10-ResNet56

76

75

74

73

72

71

70

69

40 50 60 70 80
Pruned (%)

(c) ILSVRC2012-ResNet50

Fig. 5: Comparison of single-shot (green) vs. non single-shot (red) pruning approaches across our benchmarks. SNACS, despite
being a single-shot approach, is highly competitive with the best performing iterative methods.

SNACS RBP
Bayesian Compression

arn -and-L Try

uning aded Pr Cas SSS

X-Nets NT M
runing tional P Varia

orm l1-n

 Atten Payin
L

G

limming

twork S

Ne

P D

T
es

t A
cc

ur
ac

y
(%

)

T
es

t A
cc

ur
ac

y
(%

)

Te
st

 A
cc

ur
ac

y
(%

)

 DCP

l1-nor

P

m

ying Attent

NISP MINT

ion SNAC S

 DHP

Va iational Pru ing OE D

GAL

LC

 DCP AutoM L

 X- ets

Cascad

ed Pruning

SSS NISP

MINT SNA S

 OED
 GA L
 ThiNet

9

VGG16 - CIFAR10
100

50

0

100

0 5 10 15

ResNet56 - CIFAR10

50

0

100

0 10 20 30 40 50

ResNet50 - ILSVRC2012

50

0

0 10 20 30 40 50
Layers

Fig. 6: On observing the compression performance per layer in the ILSVRC2012-ResNet50 experiment, SNACS is able to
achieve high Pruning (%) while focusing only on the middle and latter layers and avoiding the early layers. Interestingly, the
pattern of pruning in MINT and SNACS is extremely different.

TABLE III: By saving a small percentage of sensitive filters, we can further improve the overall Pruning (%) while maintaining
high Test Accuracy

ResNet56

Method Pruning (%) Test Accuracy (%)

Baseline N.A. 92.55

levels despite using a single prune-retrain step.

An important distinction between our pruning approach and
other single-shot methods we compare against is that we avoid
pruning early layers to a large extent, as shown in Fig. 6.
Given that a large portion of FLOPs are concentrated in the
early portion of the network, the percentage of FLOPs reduced
by our SNACS is slightly lower when compared to methods
like X-Nets, which preemptively prunes the network before
training, or SSS, which optimizes a different objective function
altogether. Interestingly, on closer inspection of Fig. 6, we
observe minimal correlation between the patterns of high and
low γ values achieved in MINT and our work. While MINT
showcases minimal pruning in the early and middle set of
layers, SNACS focuses on the middle and final set of layers,
avoiding the early layers. We believe this variation stems from
the fact that γ values in MINT were co-opted from prior works
where the focus on individual layers while in SNACS the joint
definition of γs helps capture trends across multiple layers
while trying to optimize the performance-sparsity tradeoff.

We observe that when using SNACS DNNs are more
forgiving when pruning layers closer to the output than input
since the retraining phase allows them to overcome the loss of
abstract concepts learned in later layers but not fundamental
structures, when compressing the earlier layers of the network.
Our observations are matched by the discriminant scores in
[47] and the median oracle ranking statistics per layer from
[48]. However, these observations are in direct contrast to
previous works which identify that portions of the network
closer to the input are often pruned first [23], [28]. We
hypothesize that their outcomes stem from the modification
of the objective function and subsequent training of baseline
networks whereas our approach and those in [47], [48] focus
on removing filters based on a pre-defined criterion without
the modification of the loss function.

C. Sensitivity-based Pruning

Experiments in Sections IV-A and IV-B assumed that all
filters contributed equally to the information flow downstream

MINT [Ganesh et al. 2020]
ACMI + Custom Upper Pruning Limits
SNACS (ours)

P
ru

ne
d

(%
)

CIFAR-10 SNACS (ours) 68.59 93.38
SNACS + sensitivity (ours) 68.96 93.41

10

w/o Sensitivity with Sensitivity

Input Filter Indices Input Filter Indices
(a) Convolution 35

w/o Sensitivity with Sensitivity

Input Filter Indices Input Filter Indices
(b) Convolution 46

Fig. 7: Illustrations of filters retained (white) and pruned (black) w/o and with sensitivity based pruning. When protecting
important filters from pruning, all its associate connections are maintained (red highlight). An interesting impact of sensitivity
is that the connections pruned can be completely modified compared to its counterpart w/o pruning. This is illustrated by the
pruning mask of convolution 46.

TABLE IV: Deviating the % of filters saved from our opti-
mal constraints forces lower sparsity levels with bad testing
performance. Optimal values are highlighted in bold

Layer % Saved Sparsity (%) Test Accuracy (%)

layer as well as a stark difference in how it is pruned. All
these observations put together lead to an overall improvement
in the Pruning (%) with the inclusion of sensitivity, while
maintaining high Test Accuracy (%) as shown in Table III.

30
34

15.03
15.03

92.83
93.05

Across the results presented in Table III, the percentage of
filters protected from pruning are maintained at an optimal

38 14.35 92.88 level. We determine the optimal combination of high sparsity
Layer 28 45 55.07 93.41 and accuracy by constraining the % of filters saved to a value

50
54

48.92
45.89

92.71
93.24 such that SVM model performance is higher than the case

60 39.74 93.10 when no filters are protected. The performance comparison is
25 26.97 92.97 restricted to SVM model only and no re-training is necessary.
30 54.83 93.13 When we relax this constraint (Table IV), we observe that
35

Layer 44
48.55
58.17

93.28
93.41 the performance levels drop by a significant amount while

and hence, the connectivity scores were the only constraint
used for pruning. In this section, we highlight the impact
of using the sensitivity criterion to prioritize the pruning
of relatively weaker filters while protecting more sensitive
filters from pruning on the CIFAR10-ResNet56 experimental
setup. In Figs. 7a and 7b, we illustrate the 2D pruning masks
generated by our algorithm, where the colors black and white
represent filters that are removed and retained, respectively,
and we observe three distinct behaviours. Firstly, when a filter
is protected from pruning, an entire row representing all of
its associated connections, are retained. Secondly, in addition
to this we also observe an increase in the number of weights
pruned from filters that are not protected. This is illustrated
by an increase in the number of black pixels overall. Finally,
when the sensitivity criterion is applied to layers which were
previously not pruned to a large extent (Fig. 6 Convolution
32, 34, and many others) we observe a complete restructure
in the way filters are pruned. Fig. 7b highlights this trend,
which showcases an increase in the overall pruning of the

V. CONCLUSION

Overall, we propose a novel DNN pruning algorithm called
SNACS which uses ACMI to measure the connectivity be-
tween filters, a simple set of operating constraints to automate
the definition of upper pruning percentage limits of layers in a
DNN and a sensitivity criterion that helps protect a subset of
critical filters from pruning. SNACS provides a faster overall
run-time and improves accuracy in the estimation process,
offers state-of-the-art levels of compression using a single
train-prune-retrain cycle while the sensitivity criterion can
be used to further boost the compression performance. An
important direction of future work is to extend this algorithm
to an iterative approach and incorporate it into the training
phase. Doing so would help reduce the overall training time
while achieving extreme levels of sparsity. Additionally, char-
acterizing the pruned networks using a multitude of events like
adversarial attacks, calibration error and many others could
shed light on how close such networks are to being deployed
in the real-world.

O
ut

pu
t F

ilt
er

 In
di

ce
s

O
ut

pu
t F

ilt
er

 In
di

ce
s

40
45 53.58 92.96 the sparsity level is lower than expected. This highlights the
50

52.5
48.99
45.92

93.50
92.86

necessity of maintaining our constraints in order to obtain the
optimal combination of high sparsity with accuracy.

11

| | | | |

 (Jl

≤

dP P

 l

ijk

|
 l
≤E

✓ ✓ ijk

✓

i

j

≥

ijk → → ∞

ijk

Y

Z

dPXY [rik] [rjk] + O 1

G

k ijk i j k ijk ijk

αijk
ijk ijk

ijk
≤1

XY Z Z

(
r
 J

1

1
EdN

ijk

ijk

APPENDIX A
BOUNDS ON AMI

Recall the definition of AMI (Eqn. 1). For the particular
case of g, g(t) = (t−1)

2
, we have

This is because all three V , U , and W are upper bounded
by O(E−d). Note that E is a function of N . Additionally from
[38] we infer the following results:

2(t+1)
 (Jl E E

()

2 E
PX PY

t

ϕ(X, Y)h dPXY , (12)
dPXPY

Note that (19) is implied based on the fact that V(αijk)
O(1/N) which is proved by applying Efron-Stein inequality

where h(t) = t + 1 . When dPXY
X Y

= 1, then the minimum under assumptions (A1) and (A3), similar to arguments in
Lemma 7.10 from [38]. In addition, we have value of Iϕ is zero. Further, when PXY and PXPY have no

overlapping space then the second term in (11) becomes zero.
Therefore, bounds on Iϕ is given as,

rijk

l

E[rijk]

()
 1

(20)

1
0 ≤ Iϕ(X, Y) ≤ E

ϕ(X, Y)

(
 dPXY

+ 1
Jl

. (13)
E

αijk
=

E[α
+ O ,

ijk] N
2 PX PY

APPENDIX B

dPXPY

PROOF OF THEOREM 1
Recall our estimator in Section III-C, E rijk

αijk = P (E≤1) E
 rijk
αijk

1

ijk

I (X; Y |Z) =

ϕ(i, j, k) α g
(

rijk
J

, (14) + P (E>1)E

rijk |E>1
l

, (21)
ϕ

eijk ∈EG rik rjk

ijk αijk
ijk αijk

ijk

where αijk = r . The expectation of I ϕ is derived as

where by using similar arguments as in Eqn. 56 from [38],

k


(J


we ha ve P (E≤1) = 1−O(1/(EdN)). Therefore, P (E>1) =

E  ϕ(i, j, k) α
g rijk

1E  (15)

O(1/(EdN)). Further the second term in Eqn. 21 is the

eijk ∈EG

=
 E ϕ(i, j, k) α

g
(

rijk
J

1E
l

, (16)

following section, that is upper bounded by O(1/(EdN)).
Let xD and xC respectively denote the discrete and contin-

where Eijk is the event that there is an edge between the
vertices vi, uj, and ωk in the dependency graph G(X, Y, Z).
Let hash function H map the N i.i.d points X , Y , and Z

. Also let fXC (xC) and pXD (xD) respectively denote density
and pmf functions of these components associated with the
probability measure PX . Let X have dC and dD, Y have

to ̃ 1 , ˜ , and ˜ k k k di ,di , and Z have dii , dii
 as their continuous and discrete Xk Yk Zk. Following the notations used in [38], we C D C D

denote E=1 be the event that there is exactly one vector from
X̃i that maps to vi using H2. Similarly, we define E=1 and
E=1. We denote E=1 := E=1 ∩ E=1 ∩ E=1 and let E=1 be

components, respectively. Then it can be shown that,

E[rijk|E≤1] = P (XD = xD, YD = yD, ZD = zD)
the complement set of E=1. d +di +d

ii

ijk
We simplify Eqn. 16 by splitting it into two parts: without

collision and due to collision. Based on the law of total
E C C C (f (xC, yC, zC|xD, yD, ZD) + ∆(E, q, γ)) , (22)

expectation we have, where densities have bounded derivatives up to the order q 0
and belong to the Hölder continuous class with smoothness

=
eijk ∈EG

P (E=1|Eijk) parameter γ. Note that ∆(E, q, γ) 0 as N . Now from
Eqns. 50, 51, and 53 in [38] and from Eqn. 19, 20 above,

E

ϕ(i, j, k) α

g
(

rijk
J

1E=1, E
l

under assumptions (A1) and (A3), we derive

+

P (E=1 |Eijk)

r
l

dP P

()
 1

eijk ∈EG
 E α |Eijk = dP

P + ∆ (E, q, γ) + O N ,

 E ϕ(i, j, k) αijk g αijk
1Eijk, Eijk . (17) where H(x) = i, H(y) = j, H(z) = k, and as N → ∞,

Step 1 Bias on w/o collision: Similar to Lemma 7.3 in [38],
we derive,

(J

∆ (E, q, γ) −→ 0.

Step 2 Bias because of collision: Let X =

X i

LX

i=1
, Y =

LZ
i

i=1

LY
i

i=1
. (18) Z + d Y + d X , d = d) = 1 − O ijk P (E=1|E

(23)
=1

Y Z XZ ijk

dC and dD , with dimensions x uous components of the vector

2

−

1 E[α] = . (19) Iϕ(X; Y) = E
PX PY

ϕ(X, Y)
dPXPY

+ 1 (11) ijk E[rk] N

ijk αijk

bias because of collision of H, which will be proved in the

eijk ∈EG

ijk αijk
ijk

ijk

ijk l

, Z = respectively denote distinct outputs

12

ijk

(J

ijk

(J
≤

(J

(

)

1 ˜ r̃ ∈ A E ,
E , X = x, Y = y,ijk ijk

NikNjk >1

≤

αijk
ijk ijk ϕ(i, j, k) Nijk Eijk, Eijk, X = x̃, Y = ỹ,

Z̃ = z̃

Eijk Nk ijk

ijk 2 r 2 r 2 r

ijk ijk

Eijk, Eijk

ϕ(i, j, k) (rijk + αijk) 1E>1, Eijk

ijk ijk

B O p

1

r s t

ijk

of H1 with the N i.i.d points Xk, Yk, Zk as inputs. We denote
LXY Z := |X ∪ Y ∪ Z |, LXZ := |X ∪ Z |, and LY Z := |Y ∪ Z |.

If we extend our discussion to all the possible mappings from
H1 we obtain,

Bϕ : =
eijk ∈EG

P (E=1 |Eijk) = O 1 p
EdN 2 x̃,ỹ,z̃ X̃ ,Ỹ ,Z̃ (x̃, ỹ, z̃)

i,j,k∈F
P (E ijk)

E

ϕ(i, j, k) α

g
(

rijk
J

1E=1 , E
l (

 1 >1 ˜ ˜

i,j,k∈F

E 1
(

rijk
J

1

>1
l

+ E ϕ(i, j, k)

Nik jk 1E>1, Eijk, X̃ = x̃, Ỹ = ỹ,

(24)

where E>1 = E>1 ∩ E>1 ∩ E>1, and E>1 is the event that Z̃ = z̃
 J

. (28)
ijk i j k i ˜ Let us define,

there are at least two vectors from Xi that map to vi using
H2. Once again, using the law of total expectation, then the

A :=

r : H (X̃) = i, H (Ỹ) = j, H (Z̃) = k

,

= P (E>1)
(

P (Eijk|E>1)

Ak :=

r : H2(Z̃r) = k

,

E

ϕ(i, j, k) α g

(
rijk

J
1E>1, E

l

Ajk :=

r : H2(Ỹr) = j, H2(Z̃r) = k

. (29)

ijk + P (Eijk|E>1)
E

αijk
(

rijk
J

1
ijk

>1
ijk
l J

Let Mr, be the number of the input points (X, Y, Z)
mapped to (X̃r, Ỹr, Z̃r). Therefore for i, j, k we can rewrite

=
i,j,k∈F

P (E ijk)P (E>1|E ijk) LXY Z

Nijk =
1 ijk (r)Mr. (30)

(
rijk

J
1 >1

l

 r=1

E ϕ(i, j, k) αijk g α

1Eijk, Eijk . (25) Similarly M i , M- , and M are defined the number of the input

The equality in Eqn. 25 is obtained based on Bayes error and
g = 0 on the event Eijk. Now recalling Eqn. 18, using Eqn. 13

points mapped to (X̃r, Z̃r), (Ỹs, Z̃s), and Z̃t, respectively and
we can write

we bound the last line in Eqn. 25 by, LXZ LY Z

(J Nik =

1Aik (r)Mr
i , Njk =

1Ajk (s)M-s, (31)

1 O
EdN

i,j

,k∈F P (E

ijk)
1

r=1
LZ

Nk = 1Ak s=1
(t)Mt. (32)

This implies that 1
Φ EdN 2

X̃ ,Ỹ ,Z̃ (x̃, ỹ, z̃)

P (E

ijk)

Bϕ ≤ O
 1
EdN P (E ijk) (L XY Z

x̃,ỹ,z̃
(1

i,j,k∈F

i,j,k∈F
E

ϕ(i, j, k)rijk1E>1, Eijk

P
r=1

>1 ˜ ˜
ijk

ijk
)

˜ E 1 >1 ˜ ˜ ˜

+E ϕ(i, j, k)α 1E>1, E Z = z̃ Mr Eijk, Eijk, X = x̃, Y = ỹ, Z = z̃
 = O

(

EdN 2

J

P (E ijk)
ijk ijk ijk

LXZ LY Z LZ

+ P
r=1 s=1 t=1

(
r ∈ Aik, s ∈ Ajk, t ∈ Ak1E>1,

i,j,k∈F

1 ˜ ˜ ˜
)

 (

E

ϕ(i, j, k) Nijk1E>1, Eijk

 Eijk, X = x̃, Y = ỹ, Z = z̃

Under the assumption that ϕ is bounded, we have (26)
ijk

ijk

ijk

ijk

, Aik :=
i,j,k∈F

RHS of Eqn. 24 becomes

αijk

P (E>1)

ijk E

Eijk ϕ(i, j, k) αijk g ,

r : H2(X̃r) = i, H2(Z̃r) = k

ϕ(i, j, k) αijk g α ijk

Nijk as

E
.

t=1

M t

N

A

13

ijk

(33)

ijk
+E ϕ(i, j, k) 1E , E

lJ

.

E

Mr

i M-s 1E>1, E , X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
 J

.

Nk ijk

(27)

14

ijk

ijk

ijk

(((

(
L

ijk

ijk



(
1P r ∈ A , s∈

A , t ∈ A E , E ,ik jk k

(

≤
 J ((

ijk

We first find the denominator of Eqn. 34 first. We define a = 1
when i = j = k and a = 3 for the case i /= j /= k:

O E Mr1E>1, Eijk, X̃ = x̃,

ijk

r ∈ Aijk|E>1, X = x̃, Y = ỹ, Z = z̃
(

N
JJ J

. (41)

Combining Eqn. 35 and 36 yields

(
1

ijk
J

Y ZLZ


X̃v Ỹv Z̃v v = r, s, t

r ∈ Aik Eik , X = x̃, Y = ỹ, Z = z̃

(

J

)

(J

= O O +

XY Z

Next we find the probability terms:

P
(

r ∈ Aijk1E>1, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

By using Eqns. 40, 39, and 37 in Eqn. 33 we obtain an upper
bound on bias with collision:

P
(

r ∈ Aijk, E>1|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

(34) (
 1

J

ijk = >1 ˜ ̃ ˜
) .

Bϕ ≤ O EdN 2 x̃,ỹ,z̃ pX̃ ,Ỹ ,Z̃ (x̃, ỹ, z̃) i,j,k∈F P (Eijk)
P Eijk|X = x̃, Y = ỹ, Z = z̃

((
 1

J L XY Z 1

P
(

E>1|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)
 Ỹ = ỹ, Z̃ = z̃

= 1 − P
(

E=0|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)
 + O 1 LXZLY ZLZ

J

+ δ ijk O 1 LXY Z

− P
(

E=1|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

LXZ LY Z LZ

M i M- 1

 (JLXY Z ((JLXY Z −a E
M

1Eijk, Eijk, X = x̃,
= 1 − F − a

F

LXY Z
− Fa

F − a
F

r=1 s=1 t=1 t

Ỹ = ỹ, Z̃ = z̃
 J

2
= O XY Z

Fa+1
Further,

J

. (35) = O 1
EdN 2 p

x̃,ỹ,z̃
X̃ ,Ỹ ,Z̃ (x̃, ỹ, z̃)

i,j,k∈F
P (Eijk)

P
(

r ∈ Aijk, E>1|X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)
 (

O
(

 N
J

+
(

O
(

 N
J

+

 (
˜ ˜ ˜

)
 LXY Z

LXZLY ZLZ

(
˜ ˜ ˜

)
 ijk LXY Z

P r ∈ Aijk|X = x̃, Y = ỹ, Z = z̃ ((
F − a

JLXY Z −a
 (
 1

Ja

(
LXY Z

J

Re-arranging the expectation term we get,

= 1 − F F = O Fa+1 . (36)
(
 1

J

((
 N

J

P
(

r ∈ Aijk1E>1, Eijk, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

(

O
(

 N
J

+ O
(

 1
JJ J

LXY Z

Now we simplify the following term:
E

i,j,k∈F
ijk



>1
ijk

X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)

. (38)
O 1

EdN 2 p
x̃,ỹ,z̃

X̃ ,Ỹ ,Z̃

(x̃, ỹ, z̃) O N +
LXY Z

 First we assume that for . Then

(

O
(

 N
J

+ O
(

 1
JJ J

L

P
(

r ∈ Aik, s ∈ Ajk, t ∈ Ak1E>1, Eijk, X̃ = x̃, Ỹ = ỹ,
≤ O

(
 1

J . (42)

Z̃ = z̃
(1

E N

) Hence as N −→ ∞, the bias estimator due to collision tends

1 >1 ˜ ˜ ˜

 P
(

s ∈ Ajk1E>1, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃
)
 Step 3 Combine Results: Let us denote N i , N i , N i , and

P
(
t ∈ A 1E>1, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃

)

Nk
i respectively as the number of the input points (X, Y, Z),

k

= O
(

1

k J

. (39)

(X, Z), (Y, Z), and Z mapped to the bins (X̃i, Ỹj , Z̃k),
(X̃i, Z̃k), (Ỹj , Z̃k), and Z̃k using H1. We define the notations

Next assume that X̃v = Ỹv = Z̃v for v = r, s, t, therefore
H2(X̃v) = H2(Ỹv) = H2(Z̃v), for v = r, s, t. Then

Then from Eqn. 23, we have

Ns

i
(X)s(Y)s(Z)Ns

i
(Z)

 s(Y)s(Z) s(X)s(Z) ijk ijk k jk ik

jk ik ijk jk

to zero i.e. Bϕ −→ 0. ≤ P

LXY Z LXZLY ZLZ

XY Z L L XZ L
= O

LXY Z x̃,ỹ,z̃
EdN 2

O δ

˜ >1 s r

ijk LXY Z

d

r=1

= P

pX̃ ,Ỹ ,Z̃ (x̃, ỹ, z̃)

. (37)


L
XZ

L
Y Z

L Z

r(i) = H2
−1(i) for i ∈ F and s(x) := H1(x) for x ∈ X∪Y∪Z.

JJ

E 1

15

+ ∆(E, q, γ) + O . (43)

P
(
r ∈ A , s ∈ A , t ∈ A 1E>1, E

, X̃ = x̃, Ỹ = ỹ, E N i

N i

Z̃ = z̃
)

= δ

O
(

1
J

.

dPXY Z PZ
 ()

 1

 N

Y Z

LXY Z

=
(40) dPXZ P

16

(J

iN

(J

(J

iN

)
1

 (J
∈ { }

COMPLEXITY OF SNACS

g
NkN

k

We simplify the first term in Eqn. 17 as, where h(t) = g(t)/t and Eqn. 46 is derived by borrowing
Lemma 7.9 from [38]. Hence from Eqn. 46 and Eqn. 17, and

P (E≤1)E

1 ϕ(i, j, k) α g

(
rijk

J
1E≤1

l

the fact that ∆ (E, q, γ) −→ 0 as N → ∞, we conclude
ijk Eijk ijk αijk ijk (dP P)

l

i,j,k∈F E I (X; Y |Z) −→ E ϕ(X, Y, Z)h XY Z Z ,

=
(

1 − O
1

EdN

JJ

i,j

,k∈F E
[
1Eijk ϕ(i, j, k) αijk

ϕ

as N → ∞.
PXY Z dPXZ PY Z

(47)

g
(

rijk
J

1E≤1
l

This completes the proof.

αijk
N N

ijk

(
N N

J
1

l

APPENDIX C

+ O 1
EdN

Nr

i
(i)r(k)Nr

i
(j)r(k)

plexity of SNACS into two parts, 1) the complexity of the
hash-based ACMI estimator, and 2) the complexity of Algo-
rithm 1 in the main paper.

g

(
Nr

i
(i)r(j)r(k)Nr

i
(k)

+ O
(

 1
J

.

By extending the discussion provided in [38], we find that

Lets denote

Nr
i
(i)r(k) Nr

i
(j)r(k) EdN

(44)

the estimation process is dependent on two main factors, the
total number of samples, N , and the dimensionality of each
sample. From the original paper, we find that the compu-
tational complexity is linearly dependent on the number of
samples as well as the dimensionality of the samples. In our (l)

Nr
i
(i)r(j)r(k)Nr

i
(k) setup the dimensionality of a sample is capped by Fj which

β(r(i), r(j), r(k)) =
r(i)r(k)

.
Nr

i
(j)r(k)

includes activations from all the filters in a layer excluding
j. The exact value of this variable is dependent on the neural

Therefore the last line in Eqn. 44 is equal to
network architecture over which ACMI is calculated.

B. Complexity of Algorithm 1 (Main Paper)

= 1 E
N

i,j,k∈F

ϕ(r(i), r(j), r(k))

Nr
i
(i)r(j)r(k)

β(r(i), r(j), r(k))

There are 2 primary factors which affect the complexity
of Algorithm 1 in the main paper, 1) the number of groups
associated with each layer l and l + 1, and 2) the total number

g
(

β(r(i), r(j), r(k))
)

+ O 1
EdN

of layers in the DNN. The internal double FOR loop has
an upper bound of O(N (l)N (l+1)) if the number of groups defined matches the number of filters in each layer. The outer

 1
= N E

N

i=1

ϕ(s(X), s(Y), s(Z))
g

β(s(X), s(Y), s(Z))

(
β(s(X), s(Y), s(Z))

)

 FOR loop, used to iterate over pairs of adjacent layers, is
executed a total of L − 1 times.

+ O 1 , (45)
EdN

where

Ns
i
(X)s(Y)s(Z)Ns

i
(Z)

APPENDIX D
VALIDATING THE ESTIMATOR

In this section we validate the MSE performance of the
ACMI estimator across various dimensionalities and total
number of samples to asses the trends in estimation accuracy.

β(s(X), s(Y), s(Z)) =
s(X)s(Z)

The expression in Eqn. 45 equals:

.
Ns

i
(Y)s(Z)

A. Setup

To observe the performance of the estimator when the
number of samples are varied, we set the dimensionality of

= EPXY Z
E ϕ(s(X), s(Y), s(Z)) g

β(s(X), s(Y), s(Z))

(
β(s(X), s(Y)

X, Y to one and Z to two. This setup is used to mimic
the dimensionality difference, at a small scale, in our ex-
periments. We vary the number of samples in the range

, s(Z)) X = x, Y = y, Z = z + O 1
EdN

= E ϕ(X, Y, Z)h
(dPXY Z PZ

)l

+ ∆ (E, q, γ)+

500, 1000, 5000, 10000, 15000, 20000, 25000 . To observe
the impact of a change in dimensionality on the estimator’s
performance, we restrict the total number of samples to 5000

 PXY Z

()
 1

dPXZ PY Z
(
 1

J and vary the dimensions of X, Y, Z across 3, 10, 20, 30, 50 . In both the setups, we sample data from a multivariate normal

{ }

N Nr
i
(k)

E =

ijk jk ik 1

(

E E

≤1

=
i,j,k∈F

ijk ϕ(i, j, k) N

ik

N

jk

1Eijk

We breakdown the discussion on the computational com-

i,j,k∈F

1Eijk ϕ(r(i), r(j), r(k))
A. Complexity of hash-based estimator

O
N

+ O EdN , (46) distribution where the covariance matrix is set as the identity
function and µ is zero.

17

× ×

× ×

× × × ×

secondary curves with ϕ = exp(− act) show that the

0.014

0.012

0.010

0.008

0.006

0.004

0.30

0.25

0.20

0.15

0.10

0.05

MSE vs. Samples

0 5000 10000 15000 20000 25000

Number of Samples

(a) MSE vs. No. of Samples

MSE vs. Dimensionality

10 20 30 40 50

Dimensionality of Variables

(b) MSE vs. Dimensionality

for training, split as 5000 images/class, and 10000 images
for testing where there are 1000 images/class. Each image
in the dataset is originally 32 32 3. For preprocessing,
we randomly crop the image after padding 4 pixels, then we
randomly flip the image horizontally before normalizing its
values using mean (0.4914, 0.4822, 0.4465) and std. (0.2470,
0.2435, 0.2616) for each channel respectively. During testing,
the images are only normalized and provided to the DNN.

B. ILSVRC2012

This dataset contains 1000 different classes of images
totalling to about 1.2 million images overall for training and
50000 images for validation. The number of images per class
varies between 732 to 1300. For preprocessing, we randomly
crop the image in to 224 224 3, then we randomly flip the
image horizontally before normalizing its values using mean
(0.485, 0.456, 0.406) and std. (0.229, 0.224, 0.225) for each
channel respectively. During testing, we resize the original
image to 256 256 3, take a center crop of size 224 224 3
before normalizing it and providing it to the DNN.

APPENDIX F

EXPERIMENTAL SETUP

Throughout our experiments we use three major Dataset-
DNN combinations, CIFAR10-VGG16, CIFAR10-ResNet56
and ILSVRC2012-ResNet50. Table V lists the main hyper-

Fig. 8: (Fig. 8a) An increase in the number of samples while
dimensionality of input variables are held constant shows
steadily decreasing MSE. (Fig. 8b) Increasing the dimension-
ality of input variables while the total number of samples are
constant shows a steady decline of the MSE. Overall, the
trends observed in both experiments match the expectations
from a valid estimator.

B. Results
Fig. 8 shows the results of our experiments where in Fig. 8a,

we observe the steady decrease in MSE as the number of
samples are increased. This matches our expectation of a
good estimator where an increase in the number of samples
improves the overall estimation accuracy and thus, reduces the
MSE. Fig. 8b illustrates the steady increase in MSE when the
number of samples are held constant but the dimensionality
of the input variables grows larger. Further, the trends from

2
2

2
inclusion of a scaling term improves the overall performance.
Thus, our observations match the expected trends from a valid
estimator.

parameters used to train the VGG16 and ResNet56 networks
and obtain their baseline performances. Pre-trained weights for
ILSVRC2012-ResNet50 are used to compute ACMI values.
Table VI list the basic hyper-parameters used to retrain the
VGG16, ResNet56 and ResNet50 networks and obtain their
final performance.

TABLE V: Training setups used to obtain pre-trained network
weights

VGG16 ResNet56

Epochs 300 300
Batch Size 128 128
Learning Rate 0.1 0.01
Schedule 90, 180, 260 150, 225
Optimizer SGD SGD
Weight Decay 0.0005 0.0002
Multiplier 0.2 0.1

TABLE VI: Base retraining setup used to obtain final perfor-
mance listed in Table 1 of main paper

A. CIFAR10

APPENDIX E
DATASET AND PREPROCESSING

This dataset is a 10 class subset of the original 80 million
tiny images dataset. The dataset split contains 50000 images

2
||act||2

ACMI (= exp(2))

 ACMI (= 1)

2
||act||2

ACMI (= exp(2))

 ACMI (= 1)

M
SE

M

SE

VGG16 ResNet56 ResNet50

Epochs 300 300 100
Batch Size 128 128 64
Learning Rate 0.1 0.1 0.1
Schedule [90, 180, 260] [90, 180, 260] [30, 60, 90]
Optimizer SGD SGD SGD
Weight Decay 0.0005 0.0005 0.0001/0.00003
Multiplier 0.1 0.2 0.1
Label Smoothing 0.35 0.15 0.9

18

≥

2

l l

TABLE VII: Hyper-parameters specific to the ϕ function used final performance the best possible final performance 93.43%.
Here, act refers to the activations and γ values are represented as %

2 2 2

1 lweightsl2 lweightsl2 exp(− weights 2) lactl lweightsl2 lactl2 exp(− weights 2 act 2)

δ 0.9865 0.9925 0.9925 0.988 0.995 0.880 0.919
γ(1) 00.00 00.00 00.00 00.00 00.00 00.00 00.00
γ(2) 00.00 00.00 00.00 00.00 00.00 00.00 00.00
γ(3) 21.02 21.02 21.02 21.02 00.00 41.01 36.03
γ(4) 51.02 51.02 51.02 51.02 96.02 56.03 61.03
γ(5) 61.03 51.02 51.02 71.02 51.02 61.03 56.03
γ(6) 86.03 91.01 91.01 86.03 96.02 81.03 86.03
γ(7) 91.01 91.01 91.01 91.01 86.03 86.03 96.02
γ(8) 91.01 91.01 91.01 91.01 91.01 91.01 86.03
γ(9) 96.02 96.02 96.02 96.02 96.02 96.02 91.01
γ(10) 91.01 91.01 91.01 91.01 91.01 96.02 96.02
γ(11) 91.01 91.01 91.01 91.01 91.01 91.01 81.03
γ(12) 66.01 66.01 66.01 66.01 61.03 61.03 71.02
γ(13) 91.01 91.01 91.01 91.01 91.01 91.01 86.03
γ(14) 00.00 00.00 00.00 00.00 00.00 00.00 00.00

Pruned (%) 84.02 84.12 84.17 84.46 76.13 82.59 76.99

A. Procedure for Upper Pruning Percentage Limit of Layers

Across all the experiments, when using our set of operating
constraints to define γ, we collect the performance of an SVM
model across c ∈ {1, 2, . . . , 99}.

B. Evaluation of Estimator
a) Run-Time: To compare the improvement offered by

our hash-based ACMI estimator, we choose the Minimum
Spanning Tree-based (MST) CMI estimator from MINT [11]
as the nearest competitive baseline. In this experiment, we ap-
ply both estimators over the 9th convolution layer of VGG16.
To ensure fair comparison, we use ACMI with ϕ = 1 as well
as weights 2 where weights are scaled to be between [0, 1]
within each layer, use the grouping formulation introduced in
MINT as well as a manual threshold δ on the ACMI values.
Here, we vary G values for both the layer l and l + 1 (8 and
9) over 16, 32, 64, 128 and 256. We use an average run-time
from 10 trials, except for groups 128 and 256 for the MST-
based estimator for which we use 2 trials. Most importantly,
we set 200 samples per class which results in a total of 2000
samples of activations used by the estimators.

b) Selection of ϕ: We implement a number of possible
functions and evaluate them over the CIFAR10-VGG16 ex-
perimental setup. The exact hyper-parameters used to obtain
ACMI values and obtain the final test accuracy are provided
in Tables VI, and VII. We maintain G = 64 throughout these
experiments. The retraining performances are based on the
highest Pruned (%) at which the model has a test accuracy
that matches or exceeds 93.43% (from MINT).

C. Large Scale Comparison

The basic setup to obtain the final results presented in
Table 2 of the main paper is listed under Table VI. The main
differences in the pruning setup between these experiments
and the ones listed under Estimator evaluation are, 1) we avoid
using a separate δ parameter and instead prune layers up to

γ(l), and 2) we use label smoothing [49]. Below, we list the γ
values obtained through our set of operating constraints used
to define the upper pruning percentage limit for all layers in
the DNN.

For VGG16, γ values from convolution layer 1 to the final
linear layer are 0, 0, 0.8599, 0.9799, 0.9799, 0.9799, 0.9799,
0.9799, 0.9799, 0.9699, 0.9499, 0.8399, 0.9099, 0.

For ResNet56, γ values from convolution layer 1 to the final
linear layer are 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.699, 0.4794, 0.1591, 0.539, 0.3691,
0.9794, 0.089, 0.7392, 0.2695, 0.7294, 0.8896, 0.8398, 0.6699,
0.9699, 0.8698, 0.899, 0.2399, 0.9499, 0.3498, 0.899, 0.7199,
0.8898, 0.9199, 0.9599, 0.9699, 0.9799, 0.9799, 0.9799, 0.

For ResNet50, γ values from convolution layer 1 to the
final linear layer are 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 75.99, 65.99, 67.99, 96.99, 52.99, 82.99, 66.99,
78.99, 78.99, 51.99, 16.99, 67.99, 63.99, 76.99, 87.99, 66.00,
87.99, 92.99, 82.99, 73.99, 69.99, 93.99, 52.99, 95.99, 60.99,
78.99, 84.99, 57.00, 84.99, 80.99, 85.99, 34.99, 68.99, 94.00,
80.00, 87.00, 70.99, 79.99, 91.99, 98.00, 0.0, 0.0.

D. Sensitivity-based Pruning

When using sensitivity-based pruning for ResNet56, we
observe both an increase and decrease in final γ values used
to achieve higher Pruned (%) when compared to the case
without sensitivity. In Table VIII we highlight the difference
in γ values achieved in each case. It is important to note
that while γ values represent the limit up to which layers
should be pruned, in our implementation we obtain this point
by selecting η value just below the point which triggers the
fail-safe. Hence, layers with a skew in the distribution of η
values tend to be pruned more.

ACKNOWLEDGMENT

This work has been partially supported (Madan Ravi Ganesh
and Jason J. Corso) by a Google Faculty Research Award, and

2 2 2

19

TABLE VIII: Comparison of γ values in CIFAR10-ResNet56
when sensitive filters are protected

w/o Sensitivity with Sensitivity

γ(27) 0.699 0.699
γ(28) 0.4794 0.4394
γ(29) 0.1591 0.5507
γ(30) 0.5390 0.7041
γ(31) 0.3691 0.5117
γ(32) 0.9794 0.1796
γ(33) 0.089 0.3183
γ(34) 0.7392 0.6611
γ(35) 0.2695 0.4287
γ(36) 0.7294 0.8261
γ(37) 0.8896 0.7739
γ(38) 0.8398 0.8198
γ(39) 0.6699 0.799
γ(40) 0.9699 0.9299
γ(41) 0.8698 0.7927
γ(42) 0.899 0.8999
γ(43) 0.2399 0.2299
γ(44) 0.9499 0.8957
γ(45) 0.3498 0.5817
γ(46) 0.899 0.8898
γ(47) 0.7199 0.7099
γ(48) 0.8898 0.8759
γ(49) 0.9199 0.8813
γ(50) 0.9599 0.9599
γ(51) 0.9699 0.9699
γ(52) 0.9799 0.9699
γ(53) 0.9799 0.9799
γ(54) 0.9799 0.9799

Compression(%) 68.59 68.96

NIST 60NANB17D191 and (Salimeh Yasaei Sekeh) by NSF
1920908; the findings are those of the authors only and do not
represent any position of these funding bodies.

REFERENCES

[1] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun, “Deeppicar: A low-
cost deep neural network-based autonomous car,” in 2018 IEEE 24th
International Conference on Embedded and Real-Time Computing
Systems and Applications, 2018.

[2] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik,
J. Terwilliger, A. Patsekin, J. Kindelsberger, L. Ding, S. Seaman,
A. Mehler, A. Sipperley, A. Pettinato, B. D. Seppelt, L. Angell,
B. Mehler, and B. Reimer, “Mit advanced vehicle technology study:
Large-scale naturalistic driving study of driver behavior and interaction
with automation,” IEEE Access, 2019.

[3] J. Gu, G. Neubig, K. Cho, and V. O. Li, “Learning to translate in real-
time with neural machine translation,” in Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, 2017.

[4] Y. Jia, R. J. Weiss, F. Biadsy, W. Macherey, M. Johnson, Z. Chen, and
Y. Wu, “Direct speech-to-speech translation with a sequence-to-sequence
model,” Proc. Interspeech 2019, 2019.

[5] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2018.

[6] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” arXiv preprint arXiv:1902.09574, 2019.

[7] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in International Conference on Learning
Representations, 2018.

[8] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016.

[9] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for

deep neural network compression,” in IEEE international conference on
computer vision, 2017.

[10] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015.

[11] M. R. Ganesh, J. J. Corso, and S. Y. Sekeh, “Mint: Deep network
compression via mutual information-based neuron trimming,” in IEEE
International Conference on Pattern Recognition, 2020.

[12] B. Dai, C. Zhu, B. Guo, and D. Wipf, “Compressing neural networks us-
ing the variational information bottleneck,” in International Conference
on Machine Learning, 2018.

[13] J.-H. Luo and J. Wu, “An entropy-based pruning method for cnn
compression,” arXiv preprint arXiv:1706.05791, 2017.

[14] Y. Suhov, I. Stuhl, S. Y. Sekeh, and M. Kelbert, “Basic inequalities
for weighted entropies,” Aequationes mathematicae, vol. 90, no. 4, pp.
817–848, 2016.

[15] T. Cover and J. A. Thomas, Elements of information theory. Chichester:
1st edn. John Wiley & Sons, 1991.

[16] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990.

[17] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993.

[18] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in neural information processing systems, 2016.

[19] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in 5th International Conference on Learning
Representations, ICLR, 2017.

[20] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[21] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in IEEE
International Conference on Computer Vision, 2017.

[22] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain
damage,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[23] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in European conference on computer vision, 2018.

[24] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in IEEE International Conference on Computer
Vision, 2017.

[25] J. Yoon and S. J. Hwang, “Combined group and exclusive sparsity
for deep neural networks,” in International Conference on Machine
Learning-Volume 70, 2017.

[26] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, “Discrimination-aware channel pruning for deep neural
networks,” in Advances in Neural Information Processing Systems, 2018.

[27] Y. Li, S. Gu, K. Zhang, L. Van Gool, and R. Timofte, “Dhp:
Differentiable meta pruning via hypernetworks,” arXiv preprint
arXiv:2003.13683, 2020.

[28] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann, “Towards optimal structured cnn pruning via generative
adversarial learning,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[29] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Varia-
tional convolutional neural network pruning,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[30] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep
learning,” in Advances in neural information processing systems, 2017.

[31] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, 2004.

[32] K. R. Moon, K. Sricharan, and A. O. Hero, “Ensemble estimation
of mutual information,” in 2017 IEEE International Symposium on
Information Theory, 2017.

[33] J. C. Principe, D. Xu, J. Fisher, and S. Haykin, “Information theoretic
learning,” Unsupervised adaptive filtering, 2000.

[34] H. H. Yang and J. Moody, “Data visualization and feature selection: New
algorithms for nongaussian data,” in Advances in neural information
processing systems, 2000.

[35] N. Leonenko, L. Pronzato, V. Savani et al., “A class of rényi information
estimators for multidimensional densities,” The Annals of Statistics,
2008.

20

[36] M. Noshad, K. R. Moon, S. Y. Sekeh, and A. O. Hero, “Direct estimation
of information divergence using nearest neighbor ratios,” in 2017 IEEE
International Symposium on Information Theory, 2017.

[37] S. Yasaei Sekeh and A. O. Hero, “Geometric estimation of multivariate
dependency,” Entropy, 2019.

[38] M. Noshad, Y. Zeng, and A. O. Hero, “Scalable mutual information
estimation using dependence graphs,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, 2019.

[39] I. Csiszár and P. C. Shields, “Information theory and statistics: A
tutorial,” J. Royal Statist. Soc. Ser. B (Methodology.), 2004.

[40] S. Yasaei Sekeh and A. O. Hero, “Geometric estimation of multivariate
dependency,” Entropy (Women in Information Theory), 2018.

[41] W. Härdle, Applied Nonparametric Regression. Cambridge University
Press, 1990.

[42] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR, 2015.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision, 2015.

[46] A. Prabhu, G. Varma, and A. Namboodiri, “Deep expander networks:
Efficient deep networks from graph theory,” in European Conference on
Computer Vision, 2018.

[47] N. Gkalelis and V. Mezaris, “Fractional step discriminant pruning: A
filter pruning framework for deep convolutional neural networks,” in
IEEE International Conference on Multimedia & Expo Workshops, 2020.

[48] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in In-
ternational Conference on Learning Representations, 2019.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in IEEE conference on
computer vision and pattern recognition, 2016.

	do
	then
	end end
	Step 2 Bias because of collision: Let X =

