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ABSTRACT

The belowground architecture of the critical zone (CZ) consists
of soil and rock in various stages of weathering and wetness that
acts as a medium for biological growth, mediates chemical reac-
tions, and controls partitioning of hydrologic fluxes. Hydrogeo-
physical imaging provides unique insights into the geometries and
properties of earth materials that are present in the CZ and beyond
the reach of direct observation beside sparse wellbores. An im-
proved understanding of CZ architecture can be achieved by lev-
eraging the geophysical measurements of the subsurface. Creating
categorical models of the CZ is valuable for driving hydrologic
models and comparing belowground architectures between differ-
ent sites to interpret weathering processes. The CZ architecture is
revealed through a novel comparison of hillslopes by applying

facies classification in the elastic-electric domain driven by sur-
face-based hydrogeophysical measurements. Three pairs of hill-
slopes grouped according to common geologic substrates —
granite, volcanic extrusive, and glacially altered — are classified
by five different hydrofacies classes to reveal the relative wetness
and weathering states. The hydrofacies classifications are robust
to the choice of initial mean values used in the classification and
noncontemporaneous timing of geophysical data acquisition.
These results will lead to improved interdisciplinary models of
CZ processes at various scales and to an increased ability to pre-
dict the hydrologic timing and partitioning. Beyond the hillslope
scale, this enhanced capability to compare CZ architecture can
also be exploited at the catchment scale with implications for
improved understanding of the link between rock weathering,
hydrochemical fluxes, and landscape morphology.

INTRODUCTION

The critical zone (CZ) is frequently defined to encompass the
near-surface earth system from the top of the plant canopy down
to the base of circulating groundwater (Anderson et al., 2008). CZ
science aims to reveal the influence of physical, chemical, and bio-
logical processes and interactions in the zone of the earth’s crust

that effectively supports life. The subsurface portion of the CZ is
essentially analogous to the weathering zone plus aggregational
and degradational processes, that is, the zone between the land sur-
face and unaltered (unweathered) bedrock. There is currently no
single unified theoretical framework that can predict the structure
of the CZ, nor how the CZ controls hydrologic processes (Riebe
et al., 2017).

Manuscript received by the Editor 29 June 2020; revised manuscript received 15 January 2021; published ahead of production 6 February 2021; published

online 17 June 2021.

!University of Wyoming, Department of Geology and Geophysics and Department of Civil and Architectural Engineering, 1000 East University Avenue,
Laramie, Wyoming 82071, USA. E-mail: aparseki@uwyo.edu (corresponding author).

University of Wyoming, Department of Geology and Geophysics, 1000 East University Avenue, Laramie, Wyoming 82071, USA. E-mail: dgrana@uwyo
.edu; fneves@uwyo.edu; anthmoraes @gmail.com; nsmeltz@uwyo.edu; jhwestenhoff @ gmail.com.

3University of Wyoming, Department of Ecosystem Science and Management, 1000 East University Avenue, Laramie, Wyoming 82071, USA. E-mail:

mpleasan @uwyo.edu; tkellene @uwyo.edu.

4U.S. Department of Agriculture, Agricultural Research Service, 251 East Front Street, Suite 400, Boise, Idaho 83702, USA. E-mail: mark.seyfried @ars.usda

.gov.

5University of Arizona, Department of Environmental Science, 1177 East 4th Street Tucson, Arizona 85721, USA. E-mail: bmoravec@arizona.edu;

chorover@arizona.edu.
© 2021 Society of Exploration Geophysicists. All rights reserved.

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/86/5/\WWB29/5432824/ge0-2020-0438.1.pdf
bv Universitv of Wvomina user



WB30 Parsekian et al.

The term “CZ architecture” (Leopold et al., 2013; Befus et al.,
2011; Orlando et al., 2016; Brantley et al., 2017; Riebe et al.,
2017; West et al., 2019; Moravec et al., 2020) has been used as a
term roughly analogous to structure. Here, we build upon and clarify
this definition and use it to mean “the geometries and material proper-
ties associated with the CZ subsurface” with implied relevance to the
corresponding subsurface hydrologic properties such as porosity and
saturation. The makeup of the CZ subsurface is determined by many
factors such as the parent material, age of uplift, glaciation history,
geochemical weathering, incision/deposition processes, and bioturba-
tion. Direct observations of the subsurface are generally limited to
road cuts, well logs, and soil pits that are labor-intensive and/or have
limited spatial coverage. As a result, subsurface structure and proper-
ties are often estimated using sparse information. Here, we take a
combined hydrogeophysical and rock-physics approach to enable
comparisons of subsurface hydrologically relevant properties of
CZ architecture between similar and contrasting hillslopes.

Near-surface geophysics has emerged as a powerful tool to image
the subsurface and provide information on subsurface properties
and geometries that benefit our understanding of the hydrologic
process for CZ investigations (Parsekian et al., 2015). The transla-
tion from geophysical properties to material properties involves the
use of rock-physics relationships. For example, Archie’s law may
be used to translate resistivity to water content (Binley et al., 2015).
When appropriate calibration information is available, these rock-
physics relationships can provide the basis for meaningful interpre-
tations (Flinchum et al., 2018a).

In mountain environments, hydrogeophysical measurements are
frequently conducted at the hillslope scale (Leopold et al., 2013;
Befus et al., 2011; Holbrook et al., 2014; Olyphant et al., 2016).
Hillslopes are generally considered the smallest meaningful hydro-
logic unit because they control the transformation of precipitation
inputs into vertical and lateral water fluxes (Loritz et al., 2017).
Hydrologic processes in watersheds in sizes up to the mesoscale
(<50 km?) are dominated by hillslope behavior (Robinson et al.,
1995). The concept of hillslope hydraulic connectivity is used to
explain the relationship between hillslope soil moisture and stream-
flow generation (McNamara et al., 2005). Understanding the sub-
surface structure of mountain hillslopes thus has implications for
developing conceptual models of hydrologic partitioning that are
grounded in understanding the hydraulic connections in the CZ
(Mclntosh et al., 2017). Furthermore, interrogating the subsurface
helps resolve hydraulic properties such as storage and routing, as
well as conceptualizing geochemical transformations along flow
paths (White et al., 2019). Although incorporating geophysical im-
ages into subsurface parameterizations for hydrologic models has
been attempted (Binley et al., 2004), unclassified images do not
necessarily improve the ability to retrieve hydrologic parameters
(Binley et al., 2010). Furthermore, fully distributed parameters from
more than one geophysical image type (e.g., seismic and resistivity)
are not easily jointly implemented into modeling frameworks with-
out relying on rock-physics models such as Archie’s law or Hertz-
Mindlin, which are difficult to calibrate across 2D or 3D geophysi-
cal images. More specifically, having a simplified categorical def-
inition of subsurface material geometry and properties is useful for
hydrologic interpretations such as flow modeling (Farmani et al.,
2008; Claes et al., 2020) and is of interest in this study.

Many past studies have used geophysical techniques to analyze
subsurface structure in mountain hillslopes (Mills, 1990; Leopold

et al.,, 2013). Befus et al. (2011) use shallow seismic refraction
tomography (SSR) transects to determine the depth to saprolite,
fractured rock, and unaltered rock for two small watersheds in
the Boulder Creek Critical Zone Observatory (CZO). It was found
that saprolite started at approximately 1 m depth and fractured rock
started at approximately 6 m depth. The unaltered Precambrian
igneous and metamorphic rock started at approximately 12 m depth.
Leopold et al. (2013) use electrical resistivity tomography (ERT)
transects to study subsurface structure in the same watersheds. The
estimated depth to fractured bedrock of 4.3-5.8 m by ERT was
0.5-1.5 m shallower compared to the seismic survey. Overall,
the results between the seismic and ERT surveys agreed, with both
techniques showing high lateral variability. Olyphant et al. (2016)
use SSR to classify a volcanic substrate into soil, regolith, and bed-
rock, interpreting bedrock between 4 and 60 m below the surface.

Although independent geophysical methods may be useful for
hydrologic interpretations of the CZ, particular advantages emerge
from combining various geophysical measurements that provide
complementary information. For example, seismic surveys may
provide information about the makeup of the CZ (i.e., soil, saprolite,
fractured bedrock, and solid bedrock), while time-lapse ERT mea-
surements can be used to study subsurface moisture dynamics
through time (Thayer et al., 2018). Holbrook et al. (2014) use
SSR and ERT to study CZ structure across a forested slope and a
swampy meadow in the Southern Sierra CZO, east of Fresno, CA. A
rock-physics model, linking porosity and bedrock mineralogy to
seismic velocity, was used to estimate the spatial distribution of sub-
surface porosity. Comparison with observed water contents and
porosities from hand auger and Geoprobe samples, obtained coinci-
dently with the geophysics data, indicated that the top 3 m of the
subsurface was mostly dry whereas saturation appeared at depths
>10 m. The results of the seismic and ERT surveys indicated that
the depth to unaltered bedrock ranged from 10 to 35 m, with an
average depth of 23 m.

Simple, qualitative, and concurrent interpretation of colocated geo-
physical measurements has proved useful, although it is at least
somewhat subjective due to the qualitative choices of the interpreter
(Thayer et al., 2018; Kotikian et al., 2019). Joint geophysical inver-
sion optimizes a subsurface model of physical properties (i.e.,
permittivity, velocity, and resistivity) given two different input geo-
physical data sets assuming some structural similarity (Gallardo and
Meju, 2003), whereas joint rock-physics inversion identifies a subsur-
face model of material properties (i.e., porosity, saturation, water con-
tent, etc.) that satisfies both data sets by using rock-physics
relationships (Grana, 2018). It is a nontrivial task to quantitatively
link different geophysical data sets through any joint approach,
and each has strengths and weaknesses. For our purposes, for the
categorizing, delineating, and simplifying of subsurface structures
such as hydrofacies (Anderson, 1989) to be useful for modeling stud-
ies, the end result of Geoprobe relative material property classes is
most desirable; therefore, we use joint classification in the elastic-
electric domain for this work. This approach uses independent geo-
physical inversions as inputs and produces a single classified image.

Statistical and machine learning approaches, such as discriminant
analysis and k-means clustering, have been applied previously to
lithologic and fluid facies classification problems. Clustering methods
(Hastie et al., 2002) generally allow classifying a group of samples
based on a set of measurements, such as geophysical data or estimated
rock and fluid properties. Paasche et al. (2006) propose a fuzzy c-
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means method for the classification of lithologic facies based on pet-
rophysical parameters estimated from geophysical data. Paasche et al.
(2010), Paasche and Eberle (2011), and Sun and Li (2016) apply
fuzzy logic methods to various geophysical data sets and compare
it to other clustering methods. Bedrosian et al. (2007) use clustering
analysis to derive the geologic structure of the subsurface using geo-
physical data. Statistical methods such as the expectation-maximiza-
tion (EM) method for multimodal distributions (Hastie et al., 2002)
have also been used for facies classification problems in exploration
geophysics (Grana and Della Rossa, 2010; Grana et al., 2015) and for
zonation problems in near-surface geophysics (Doetsch et al., 2010).

In this work, we adopt the EM method as a semisupervised algo-
rithm, where instead of randomly choosing the prior parameters of
the statistical model as in many data science applications, we select
them according to the available geologic information and rock-phys-
ics reference values, to reduce the nonuniqueness of the classification
problem. Compared to deterministic solutions of classification meth-
ods, the use of EM for multimodal distributions allows quantifying
the uncertainty in the predicted classification that should be consid-
ered in the decision-making process. Our focus is on classification of
facies based on fluid-relevant properties — that is, hydrofacies, spa-
tially defined hydrologic units — rather than zonation — to dis-
criminate/classify the vertical and lateral variations of fluid (air and
water) and lithology (soft and stiff rocks) in the near surface. Joint
rock-physics inversion can produce models of material properties that
satisfy multiple geophysical data sets; however, to achieve our objec-
tive of producing simplified subsurface models that adhere to con-
ceptual models of subsurface hillslope and catchment architecture
(e.g., spatial continuity, location of active weathering processes), clas-
sification in the elastic-electric domain is required. The proposed im-
plementation of the EM algorithm assumes that the distribution of the
geophysical properties is Gaussian within each hydrofacies (Grana
etal., 2017; Astic et al., 2020), resulting in a Gaussian mixture model
(Grana and Della Rossa, 2010; Grana et al., 2017). The statistical
classification does not make use of an explicit rock-physics model
that is hard to calibrate. We use the rock-physics model to generate
the training data set, and then we classify the elastic and electrical
properties estimated from measured geophysical data using the EM
clustering method. This approach avoids issues with limited direct
“deep” subsurface sampling for calibration, while quantitatively in-
tegrating the SSR and ERT data sets. It also allows for reliable, in-
dependent geophysical inversions.

This investigation is novel due to the combination of ERT and
SSR that has been only used in limited past classification studies
(Hachmoller and Paasche, 2013), the application to CZ science,
and — most importantly — our study highlights a comparison
of geologically grouped classified properties between three pairs of
sites. The purpose of this investigation was to reveal the hydrolog-
ically relevant material properties and geometries (i.e., the hydro-
geophysical properties) of the CZ associated with the three geologic
substrates as the context for future hydrologic investigations. We
were motivated by (1) the relative lack of multidimensional subsur-
face property maps available to CZ scientists for hydrologic inter-
pretations, (2) the rarity of controlled studies making comparisons
between geographically distinct CZ sites, and (3) a scarcity of ex-
amples quantitatively integrating colocated hydrogeophysical data
sets particularly in the context of CZ science.

Our objectives were to (1) reveal the relative distribution of sub-
surface material properties at each hillslope, (2) expose the relative
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spatial wetness of the substrate at each hillslope, (3) compare the
geometries and properties within and across geologic parent mate-
rials, and (4) contribute to the growing body of literature demon-
strating statistical approaches for joint analysis of geophysical
images in the absence of detailed extracted samples. Through these
objectives, we address the following questions. (1) What are the
hydrogeophysical properties of hillslopes underlain by glacially
deposited, weathered granite, and volcanic geologic materials?
(2) How is the geologic history linked to modern hydrogeophysical
properties of the substrate? (3) What is the spatial variability in the
near subsurface of each site in the context of structures, geometries,
relative wetness, and materials?

STUDY SITES AND METHODS
Study sites

We selected six representative hillslopes (Table 1) paired across
the three characteristic geologic substrates: old granite (GR), young
extrusive volcanics (VO), and glacially altered (G). Geophysical
transect locations are indicated in Appendix A and in the data set
associated with this work (Parsekian et al., 2020). We focused on
CZO sites at Reynolds Creek in Idaho and Jemez River Basin in
New Mexico and three additional sites in Wyoming. The sites were
chosen based on accessibility, the availability of geophysical data
sets, and because they are all in snowmelt-dominated catchments.
Because each of the sites has been established for several years or
more before this study, they have informal names; however, we have
used simple geologic/geographical identifiers here to enable easy
comparison (Table 1). Most of the hillslopes are generally south-
facing except for the GR_ID and VO_ID sites that are northeast-
facing. Due to their relatively low elevations, the GR_ID and
VO_ID sites receive meltwater inputs from snowdrifts, whereas
snowpack at the other four higher elevation sites is more continu-
ous. Additional details on the surface, geographic, and geologic
context for each hillslope may be found in Table 1. More information
on the hydrologic dynamics of each site can be found in Fullhart et al.
(2018), Thayer et al. (2018), and Pleasants et al. (2017) (Gs_WY);
Moraes (2019) (Gn_WY); Seyfried et al. (2018) (GR_ID and
VO_ID); and Kotikian et al. (2019) (GR_WY); Moravec et al.
(2020) and White et al. (2019) (VO_NM). Although the sites have
a variable and unknown long-term climate history as well as contrast-
ing vegetation communities, we assume that the geologic substrate is
the first-order architectural control for these moderate angle, semiarid
hillslopes (Salvucci and Entekhabi, 1995; Onda et al., 2006).
Although climate and meteoric water inputs are central controls
on hydrology and weathering processes that drive the evolution of
subsurface CZ properties and geometries, the timescales over which
we know about local climate by direct measurement of approximately
0.1 ka and the timescales that we can reliably predict past local hydro-
climate of approximately 10 ka (Liefert and Shuman, 2020) are short
in comparison to the timescales of many mineral weathering proc-
esses of 100-10,000 ka (White and Brantley, 2003). Although we
report modern estimates of hydrologic inputs (Table 1), these are pri-
marily for context and should be recognized to not necessarily re-
present variability over longer timescales that may be important
for weathering processes.

The availability of direct subsurface observations varies substan-
tially between sites ranging from only shallow soil pits (GR_ID)
to >40 m deep wells with geophysical logs and geochemical
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Table 1. Site parameters. After the geologic prefix indicated in the text, the U.S. state abbreviation of each site’s location is appended (ID, WY, NM). To discriminate
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the two G sites that are both in Wyoming, we use an “n” and “s” after the geologic prefix, indicating that the site is located in the north or south re
respectively. Contextual site references and mean-annual precipitation (MAP):

2018),

MAP

Vegetation (mm yr~")

Slope aspect

Elevation
(m

Latitude Longitude

Age (Ma)

Geologic parent
material

Informal name

Site ID

610
620
700
480
860
690

Rangeland

South-southeast

2570
1720
3015

—105.39
-116.79
—106.54
-116.72
—106.21
-107.20

41.22
43.12

>55

Granite

quarters1
Johnston draw (RCCZO)?

GR_WY  Head
GR_ID

East-northeast
West-southwest

>66

1.6-1.1

Granite

VO_NM  Mixed conifer ZOB

Fire-impacted forest

35.88

(JRBCZO) Tuff
Olivine basalt

Upper sheep creek (RCCZO)*
No-name’

Spear-O°

VO_ID

Rangeland

Northeast
South-southwest

1890
2940
2640

43.12

7.2-3.6

Gs_ WY

Pine forest

4134
44.54

0.012

Glacial deposits; gneiss

Gn_WY

Southwest

0.012

Glacial deposits; granite
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characterization (VO_NM). Gs_WY has a 3.1 m borehole and soil
pits, and GR_WY and Gn_WY have boreholes <2 m in depth.

Geophysical approach

The key characteristic of this investigation is the joint analysis of
two geophysical measurements that respond to distinctly different
subsurface physical properties yet can be deployed to have gener-
ally similar spatial resolution. The use of SSR and ERT together
enables more confident interpretation of the material properties at
any given point in the subsurface compared to their isolated use.
Each measurement effectively helps to explain the poorly con-
strained traits of the other. For example, the compressional wave
(P-wave) velocity (Vp) of a material only varies 0.030 km s~! in the
range of 0%—99% saturation for soft sands (Bachrach and Nur,
1998), whereas the electrical resistivity (p) is highly sensitive to
saturation (Miller et al., 2008; Hiibner et al., 2015; Claes et al.,
2019). Having both pieces of information colocated across the sub-
surface constrains the number of physically plausible spatial distri-
butions of material properties that can be produced. The concept of
correlating electrical and acoustic data sets was broadly introduced
for near-surface geophysical imaging by Meju et al. (2003), fol-
lowed by integrated geostatistical applications (Hachmoller and
Paasche, 2013), as well as qualitative cointerpretation (Kotikian
et al., 2019) on a site-specific basis. Here, we measure the two data
sets on the same line in the field, regrid to a rectilinear 0.5 m grid,
and spatially colocate the tomographically inverted results for stat-
istical analyses and interpretation. We keep only the grid values that
are within the calculated maximum depth of investigation of each
measurement. Although these measurements are sensitive to near-
surface soil properties, due to the inherent spatial resolution of ERT
and SSR and regridding to a 0.5 m mesh, shallow soils may only be
represented by the top one or two rows of pixels. We apply the joint
classification in the elastic-electric domain to spatially partition the
image given the colocated input physical properties. Given the
available geophysical data, this leads to a classification naturally
driven by the relative wetness and relative stiffness. To achieve geo-
logic plausibility, the classification seeks to group similar material
properties. This follows the principle of geologic “facies,” or units
of rock with similar characteristics. However, given the material
properties that we determine are not exclusive to petrographic rock
properties, we instead use the term “hydrofacies” for these classi-
fications, a term coined by Anderson (1989) who indicates a spa-
tially defined hydrologic unit with distinct hydrologic properties.

Seismic refraction

Seismic refraction data sets were measured in the summer of sev-
eral years, between mid-June and mid-August, as indicated in Ta-
ble 2. Each survey used four 24-channel Geometrics Geode systems
with 40 Hz vertical component geophones except for Gn_WY,
which used only two Geodes (Table 2). We used a 5.4 kg sledge-
hammer striking a steel plate to generate the seismic source, with
824 stacks at each shot point. We processed the seismic data using
the Geogiga software package (Geogiga Technology Corp.) for
picking and inversion using a 4:1 horizontal to vertical smoothing
ratio (based on the assumption that weathering and depositional
processes result in a general trend toward horizontal layering rather
than the opposite), a 0.5 m quadrilateral mesh grid size, and a maxi-
mum of five iterations. Using these parameters, all of the inversions
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converged with a root-mean-square (rms) misfit of 2 ms (Table 2).
The depth of investigation was masked for all tomograms using the
deepest calculated raypath (see Appendix B). We estimated the sen-
sitivity of the seismic images following the approach of Holbrook
et al. (2014), using a suite of 10 starting models for each tomogram
(see Appendix B).

ERT

ERT measurements were made on the same day of the same year
as the corresponding seismic measurement at each site, except for
VO_ID where we used ERT data from 2019 and seismic data col-
lected in 2014 as a part of previous work (Seyfried et al., 2018). The
ERT data from the VO_ID site were measured on the same day of
2019 as the seismic data were measured in 2014; therefore, we as-
sume that the subsurface hydrologic conditions were similar during
these two seasons (2014 and 2019 were +5% of MAP based on the
accumulated precipitation measured at the Reynolds Creek SNO-
TEL site during each water year until the date of measurement).
Each data set was acquired with a 4PointLight 10w (Lippmann
Geophysical Instruments) single-channel resistivity meter, except
for Gs_WY, which was measured with a DAS1 (Multiphase Tech-
nologies, Sparks, NV) because that site was initiated during an ear-
lier project (Thayer et al., 2018). Previous work demonstrates that
different ERT instruments will produce statistically equivalent mea-
surements (Parsekian et al., 2017); therefore, we assume that our
data sets are comparable. The electrode spacing was 1 m (except
for Gs_WY; 1.5 m) and a Wenner array was used for all measure-
ments. Table 2 summarizes all of the measurement parameters. ERT
data were inverted using R2 (Binley, 2015) with a custom error
model for each site based on observed data uncertainties following
Robinson et al. (1995). The X? goodness of fit for each tomogram
was between 1.00 and 1.41 (Table 2) indicating a good match be-
tween the model and the data. The depth of investigation was cal-
culated using the approach of Oldenburg and Li (1999) (see
Appendix B).

Theory for the EM method

To produce material properties based jointly on two geophysical
images, we use the EM method for Gaussian mixture models (Has-
selblad, 1966; Dempster et al., 1977; Hastie et al., 2002). To begin,
we assume a multivariate Gaussian distribution Ny, (d; st Zqpe) of

WB33

the geophysical attributes d for each hydrofacies k (for
k=1, ...N), with the mean Hapc and the covariance matrix X ;.
Therefore, the probability distribution of d is a Gaussian mixture
model of the form

N
fd) = Z”kNM(d;ﬂd\k’zd\k)’ ()
=1

where 7; are the weights of the components for a Gaussian mixture
which correspond, following our assumption, to the probability of
each class.

The EM method is an iterative algorithm based on two steps. In
the expectation step, given the current configuration of the esti-
mated parameters, we compute the expectation of the likelihood
function. In the maximization step, we maximize the expected like-
lihood and update the parameter configuration. The goal is to es-
timate the set of hyperparameters 6:

0: (71'1, .. .,Ed‘N), (2)

<> TN-15Hda|1» ---»ﬂd|1vs2d\1» ..

to maximize the log-likelihood of the M measured data points

M N
£(0.d) = Z Z log(7fa(d;))
j=1 k=1
M N
= Z Z lOg(”kNM(dj;ﬂd\ka Z k) 3)
j=1 k=1
with the condition that 7z; + ... + zy_; = 1 — 7. To maximize
the log-likelihood function £(0,d), we define an auxiliary variable
k= [y, ..., ky,]7, such that, foragiven j € {1, ..., M}, x; = 1if
d; comes from fy;(d;); otherwise, x; = 0 for i = 1, ..., Np. If the

values of the variable x are known, the maximum likelihood esti-
mates of gy and X,y would be the sample mean and covariance
matrix estimated from the data d; belonging to the kth component
(i.e., ki j = 1) and the estimate of z; would be the proportion of
samples such that x; ; = 1. Because the values of the variable
are unknown, we substitute the unknown values «; ; with its ex-
pected value y, ;(0) = E(x; ;|0.d;) = P(k; = 116, d;). In the maxi-
mization step, the so-defined expectations are used to update the
estimates of the parameters. The expectation and maximization

Table 2. Acquisition and analysis parameters. The terms X> and rms are the goodness-of-fit parameters for the ERT and SSR
inversions, respectively. The terms a and b are the coefficients of the linear error model used in ERT inversion.

ERT SSR

ERT Electrode # of Date of Geophone # of Date of rms
Site instrument spacing (m) electrodes measurement a b X?  spacing (m) geophones measurement (ms)
GR_WY Lippmann 4PL 1 64 6/16/2017  0.020 0.032 1.15 0.5 96 6/16/2017 2.4
GR_ID Lippmann 4PL 1 64 7/24/2019  0.020 0.040 1.00 1 96 7/24/2019 1.5
VO_NM Lippmann 4PL 1 64 6/18/2019  0.010 0.025 1.15 1 96 6/18/2019 1.7
VO_ID Lippmann 4PL 1 64 8/17/2019  0.010 0.025 1.41 1 96 8/1712014 2.2
Gs_WY  MPT DASI 1.5 56 7/7/2016  0.020 0.040 1.28 1 96 71712016 1.4
Gn_WY Lippmann 4PL 1 60 7/9/2018 0.020 0.040 1.00 1 48 7/9/2018 1.8
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steps are then repeated until convergence to obtain the optimal set of
the parameters 6, = argmaxy?(f,d) that fits the Gaussian
mixture model to the data.

The EM method requires an initial guess for the parameters in 6,
which is chosen according to the available site-specific geologic
information and literature data. Although a “global” set of starting
parameters may seem desirable for reducing bias and maximizing
portability of the algorithm, in practice the variability in site geo-
physical and material properties is too large for a global starting
point to be effective. A key requirement of this method is the human
input to define plausible properties for categorization. The hydro-
facies classification is then obtained according to a Bayesian clas-
sification method. The posterior distribution of each class, given the
geophysical data, P(k|d), is then obtained by applying Bayes’s rule:

P(d'k)P(k) _ ./\/’M(d;ﬂd‘k,zdlk)ﬂ'k
P(d) S N v (ds s Zan)
k=1, ...,N. 4)

P(k|d) =

At each location, the predicted classification is then computed as the
argument of the maximum of P(k|d) for k =1, ..., N, that is, the
class for which the expression in equation 4 attains its maxi-
mum value.

EM hydrofacies classification

The statistical algorithm used for hydrofacies classification is the
EM method that identifies the maximum a posteriori (maximum
likelihood) estimates of the parameters of interest in complex data
sets in which the model depends on an unobserved categorical var-
iable (Hastie et al., 2002). In our application, the method is used to
estimate the parameters of a Gaussian mixture model for a geo-
physical data set d composed of seismic (elastic) and electrical
properties, namely, Vp and p, estimated from geophysical measure-
ments. Based on this model, we can then compute the probability
distribution of hydrofacies conditioned by geophysical data, that is,
the probability for each data point belonging to a given hydrofacies
and classify that hydrofacies.

We perform the classification on hillslope pairs grouped by
geologic history.

The EM approach can be applied to an arbitrary number of
classes; however, in this case — aiming to balance simplicity
and geologic plausibility — we allow for division in up to five
classes as guided by a basic abstraction of the rock-physics param-
eter space. As a conceptual model, we consider the domain of re-
sistivity and seismic velocity and then split this space into four
quadrants: high Vp, high p; high Vp, low p; low Vp, high p; and
low Vp, low p. Given that resistivity is a log-spaced parameter
whereas velocity is linear, the quadrants may not be equal in space.
For data sets with highly skewed distributions, a normal score trans-
formation could be applied (Deutsch and Journel, 1992). Given the
anticipated material properties, these quadrants then approximately
correspond to hydrofacies: stiffer and drier (DSt), stiffer and wetter
(WSt), softer and drier (DSo), and softer and wetter (WSo). We
assign relative properties, that is, “drier” versus “wetter,” because
we are not particularly concerned with the quantifiable wetness
of a subsurface point; rather, we prioritize the classification. We
assume that higher resistivity is generally associated with drier ma-
terials and lower resistivity is associated with wetter materials in a

spatial sense; however, this is not strictly the case given the hetero-
geneity of the subsurface material properties (e.g., porosity). The
spatial continuity of the facies is not explicitly enforced; rather,
it is implicit in the geophysical images. An advantage of the joint
rock-physics classification is that the seismic velocities partially re-
veal this spatial heterogeneity, so spatially variable wetness can be
more confidently inferred. The terms “stiffer” and “softer” may at
first appear counterintuitive; however, these are typical terms that
we retain for compatibility with the rock-physics literature. These
terms can also be thought of as representing “less weathered”” and
“more weathered.” The soft/stiff terms also help alleviate ambiguity
between granular porosity and fracture porosity, both of which are
relevant to defining weathering, but they have very different struc-
tural implications. For a given lithology, a stiffer rock is less weath-
ered and retains stiftness due to less mass loss per unit volume —
this is likely to be weathered in place, fractured rock, immobile re-
golith, or even fresh bedrock. A softer rock is more weathered (or
has more primary porosity, as in the case of vesicular volcanic
rocks), has experienced more mass loss per unit volume, and
may be considered “mobile regolith (i.e., weathered rock)” and/or
soil. We avoid attempting quantitative transformations to porosity
and/or saturation because these parameters are poorly defined with-
out calibration. Our approach enables the classification and evalu-
ation of material and geometric patterns without suffering from the
limitations of extremely sparse direct observations. We recognize
that the chosen hydrofacies classes (i.e., DSt, WSt, DSo, and WSo)
are not associated directly with numerical values of hydrologic
properties; however, the use of statistical classification means that
the determination of classes based on geophysical input data is
quantitative. The fifth category in our classification is “unweathered
bedrock,” corresponding in principle to the highest velocity and re-
sistivity, but distinct from the DSt class due to the lack of weath-
ering. It is important to recognize that, although we allow these five
categories into the EM algorithm, it is not required to make use of
all five for a given data set. Although our five a priori selected
classes focus on the logical quadrants of the velocity-resistivity elas-
tic-electric space, cases may exist in which more or fewer classes
would be appropriate. Although we do not attempt here to explore
the sensitivity of our results to the number of allowed classes, we
highlight that future applications of this method may wish to do so if
there is specific evidence about the substrate to justify it.

Although after EM classification we report the probability of the
most likely class at each pixel in each profile, this statistic is of
limited utility because it cannot capture information about the prob-
ability of each of the other four possible classes at the same loca-
tions. Therefore, we also report the information entropy (Shannon,
1948; Mavko and Mukerji 1998; Grana et al., 2012) that contains
information about all probabilities at each point in the profile. As a
measurement of uncertainty, entropy is appropriate for categorical
variables and exceeds standard measures such as variance and
covariance. For the vector of five probabilities (¢) produced by the
EM classification, entropy (/) is calculated by

M
h=—cTlogyc=- Z cilogy c;, (5)

i=1

where M is the number of facies and the logarithm is calculated in base
M because there are M facies classified and this therefore normalizes
the range of entropy to be between 0 and 1. Because all five facies
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probabilities are contained within ¢, this entropy calculation results in
a value of one if there is an equal probability of all facies (i.e., ¢ = [1/5
1/5 1/5 1/5 1/5]) which would correspond to maximum entropy and
therefore maximum uncertainty. In contrast, if one facies has a prob-
ability of one, and the other four have probability of zero, this results
in a minimum entropy of 2 = 0 and no associated uncertainty.

One of our objectives is to produce classified images of the sub-
surface that may be useful in driving process-based models.
Although the geometries of the CZ architecture retrieved through
the classifications are useful direct inputs into models (e.g., hydro-
logic flow models), our defined classes are relative and alone do not
produce specific estimates of material properties. Nonetheless, we
envision that this approach leads to flexibility for the end user to
estimate and assign properties to these classes based on site knowl-
edge, for example, using generalized resources such as the Rosetta
library (Schaap et al., 2001).

Synthetic hillslope

We used a fictitious synthetic hillslope with numerical forward
models of ERT and seismic data to demonstrate that the classifica-
tion method can recover the input hydrofacies. We started by defin-
ing the porosity and saturation material properties for each facies,
and then for each location in the synthetic subsurface we used Ar-
chie’s law to predict resistivity and the Hertz—Mindlin theory with
the Hashin—Shtrikman elastic bounds (Mindlin, 1949; Hashin and
Shtrikman, 1963) to predict seismic velocity. Next, we used the for-
ward modeling capabilities in R2 and PyGIMLi (Riicker et al.,
2017) to calculate raw geophysical data with 2% noise (applied
to resistances and traveltimes, respectively) based on the synthetic
hillslope properties, and we finally inverted the modeled data sets
and applied EM classification using identical steps that were used
for the field data sets. Please see Appendix C for details on the rock
physics and forward modeling.

Validation data

Although the highest quality field validation data including
deep borehole logs of resistivity and seismic velocity is only avail-
able at VO_NM, we also use shallow borings available at three
other sites for comparisons with our classification results. At
Gs_WY and GR_WY, borings (3 and 2 m deep, respectively) were
installed with a backpack-portable drill rig and geologic descrip-
tions were based on the retrieved core and cuttings. The water
level was measured using dataloggers with direct observations
for calibration. We used a hand auger to install a 2 m boring at
Gn_WY. At Gn_WY and GR_WY where a 5.7 cm diameter
PVC casing was available, we used nuclear magnetic resonance
(NMR) logging (Dart, Vista Clara, Mukilteo, WY) to measure
the water content logs. At GR_WY and Gs_WY, the total depth
of the borings was limited by refusal, and, at Gn_WY, the total
depth was limited by the available auger stem. Logging NMR uses
electromagnetic pulses and a permanent background magnetic field
to directly measure the volumetric water content. Details about the
measurement can be found in Walsh et al. (2013). At GR_WY, logs
were obtained at 0.25 m intervals, and, at Gn_WY, logs were ob-
tained at 0.125 m intervals. In both cases, the data were processed
with a moving window filter across three intervals and a regulari-
zation factor of 100 using the interpretation software provided by
the manufacturer.
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RESULTS
Synthetic hillslope

The synthetic hillslope had measurement geometries similar to
the field data and a plausible distribution of subsurface hydrofacies
(Figure 1a). The result of the EM classification (Figure 1b) shows a
distribution of classified facies that is representative of the known
input plus some effects of smoothing (i.e., inversion regularization)
and resolution (i.e., reduction in the ability to resolve features as a
function of depth) that are consistent with the calculated measures
of uncertainty (Figure 1c and 1d). For example, the entropy image
(Figure 1d) shows that the zones of higher entropy (i.e., more
uncertain classification) become larger as a function of depth. A
simplistic pixel-wise comparison between the input and classified
images (Figure 1a versus Figure 1b) indicates that 45% of the pixels
were correctly classified. For comparison, when using synthetic
data with no noise, a correct classification rate of 61% is achieved.

Independent interpretation of geophysical data

The seismic structure at the field sites consisted generally of sur-
face-parallel isocontours that increase the velocity as a function of
depth across all hillslopes. (Figure 2). The GR_ID hillslope revealed
the most lateral Vp variability in comparison to the other hillslopes.
The vertical velocity gradient was steepest at Gs_WY (>0.4 km
s~! m™!), whereas VO_NM and Gn_WY had low vertical velocity
gradients (<0.04 km s~ m™"). The electrical structures at each site
vary substantially in resistivity range and geometry (Figure 2). For
example, GR_ID and VO_ID feature obvious lateral discontinuities,
whereas the other four sites have a “layered” surface-parallel struc-
ture. Gs_WY, GR_WY, and GR_ID showed resistivities in excess
of 10° ohm-m, whereas VO_NM showed resistivities as low as
20 ohm-m. The maximum depth of ERT investigation across the
sites was approximately 5—7 m below the surface, depending on the
resistivity structure. The deepest seismic raypath was deeper than
the ERT sensitive zone at all sites except Gn_WY due to the shorter
seismic line used at that site.

Rock-physics and hydrofacies classification

The rock-physics crossplots relating resistivity to seismic veloc-
ity are the most straightforward way to interpret similarities and
differences in geophysical properties across all sites (Figure 3a-3d).
These plots in the “Vp-p elastic-electric space” are useful for view-
ing the variability in p and Vp across sites and for evaluating the
outcome of the classification algorithm. In general, we observe a
substantial range in the overall geometric patterns for each geologic
pairing that have distinct geometric patterns. These crossplots show
that the classification algorithm is not constrained to grouping in the
quadrants that are characteristic of our abstraction of the parameter
space, and that classification appears to be driven by the local
material properties. The probability associated with the classified
facies at each point shows gradual transitions between classes
(Figure 3e-3g).

The VO_NM site is the only location where well-described lith-
ology and geophysical logs are available immediately adjacent to
our geophysical transects. Therefore, in this case (Figure 3b), we
show the corresponding well-log-derived physical properties and
the associated lithologic descriptions from Moravec et al. (2020).
In this example, the algorithmic classification break between DSo
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and WSo falls close to the interpreted change in lithology between
soil/saprolite and altered tuff.

We compute the probabilities for each facies conditioned by the
geophysical measurements for each location (Figure 3), and we
viewed these spatial 2D images (Figure 4, the left column) with
associated frequency distributions of classified properties (Figure 4,
the right column). The material classifications for each hillslope en-
able interpretation of heterogeneity and geometries of near-surface
structures. Slope-parallel geometries are common to all hillslopes.
One metric to judge heterogeneity is the occurrence of a greater
number of classified properties in a given image (Figure 4, the right
column). For example, Gs_WY has occurrences of all five classes
within the image, whereas VO_NM and Gn_WY are dominated
by only two classes. Another metric for judging heterogeneity is
the lack of lateral continuity of classified zones. By this metric,
GR_WY, VO_NM, and Gn_WY exhibit the strongest lateral
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Figure 1. Results of the classification for the synthetic hillslope:
(a) input hillslope, (b) classified result, (c) facies probability, (d) en-
tropy, and (e) incorrect versus correct classification.
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Figure 2. ERT and SSR results. The ERT results are in color, and
the seismic results are the solid black contour line overlay. The Vp
contours are plotted at 0.5 km s™! intervals except for Gn_WY and
VO_NM, which had small vertical velocity gradients; therefore, the
0.1 km s™! contours are also shown in gray. The dashed lines are the
maximum depth of the ERT investigation.
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continuity and may therefore be judged as more homogeneous. In
contrast, VO_ID and Gs_WY have distinct breaks in lateral con-
tinuity and are therefore judged as more heterogeneous.

Uncertainties in hydrofacies classification

Considering the hydrofacies classification associated with the
most likely class at each pixel (Figure 5a—5f) as the probability
of the maximum-probability-class closest to one, this indicates that
any other classification at that point is unlikely. We note that the
entropy statistic is a measurement of the uncer-

tainty in the classification itself and does not ac-
35

WB37

olution at the bottom of the image, Hermans and Irving, 2017), the
excursion of WSo that reaches the surface at approximately 66 m
along the line (likely due to regularization in the seismic image),
and a small zone classified as bedrock within the DSt zone on the
right edge of the image (likely due to regularization of the ERT
image). Considering together the percent correctly classified rate
and qualitative evaluation of spatial distribution of facies, we con-
clude that the classified hydrofacies are a reasonable and useful
representation of the subsurface structure.

o
~

count for regularization and spatial resolution of
the independently inverted geophysical images
themselves. Entropy provides an assessment of
the ability of ERT and SSR to discriminate facies
under the particular conditions of the selected in-
version approach. The zones where probability is
substantially <1 (e.g., 0.5-0.6) are at boundaries
between spatial zones. These uncertain bands
reflect that the algorithm is confident that there
are two (or more) different materials adjacent
to each other, but the exact spatial position of
the boundary is uncertain. Images with high ver-
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to have a higher area of uncertain classification.
This characteristic of higher uncertainty is appar-
ent in VO_ID due to lateral heterogeneity toward
the bottom of the slope, even though there are only
three dominant classes in the image. The VO_NM
and Gn_WY sites broadly have the highest hy-
drofacies probability across the images because
they are both laterally continuous and only have
two dominant hydrofacies. The entropy at each
point follows a pattern similar to the probability,
showing higher uncertainty near the boundaries
between the facies and lower uncertainty in the
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DISCUSSION

Comparison of classification against
synthetic modeling and boring data

For the synthetic experiment, the recovered
hydrofacies classes reproduced the overall
known input structure, although the percentage
of correctly classified pixels may seem low at
45% (Figure 1). However, the percent of pixels
correctly classified is only part of evaluating the
result — it is also valuable to make a qualitative

Resistivity log,o(Ohm m) &

Glaciated

assessment of the recovered hydrofacies geom- 1.5
etry. In this case, by comparing Figure 1a and 1b,
we can see that — with minor exceptions —
the overall geometric pattern was reconstructed
with DSo on top, WSo in the middle, DSt toward
the right edge, and WSt at the bottom. Notable
classification errors include the DSt class in the
bottom left corner (likely due to the loss of res-
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Figure 3. (a—c) Velocity-resistivity plots for each geologic setting. The color of the
crossplot indicates the result of the hydrofacies classification. All sites are on the same
axes as shown in inset (d). (e-g) The probability of each class displayed in (a—c), re-
spectively. Material interpretations from extracted cores at VO_NM are shown with the
associated borehole logged velocity and resistivity (Moravec et al., 2020).
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Although limited direct shallow subsurface observations are
available at several of our sites (GR_WY rock drill <2 m, Kotikian
et al., 2019; Gs_WY rock drill <3 m, Thayer et al., 2018; and hand
auger <2 m, Moraes 2019), only VO_NM has detailed deep bore-

hole information — including geophysical logs — immediately
adjacent to our transect. With depth control in the geophysical logs
and the corresponding description of the geologic materials (bore-
hole 1, Moravec et al., 2020), this is the best opportunity to provide
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Figure 4. (a—f) Interpreted 2D hydrofacies images (the left column) based on Figure 3
and Table 3 using the EM algorithm. The borehole locations are shown by the striped
markers on (a), (e), and (f). The corresponding normalized histograms (the right col-

umn) show the relative distribution of hydrofacies in each image.
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partial validation of the EM classification. The
borehole extends to 40 m below the ground sur-
face and crosses our entire geophysical image
that has a depth of investigation of 6 m. Within
this depth range, we have classified two hydrof-
acies, DSo and WSo (Figure 4c). If we use the
geophysical properties, the geologic interpreta-
tions can be overlaid on the rock-physics plot
(Figure 3b) to show that the ‘“soil/saprolite”
material corresponds with DSo and the “altered
tuff” is related to WSo. Importantly, the delinea-
tion between the geophysical classifications (i.e.,
the change from yellow to blue in Figure 3c) co-
incides with the delineation between geologic
materials.

We consider three shallow boreholes at
Gs_WY, GR_WY, and Gn_WY for additional
validation (Figure 6). At Gs_WY, only the drill
cutting descriptions and the water table depth are
available (Figure 6a). The drill cuttings show
overburden consistent with glacial deposits from
the surface to 2.5 m depth underlain by fractured
rock. The measured level of the water table is ap-
proximately 0.5 m below the change from a dry
classification to a wet classification, and the ob-
served transition to fractured rock is approxi-
mately 0.65 m below the change from a soft
classification to a stiff classification. At GR_WY
(Figure 6b), drilling refusal was encountered at
approximately 2 m depth, which corresponds
to the top of the DSt classification. Unfortu-
nately, water level logging only began in this
well during December 2017 after the geophysical
data sets were acquired; however, the position of
the water table on the same day in the following
year (i.e., 17 June 2018) at a 1.4 m depth corre-
sponds to the transition between the DSo and
WSo classes (Figure 6b). The NMR log only
covers the vadose zone but confirms values con-
sistent with unsaturated conditions at this site
(Kotikian et al., 2019). At Gn_WY, the cuttings
log reveals only colluvial silt and sand material
below the organic horizon (Figure 6¢). Only the
deepest interval of the NMR log at this site enters
the saturated zone, but this transition is consistent
with the change in classification from DSo to
WSo. We suggest that future work could acquire
additional direct data to validate the classification
approach recognizing that we currently have only
limited information, particularly at depth.

A categorical view of the CZ: Compari-
sons across geologic site pairs

One of our primary objectives is to evaluate if
there are similarities or differences between sites,
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particularly related to geologic substrate and/or geologic history. be partially controlled. For example, it is practically impossible
There are fundamental limitations to making such comparisons to precisely match the elevation, petrology, climate history, aspect,
across a diverse set of sites because most parameters can only and slope between paired sites. Instead, we took the approach of
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selecting categorically similar sites (e.g., old granite) and similar
hillslopes (i.e., moderate slopes that have soil mantles). In addition
to the geologic and environmental parameter controls, the geophysi-
cal measurements depend in part on the physical properties of the
subsurface; therefore, the measurement volume cannot be exactly
controlled by the user. However, we are fortunate that the depth
of investigation of the shallower measurement (ERT) across all
six sites is relatively similar (6.5 = 1.0 m; Figure 2). When con-
sidering all sites together, we see that there is a bias toward physical
properties in the upper-left quadrant (Figure 3d). This is expected
because few near-surface materials with dominant electrolytic elec-
trical conduction would have fast velocities and low resistivities
(Knight and Endres, 2005). Ore bodies that are electronic conduc-
tors may be an exception to this (Collett and Katsube, 1973; Yang
and Emerson, 1997), but such materials are rare, requiring particular
formational and preservational geologic processes to have occurred
(Groves et al., 2005). There is also a clear clustering toward low
velocities across the entire range of resistivity (Figure 3d) that is
explained by the shallow depth range explored with relatively little
gravimetric compaction to drive density controls on seismic veloc-
ity (Bachrach and Nur, 1998). The broad range in resistivities is
controlled by expected variations in saturations due to variable
infiltration and preferential flow (Miller et al., 2008; Hiibner et al.,
2015; Claes et al., 2019).

The two volcanic sites exhibit a wide range of resistivity, but they
have generally slow seismic velocities of <1 km s~ (Figure 3b).
Although this similarity may not be anticipated because of the dif-
ferent volcanic rock types (Table 1), it is broadly consistent with

extrusive parent material of a fine-grained nature and potential for
syngenetic fracture networks. Additionally, these sites have little
material that is of fast velocity and high resistivity, likely owing
to the high initial porosity and relatively rapid weathering (Steindl-
berger, 2004). The incipient vesicular porosity (and possible incipient
fracture networks) of the rhyolite and basalt likely also contribute to
these lower seismic velocities. The presence of low seismic velocities
within the top 5 m of the subsurface in VO_NM is consistent with
previous results at nearby sites within the Valles Caldera where intact

bedrock was interpreted up to 60 m deep (Olyphant et al., 2016).
A logical prediction would be that our two glacially altered sites
would be the most similar in character because they have the most
straightforward geologic history: a presumed landscape-reset at the
end of the last glaciation approximately 11 ka. However, we see that
these sites (Figure 3d) are quite different. We suggest that the differ-
ence in properties between the parent materials (Gs_WY = gneiss,
Gn_WY = granite) may drive this in part because we would expect
the less durable metamorphic rocks (Borrelli et al., 2014) to allow
intensified glacial alteration. Evidence of this is available in the
borehole data (Figure 6a and 6¢) where the near-surface substrate
at Gs_WY is primarily gravel and cobbles presumed to be colluvial
(Thayer et al., 2018) in contrast to the silts and sands observed at
Gn_WY. Additionally, it is possible that precise site selection rel-
ative to past glacial dynamics is important in these systems, there-
fore confounding our site selection. We also note that the clear “V”
shape of the Gn_WY rock-physics plot (Figures 3d and 8c) bears a
resemblance to the results of Meju et al. (2003) that is attributed to a
connection of velocity and resistivity to porosity in the near surface
(Rudman et al., 1976). In contrast, Gallardo and

a) b) c) ® Wetter, soft (WSo) Meju (2003) attribute this V-shape pattern in the
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= 2940 Jsss Gn_WY given the overall slow velocity struc-

ki ‘ ture. Although these sites exhibit different pat-

w

terns in the elastic-electric space, they
nonetheless are compatible in the classification
(Figure 3c) suggesting that the thicker layer of
unconsolidated materials at Gn_WY within the
sensitive depth results in an absence of data
points in the upper-right quadrant of the elas-
tic-electric space at Gn_WY.

In most cases, EM classification produced im-
ages of CZ architecture that are consistent with
conceptual models of the geometries expected
for these hydrofacies. For example, at the 40 m
position on the GR_ID image (Figure 4b), there
is DSo on top, underlain by WSo, and finally
WSt at the bottom: this is logical because there
is dryer material on top of wetter material and the
softer material at the surface transitions to stiffer
material at depth (i.e., more weathered over less
weathered) as would be expected in a weathering
granite profile (Flinchum et al., 2018b). In other
cases, there are proximal facies that are perhaps
not immediately intuitive. For example, at the lo-
cation of the shallow boring at GR_WY (Fig-
ure 4a), there is DSo on top, underlain by WSo,
then DSt, and finally bedrock at the bottom. It
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Figure 6. Borehole data from (a) Gs_WY, (b) GR_WY, and (c) Gn_WY. The top row
shows an inset of the classified results for each hillslope with the borehole location. The
solid portion of the boreholes indicates coverage by the borehole NMR logs, whereas the
striped portion indicates the total depth. The bottom row shows the corresponding cut-
tings descriptions, T, relaxation time distributions (left), and water content logs (right).
The bound and mobile water is determined using the 33 ms cutoff time from the T,
relaxation time distributions.
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may be expected that the material immediately below WSo should
also be classified as wet. However, this classified result is consistent
with prior observations at the site that suggest that perched water is
present, that water flows laterally over the low-porosity bedrock in-
terface, and that deep percolation of water from the unsaturated
zone may not occur until later in the season than when the geophysi-
cal data was acquired (Kotikian et al., 2019). A similar arrangement
of facies is present at VO_ID (Figure 4d), and we anticipate that the
same explanation is valid there.

As we have discussed, one method to judge spatial heterogeneity
is based on the frequency distributions of the classified hydrofacies
(Figure 4, right column). This evaluation of spatial heterogeneity
does not explicitly account for how classes are either grouped or
scattered throughout the section (Figure 4, left column). However,
the nature of the geophysical images and classification method re-
sults in the spatial continuity of the hydrofacies; therefore, the dis-
tribution of classes is not an independent feature of the results.

As previously stated, our comparison is primarily based on
hillslopes with categorically similar substrates; however, here we pro-
vide a basic comparison of the slope aspect and modern precipitation
contrasts within our site group. The general expectation is that south-
facing hillslopes will be drier and have sparser vegetation than com-
parable north-facing slopes in the northern hemisphere (Pelletier et al.,
2018); consequently, north-facing hillslopes will experience more
weathering. In the two granitic hillslopes, GR_WY and GR_ID that
are south—southeast facing and east-northeast facing, respectively,
the DSo classification is common (Figure 4a and 4b). The relatively
shallow depth to bedrock at GR_WY may indicate reduced weath-
ering due to the south—southeast orientation. In the two volcanic hill-
slopes, VO_NM and VO_ID that are west-southwest facing and
northeast facing, respectively, the distribution of classes is different
with VO_NM being relatively homogeneous WSo and VO_ID hav-
ing a heterogeneous distribution of classes (Figure 4c and 4d). The
two formerly glaciated sites both have similar southwest aspect; how-
ever, Gs_WY receives more precipitation annually (Table 1). Given
the recent quaternary age of the glacial materials that make up the
substrate, we do not attribute the differences in classification to poros-
ity creation through chemical weathering; rather, their position on the
hillslope may be more important in this case. Because the time since
the landscape reset at all sites is not precisely known (Table 1) and the
climate history in this period is different for all sites, we cannot make
quantitative comparisons related to geologic age. However, we do
observe that — even with a very large range in site pair ages
— there is nonetheless the possibility to observe all classes at
any geologic grouping, suggesting that incidental factors such as
the hillslope location within the catchment and the depth of investi-
gation play an important role in how the CZ subsurface is interpreted.

Variations and limitations of the EM classification

The hydrofacies classification can be performed using different
multivariate techniques, such as discriminant analysis, k-means
clustering, or machine learning approaches (Hastie et al., 2002).
The EM method is a probabilistic iterative approach. Hence, the
solution is a probability distribution of the hydrofacies conditioned
by the geophysical data. A potential limitation is that the method
does not include a spatial correlation model (Delforge et al., 2021)
and each data point is classified independently from the adjacent
data. Markov chain models could be integrated in the hydro-
facies classification as in Eidsvik et al. (2004) and Lindberg and
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Grana (2015), but application in 2D and 3D is challenging due
to the large number of constraints introduced by the spatial model.

Although our classification scheme cannot be entirely unsuper-
vised, we propose that user determination of the prior means may pro-
duce a less subjective result than an entirely visual cointerpretation of
geophysical images (Thayer et al., 2018) due to the statistical group-
ing of pixels based on quantitative parameters in the EM. Given the
need for “expert” guided selection of the prior means, here we assess
how changing the priors affects the classification result. The prior
means (vector u with length equal to the number of classes), or “initial
guesses,” are the parameters in which the prior geologic knowledge
from on-site expert assessment or literature can be used; that is, these
are a way to impose a physical meaning on the classification. To
achieve the classifications presented in Figures 4 and 5, we used a
set of starting values estimated for each site based on general knowl-
edge of local conditions. Nonetheless, there is intersection of the hy-
drofacies in the crossplots (Figure 3) due to the inherent noise and
spatial resolution limitations (i.e., regularization of the inversions)
of the geophysical images. Determining unambiguous universal start-
ing values or achieving identical starting values by different expert
judges is currently not possible because easily quantifiable site param-
eters are similarly subject to interpretation and variability. For exam-
ple, although the bedrock velocity may be consistent and reported in
the literature for all sites, the definition of velocity and resistivity for
“wetter, softer” materials from sparse extracted samples at a site may
vary unpredictably depending on where the samples were taken. One
of the advantages of this classification approach is that calibrating
rock-physics models is not required, and this advantage would be
somewhat degraded if large sets of samples were required to assign
starting points for each class. Therefore, we ask: how much does the
overall classification result depend on the set of prior means (starting
values) particularly if physically unlikely starting values are used?
The result of varying u by +10% and +20% (relative to Table 3) in
Figure 7 details an example for the Gs_WY hillslope. Using +10%
starting values has little effect on the resulting hydrofacies classifica-
tion. Using starting points =20% yields a similar overall structure but
changes the frequency and location of the hydrofacies. Although there
is some leeway in selecting starting values for each class and obtaining
a robust result, this analysis highlights the importance of using physi-
cally plausible values for the prior means.

As discussed above, it is also possible to decrease or increase the
number of prior means used in the EM classification. In this work,
we chose five as the simplest logical framework obtained by break-
ing the rock-physics crossplot into high versus low quadrants for
parameters that reflect conceptual stiffness and dryness conditions
and by adding a bedrock classification. However, additional classes
could be justified for particular site conditions, as long as the geo-
physical properties could be readily defined. For example, scree and
wetland soils that are commonly found in the vicinity of each of
these sites (though not within the lines presented here) would likely
have distinct enough properties to justify inclusion as independent
classes. However, increasing the number of prior means used in the
algorithm may necessitate a more accurate selection of their starting
values as the classifications are likely to be reduced to smaller re-
gions within the rock-physics crossplot. Finally, it would also be
possible to set up this problem as an unsupervised classification
where classes are matched with geologic explanation after the clas-
sification process — such an approach may be useful if no a priori
geologic information is available.
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Limitations associated with data acquisition

Here, we address how the timing of data acquisition may impact

sought to use existing published data sets to enhance opportunities
for comparison. Therefore, we aimed to acquire generally “mid-

summer” data sets, although we realize that other hydrotemporal
markers — such as the start of the water year or a set number
of days after snow-off — also have scientific value. Importantly,
we adhered to the requirement of ERT and seismic data acquisition
on the same day of the year to bolster the assumptions of the under-
lying rock-physics models (Meju et al., 2003). Nonetheless, we ask:
what is the effect on the classification if cotemporal data sets are not
available? Saturation is a second-order effect on seismic velocity at
most saturations (Bachrach and Nur, 1998);
therefore, it is plausible that the two data sets
do not need to be measured under identical
hydrologic conditions. We provide examples
for VO_ID and Gn_WY (Figure 8) showing the
difference between the cotemporal data (the same
data from Figures 4 and 5) and using ERT data
from October 1 of the same year as the seismic
data (the seismic acquisition dates in Table 2).
For these examples, we used only a “local” clas-
sification restricted to single sites (rather than the
geologically grouped classification as elsewhere
in the manuscript). First, we can clearly see that
there is only a small shift in the registration of the
two rock-physics plots relative to one another
(Figure 8a and 8c) — the overall shape and
character of the point clouds are clearly pre-
served. The frequency of classes at VO_ID (Fig-
ure 8b) is similar in both cases, except the “drier,
stiffer” (DSt) class is essentially absent in the re-
sult from different dates, whereas it is the second
most frequent class in the cotemporal data. This
may be explained by the inconsistencies of using
ERT and SSR from different dates and wetness
conditions, resulting in some misclassification,
although this could also be viewed as a positive
point because we would expect the classification
to change depending on the hydrologic input
variations throughout the year. At Gn_WY (Fig-
ure 8d), we find that there is little difference in
the classifications, with only a slight increase in
the DSo category and a slight decrease in the
WSo and WSt categories. Given the snowmelt-
dominated hydrology at Gn_WY, we could gen-
erally expect the subsurface to continue drying

the classification result. A fundamental limitation to geophysical
measurement — particularly active-source seismic refraction —
is that acquiring data at different sites on the same day requires
multiple teams of people and multiple instruments. Frequently, such
duplication is not available. In our case, owing to the substantial
geographic and climatic separation of sites, careful control of the
timing of measurements is not always possible. Furthermore, we

a)
As Wetter, soft (WSo)
$o Wetter, stiff (WSt)
oo Drier, soft (DSo)
os Drier, stiff (DSt)
©Os= Bedrock (BR)

b)

¢)

(="
=

2960
2955 |

2950 +

2945 - W,
2940 | -

29351 W X 08 ) \._‘-'.—

10 20 30 40 50 60 70 80
Distance (m)

Elevation (m)
£

Resistivity log,o(Ohm m)

Velocity (km s=7)

Figure 7. Effect of varying the input means. Using Gs_WY as an example, (a—d) show
the effect of using a set of input means (i.e., the five Vp and p pairs for a site from
Table 3) that are = 10% and #20% from the values in Table 3 and Figure 4; (e-h) show
the corresponding plots in the elastic-electric space with the initial values plotted as the
white symbols.

Table 3. Input means for EM classification. The Vp = P-wave seismic velocity. The term p is resistivity.

Glaciated Granitic Volcanic
Vp, (km s7h) p, log;, (Ohm m) Vp, (km s7h) p, logj, (Ohm m) Vp, (km s7h) p, log;, (Ohm m)
Wetter, soft 0.70 2.18 0.90 1.75 0.50 1.00
Drier, soft 0.55 2.80 0.50 2.50 0.50 3.10
Wetter, stiff 225 2.60 2.00 2.50 2.00 3.50
Drier, stiff 2.00 3.25 1.75 3.00 2.00 2.50
Bedrock 3.50 3.50 3.50 3.50 3.00 3.50

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/86/5/\WWB29/5432824/ge0-2020-0438.1.pdf
bv Universitv of Wvomina user



Hydrogeophysical comparison of CZ WB43

from midsummer through October when precipitation is low (Mor-
aes, 2019). This could explain the slight differences in frequency
distributions between the time-coincident and different season mea-
surements. In general, it seems that using noncoincident geophysi-
cal measurements do not have a substantial impact on the resulting
hydrofacies classifications.

A limitation of our hydrofacies classification approach is that
known material units are not necessarily explicitly resolved either
due to the number of allowed classes or the resolution of the meas-
urement. For example, in the Idaho sites VO_ID and GR_ID, the
upper portion of the hillslopes has a layer of loess of variable thick-
ness (Seyfried et al., 2018), at least 0.5 m in places based on our test
pit observations. At GR_ID (Figure 2b), this is material at the sur-
face with Vp < 0.5 km s™' and p < 10> Ohm m. At VO_ID (Fig-
ure 2d), this is material with Vp < 0.5 km s™! and p > 10> Ohm m,
implying that the loess is drier at VO_ID than GR_ID. However, it
is difficult to capture both of these wetness conditions for the same
material type — particularly for a unit that is relatively thin and
approaches the spatial resolution of SSR and ERT — and the loess
is not explicitly resolved in our classification (Figure 4b and 4d).

Although we generally assume that Vp changes little over most of
the range of saturation (Bachrach and Nur, 1998) and is therefore
primarily sensitive to porosity and p primarily responds to wetness,
we recognize that p is also controlled by the porosity and clay content
(Archie, 1942; Waxman and Smits, 1968). Through the joint
classification in the elastic-electric domain, the information from seis-
mic velocity provides information on porosity to the classification
although the clay content remains unknown. Although we cannot
explicitly constrain for clay given the available data, this could
possibly be addressed through inclusion of clay estimation into the
classification by induced polarization measurement during ERT
acquisition (Slater and Lesmes, 2002).

A final consideration and potential limitation is the uncertainty
and regularization in the inverted geophysical images. As with all
smoothness-constrained geophysical inversions, sharp boundaries
are not well resolved, and this can cause overlapping between classes
(Hermans and Irving, 2017). In our ERT inversion results, the regu-
larization is optimized based on the measured data uncertainties (Bin-
ley, 2015), but due to the inherent smoothness of the images and loss
of resolution with depth, some misclassification is unavoidable.

Comparing statistical classification against other
subsurface CZ delineation methods

Delineating zones of subsurface materials has been a key aim of
past hydrogeophysical efforts to examine CZ architecture. For exam-
ple, Leopold et al. (2013) use ERT imaging in conjunction with geo-
logic interpretation to map material categories of stratified slope
deposits, saprolite, weathered bedrock, and bedrock, for alpine
and montane basins in the Boulder Creek CZO. These CZ substrate
descriptions are relatively similar to those used by Befus et al. (2011)
and Flinchum et al. (2018b) in conjunction with seismic refraction
imaging to define disaggregated material, saprolite and compacted
sediment, weathered bedrock, and fresh bedrock, in glacially modi-
fied, low-relief mountain upland, and deep bedrock gorges. Although
these are valuable interpretations, the CZ substrate descriptions are
distinct from the hydrofacies we use, primarily because we are able
to produce quantitative analysis of categorical variables between
measured geophysical parameters and classifications, whereas the
CZ substrate descriptions are rooted in subjective expert interpreta-
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tions. Flinchum et al. (2018b) produce subsurface water capacity
quantifications similar to our hydrofacies interpretations, again based
primarily on seismic imaging with extensive calibration. These CZ
substrate descriptions (Befus et al., 2011; Leopold et al., 2013) and
water holding capacity maps (Flinchum et al., 2018b) are developed
from a single physical parameter; therefore, nonuniqueness may in-
fluence the interpretations, a factor that can be mitigated by using
contrasting physical properties as in our EM classification. One ad-
vantage of a single-physics approach is that data can be acquired
more quickly over larger areas, as evidenced by the longer aggregate
line length used in the example studies (6-9 km) in comparison to
ours (approximately 0.4 km each of ERT and seismic).

It is not uncommon to acquire colocated seismic and resistivity
data, and qualitative cointerpretation has been successfully used to
synthesize these data sets. Seyfried et al. (2018) report colocated
seismic and airborne electromagnetic resistivity images along our
VO_ID line and interpreted weathering and hydrologic parameters,
although no structural map was produced. Holbrook et al. (2014)
produce a cointerpreted 2D section using CZ substrate classifica-
tions (i.e., dry and wet regolith and bedrock) for a site in the
Southern Sierra CZO where zone interpretations were made based
on the particular strengths of each measurement (e.g., vertical strati-
fication from seismic, wetness from resistivity). Thayer et al. (2018)
measure seismic and ERT data along our Gs_WY line to produce a
qualitative cointerpretation map of CZ substrate classes following
the categories used by Holbrook et al. (2014) with a zone geometry
that bears resemblance to the classification determined from EM
(Figure 4e). Thayer et al. (2018) predict interfaces slightly deeper

a) b)
< 4 800
£ 3 600
<
= =
3
22 3 400
> .
£ . 200
X
g 0 0
© 0 05 1 15
) d)
— 4 800
E Gn_WY
E 600
O 3
= =
o 3 400
o O
> 2
£ 200
B
gl ol L .
© 02 04 06 08 L &

Velocity (km s-7)

Figure 8. Effect of using ERT data from a different date than the seismic
measurement. Using VO_ID and Gn_WY as examples, this shows how
(a and c) the rock-physics plots change when using an ERT data set from
a different season than the coincident seismic/ERT midsummer measure-
ment. RED, time-coincident midsummer data; BLACK, midsummer
seismic with October ERT. (b and d) The resulting changes to the hy-
drofacies classification shown, respectively, as frequency distributions.
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including fresh bedrock 2 m deeper than our EM approach (3 m,
Figure 4e). Joint geophysical inversion results have also been clas-
sified. However, these efforts were apparently based on grouping
semicontinuous trends in the resistivity-velocity space under
conditions in which the relationship between these parameters is
simpler than we observe (Gallardo and Meju, 2003).

CONCLUSION

We have demonstrated the classification of CZ subsurface mate-
rials into hydrofacies using joint classification in the elastic-electric
domain of electrical and seismic geophysical images. We classified
the hydrogeophysical properties of hillslopes underlain by glacially
deposited, weathered granite and volcanic geologic materials into
relative stiffness and wetness groups and found four of the five
classes, including bedrock, in at least one of each pairing. This ap-
proach yields spatial distributions of the relative material properties
informed simultaneously by the strength of each individual geo-
physical method with minimum bias from qualitative human inter-
pretation. Although user input is needed to define a basic starting
point for the classification, we find that the results are robust as long
as reasonable starting values are chosen based on field observations
and background site information. Similarly, we find that seismic
and electrical data acquired coincidently are ideal for the classifi-
cation approach based on assumptions of the underlying physics;
however, data sets acquired at different times of the year still resolve
similar classifications. Although the geophysical imaging length

and depth dimensions were similar at all of our comparison sites,
we nonetheless found substantial differences in geometries between
sites with a similar geologic history as well as across sites with un-
related substrates. One volcanic site and one glaciated site were
characterized only by soft classes. The classified images revealed
the spatial variability in the near subsurface of each site primarily
in the form of surface parallel layering with wetter classes mostly
concentrated toward the deeper portions of the profiles. Our results
suggest that the geologic history is linked to modern hydrogeophys-
ical properties of the substrate based on inferred weathering or
sedimentation profiles, but this would not be directly identifiable
exclusively using the classified geophysical images.
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Figure A-1. Locations of the geophysical transects (yellow) on hillslopes. Catchment outlines within the view extent (United States Envi-
ronmental Protection Agency, 2020) are shown in orange.
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APPENDIX A
STUDY SITE LOCATIONS

The geophysical transects are located on hill-
slopes within snowmelt-dominated headwaters
catchments in Wyoming, Idaho, and New Mexico
(Figure A-1). Sites in Idaho and New Mexico are
associated with the Reynolds Creek Critical Zone
Observatory (RCCZO) and the Jemez River Basin
Critical Zone Observatory (JRBCZO), respec-
tively.

APPENDIX B

SENSITIVITY ANALYSIS FOR
GEOPHYSICAL DATA SETS

All geophysical images have parameter uncer-
tainty that varies spatially. This must be accounted
for when analyzing geophysical results, particu-
larly when selecting which regions of an image
can be assigned high confidence. Seismic refrac-
tions are often masked below the depth of the deep-
est calculated raypath (Befus et al., 2011; Figure B-
1). However, an image-wide sensitivity also can be
estimated by varying the gradient starting models
used in the inversion (Holbrook et al., 2014). We
completed this sensitivity analysis for each of our
transects using a range of gradients from 0.3—
0.5 km s™! t0 0.3-5 km s™!, producing a sensitivity
map as shown in the example in Figure B-2a. We
summarize the sensitivity as a function of velocity
for all seismic data sets as shown by the trendlines
in Figure B-2b, summarized in Table B-1. Histo-
grams of velocity-normalized standard deviation
are shown in Figure B-2c. We only used portions
of the seismic image within the sensitive zone for
EM analysis. All sites had a similar sensitivity with
a peak approximately 0.08 in the histograms (Fig-
ure B-2c), except VO_ID, which had higher uncer-
tainty peaking at approximately 0.25.

The standard approach for calculating the depth
of investigation for ERT images is to use the sen-
sitivity map calculation approach of Oldenburg and
Li (1999). For each of our images, we define the
base of the sensitive zone at the suggested 0.2 limit,
which is likely conservative. The example sensitiv-
ity map shown in Figure B-3a shows that useful
measurements are limited to approximately 5 m be-
low the surface in the deepest areas, as expected
given the somewhat convex-upward geometry of
the hillslope that reduces the depth of investigation.
Although the measured resistance and uncertainty
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Figure B-1. Ray tracing for each seismic refraction tomogram.

APPENDIX C

are linked (Slater et al., 2000), sensitivity and resistivity are not

necessarily related given that the instrument setup geometry and

SYNTHETIC HILLSLOPE

distribution of subsurface materials contribute to the calculated

sensitivity. Nonetheless, we find plotting the sensitivity as a function
of resistivity (Figure B-3b, summarized in Table B-1) to be an efficient
way of summarizing the results for all data sets, in conjunction with

normalized histograms (Figure B-3c).

The fictitious hillslope was not intended to replicate any of our
field sites, but rather to have a realistic distribution of facies and
geometry. We defined the porosity and saturation material proper-
ties for each of the five hydrofacies classes with plausible values of
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Figure B-2. Sensitivity analysis of the seismic results. Using 10
different starting models for each data set with gradients ranging
from 0.33/0.5 to 0.33/5 km s™\. An example of the standard
deviation (std) of the resulting set of inversions is shown for GR_ID
in (a). The velocity versus standard deviation relationships for all
sites are shown in (b) with the points from GR_ID shown in gray
as an example. Each data set is fitted with a power-law function
(Table B-1), and uncertainty bars are shown based on bin averaging.
(c) The histogram of the standard deviation divided by the mean
velocity for all sites.
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Figure B-3. Sensitivity analysis of the ERT results using the method
of Oldenburg and Li (1999). An example of the calculated sensitivity
map is shown for GR_ID in (a) with the colorbar indicating the cal-
culated sensitivity value for the centroid of each mesh element. The
resistivity versus sensitivity relationship for all sites is shown in
(b) with the points from GR_ID shown in gray as an example. Each
data set is fit with a power-law function (Table B-1) and uncertainty
bars are shown based on bin averaging. (c) The histogram of the sen-
sitivity divided by the mean resistivity for all sites.

Table B-1. Model parameters for the trendlines in
Figure B-2b and B-3b using y = exp(a)x’.

ERT SSR
a b a b
GR_WY -2.5 0.1 1.8 -8.3
VO_NM -3.6 0.5 2.0 -9.2
GR_ID -2.9 0.7 1.5 —6.2
Gs_WY =5.1 4.1 1.6 -7.1
Gn_WY -3.1 0.0 2.6 —-13.2
VO_ID —-4.9 2.0 1.5 -5.6
4 = | ower compressibility 5
of solid phase .. DSt
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Figure C-1. The hydrofacies properties used in the synthetic hill-
slope plotted within the Vp/porosity and p/saturation space. The
conceptualized effects of variations in porosity and saturation
within the rock-physics framework are annotated (note: The dia-
grams are for illustration purposes only, and they do not correspond
with the hydrofacies classes used in the synthetic hillslope). The
horizontal lines labeled “1” and “2” indicate examples of possible
ambiguity for the given observed geophysical properties that justify
a classification approach where sites are grouped according to sim-
ilar geologic substrates.
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Figure C-2. Synthetic ERT and SSR results. The ERT results are in
color, and the seismic results are the solid black contour line over-
lay. The V contours plotted at 0.5 km s~! intervals. The dashed line

is the maximum depth of the ERT investigation.
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Figure C-3. Velocity-resistivity plot for the synthetic data set. The
color of the crossplot indicates the result of the hydrofacies classi-
fication. The Vp = P-wave seismic velocity. The term p is resistivity.

Table C-1. Parameters input to the hydrofacies for the
synthetic hillslope.

Velocity, Resistivity,
Porosity Saturation km s~ logio (ohm m)
DSo 0.3 0.2 0.83 3.9
DSt 0.05 0.2 1.92 4.9
WSo 0.3 1 1.85 2.5
WSt 0.05 1 3.13 3.5

Table C-2. Input parameters for the rock-physics equations
used to predict the velocities and resistivities listed in
Table C-1.

Symbol Value Units Definition

R, 100 Ohm m Pore-water resistivity
a 0.6 — Tortuosity constant
m 1.3 — Cementation exponent
n 2 — Saturation exponent
K 33 GPa Bulk moduli of mineral
G 33 GPa Shear moduli of mineral
P 2.65 g/em? Mineral density

K, 2.15 GPa Bulk moduli of pore water
Pw 1 g/em? Density of pore water
b, 0.6 — Critical porosity

C 4 — Coordination number
P 0.00014 GPa Effective pressure
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low and high porosity and saturation (Table C-1 and Figure C-1).
These material properties were converted to geophysical properties
using Archie’s law to predict resistivity and the Hertz—Mindlin
theory with Hashin—Shtrikman elastic bounds (Mindlin, 1949; Ha-
shin and Shtrikman, 1963) to predict seismic velocity (Table C-1).
Full details related to how we applied these models can be found in
Flinchum et al. (2018a). The parameters used in the rock-physics
equations are shown in Table C-2. The results of the geophysical
forward modeling based on these input properties are shown in Fig-
ure C-2. The collocated points on the transect are plotted in the elas-
tic-electric space with final classifications in Figure C-3.

REFERENCES

Anderson, M. P., 1989, Hydrogeologic facies models to delineate large-scale
spatial trends in glacial and glaciofluvial sediments: Geological Society of
America Bulletin, 101, 501-511, doi: 10.1130/0016-7606(1989)
101<0501:HFMTDL>2.3.CO;2.

Anderson, S. P., R. C. Bales, and C. J. Duffy, 2008, Critical zone observa-
tories: Building a network to advance interdisciplinary study of Earth sur-
face processes: Mineralogical Magazine, 72, 7-10, doi: 10.1180/minmag
.2008.072.1.7.

Archie, G. E., 1942, The electrical resistivity log as an aid in determining
some reservoir characteristics: Transactions of the AIME, 146, 54-62.
Astic, T., L. J. Heagy, and D. W. Oldenburg, 2020, Petrophysically and geo-
logically guided multi-physics inversion using a dynamic Gaussian mix-
ture model: Geophysical Journal International, 224, 40-68, doi: 10.1093/

gji/ggaa37s.

Bachrach, R., and A. Nur, 1998, High-resolution shallow-seismic experi-
ments in sand — Part 1: Water table, fluid flow, and saturation: Geophys-
ics, 63, 1225-1233, doi: 10.1190/1.1444423.

Bedrosian, P. A., N. Maercklin, U. Weckmann, Y. Bartov, T. Ryberg, and O.
Ritter, 2007, Lithology-derived structure classification from the joint in-
terpretation of magnetotelluric and seismic models: Geophysical Journal
International, 170, 737-748, doi: 10.1111/j.1365-246X.2007.03440.x.

Befus, K. M., A. F. Sheehan, M. Leopold, S. P. Anderson, and R. S. An-
derson, 2011, Seismic constraints on critical zone architecture, Boulder
Creek watershed, Front Range, Colorado: Vadose Zone Journal, 10,
915-927, doi: 10.2136/vzj2010.0108.

Binley, A., 2015, Tools and techniques: Electrical methods, in G. Schubert,
ed., Treatise on geophysics, 2nd ed.: Elsevier, Resources in the Near-
Surface Earth, Vol. 11.

Binley, A., G. Cassiani, and R. Deiana, 2010, Hydrogeophysics: Opportu-
nities and challenges: Bollettino di Geofisica Teorica ed Applicata, 51,
267-284.

Binley, A., G. Cassiani, and P. Winship, 2004, Characterization of hetero-
geneity in unsaturated sandstone using borehole logs and cross-borehole
tomography, in J. S. Bridge and D. W. Hyndman, eds., Aquifer charac-
terization: Society for Sedimentary Geology.

Borrelli, L., F. Perri, S. Critelli, and G. Gulla, 2014, Corrigendum to “char-
acterization of granitoid and gneissic weathering profiles of the Mucone
River basin (Calabria, Southern Italy)”: Catena, 113, 325-340, doi: 10
.1016/j.catena.2013.08.014.

Brantley, S. L., M. I. Lebedeva, V. N. Balashov, K. Singha, P. L. Sullivan,
and G. Stinchcomb, 2017, Toward a conceptual model relating chemical
reaction fronts to water flow paths in hills: Geomorphology, 277, 100—
117, doi: 10.1016/j.geomorph.2016.09.027.

Claes, N., G. Paige, D. Grana, and A. D. Parsekian, 2020, Parameterization
of a hydrologic model with geophysical data to simulate observed subsur-
face return flow paths: Vadose Zone Journal, 19, €20024, doi: 10.1002/
vzj2.20024.

Claes, N., G. B. Paige, and A. D. Parsekian, 2019, Uniform and lateral pref-
erential flows under flood irrigation at field scale: Hydrological Processes,
33, 2131-2147, doi: 10.1002/hyp.13461.

Collett, L. S., and T. J. Katsube, 1973, Electrical parameters of rocks in de-
veloping geophysical techniques: Geophysics, 38, 76-91, doi: 10.1190/1
.1440336.

Delforge, D., A. Watlet, O. Kaufmann, M. Van Camp, and M. Vanclooster,
2021, Time-series clustering approaches for subsurface zonation and hy-
drofacies detection using a real time-lapse electrical resistivity dataset:
Journal of Applied Geophysics, 184, 104203, doi: 10.1016/j.jappgeo
.2020.104203.

Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977, Maximum likelihood
from incomplete data via the EM algorithm: Journal of the Royal Stat-
istical Society: Series B (Methodological), 39, 1-22.

Deutsch, C. V., and A. G. Journel, 1992, Geostatistical software library and
user’s guide: University Press.


http://dx.doi.org/10.1130/0016-7606(1989)101<0501:HFMTDL>2.3.CO;2
http://dx.doi.org/10.1130/0016-7606(1989)101<0501:HFMTDL>2.3.CO;2
http://dx.doi.org/10.1130/0016-7606(1989)101<0501:HFMTDL>2.3.CO;2
http://dx.doi.org/10.1130/0016-7606(1989)101<0501:HFMTDL>2.3.CO;2
http://dx.doi.org/10.1130/0016-7606(1989)101<0501:HFMTDL>2.3.CO;2
http://dx.doi.org/10.1180/minmag.2008.072.1.7
http://dx.doi.org/10.1180/minmag.2008.072.1.7
http://dx.doi.org/10.1180/minmag.2008.072.1.7
http://dx.doi.org/10.1180/minmag.2008.072.1.7
http://dx.doi.org/10.1180/minmag.2008.072.1.7
http://dx.doi.org/10.1180/minmag.2008.072.1.7
http://dx.doi.org/10.1093/gji/ggaa378
http://dx.doi.org/10.1093/gji/ggaa378
http://dx.doi.org/10.1093/gji/ggaa378
http://dx.doi.org/10.1190/1.1444423
http://dx.doi.org/10.1190/1.1444423
http://dx.doi.org/10.1190/1.1444423
http://dx.doi.org/10.1111/j.1365-246X.2007.03440.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03440.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03440.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03440.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03440.x
http://dx.doi.org/10.1111/j.1365-246X.2007.03440.x
http://dx.doi.org/10.2136/vzj2010.0108
http://dx.doi.org/10.2136/vzj2010.0108
http://dx.doi.org/10.2136/vzj2010.0108
http://dx.doi.org/10.1016/j.catena.2013.08.014
http://dx.doi.org/10.1016/j.catena.2013.08.014
http://dx.doi.org/10.1016/j.catena.2013.08.014
http://dx.doi.org/10.1016/j.catena.2013.08.014
http://dx.doi.org/10.1016/j.catena.2013.08.014
http://dx.doi.org/10.1016/j.catena.2013.08.014
http://dx.doi.org/10.1016/j.geomorph.2016.09.027
http://dx.doi.org/10.1016/j.geomorph.2016.09.027
http://dx.doi.org/10.1016/j.geomorph.2016.09.027
http://dx.doi.org/10.1016/j.geomorph.2016.09.027
http://dx.doi.org/10.1016/j.geomorph.2016.09.027
http://dx.doi.org/10.1016/j.geomorph.2016.09.027
http://dx.doi.org/10.1002/vzj2.20024
http://dx.doi.org/10.1002/vzj2.20024
http://dx.doi.org/10.1002/vzj2.20024
http://dx.doi.org/10.1002/vzj2.20024
http://dx.doi.org/10.1002/hyp.13461
http://dx.doi.org/10.1002/hyp.13461
http://dx.doi.org/10.1002/hyp.13461
http://dx.doi.org/10.1190/1.1440336
http://dx.doi.org/10.1190/1.1440336
http://dx.doi.org/10.1190/1.1440336
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203
http://dx.doi.org/10.1016/j.jappgeo.2020.104203

WB48 Parsekian et al.

Doetsch, J., N. Linde, I. Coscia, S. A. Greenhalgh, and A. G. Green, 2010,
Zonation for 3D aquifer characterization based on joint inversions of mul-
timethod crosshole geophysical data: Geophysics, 75, no. 6, G53-G64,
doi: 10.1190/1.3496476.

Eidsvik, J., T. Mukerji, and P. Switzer, 2004, Estimation of geological attrib-
utes from a well log: An application of hidden Markov chains: Mathemati-
cal Geology, 36, 379-397, doi: 10.1023/B:MATG.0000028443.75501.d9.

Farmani, M. B., N. O. Kittergd, and H. Keers, 2008, Inverse modeling of
unsaturated flow parameters using dynamic geological structure condi-
tioned by GPR tomography: Water Resources Research, 44, W08401,
doi: 10.1029/2007WR006251.

Flinchum, B. A., W. S. Holbrook, D. Grana, A. D. Parsekian, B. J. Carr, J. L.
Hayes, and J. Jiao, 2018b, Estimating the water holding capacity of the
critical zone using near-surface geophysics: Hydrological Processes, 32,
3308-3326, doi: 10.1002/hyp.13260.

Flinchum, B. A., W. S. Holbrook, D. Rempe, S. Moon, C. S. Riebe, B. J.
Carr, J. L. Hayes, J. St Clair, and M. P. Peters, 2018a, Critical zone struc-
ture under a granite ridge inferred from drilling and three-dimensional
seismic refraction data: Journal of Geophysical Research: Earth Surface,
123, 1317-1343, doi: 10.1029/2017JF004280.

Fullhart, A. T., T. J. Kelleners, D. G. Chandler, J. P. McNamara, and M. S.
Seyfried, 2018, Water flow modeling with dry bulk density optimization
to determine hydraulic properties in mountain soils: Soil Science Society
of America Journal, 82, 31-44, doi: 10.2136/ss52j2017.06.0196.

Gallardo, L. A., and M. A. Meju, 2003, Characterization of heterogeneous
near-surface materials by joint 2D inversion of DC resistivity and seismic
data: Geophysical Research Letters, 30, 1658, doi: 10.1029/2003GL017370.

Grana, D., 2018, Joint facies and reservoir properties inversion: Geophysics,
83, no. 3, M15-M24, doi: 10.1190/ge02017-0670.1.

Grana, D., and E. Della Rossa, 2010, Probabilistic petrophysical-properties
estimation integrating statistical rock physics with seismic inversion: Geo-
physics, 75, no. 3, 021-037, doi: 10.1190/1.3386676.

Grana, D., T. Fjeldstad, and H. Omre, 2017, Bayesian Gaussian mixture lin-
ear inversion for geophysical inverse problems: Mathematical Geosci-
ences, 49, 493-515, doi: 10.1007/s11004-016-9671-9.

Grana, D., M. Pirrone, and T. Mukerji, 2012, Quantitative log interpretation
and uncertainty propagation of petrophysical properties and facies clas-
sification from rock-physics modeling and formation evaluation analysis:
Geophysics, 77, no. 3, WA45-WA63, doi: 10.1190/ge02011-0272.1.

Grana, D., K. Schlanser, and E. Campbell-Stone, 2015, Petroelastic and geo-
mechanical classification of lithologic facies in the Marcellus Shale: In-
terpretation, 3, no. 1, SAS1-SA63, doi: 10.1190/INT-2014-0047.1.

Groves, D. 1., R. M. Vielreicher, R. J. Goldfarb, and K. C. Condie, 2005,
Controls on the heterogeneous distribution of mineral deposits through
time, in I. McDonald, D. A. Boyce, A. J. Butler, I. B. Herrington, and
R. J. Polya, Geological Society Special Publication, 248, 71-101.

Hachmoller, B., and H. Paasche, 2013, Integration of surface-based tomo-
graphic models for zonation and multimodel guided extrapolation of
sparsely known petrophysical parameters: Geophysics, 78, no. 4,
EN43-ENS53, doi: 10.1190/ge02012-0417.1.

Hashin, Z., and S. Shtrikman, 1963, A variational approach to the theory of
the elastic behaviour of multiphase materials: Journal of the Mechanics
and Physics of Solids, 11, 127-140, doi: 10.1016/0022-5096(63)90060-7.

Hasselblad, V., 1966, Estimation of parameters for a mixture of normal dis-
tributions: Technometrics, 8, 431-444, doi: 10.1080/00401706.1966
.10490375.

Hastie, T., R. Tibshirani, and J. Friedman, 2002, The elements of statistical
learning: Springer.

Hermans, T., and J. Irving, 2017, Facies discrimination with electrical re-
sistivity tomography using a probabilistic methodology: Effect of sensi-
tivity and regularisation: Near Surface Geophysics, 15, 13-25, doi: 10
.3997/1873-0604.2016047.

Holbrook, W. S., C. S. Riebe, M. Elwaseif, J. L. Hayes, K. Basler-Reeder, D.
L. Harry, A. Malazian, A. Dosseto, P. C. Hartsough, and J. W. Hopmans,
2014, Geophysical constraints on deep weathering and water storage po-
tential in the Southern Sierra Critical Zone Observatory: Earth Surface
Processes and Landforms, 39, 366-380, doi: 10.1002/esp.3502.

Hiibner, R., K. Heller, T. Giinther, and A. Kleber, 2015, Monitoring hillslope
moisture dynamics with surface ERT for enhancing spatial significance of
hydrometric point measurements: Hydrology and Earth System Sciences,
19, 225-240.

Knight, R. J., and A. L. Endres, 2005, An introduction to rock physics
principles for near-surface geophysics, in D. K. Butler, ed., Near-surface
geophysics: SEG, 31-70.

Kotikian, M., A. D. Parsekian, G. Paige, and A. Carey, 2019, Observing
heterogeneous unsaturated flow at the hillslope scale using time-lapse
electrical resistivity tomography: Vadose Zone Journal, 18, 1-16, doi:
10.2136/vzj2018.07.0138.

Leopold, M., J. Vélkel, J. Huber, and D. Dethier, 2013, Subsurface archi-
tecture of the Boulder Creek Critical Zone Observatory from electrical
resistivity tomography: Earth Surface Processes and Landforms, 38,
1417-1431.

Liefert, D. T., and B. N. Shuman, 2020, Pervasive desiccation of North
American lakes during the Late Quaternary: Geophysical Research Let-
ters, 47, e2019GL086412.

Lindberg, D. V., and D. Grana, 2015, Petro-elastic log-facies classification
using the expectation—-maximization algorithm and hidden Markov models:
Mathematical Geosciences, 47, 719-752, doi: 10.1007/s11004-015-9604-z.

Loritz, R., S. K. Hassler, C. Jackisch, N. Allrogen, L. van Schaik, J.
Wienhofer, and E. Zehe, 2017, Picturing and modeling catchments by
representative hillslopes: Hydrology and Earth System Science, 21,
1225-1249, doi: 10.5194/hess-21-1225-2017.

Mavko, G., and T. Mukerji, 1998, A rock physics strategy for quantifying
uncertainty in common hydrocarbon indicators: Geophysics, 63, 1997—
2008, doi: 10.1190/1.1444493.

Mclntosh, J. C., C. Schaumberg, J. Perdrial, A. Harpold, A. Vazquez-Or-
tega, C. Rasmussen, D. Vinson, X. Zapata-Rios, P. D. Brooks, T. Meixner,
and J. Pelletier, 2017, Geochemical evolution of the Critical Zone across
variable time scales informs concentration-discharge relationships: Jemez
River Basin Critical Zone Observatory: Water Resources Research, 53,
4169-4196, doi: 10.1002/2016WR019712.

McNamara, J. P., D. Chandler, M. Seyfried, and S. Achet, 2005, Soil mois-
ture states, lateral flow, and streamflow generation in a semi-arid, snow-
melt-driven catchment: Hydrological Processes, 19, 40234038, doi: 10
.1002/hyp.5869.

Meju, M. A,, L. A. Gallardo, and A. K. Mohamed, 2003, Evidence for cor-
relation of electrical resistivity and seismic velocity in heterogeneous
near-surface materials: Geophysical Research Letters, 30, 1373, doi:
10.1029/2002GL016048.

Miller, C. R., P. S. Routh, T. R. Brosten, and J. P. McNamara, 2008, Ap-
plication of time-lapse ERT imaging to watershed characterization: Geo-
physics, 73, no. 3, G7-G17, doi: 10.1190/1.2907156.

Mills, H. H., 1990, Thickness and character of regolith on mountain slopes
in the vicinity of Mountain Lake, Virginia, as indicated by seismic refrac-
tion, and implications for hillslope evolution: Geomorphology, 3, 143—
157, doi: 10.1016/0169-555X(90)90042-0.

Mindlin, R. D., 1949, Compliance of elastic bodies in contact: Journal of
Applied Mechanics, 16, 259-268.

Moraes, T., 2019, Monitoring non-uniform infiltration of snow melt using
time-lapse electrical resistivity tomography: M.S. thesis, University of
Wyoming.

Moravec, B. G., A. M. White, R. A. Root, A. Sanchez, Y. Olshansky, B. K.
Paras, B. Carr, J. McIntosh, J. D. Pelletier, C. Rasmussen, and W. S.
Holbrook, 2020, Resolving deep critical zone architecture in complex vol-
canic terrain: Journal of Geophysical Research, Earth Surface, 125, 1-24,
doi: 10.1029/2019JF005189.

Nielson, T., J. H. Bradford, and W. S. Holbrook, 2015, Geophysical inves-
tigation of differences in weathering depths between the north and south
facing slopes of a small catchment in the Reynolds Creek Critical Zone
Observatory: AGU Fall Meeting Abstracts.

Oldenburg, D. W., and Y. Li, 1999, Estimating depth of investigation in DC
resistivity and IP surveys: Geophysics, 64, 403-416, doi: 10.1190/1
.1444545.

Olyphant, J., J. D. Pelletier, and R. Johnson, 2016, Topographic correlations
with soil and regolith thickness from shallow-seismic refraction con-
straints across Upland Hillslopes in the Valles Caldera, New Mexico:
Earth Surface Processes and Landforms, 41, 1684-1696, doi: 10.1002/
esp.3941.

Onda, Y., M. Tsujimura, J. Fujihara, and J. Ito, 2006, Runoff generation
mechanisms in high-relief mountainous watersheds with different under-
lying geology: Journal of Hydrology, 331, 659-673, doi: 10.1016/j
.jhydrol.2006.06.009.

Orlando, J., X. Comas, S. A. Hynek, H. L. Buss, and S. L. Brantley, 2016,
Architecture of the deep critical zone in the Rio Icacos watershed (Lu-
quillo Critical Zone Observatory, Puerto Rico) inferred from drilling
and ground penetrating radar (GPR): Earth Surface Processes and Land-
forms, 41, 1826-1840, doi: 10.1002/esp.3948.

Paasche, H., and D. Eberle, 2011, Automated compilation of pseudo-lithol-
ogy maps from geophysical data sets: A comparison of Gustafson-Kessel
and fuzzy c-means cluster algorithms: Exploration Geophysics, 42, 275—
285, doi: 10.1071/EG11014.

Paasche, H., J. Tronicke, and P. Dietrich, 2010, Automated integration of
partially colocated models: Subsurface zonation using a modified fuzzy
c-means cluster analysis algorithm: Geophysics, 75, no. 3, P11-P22, doi:
10.1190/1.3374411.

Paasche, H., J. Tronicke, K. Holliger, A. G. Green, and H. Maurer, 2006,
Integration of diverse physical-property models: Subsurface zonation and
petrophysical parameter estimation based on fuzzy c-means cluster analy-
ses: Geophysics, 71, no. 3, H33-H44, doi: 10.1190/1.2192927.

Parsekian, A. D., N. Claes, K. Singha, B. J. Minsley, B. J. Carr, E. Voytek, R.
Harmon, M. A. Kass, A. Carey, D. Thayer, and B. Flinchum, 2017, Com-
paring measurement response and inverted results of electrical resistivity
tomography instruments: Journal of Environmental and Engineering Geo-
physics, 22, 249-266, doi: 10.2113/JEEG22.3.249.

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/86/5/\WWB29/5432824/ge0-2020-0438.1.pdf
bv Universitv of Wvomina user


http://dx.doi.org/10.1190/1.3496476
http://dx.doi.org/10.1190/1.3496476
http://dx.doi.org/10.1190/1.3496476
http://dx.doi.org/10.1023/B:MATG.0000028443.75501.d9
http://dx.doi.org/10.1023/B:MATG.0000028443.75501.d9
http://dx.doi.org/10.1023/B:MATG.0000028443.75501.d9
http://dx.doi.org/10.1023/B:MATG.0000028443.75501.d9
http://dx.doi.org/10.1023/B:MATG.0000028443.75501.d9
http://dx.doi.org/10.1029/2007WR006251
http://dx.doi.org/10.1029/2007WR006251
http://dx.doi.org/10.1002/hyp.13260
http://dx.doi.org/10.1002/hyp.13260
http://dx.doi.org/10.1002/hyp.13260
http://dx.doi.org/10.1029/2017JF004280
http://dx.doi.org/10.1029/2017JF004280
http://dx.doi.org/10.2136/sssaj2017.06.0196
http://dx.doi.org/10.2136/sssaj2017.06.0196
http://dx.doi.org/10.2136/sssaj2017.06.0196
http://dx.doi.org/10.2136/sssaj2017.06.0196
http://dx.doi.org/10.1029/2003GL017370
http://dx.doi.org/10.1029/2003GL017370
http://dx.doi.org/10.1190/geo2017-0670.1
http://dx.doi.org/10.1190/geo2017-0670.1
http://dx.doi.org/10.1190/geo2017-0670.1
http://dx.doi.org/10.1190/1.3386676
http://dx.doi.org/10.1190/1.3386676
http://dx.doi.org/10.1190/1.3386676
http://dx.doi.org/10.1007/s11004-016-9671-9
http://dx.doi.org/10.1007/s11004-016-9671-9
http://dx.doi.org/10.1190/geo2011-0272.1
http://dx.doi.org/10.1190/geo2011-0272.1
http://dx.doi.org/10.1190/geo2011-0272.1
http://dx.doi.org/10.1190/INT-2014-0047.1
http://dx.doi.org/10.1190/INT-2014-0047.1
http://dx.doi.org/10.1190/INT-2014-0047.1
http://dx.doi.org/10.1190/geo2012-0417.1
http://dx.doi.org/10.1190/geo2012-0417.1
http://dx.doi.org/10.1190/geo2012-0417.1
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://dx.doi.org/10.1080/00401706.1966.10490375
http://dx.doi.org/10.1080/00401706.1966.10490375
http://dx.doi.org/10.1080/00401706.1966.10490375
http://dx.doi.org/10.1080/00401706.1966.10490375
http://dx.doi.org/10.3997/1873-0604.2016047
http://dx.doi.org/10.3997/1873-0604.2016047
http://dx.doi.org/10.3997/1873-0604.2016047
http://dx.doi.org/10.1002/esp.3502
http://dx.doi.org/10.1002/esp.3502
http://dx.doi.org/10.1002/esp.3502
http://dx.doi.org/10.2136/vzj2018.07.0138
http://dx.doi.org/10.2136/vzj2018.07.0138
http://dx.doi.org/10.2136/vzj2018.07.0138
http://dx.doi.org/10.2136/vzj2018.07.0138
http://dx.doi.org/10.1007/s11004-015-9604-z
http://dx.doi.org/10.1007/s11004-015-9604-z
http://dx.doi.org/10.5194/hess-21-1225-2017
http://dx.doi.org/10.5194/hess-21-1225-2017
http://dx.doi.org/10.1190/1.1444493
http://dx.doi.org/10.1190/1.1444493
http://dx.doi.org/10.1190/1.1444493
http://dx.doi.org/10.1002/2016WR019712
http://dx.doi.org/10.1002/2016WR019712
http://dx.doi.org/10.1002/hyp.5869
http://dx.doi.org/10.1002/hyp.5869
http://dx.doi.org/10.1002/hyp.5869
http://dx.doi.org/10.1029/2002GL016048
http://dx.doi.org/10.1029/2002GL016048
http://dx.doi.org/10.1190/1.2907156
http://dx.doi.org/10.1190/1.2907156
http://dx.doi.org/10.1190/1.2907156
http://dx.doi.org/10.1016/0169-555X(90)90042-O
http://dx.doi.org/10.1016/0169-555X(90)90042-O
http://dx.doi.org/10.1029/2019JF005189
http://dx.doi.org/10.1029/2019JF005189
http://dx.doi.org/10.1190/1.1444545
http://dx.doi.org/10.1190/1.1444545
http://dx.doi.org/10.1190/1.1444545
http://dx.doi.org/10.1002/esp.3941
http://dx.doi.org/10.1002/esp.3941
http://dx.doi.org/10.1002/esp.3941
http://dx.doi.org/10.1002/esp.3941
http://dx.doi.org/10.1016/j.jhydrol.2006.06.009
http://dx.doi.org/10.1016/j.jhydrol.2006.06.009
http://dx.doi.org/10.1016/j.jhydrol.2006.06.009
http://dx.doi.org/10.1016/j.jhydrol.2006.06.009
http://dx.doi.org/10.1016/j.jhydrol.2006.06.009
http://dx.doi.org/10.1016/j.jhydrol.2006.06.009
http://dx.doi.org/10.1002/esp.3948
http://dx.doi.org/10.1002/esp.3948
http://dx.doi.org/10.1002/esp.3948
http://dx.doi.org/10.1071/EG11014
http://dx.doi.org/10.1071/EG11014
http://dx.doi.org/10.1190/1.3374411
http://dx.doi.org/10.1190/1.3374411
http://dx.doi.org/10.1190/1.3374411
http://dx.doi.org/10.1190/1.2192927
http://dx.doi.org/10.1190/1.2192927
http://dx.doi.org/10.1190/1.2192927
http://dx.doi.org/10.2113/JEEG22.3.249
http://dx.doi.org/10.2113/JEEG22.3.249
http://dx.doi.org/10.2113/JEEG22.3.249
http://dx.doi.org/10.2113/JEEG22.3.249

Hydrogeophysical comparison of CZ WB49

Parsekian, A. D., T. J. Kelleners, F. A. Neves, M. Pleasants, and D. Grana,
2020, Geophysical measurements of CZO hillslopes and expectation
maximization classification, http://www.hydroshare.org/resource/775a
3bd3d8674bc38ceb160b902e5056.

Parsekian, A. D., K. Singha, B. J. Minsley, W. S. Holbrook, and L. Slater,
2015, Multiscale geophysical imaging of the critical zone: Reviews of
Geophysics, 53, doi: 10.1002/2014RG000465.

Pelletier, J. D., G. A. Barron-Gafford, H. Gutiérrez-Jurado, E. L. S. Hinck-
ley, E. Istanbulluoglu, L. A. McGuire, G. Y. Niu, M. J. Poulos, C. Ras-
mussen, P. Richardson, and T. L. Swetnam, 2018, Which way do you
lean? Using slope aspect variations to understand Critical Zone processes
and feedbacks: Earth Surface Processes and Landforms, 43, 1133-1154,
doi: 10.1002/esp.4306.

Pleasants, M. S., T. J. Kelleners, and N. Ohara, 2017, Analysis of snowpack
dynamics during the spring melt season for a sub-alpine site using point
measurements and numerical modeling: Hydrological Processes, 31,
45684585, doi: 10.1002/hyp.11379.

Riebe, C. S., W. J. Hahm, and S. L. Brantley, 2017, Controls on deep
critical zone architecture: A historical review and four testable hypothe-
ses: Earth Surface Processes and Landforms, 42, 128-156, doi: 10.1002/
esp.4052.

Robinson, J. S., M. Sivapalan, and J. D. Snell, 1995, On the relative roles of
hillslope processes, channel routing, and network geomorphology in the
hydrologic response of natural catchments: Water Resources Research,
31, 3089-3101.

Riicker, C., T. Giinther, and F. M. Wagner, 2017, pyGIMLIi: An open-source
library for modelling and inversion in geophysics: Computers and Geo-
sciences, 109, 106-123, doi: 10.1016/j.cageo.2017.07.011.

Rudman, A. J., J. F Whaley, R. F. Blakely, and M. E. Biggs, 1976,
Transformation of resistivity to pseudovelocity logs: AAPG Bulletin, 60,
879-882, doi: 10.1306/83D91F47-16C7-11D7-8645000102C1865D.

Salvucci, G. D., and D. Entekhabi, 1995, Hillslope and climatic controls on
hydrologic fluxes: Water Resources Research, 31, 1725-1739, doi: 10
.1029/95WR00057.

Schaap, M. G., F. J. Leij, and M. T. Van Genuchten, 2001, Rosetta: A com-
puter program for estimating soil hydraulic parameters with hierarchical
pedotransfer functions: Journal of Hydrology, 251, 163-176, doi: 10
.1016/S0022-1694(01)00466-8.

Seyfried, M., K. Lohse, D. Marks, G. Flerchinger, F. Pierson, and W. S.
Holbrook, 2018, Reynolds creek experimental watershed and critical zone
observatory: Vadose Zone Journal, 17, 180129, doi: 10.2136/vzj2018.07
.0129.

Shannon, C. E., 1948, A mathematical theory of communication: Bell Sys-
tem Technical Journal, 27, 379-423, doi: 10.1002/j.1538-7305.1948
tb01338.x.

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/86/5/\WWB29/5432824/ge0-2020-0438.1.pdf
bv Universitv of Wvomina user

Slater, L., A. M. Binley, W. Daily, and R. Johnson, 2000, Cross-hole elec-
trical imaging of a controlled saline tracer injection: Journal of Applied
Geophysics, 44, 85-102, doi: 10.1016/S0926-9851(00)00002-1.

Slater, L. D., and D. Lesmes, 2002, IP interpretation in environmental in-
vestigations: Geophysics, 67, 77-88, doi: 10.1190/1.1451353.

Steindlberger, E., 2004, Volcanic tuffs from Hesse (Germany) and their
weathering behaviour: Environmental Geology, 46, 378-390, doi: 10
.1007/s00254-004-1039-7.

Sun, J., and Y. Li, 2016, Joint inversion of multiple geophysical and petro-
physical data using generalized fuzzy clustering algorithms: Geophysical
Supplements to the Monthly Notices of the Royal Astronomical Society,
208, 1201-1216, doi: 10.1093/gji/ggw442.

Thayer, D., A. D. Parsekian, K. Hyde, H. Speckman, D. Beverly, B. Ewers,
M. Covalt, N. Fantello, T. Kelleners, N. Ohara, and T. Rogers, 2018, Geo-
physical measurements to determine the hydrologic partitioning of snow-
melt on a snow-dominated subalpine hillslope: Water Resources
Research, 54, 3788-3808, doi: 10.1029/2017WR021324.

United States Environmental Protection Agency, 2020, Version 1.10.
WATERSKMZ, Retrieved: 23 February 2020, from URL https://www
.epa.gov/sites/production/files/2020-01/waterskmz_v1.10.kmz.

Walsh, D., P. Turner, E. Grunewald, H. Zhang, J. J. Butler, Jr., E. Reboulet,
S. Knobbe, T. Christy, J. W. Lane, Jr., C. D. Johnson, and T. Munday,
2013, A small-diameter NMR logging tool for groundwater investiga-
tions: Groundwater, 51, 914-926, doi: 10.1111/gwat.12024.

Waxman, M. H., and L. J. M. Smits, 1968, Electrical conductivities in oil-
bearing shaly sands: Society of Petroleum Engineers Journal, 8, 107-122,
doi: 10.2118/1863-A.

West, N., E. Kirby, A. A. Nyblade, and S. L. Brantley, 2019, Climate pre-
conditions the Critical Zone: Elucidating the role of subsurface fractures
in the evolution of asymmetric topography: Earth and Planetary Science
Letters, 513, 197-205, doi: 10.1016/j.eps1.2019.01.039.

White, A., B. Moravec, J. Mclntosh, Y. Olshansky, B. Paras, R. A. Sanchez,
T. P. A. Ferré, T. Meixner, and J. Chorover, 2019, Distinct stores and the
routing of water in the deep critical zone of a snow-dominated volcanic
catchment: Hydrology and Earth System Sciences, 23, 4661-4683, doi:
10.5194/hess-23-4661-2019.

White, A. F, and S. L. Brantley, 2003, The effect of time on the weathering of
silicate minerals: Why do weathering rates differ in the laboratory and field?
Chemical Geology, 202, 479-506, doi: 10.1016/j.chemge0.2003.03.001.

Yang, Y. P,, and D. W. Emerson, 1997, Electromagnetic conductivities of
rock cores: Theory and analog results: Geophysics, 62, 1779-1793,
doi: 10.1190/1.1444278.

Biographies and photographs of the authors are not available.


http://www.hydroshare.org/resource/775a3bd3d8674bc38ceb160b902e5056
http://www.hydroshare.org/resource/775a3bd3d8674bc38ceb160b902e5056
http://www.hydroshare.org/resource/775a3bd3d8674bc38ceb160b902e5056
http://www.hydroshare.org/resource/775a3bd3d8674bc38ceb160b902e5056
http://dx.doi.org/10.1002/2014RG000465
http://dx.doi.org/10.1002/2014RG000465
http://dx.doi.org/10.1002/esp.4306
http://dx.doi.org/10.1002/esp.4306
http://dx.doi.org/10.1002/esp.4306
http://dx.doi.org/10.1002/hyp.11379
http://dx.doi.org/10.1002/hyp.11379
http://dx.doi.org/10.1002/hyp.11379
http://dx.doi.org/10.1002/esp.4052
http://dx.doi.org/10.1002/esp.4052
http://dx.doi.org/10.1002/esp.4052
http://dx.doi.org/10.1002/esp.4052
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1016/j.cageo.2017.07.011
http://dx.doi.org/10.1306/83D91F47-16C7-11D7-8645000102C1865D
http://dx.doi.org/10.1306/83D91F47-16C7-11D7-8645000102C1865D
http://dx.doi.org/10.1029/95WR00057
http://dx.doi.org/10.1029/95WR00057
http://dx.doi.org/10.1016/S0022-1694(01)00466-8
http://dx.doi.org/10.1016/S0022-1694(01)00466-8
http://dx.doi.org/10.2136/vzj2018.07.0129
http://dx.doi.org/10.2136/vzj2018.07.0129
http://dx.doi.org/10.2136/vzj2018.07.0129
http://dx.doi.org/10.2136/vzj2018.07.0129
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/S0926-9851(00)00002-1
http://dx.doi.org/10.1016/S0926-9851(00)00002-1
http://dx.doi.org/10.1190/1.1451353
http://dx.doi.org/10.1190/1.1451353
http://dx.doi.org/10.1190/1.1451353
http://dx.doi.org/10.1007/s00254-004-1039-7
http://dx.doi.org/10.1007/s00254-004-1039-7
http://dx.doi.org/10.1093/gji/ggw442
http://dx.doi.org/10.1093/gji/ggw442
http://dx.doi.org/10.1029/2017WR021324
http://dx.doi.org/10.1029/2017WR021324
https://www.epa.gov/sites/production/files/2020-01/waterskmz_v1.10.kmz
https://www.epa.gov/sites/production/files/2020-01/waterskmz_v1.10.kmz
https://www.epa.gov/sites/production/files/2020-01/waterskmz_v1.10.kmz
https://www.epa.gov/sites/production/files/2020-01/waterskmz_v1.10.kmz
https://www.epa.gov/sites/production/files/2020-01/waterskmz_v1.10.kmz
http://dx.doi.org/10.1111/gwat.12024
http://dx.doi.org/10.1111/gwat.12024
http://dx.doi.org/10.1111/gwat.12024
http://dx.doi.org/10.2118/1863-A
http://dx.doi.org/10.2118/1863-A
http://dx.doi.org/10.1016/j.epsl.2019.01.039
http://dx.doi.org/10.1016/j.epsl.2019.01.039
http://dx.doi.org/10.1016/j.epsl.2019.01.039
http://dx.doi.org/10.1016/j.epsl.2019.01.039
http://dx.doi.org/10.1016/j.epsl.2019.01.039
http://dx.doi.org/10.1016/j.epsl.2019.01.039
http://dx.doi.org/10.5194/hess-23-4661-2019
http://dx.doi.org/10.5194/hess-23-4661-2019
http://dx.doi.org/10.1016/j.chemgeo.2003.03.001
http://dx.doi.org/10.1016/j.chemgeo.2003.03.001
http://dx.doi.org/10.1016/j.chemgeo.2003.03.001
http://dx.doi.org/10.1016/j.chemgeo.2003.03.001
http://dx.doi.org/10.1016/j.chemgeo.2003.03.001
http://dx.doi.org/10.1016/j.chemgeo.2003.03.001
http://dx.doi.org/10.1190/1.1444278
http://dx.doi.org/10.1190/1.1444278
http://dx.doi.org/10.1190/1.1444278

