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28]. Similarly, attention directed towards the use of TM ions to dope 
β-Ga2O3 has been particularly to engineer optical, electrical, or opto
electronic properties and device efficiencies [3,10,29–40]. In the 
context of either RE or TM ion-doping, a brief introduction to the crystal 
structure and related aspects of β-Ga2O3 is reasonable to understand the 
effects of specific dopants and their intrinsic nature on the structure, 
properties, and phenomena of the resulting compounds. β-Ga2O3 crys
tallizes in a base-centered monoclinic (space group C2/m) crystal 
structure with lattice parameters of a = 12.214, b = 3.0371, c = 5.7981 
Å, and β = 103.83◦ [41,42]. In the monoclinic unit cell, Ga is either 
tetrahedrally or octahedrally coordinated by oxygen atoms. On the other 
hand, oxygen atoms occupy three different lattice sites in a distorted 
cubic close-packed arrangement around the Ga sites [20,41]. Thus, 
manipulation of the structure and/or defects by introducing suitable 
dopants into β-Ga2O3 permits engineering of the structure and proper
ties to meet the requirements of a given technological application. 

In view of the technological importance of β-Ga2O3 and Ga-oxide- 
based alloys and compounds, there have been numerous experimental 
and theoretical studies on the effects of doping [3,5,10,26–39]. For 
instance, Si-doping of β-Ga2O3 enables control of its electrical conduc
tivity [33]. Villora et al. demonstrated enhanced n-type conductivity in 
Si-doped β-Ga2O3 compared to undoped Ga2O3, which they ascribed to 
the introduction of Si4+ at Ga sites creating electron donors [33]. 
Tunable electrical characteristics, namely carrier density and electrical 
resistivity, have been demonstrated in Sn-doped Ga2O3 single crystals 
[26]. Density functional theory (DFT) calculations on doped β-Ga2O3 
have provided theoretical insights into the effects of various metal ion 
dopants on its electronic structure and properties [31,32]. Based on the 
DFT calculations, it was reported that W, Mo, and Re act as deep donors, 
whereas Nb, with its lower formation energy, acts as a shallow donor 
[31]. Some studies have concerned aspects of the doping of β-Ga2O3 in 
the form of thin films [10,35,36,38–40]. For example, the optical band 
gap of β-Ga2O3 polycrystalline thin films was found to be narrowed by 
doping with Cu [10,35], Nb [36], W [39], and Ti [40], although the 
reduction in the band gap depends on the dopant concentration and 
chemistry of the materials [38–40,43]. However, there have only been a 
few limited studies that demonstrate or interlink the electronic structure 
with band-gap engineering of Ga2O3 through doping so as to produce 
materials suitable for integration into optical devices with a spectral 
selectivity across a broader range of the electromagnetic spectrum. 
Specifically, there have been very few studies on understanding the 
electronic structure and chemical bonding changes in TM-doped and/or 
mixed Ga2O3 (TM-GO), which may be intimately connected with the 
overall optical, electrical, and optoelectronic properties of the doped 
Ga2O3 bulk ceramic system. This is the primary objective and focus of 
the present work. 

The present work is directed towards a fundamental scientific un
derstanding of the electronic properties of TM-mixed Ga2O3 (Ga2-xMxO3, 
denoted as TM-GO) compounds. Specifically, efforts have been made to 
study the effects of Fe-, Ti-, and W-mixing of Ga2O3 and to derive a 
comprehensive fundamental scientific understanding of the electronic 
structures of the resulting compounds. These TM ions are interesting to 
produce mixed oxides or doped compounds of Ga oxide and to correlate 
the properties. In addition, the respective oxides of these TM ions, i.e., 
Fe2O3, WO3, and TiO2, are known to exhibit excellent and/or compa
rable photocatalytic activity, generating a considerable charge carrier 
concentration for an interesting set of possible electronic applications 
[44–50]. Moreover, like Ga2O3, the oxides of Fe, W, and Ti are well 
known to exhibit interesting electronic properties, and have demon
strated potential in the design and development of sensors and 
photo-detectors [44–50]. In our previous research, we directed our ef
forts towards elucidating the fundamental science of doped Ga2O3 ma
terials, especially the design and development of materials with 
controlled chemical, physical, structural, and optical properties [3,13, 
26,29,30,38–40,43,44,51]. We paid utmost attention to tailoring of the 
optical band gap in thin films synthesized by sputter deposition, 

whereby the deposition temperature and/or doping method for different 
dopant concentrations are the variables [13,39,40]. Additionally, we 
have continued to investigate the effect of TM ion alloying and doping in 
Ga2O3 ceramics, whereby the objective is to elucidate the fundamental 
science and mechanistic aspects of metal-doping on the structure and 
properties. In this context, solid-state synthesis and detailed structural 
characterization of Fe-doped Ga2O3 have revealed the effect of Fe3+

substitution of Ga3+ in octahedral and tetrahedral coordination envi
ronments, which is possible because of their similar Shannon ionic radii 
[29]. Correlations between chemical composition, crystal structure, and 
dielectric properties have also been established [29]. In addition, elec
trocatalytic activity has been demonstrated for Fe-doped Ga2O3, 
whereas no such activity is observed for undoped Ga2O3 [43]. Detailed 
investigations on Ti-doped Ga2O3 ceramic materials synthesized by 
high-temperature solid-state chemical reaction have indicated that 
single-phase compounds are only formed at very low levels of Ti doping 
(<5 at.%) [26]. Higher Ti-doping levels result in composite formation 
with an undissolved TiO2 phase [26]. Moreover, Ti-doping induces 
abnormal grain growth and lattice-twinning-induced striations 
compared to undoped Ga2O3 [26]. Electrocatalytic studies have indi
cated that Ti-doped Ga2O3 compounds exhibit appreciable activity, 
whereas undoped Ga2O3 does not [26]. We have also observed some 
interesting effects of W-doping in Ga2O3 [3]. Synthesis and structural 
characterization of W-doped Ga2O3 (GWO) revealed the formation of a 
clear solid solution at low W-doping levels (x ≤ 0.10), whereas an 
unreacted WO3 secondary phase separated at x>0.10. Therefore, in view 
of the observed differences in crystal structures, phases, and morphol
ogies, it was deemed useful to compare and contrast dopant effects in 
TM-GO from the fundamental perspective of electronic properties. 

In the context of doped, alloyed, or mixed oxides based on Ga2O3, the 
relevance and consideration of the TM-GO system and specific TM ions 
for incorporation into Ga2O3 in this work is due to the following reasons. 
It was deemed interesting to compare and contrast the behavior of the 
compounds obtained by doping Ga2O3 with Fe, Ti, or W due to the fact 
that their chemical valence states and electronegativities are different. 
Although other chemical valence states are possible, under normal 
conditions, the most stable configurations of these dopants are Fe3+, 
Ti4+, and W6+, respectively. Moreover, these Fe, Ti, and W ions have 
different Shannon ionic radii compared to that of Ga3+ in Ga2O3. Given 
that the optical, electrical, and optoelectronic properties of doped Ga2O3 
are mostly determined by the overall electronic structure and properties, 
deriving a fundamental scientific understanding and comparison of the 
effects of different TM ions in Ga2O3 is highly pertinent. Understanding 
the effects of various TM ions with variable chemistry and physics may 
provide fundamental insight in a broader context, and the implications 
derived may apply to a large class of doped compounds or other similar 
materials. Furthermore, Ti and W have been proposed as metal contacts 
for Ga2O3 for use in power electronic devices [1,24]. Therefore, 
fundamental understanding of the doping effects of the set of TM ions 
considered in this work could be useful in predicting the surface/inter
face diffusion and reaction products (if any) in device applications 
involving such TM-Ga2O3 heterostructures and contacts. These hybrid 
oxides are mainly prepared by a powder metallurgy route involving a 
solid-state reaction. This kind of synthesis does not produce compact 
structures, and the problem of porosity of the compounds often arises. 
These defect structures are responsible for interface diffusion, as elab
orated by Shirsath et al. [52]. Furthermore, the demonstrated approach 
based on interface engineering to realize the potential of multilayered 
oxides for novel ferroelectric states and functionalities clearly paves the 
way for studies of other hybrid or mixed oxides for developing highly 
efficient, environmentally friendly, and highly scalable solid-state 
electronic devices [52]. Additionally, the proposed TM-GO compounds 
and ceramic materials with controlled structure and properties may also 
be useful as target materials for high-quality thin-film deposition by 
physical vapor deposition methods. Therefore, in this work, TM-GO 
compounds were produced using a simple, versatile, high-temperature 
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solid-state chemical reaction method. The electronic properties of the 
resulting compounds have been studied as a function of variable TM 
content as well as TM ions with different chemistries. The results ob
tained are presented and discussed in this paper. 

2. Experimental details 

2.1. Synthesis 

The conventional solid-state reaction method was employed to syn
thesize the transition metal (TM)-mixed Ga2O3 compounds (Ga2-xMxO3; 
abbreviated as “TM-GO”). In order to better understand the effect of TM- 
doping and to compare the effects of various metals, samples with 
similar contents (x values) of the various dopants in Ga2O3 were pre
pared. Specifically, the TM concentration in TM-GO was varied in the 
range x = 0.0–0.3. We adopted previously established procedures and 
methods [3,26,29,30,43] to synthesize TM-doped Ga2O3 compounds 
with the aim of performing a detailed comparative study of their elec
tronic structures, surface chemistry, and electrocatalytic activities. The 
synthesis procedures and mixtures were adapted to ensure charge bal
ance in the compounds with respect to the dopant ions. The dopants 
considered were Fe, Ti, and W. High-purity metal oxide powder pre
cursors, namely Ga2O3 (99.99%), Fe2O3 (99.9%), TiO2 (99.9%), and 
WO3 (99.9%), were employed to produce the respective TM-GO (TM =
Fe, Ti, W) compounds [3,26,29,30]. The procured high-purity pre
cursors of Ga2O3 and the respective metal oxide (Fe2O3/TiO2/WO3) 
were weighed in stoichiometric proportions with respect to the desired 
composition. The weighed powders were combined in an agate mortar 
and pulverized using acetone as the wetting medium to obtain homo
geneously mixed TM-GO compounds. GFO, GWO, and GTO were 
pelletized at 1200 ◦C for 6 h, 1250 ◦C for 6 h, and 1350 ◦C for 8 h, 
respectively. The phase purity was ascertained by X-ray diffraction 
(XRD) analysis with reference to previous work. Phase purity was only 
attained at low TM-doping levels; a secondary phase of undissolved TM 
oxide separated at higher dopant levels [3,26]. Furthermore, as we have 
reported previously, increasing the sintering temperature modified the 
effective densities of the compounds [3,26,29,30]. The integration and 
annexation of smaller grains are the main reasons for the decrease in 
porosity, which eventually leads to continuous grain growth. As the 
sintering temperature is increased, the grains acquire enormous kinetic 
energy for grain boundary movement in the form of thermal energy and 
ultimately smaller grains coalescence to form larger grains [3,26,29]. 
Previous efforts directed at Fe-, Ti-, and W-doped Ga2O3 compounds 
clearly indicated that the final sintering temperature must be adjusted 
depending on the melting points of the respective TM oxides in order to 
ensure homogeneous mixtures [3,26,29]. This was taken into consid
eration in the synthesis of the respective TM-GO ceramics. Also, 
although it is not relevant in the context of electronic structure and 
chemical bonding studies as presented and discussed in this paper, 
electrical conductivity studies of the samples indicated that TM incor
poration effectively decreases the electrical resistivity [29]. This is 
attributed to electron hopping between the various cations. The 
following specific synthetic conditions were adopted to produce the 
respective TM-GO compounds. 

2.1.1. Iron (Fe)-Mixed Ga2O3 
The synthesis of Fe-mixed Ga2O3 ceramic compounds by the high- 

temperature solid-state chemical reaction method has been described 
elsewhere [29,43]. Fe-mixed Ga2O3 samples were prepared by homo
geneously mixing the precursors and then calcining them at 1100 ◦C for 
6 h. The heating and cooling rates of the muffle furnace were both set at 
10 ◦C/min. Calcined powders were ground in order to break down large 
lumps into fine particles of size around 50–70 μm. The main purpose of 
grinding was to ensure a uniform particle size distribution for better 
pelletization. A uniaxial hydraulic press was used to cast pellets (8 mm 
diameter, 2 mm thickness) at an applied load of 5 ton. These pellets were 

then sintered at 1200 ◦C for 6 h for densification. As reported elsewhere, 
the optimum conditions resulted in effective densification of the GFO 
compounds, with their relative porosity decreasing to around 10%, as 
well as a uniform distribution of grains [29]. 

2.1.2. Titanium (Ti)-Mixed Ga2O3 
The synthesis of Ti-mixed Ga2O3 compounds by the high- 

temperature solid-state chemical reaction method has been described 
elsewhere [26]. After careful weighing of the precursors in stoichio
metric proportions, they were thoroughly mixed in an agate mortar. 
Acetone was used as a wetting medium to facilitate the process. Pul
verization was followed by calcination at 1250 ◦C for 12 h, which 
involved intermittent grinding to reduce stresses in the powder. The 
phase purity of the powder was confirmed prior to pelletization at a 
higher temperature. Poly vinyl alcohol (PVA) was added to each sample, 
and they were ground to ensure proper dispersion [26]. These powders 
were then pressed into pellets of diameter 8 mm and thickness 1 mm 
using a uniaxial hydraulic press (MTI Corporation, Richmond, CA, USA) 
at 1.5 ton. These pellets were then sintered at 1350 ◦C for 8 h [26]. 

2.1.3. Tungsten (W)-Mixed Ga2O3 
The synthesis of W-mixed Ga2O3 compounds by the high- 

temperature solid-state chemical reaction method has been described 
elsewhere [3,30]. The process entails homogenization of WO3 and 
Ga2O3 powders followed by calcination at 1050 ◦C for 12 h and then at 
1150 ◦C for 12 h. The entire process was carried out in a muffle furnace, 
with intermittent grinding of the mixture to ensure complete reaction. 
Sinterability was further enhanced by grinding the calcined powder to 
reduce its size. PVA binding agent was added prior to pelletization of the 
calcined powder. Disc-shaped pellets of diameter 8 mm and thickness 1 
mm were pressed using a uniaxial hydraulic press with a load of 1.5 ton. 
These pellets are known as green pellets; they were heated at 5 ◦C/min, 
held at 500 ◦C for 30 min for binder burnout, and finally sintered at 
1250 ◦C for 6 h [3,30]. 

2.2. Characterization 

2.2.1. X-ray photoelectron spectroscopy (XPS) 
X-ray photoelectron spectroscopic (XPS) scans of the TM-GO ceramic 

compounds were obtained with a Kratos Axis Ultra DLD spectrometer 
equipped with an Al-Kα monochromatic X-ray source (1486.6 eV) and a 
high-resolution hemispherical analyzer [26,30,43]. We adopted previ
ously established procedures and methods for XPS characterization of 
undoped and doped Ga2O3 materials [26,30]. For full disclosure, the 
details of XPS measurements and analytical procedures are given here. 
The X-ray source was set at an output power of 105 W and the emitted 
photoelectrons were collected by the detector, which was placed normal 
with respect to the sample. The sample size area was restricted to 700 ×
300 μm2, and the pass energy was set at 160 eV for survey scans and 20 
eV for high-resolution scans. The step sizes were 0.5 eV and 0.1 eV for 
survey and high-resolution scans, respectively. After setting these initial 
parameters, calibration was performed with a standard Ag sample 
(FWHM of 0.59 eV for the Ag 3d5/2 core level). Since these are insulating 
ceramic oxide samples, charge neutralization was set at 4.2 eV when 
securing the samples on the stub with Cu tape. After completion of the 
experiment, data analysis was carried out with CasaXPS software with 
Gaussian/Lorentzian GL (30) line shape with line asymmetry and Shir
ley background correction. 

The above procedure was employed due to its efficacy in evaluating 
the undoped and doped Ga2O3 compounds [26,30]. Survey scans were 
performed over a binding energy (BE) range of 1400 eV, and 
high-resolution spectra were obtained from at least 16 sweeps for each 
element. The objective is a well-defined peak [26,30]. To avoid the 
interference of the Ga 3d peak by the O 2s peak, only Ga 2p spectra were 
considered. The sample surface was cleaned with ozone cleaner for 5 
min to eliminate any hydrocarbon contamination. The C 1s peak at 
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principles study of the structural, electronic, and optical properties of Ga2O3 in its 
monoclinic and hexagonal phases, Phys. Rev. B 74 (19) (2006), 195123. 

[13] S.S. Kumar, E.J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, 
V. Shutthanandan, S. Thevuthasan, C.V. Ramana, Structure, morphology, and 
optical properties of amorphous and nanocrystalline gallium oxide thin films, 
J. Phys. Chem. C 117 (2013) 4194–4200. 

[14] W. Zhang, B.S. Naidu, J.Z. Ou, A.P. O’Mullane, A.F. Chrimes, B.J. Carey, Y. Wang, 
S.Y. Tang, V. Sivan, A. Mitchell, S.K. Bhargava, K. Kalantar-Zadeh, Liquid metal/ 
metal oxide frameworks with incorporated Ga2O3 for photocatalysis, ACS Appl. 
Mater. Interfaces 7 (2015) 1943–1948. 

[15] J. Liu, G. Zhang, Mesoporous mixed-phase Ga2O3: green synthesis and enhanced 
photocatalytic activity, Bull. Mater. Res. 68 (2015) 254–259. 

[16] H. Sun, K.-H. Li, C.G. Torres Castanedo, S. Okur, G.S. Tompa, T. Salagaj, S. Lopatin, 
A. Genovese, X. Li, HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films 
grown by MOCVD, cryst, Growth & Design 184 (2018) 2370–2376. 

[17] Y. Chen, X. Xia, H. Liang, Q. Abbas, Y. Liu, G. Du, Growth pressure controlled 
nucleation epitaxy of pure phase ε- and β-Ga2O3 films on Al2O3 via metal–organic 
chemical vapor deposition, Cryst. Growth Des. 18 (2018) 1147–1154. 

[18] S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, Structures 
and energetics of Ga2O3 polymorphs, J. Phys. Condens. Matter 19 (2007), 346211. 

[19] H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, First- 
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