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A model  system,  which  is based  on iron  (Fe)  doped  gallium  oxide  (Ga2O3)  (Ga1.9Fe0.1O3),  has  been  con-
sidered  to elucidate  the  combined  effect  of  transition-metal  ion doping  and  processing  temperature  on
the  chemistry,  local  structure  and  chemical  bonding,  and  electrical  transport  properties  of a  wide  band
gap  oxide  (Ga2O3). The  Ga1.9Fe0.1O3 compounds  were  synthesized  using  standard  high-temperature  solid
state  reaction  method.  The  effect  of  processing  conditions  in terms  of  different  calcination  and  sinter-
ing  environments  on  the  structural  and  electrical  properties  of  Ga1.9Fe0.1O3 compounds  is  studied  in
detail.  Structural  characterization  by Raman  spectroscopy  revealed  that  Ga1.9Fe0.1O3 compounds  exhibit
monoclinic  crystal  symmetry,  which  is quite  similar  to  the intrinsic  parental  crystal  structure,  though  Fe-
doping  induces  lattice strain.  Sintering  temperature  (Tsint) which  was  varied  in  the  range  of  900−1200
◦C,  has significant  impact  on  the  structure,  chemical  bonding,  and  electrical  properties  of Ga1.9Fe0.1O3

compounds.  Raman  spectroscopic  measurements  indicate  the  proper  densification  of  the Ga1.9Fe0.1O3

compounds  achieved  through  complete  Fe  diffusion  into  the parent  Ga2O3 lattice  which  is  evident  at
the  highest  sintering  temperature.  The  X-ray  photoelectron  spectroscopy  validates  the chemical  states
of  the constituent  elements  in  Ga1.9Fe0.1O3 compounds.  The  electrical  properties  of  Ga1.9Fe0.1O3 fully
controlled by  Tsint, which  governed  the  grain  size  and  microstructural  evolution.  The  temperature  and

frequency  dependent  electrical  measurements  demonstrated  the  salient  features  of  the  Fe  doped  Ga2O3

compounds.  The  activation  energy  determined  from  Arrhenius  equation  is ∼0.5 eV.  The  results  demon-
strate  that  control  over  structure,  morphology,  chemistry  and  electrical  properties  of  the  Ga1.9Fe0.1O3

compounds  can be achieved  by  optimizing  Tsint.
© 2021  Published  by Elsevier  Ltd on  behalf  of The  editorial  office  of Journal  of  Materials  Science  &

Technology.
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 dielectrics which can exhibit enhanced thermal and
 stability continue to attract the scientific and research
ity. The oxide based dielectric materials find interesting
ns in all of the modern technological applications, which

hotocatalysis, chemical sensing, energy storage, and opto-
cs [1–3]. Gallium oxide (Ga2O3), one among the wide band
s, exhibits quite interesting physical, chemical, electronic,
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itude of technological applications [4,5]. With a band gap

 eV, Ga2O3 is an ideal candidate for utilization in the field
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ng [11,12], and ultraviolet photo detectors [13,14]. Ga2O3
olymorphism; ˛-, �-, �-, ı-, and ε- phases of Ga2O3 are
own [15]. However, among these polymorphs, �-Ga2O3 is

stable phase both chemically and thermally. Thin films and
ctures of intrinsic and doped �-Ga2O3 are quite attractive
rous technological applications [15].

 intrinsic �-Ga2O3 is listed as an insulating oxide, the elec-
 photoconductivity of Ga2O3 can be modified to derive
miconducting behavior by selective metal ions doping
The reason behind this n-type semiconducting behav-
e attributed to the ionization of oxygen vacancies in

hich is the main source of electrons. However, the elec-

perties of both intrinsic and doped Ga2O3 compounds is
r debate which requires more deeper and fundamental
8,19]. “In fact, from this viewpoint, intrinsic and metal-
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a2O3 materials have drawn the significant attention of
earchers in recent years [18–20]”. Doping metal ions into
s been proved to be quite useful in designing electrodes
ced photo-catalytic activity [14,19,20]. The doped com-

re very tolerant and can be efficiently used under hostile
ents of high pressure and temperature (≥ 500 ◦C) for

 sensing and catalysis [21,22].
resent work has been performed in order to understand
ical bonding, structural quality and electrical properties
ed Ga2O3 (GFO) materials. In addition to tuning the elec-
perties, inclusion of specific transition metal (TM) ions
3 is expected to show magnetic and magneto-electronic
s,  which might be useful for integration into other future
ns [9]. Therefore, from fundamental as well as applied

ve, it is interesting and highly beneficial to derive a bet-
standing of the underlying science of the TM-  ion doping
3 to design and develop materials for specific applica-

–23]. Furthermore, it is widely accepted in the literature
intering temperature influences the phase and chemical
ion stability, microstructure, thermal and electrical prop-
eramics materials [24–28]. In this context, efforts in this

re fully directed to understand the effect of Fe doping on
ical bonding, structural quality, and electrical properties
.
ason for choosing Fe as a dopant into Ga2O3 is due to
ing reasons. The chemical valence states of the Fe and

re similar in addition to the fact that the Shannon ionic
a and Fe in �-Ga2O3 and Fe2O3, respectively, are almost

 both tetrahedral and octahedral positions [23]. Therefore,
the Fe doping induced effect on the structural and func-
perties of the GFO compounds will be quite interesting.
ies may  result in novel compounds with unique structural
ional properties for a wide variety of technological appli-
nd/or enhanced performance in those optical, electronic
electronic devices that currently benefit by the utilization
. However, the high-temperature processing conditions
th the optimum composition of the compound are the
alize materials with desired properties and phenomena.
, the high temperature synthesis conditions along with

 Fe doping concentration considered for investigation and
tion studies. Note that it is quite evident in many cases

 temperature fabrication route can induce strain in lattice
 [29] and, thereby, alter the whole material system which
act the final desired properties. Practically, although they
r, the Shannon ionic radii of Fe is slightly higher than the

 if these two factors are combined, then massive lattice
ion may  take place in case Fe concentration not main-
operly. Furthermore, emergence of mixed-valence states
s and segregation of secondary phases of Fe oxides can
nticipated with increasing sintering temperature and for
g concentration which itself has an interesting impact on

ture-property relationship [23]. Therefore, and also based
evious work on the set of GFO compounds with variable
ion, a legitimate Fe doping concentration was  chosen to

 influence of the above-mentioned factors.
ombined effect of processing conditions and alloying
on the structure, chemistry and electrical properties of
O3 ceramics are reported in this paper. To examine
t of Fe incorporation into Ga2O3 and understand the
ed chemical bonding changes, X-ray photoelectron spec-
(XPS) coupled with Raman spectroscopy were employed.
ined with Raman spectroscopy helped us to comprehen-
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ected to further enhance our current understanding of the
lloying of Ga2O3.

imental details

rials and synthesis of Ga1.9Fe0.1O3 ceramics

pproach to the synthesis of Fe-doped Ga2O3 ceramics
igh-temperature solid state chemical reaction method

 described elsewhere [23,30,31]. Briefly, the description
als and synthetic procedures are as follows. Phase pure
9.99 %) and iron (III) oxide (99.95 %) were obtained from
drich and Noah Technologies Corporation, respectively.
ide powders were used as the precursor materials for

 the GFO compounds. Polyvinyl alcohol (PVA) and ethanol
 as binders. Iron doped Ga2O3 was prepared by employing

perature solid state reaction synthesis process. Precursor
 were weighed stoichiometrically and mixed according to
ed composition, i.e., x = 0.10. Finally, four distinct pellets
e to study the effects of calcination and sintering on the
ntioned properties. Elaborated processing details can be

from our previous work reported elsewhere [23].

acterization

ay photoelectron spectroscopy (XPS)
e  adopted the previously established procedures and
to characterize intrinsic or doped Ga2O3 materials using

 For clarity purpose, the details of XPS measurements
ytical procedures performed are as follows. XPS scan
ur differently sintered Ga1.9Fe0.1O3 compounds were
employing Kratos Axis Ultra DLD spectrometer using Al
chromatic X-ray source (1486.6 eV). The survey and high-
n (HR) scans were carried out at a pass energy of 160 and
spectively. Survey scans and high-resolution spectra of

 2p, O 1s, C 1s and Ga 3d peak regions were obtained
 to understand the effect of Fe doping into Ga2O3. The
d high-resolution (HR) scans were carried out at a pass

 160 and 40 eV, respectively. Charge neutralizer was set
 of 3.5 eV as these are insulating ceramic oxide samples.
data were fitted with the help of CasaXPS software using
/Lorentzian (GL(30)) line shape and Shirley background
n. Survey scans were collected over the binding energy
ge of 1400-(-) 5 eV, whereas HR spectra of Ga 2p, Fe 2p, O
d Ga 3d peak regions were obtained with at least 8 num-
eps for each of them depending on the clarity of the peaks.

oth the Ga peaks (i.e., Ga 2p and 3d) were collected for con-
, only Ga 2p spectra is depicted in order to avoid confusion
om the interference of Ga 3d peak with O 2s peak as both

 are very closely situated. Detailed discussions on sample
on techniques for XPS, precautions taken during sample
rom the furnace atmosphere to the XPS analysis chamber
g XPS data collection, and particular instrumental param-
d for scanning can be found elsewhere [31]. Specifically,
cedures adopted were found to be efficient to evaluate
nsic and doped Ga2O3 compounds. The binding energy of

 1s) peak at 285 eV was used for charge referencing all
 spectra. Estimation error of ±0.01 at.% was considered in
btain elemental concentration.
an spectroscopy
 spectroscopic studies were performed on an InVia Micro

Renishaw) spectrophotometer with 532 nm laser excita-
 peaks were fitted following the standard procedure as
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ported in the literature [32,33]. Briefly, Raman spectra
d by the superposition of the Lorentzian function:

+
(

2A

�

)(
W

W + 4(ω − ω0)2

)
(1)

is phonon frequency of the peak, ‘ω0’ is maximum phonon
y of the peak, W is full width at half maxima (FWHM), ‘A’
ization constant, and ‘I0’ is intensity of the background.

ctrical properties
ectrical measurements on the Ga1.9Fe0.1O3 ceramics fab-
t various Tsint were carried out using HP precision LCR
ta were collected both at room temperature and by vary-

erature in the range of 30−700 ◦C. The sample preparation
es and precautions taken during electrical measurements
ussed elsewhere [25,27]. AC resistivity (�ac) and conduc-
he samples were calculated as a function of temperature
raw data. Each measurement was performed at least three
rder to check data reproducibility.

ts and discussion

ical structure and bonding

aman spectroscopic data of Ga1.9Fe0.1O3 ceramics are
 Fig. 1. The Raman spectroscopic data of Ga1.9Fe0.1O3

 are shown in Fig. 1(a), while the standard peak-
rocedure employed to fit the data is represented in

 To understand the effect of Fe doping, the expanded
f the Raman peak corresponding to Fe-O bonding is

 separately in Fig. 1(c). It can be seen that the spec-
it several characteristics peaks, which are indicative of
e nature of the samples. Furthermore, the Raman scat-
ak evolution with increasing Tsint is evident (Fig. 1(a)).
an spectra can be conveniently analyzed, based on
al structure and crystal symmetry considerations of

 order to understand the chemical quality and chemi-
ng within Ga1.9Fe0.1O3. The monoclinic �-Ga2O3 belongs
pace group C2/m/C32 h. According to factor group
[34], the crystal modes can be classified according

Ag+5Bg+4Au+8Bu (2)

ymmetry Ag and Bg phonon modes are Raman active
non modes with Au and Bu symmetry are infrared active.

otal of 15 Raman modes and 12 infrared active modes
cted for ˇ-Ga2O3 [34–36]. The Raman scattering peaks

 in the present work and their mode assignments are
 in Table 1. The data obtained for Ga1.9Fe0.1O3 sin-

various Tsint are presented and compared with that of
O3. The Raman-active modes of Ga2O3 can be classi-
three groups: high-frequency stretching and bending of
ahedra (∼770–500 cm−1), mid-frequency deformation of
tahedra (∼480–310 cm−1), and low-frequency libration
lation (below 200 cm−1) of tetrahedra-octahedra chains

aman peaks observed for Ga1.9Fe0.1O3 ceramics sintered
200 ◦C at 143, 168, 202, 345, 475, 652, and 763 cm−1 cor-

to Bg(2), Ag(2), Ag(3), Ag(5), Ag(7)/Bg(4), Ag(9)/Bg(5), and
onon modes, respectively [36]. The bands at lower fre-

 are assigned to the librations and translations of chains.

s at 413, 345, 320 cm-1 are assigned to the deforma-
tahedron [36]. The bands at 763, 652, 629, 475 cm-1 are
rom the stretching and bending of tetrahedron [36]. The
itions and mode assignments are in good agreement with Ta
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Fig. 1. (a) Raman spectra of differently sintered GFO compounds. (b) Representative case of Raman spectral peak-fitting procedure. The data shown are for GFO sample sintered
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ombined effect of Fe doping and processing condi-
nt) on the structural quality and chemical bonding in
O3 ceramics can be understood as follows. With Fe con-

Raman active modes of Ga1.9Fe0.1O3 ceramics have a clear
, Table 1). In addition, the Raman scattering peaks in the
lso exhibit a line broadening (Fig. 1(a)) for Ga1.9Fe0.1O3
. However, this is more dominant at lower Tsint. The broad-
he Raman peaks is clearly seen at Tsint=900 ◦C; the peaks

 to be broader until Tsint=1100 ◦C, at which point the peaks
harp. Also, this peak broadening is particularly true for
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cm−1, which is due to Fe atoms entering into the crys-
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ng in Raman modes due to dopant effects was also noted
l)2O3 films, where the broadening of Raman modes was
rly dominant in the mid-spectral range with Al-doping
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n active modes of (AlGa)2O3 films exhibited a right shift
ith a line broadening, especially at higher Al content [38].
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 the ionic radii of Fe3+ and Ga3+ and Fe3+ (0.64 Å) has
nic radius than Ga3+ (0.76 Å), so iron doping will facilitate
tion of smaller nuclei during synthesis process. Incorpo-

Fe in Ga2O3 may  inhibit the grain growth during sintering
3]. Combining the XRD studies with present Raman spec-

 data, it is evident that the sintering temperature strongly
s the structural quality and evolution of Fe-O bonds in Fe-
2O3 compounds. The peak corresponding to Fe-O bonding
ly disappears (Fig. 1(c)) for the samples sintered under

 sintering temperature.

ce chemistry and electronic properties
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g with the binding energy (BE) following the standard
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or Ga2O3, validates the claim that Ga ions exist in the
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down sub
compared

Fig. 3. Deconvoluted high-resolution XPS spectra of (a) G
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alence states (i.e., Ga3+) in all the Ga1.9Fe0.1O3 ceramics

b) depicts the HR XPS spectra of Fe 2p region. The decon-
pectra of Fe 2p region clearly reveals that Fe exhibits
lance state (i.e., Fe3+ at 711 eV and Fe2+ at 708.7 eV)
◦C and 1200 ◦C sintered samples whereas single valance
, Fe3+) of Fe exists for rest of the sintered samples [40].
related to the varying diffusion rate associated with the

 flux as sintering temperature approaches the optimized
. This will help to achieve many unique as well as impor-
acteristic properties such as magnetic, spintronic, and
c. out of the Ga1.9Fe0.1O3 ceramics as a result of jump-
haring of electronic clouds between these two valence

, we consider the O 1s peak to further establish the sur-
istry and electronic structure while the BE values and

 at half maximum (FWHM) of all the elements are listed
ared in Tables 2 and 3. The O 1s peak (Fig. 3(c)), at a BE of
, is the characteristic feature of Ga-O bond [31,41,42]. The

 is not symmetric for all the sintered compounds. The HR
 spectra fitting mainly results in three components repre-
ifferent chemical states. The most intense peak centered at
0.25 eV is the characteristic peak of oxygen bonded to Fe
e GFO compound [31,41]. The third component located

 BE (i.e., 532 eV), attributing to either carbonyl (oxy-
ed to carbon) or hydroxyl (oxygen bonded to hydrogen)
hich were adsorbed on the sample surface as impurities
mple handling, appear as a shoulder contribution with
ensities [43]. It can be noticed from O 1s spectra (Fig. 3(c))
e sintering temperature approaches optimized condition
ibutions from Ga2O3 and iron oxides are levelling off. In

 and 1100 ◦C sintered samples the iron oxide contribution
igher than the Ga2O3. This has happened because the pre-
n (III) oxide powder used for preparing these Ga1.9Fe0.1O3

 was  not well diffused through the system and dispersed
ound the surface due to inefficient firing condition. More-
g a surface sensitive technique, XPS easily catches those
e signals and as a result the iron oxide intensity came
her than the Ga2O3. With increasing sintering temper-
iffused through the bulk and intensity of iron oxide came
sequently. The BE values of all the elements are listed and

 in Table 2.

a 2p, (b) Fe2p, and (c) O 1s.
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Table  2
Comparison of B.E. of Ga 2p, O 1s and Fe 2p core level spectra of Ga1.9Fe0.1O3 ceramics prepared under various sintering temperatures.

Sintering Temperature (oC)
Binding  Energy (B.E.) (eV)

Ga 2p3/2 (Ga2O3)
O 1 s (FexOy, Ga2O3) Fe 2p3/2 (FexOy)

FexOy Ga2O3 FeO Fe2O3

900 1117.34 530.21 530.87 – 710.94
1000  1117.35 530.25 530.83 – 711.10
1100  1117.35 530.29 530.87 708.71 711.06
1200  1117.37 530.25 530.86 708.76 711.00
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equency dependent ac electrical conductivity (�ac) of the
O3 ceramics measured at room temperature are repre-

 Fig. 4. It is evident from the plots that the conductivity
e almost constant at lower frequency and more or less
r all the Ga1.9Fe0.1O3 ceramics sintered at different tem-

 throughout the whole frequency range. However, after
the conductivity rapidly increases with increasing fre-
Tsint merely has any influence on the ac conductivity,
a1.9Fe0.1O3 ceramics sintered at 1200 ◦C registered slightly
nductivity than the other samples. The fundamental rea-
d the sudden rise in ac conductivity is the hopping of

 between multivalent cations. Hopping of charge carri-
ases with the applied frequency which in turn increases

ctivity [44,45]. In order to derive a better understanding
enomenon as well as the validation of hopping mecha-

(�ac-�dc) versus log �2 plots were constructed. The data
in Fig. 6. All the plots show an initial linear behavior, which
cation of small polaron mechanism [44–46] of electrical
n in these samples. The mechanism can be explained with

of the following equation [45]:

ω2�/(1+ω2�2) (3)

 is the angular frequency and average relaxation time is
by �. Therefore, for ω2�2< 1, log(�ac-�dc) versus logω2

splay a linear behavior if conduction occurs by the small
pping mechanism in localized neighborhood [45]. It is
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�ac-�dc) versus log �2 plots for Ga1.9Fe0.1O3 ceramics. The initial linear
ident of small polaron hopping mechanism.

 the slow motion of polaron associated with lattice dis-
 known as polaron hopping [46]. It is noted that the
O3 ceramics sintered at 1000 ◦C show a long linear region
ther samples. However, other Ga1.9Fe0.1O3 ceramics dis-
itimate linear portion before they achieve the saturated

ical conductivity of a material system, whether it is as a
of frequency or temperature, depends on certain factors,
icrostructure, chemistry, presence of defects, doping con-
n, and fabrication method employed [45–47]. We  reported
y, in a different study, that with increasing sintering tem-
from 900 ◦C to 1200 ◦C, the effective density of the

pounds changes slightly while the relative porosity count
 around 10 % [23]. The integration and annexation of the

rains is the main reason behind the porosity decline which
y leads to continuous grain growth. As the sintering tem-
has been increased, the grains received enormous kinetic
r the grain boundary movement in the form of ther-

gy and subsequently smaller grains coalescence to form
ins. Additionally, Fe doping also served as the nucleat-

rs for the small grains [23]. Uniform particle distribution
oper grinding enhanced the sintering efficiency. Combin-

 all factors help to achieve optimum porosity level with
ensity of the GFO compounds at 1200 ◦C sintering tem-

g in pure Ga2O3 causes segregation of the dopants at the
ndary which acts as a barrier for grain growth during

 process. Strong charge localization which leads to small
ffect and hopping of electrons also influences electrical
ity. Presence of excess localized charge carriers and their
ement under the influence of external (i.e., thermal) fac-
 the unit cell structure by reshaping ionic bonding that can
al distortion [46]. Lattice distortion impedes the move-
he free carriers by trapping them inside and as a result
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) (4)

 represents the carrier’s density and � is relaxation time
ering conditions have two major impacts on the room tem-
resistivity; first � decreases because of lattice distortion
econd is increase in the carrier concentration. At low sin-

perature, lattice parameter change owing to distortion is
, it is insignificant to consider the change in � value. Thus,
ity can only be increased by increasing the carrier concen-
d an appropriate rise in temperature can generate more

rons [44]. Although, higher temperatures or longer sinter-
ions can significantly change the lattice constants which
ecreases � leading to a decrease in conductivity [44].
tion  energy of the charge transport process must also be
d since it is responsible for the temperature dependent

ical characteristics. Activation energy of highly electri-
ive material is quite high [48]. At low temperature, free
t of charge carriers are constrained by both grain and
ndaries; but, at higher temperatures, activation energy

 due to the higher thermal energy and so the charge
ins mobility. Also, at high temperatures, grain boundary

g is less, and the drift mobility of the carriers becomes
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tted against temperature as a function of frequency. The
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are for Ga1.9Fe0.1O3 ceramics sintered at above mentioned temperatures.

 and conductivity for all the Ga1.9Fe0.1O3 ceramics were
d with the help of the following equations [49]:

+Z ′′2)0.5 (5)

(6)

(7)

’ denotes the real part and Z” is the imaginary part of
dance value, the overall impedance of the ac circuit is

 as Z, A is the area and t is the thickness of the pellets,
resents the ac conductivity. It is evident from Fig. 6 that,
easing sintering temperature, ac resistivity continuously

 i.e. conductivity increases.
er temperatures higher frequency shows lower 	 values;
dependent of frequency at higher temperature. The plots

ustrate the decreasing trend of resistivity with increas-
erature which is sharp for 1100 ◦C and 1200 ◦C sintered

 but, in 900 ◦C and 1000 ◦C samples resistivity decreases
ith rising temperature. A step can be seen in the temper-
ge of 100−150 ◦C for the sample sintered at 900 ◦C. The
comes more evident with increasing frequency. It can be

 considering the changes occurring in the local moieties
O compound with increasing operational frequency. The

 of the charge carriers by the grain boundary increases
easing frequency and this effect cannot be ignored in com-
nthesized at substantially low temperatures. Though, the

al temperature has been increased sufficiently from the
perature, but the frequency effect is prevalent in order to
n the temperature impact. Also, the defect concentration

 sintered sample is quite high considering the other sam-
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Table  3
Comparison of FWHM of Ga 2p, O 1s and Fe 2p core level spectra of differently sintered samples.

Sintering Temperature (oC)
FWHM

Ga 2p3/2 (Ga2O3)
O  1 s (FexOy, Ga2O3) Fe 2p3/2 (FexOy)

FexOy Ga2O3 FeO Fe2O3

900 1.40 1.51 1.45 – 1.40
1000  1.40 1.49 1.47 – 1.43
1100  1.40 1.51 1.44 1.51 1.41
1200  1.40 1.50 1.48 1.50 1.42
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 and foreign elements as dopants can affect the electrical
ity [50–52]. This indicates that, at lower temperature, due
ping, there is a strong lattice-charge carrier interaction.

populated charge carriers may  hinder their own move-
utual trapping. At high temperature, free charge carriers

d ions gain sufficient energy from the thermally activated
. As a result, resistivity decreases with increasing tem-

 Proper firing conditions have great impact on electrical
ity, optical properties and mechanical properties. Intesti-
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ceramics at various frequency.

rons generated due to charge transfer between Fe2+ and
 Fe3+-Fe3+ double-excitation process which get released
tion band and increased the electron density. As a result,
ncentration has augmented which increased the over-
ctivity. But, at very high sintering temperature, Ga2O3

 solid solution with the iron oxide which can reduce the
ensity. It is obvious that at lower sintering temperature,
ndary diffusion activation energy is quite less. If sinter-

 performed at high enough temperature, ceramics will not
 achieve proper densification and the remained internal

will hinder the movement of the free carriers by scatter-
anted sintering condition may  escalate the volatilization
. At optimized sintering temperature, defects and crys-
aries get reduced; as a result, scattering decreases and

increases [44].
rature dependent electrical resistivity plots for differ-
ered GFO samples are shown in Fig. 7. The data are shown
entative frequency values. It is evident from the figures
lectrical resistivity of 1100 ◦C and 1200 ◦C samples almost
e same trend though the later one registered slightly less
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 value. Fig. 8 illustrates the absolute temperature depen-
ductivity plots for all the samples at 1 MHz  frequency. It
om the plot that conductivity increases with increasing

 temperature. Though, the conductivity of 1000 ◦C sample
r than the 900 ◦C sintered sample, but it surmounted the
igh temperature region consolidating the fact that with
g sintering temperature densification occurs and porosity
reases which in turn increases the conductivity. The 900
d sample shows almost constant conductivity throughout
imental temperature range. The increment in conductiv-
ncreasing temperature for 1100 ◦C and 1200 ◦C samples
anifold higher than the other two. Electron hopping and

obility at the excited states are the main cause of this high
ure conductivity behavior which can be explained with
of the following Eq. (7) [54]:

[-
Ea/(kBT)) (7)

 denotes the dc electrical conductivity, �o is a constant,
 energy is expressed as Ea, kB is Boltzmann’s constant,

the temperature in absolute scale. Activation energy of
les were calculated with the help of the Arrhenius equa-

 activation energy varied in the range of 0.59−0.45 eV
easing sintering temperature. Fabrication method, impu-
, intrinsic crystal structure and atomic defects can have

 the activation energy [54]. In the case of Fe-doped Ga2O3
s a function of sintering temperature, the highest activa-

gy (0.55 eV) is noted for sample sintered at 900 ◦C. This
ation energy at 900 ◦C may  be due to incomplete calcina-
ess which might have caused agglomeration of particles
o carrier hindrance [53]. However, the activation energy
adually decrease with increasing Tsint due to improved
l order and microstructure.
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l polaron and hopping mechanisms are the main dominat-
s in the electrical transport behavior of Fe-doped Ga2O3.
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ndition thereby recorded higher conductivity than the
ples. Activation energy calculation from the temperature
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oderate activation energy of 0.46 eV. In conclusion, the
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