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Abstract: It is suggested that conventional tillage operations exacerbate global environmental 23 

changes and affect the sustainability of our food production systems. Therefore, no-till has 24 

been introduced as one of the conservation practices to counteract these challenges. No-till has 25 

been adopted by a substantial number of farmers in major cropping regions; however, its 26 

resilience from large scale implementation has been overlooked. The majority of the studies 27 

have reported only a few aspects of the no-till practice (e.g., yield, soil properties, etc.), often 28 

with contradicting observations. To fill this gap, we present an approach that integrates long-29 

term field experimental data and modeling to quantify resilience at a watershed scale. The 30 

study was conducted in the Kalamazoo River watershed located in Michigan, USA. Recharge, 31 

groundwater table, soil moisture, yield, and net return were used as resilience metrics. The 32 

DSSAT sequence crop model was developed for a corn-soybean-wheat rotation and calibrated 33 

using the yield and soil moisture data from a long-term (1993-2019) experiment for the 34 

conventional and the no-till treatment conducted within the study area. Soil moisture, recharge 35 

and yield were simulated, and the recharge was fed into a calibrated groundwater model to 36 

analyze changes in groundwater heads. The results showed clear evidence of higher recharge 37 

and net return under the no-till treatment, which were statistically significant for all crops at 38 

the watershed scale. Moreover, the no-till treatment consistently retained greater soil moisture 39 

than the conventional treatment, thereby helping to mitigate the impacts of droughts. The rise 40 

in groundwater table as affected by the adoption of no-till practices in this watershed has 41 

ranged between 0.1-0.5 m, depending on the underlying groundwater system, and has the 42 

potential to beneficially affect the aquifers and groundwater-dependent ecosystems. Therefore, 43 

the no-till treatment could improve the overall resilience of the row crop system.   44 
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1. Introduction 64 

Similarly to other regions in the world, the Midwestern United States has already been adversely 65 

impacted by climate change and variability (Andresen et al., 2012; Fuchs et al., 2015; Hatfield et 66 

al., 2018), and the increasing climate extremes, such as droughts, are projected to increase in the 67 

future (Jin et al., 2018). These extreme events have lead to substantial crop yield losses (Hatfield 68 

et al., 2018; Wang et al., 2016), affecting both producers and consumers. To counteract these 69 

drought extremes, groundwater based irrigation systems are widely used in the U.S. (Siebert et al., 70 

2010). However, extraction of groundwater for irrigation above the rate of recharge has 71 

significantly reduced groundwater levels, affecting the baseflow to streams, groundwater-fed 72 

wetlands, and other groundwater dependent habitats and species (Dalin et al., 2017; Scanlon et al., 73 

2012; Wada et al., 2010). Therefore, there is an increasing consensus among researchers that the 74 

resilience and ecosystem services provided by agricultural production systems should be 75 

improved. 76 

Ecosystem services denote all the benefits humans obtain from different natural systems for their 77 

physical and socio-economic prosperity (Costanza et al., 1997; Mengist et al., 2020). Agricultural 78 

practices are responsible for the primary production of food and fiber, while providing numerous 79 

ecosystem services at different scales (Dale and Polasky, 2007; Power, 2010; Swinton et al., 2007; 80 

Tancoigne et al., 2014; Wood et al., 2015). Comprehensive documentation of ecosystem services 81 

has been conducted within the framework of the Millennium Ecosystem Assessment (MEA); 82 

accordingly, ecosystem services can be broadly categorized based on provisioning, regulating, 83 

supporting, and cultural roles of the ecosystem (Fisher et al., 2009; MEA, 2005).  84 

Supporting services are fundamental in nature; without them, other types of services cannot occur. 85 

Nevertheless, the current trend of agricultural intensification deliberately focuses on a few 86 
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provisioning services (e.g., food, water, energy), through agricultural landscape simplification, 87 

rather than harnessing a range of ecosystem services (Bommarco et al., 2013; Gaba et al., 2015; 88 

Robertson and Swinton, 2005) which in turn affects the resilience and sustainability of the 89 

agricultural systems. This phenomenon is very common in the Midwestern United States (Landis, 90 

2017), which is one of the industrialized large-scale agricultural regions in the world, and 91 

contributes significantly to global food security and the economy as it produces the majority of the 92 

U.S. row crops and several other food, feed, and fuel crops (Hatfield, 2012; Oppedahl, 2018).  93 

Ecosystem services and resilience are interconnected, where the ecosystems with lower resilience 94 

are vulnerable to disturbances (e.g., climate perturbations) and higher resilience ensures a stable 95 

supply and/or recovery of ecosystem services (Biggs et al., 2012; Fedele et al., 2017; Montoya and 96 

Raffaelli, 2010). In other words, the loss of ecosystem resilience could compromise ecosystem 97 

services that are indispensable for sustainable agricultural production systems (DeClerck et al., 98 

2016; El Chami et al., 2020; Swift et al., 2004). Therefore, increased resilience and ecosystem 99 

services can be seen as an opportunity for climate change adaptation and disaster risk reduction 100 

(Munang et al., 2013). 101 

Improving agroecosystem services and resilience is not only confined to the farm scale, but can be 102 

expanded across the landscape (Bailey and Buck, 2016; Scherr et al., 2012). For example, 103 

agricultural recharge, which is the water leaving the vadose zone from agricultural farms, may 104 

contribute to groundwater-dependent wetlands, streams, and dependent species (Gordon et al., 105 

2010; Sampath et al., 2015) beyond those farms. These groundwater-dependent systems deliver 106 

services such as microclimate regulation, water for irrigation, flood mitigation, and control of pests 107 

and diseases (Griebler and Avramov, 2015; McLaughlin and Cohen, 2013), which in turn enhance 108 

the resilience of agro-ecosystems. Although groundwater recharge is broadly considered as a 109 
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provisioning service (Prudencio and Null, 2018; Serna-Chavez et al., 2014), it is also indirectly 110 

linked to regulatory and support services. Therefore, recharge can be considered as a major water-111 

related ecosystem service and can be used as a metric to evaluate resilience in agro-ecosystems 112 

(Coates et al., 2013; Serna-Chavez et al., 2014). 113 

Resilience signifies the ability of an agricultural ecosystem to maintain its structure and function 114 

in the face of disturbances (Walker et al., 2004). The initial step of improving resilience is the 115 

assessment of resilience at appropriate scales. Resilience metrics are used to quantify resilience 116 

and can be used individually or in combination (Douxchamps et al., 2017; Serfilippi and Ramnath, 117 

2018). Commonly used resilience metrics are means and variance of agricultural production/yields 118 

(Di Falco and Chavas, 2008; Eeswaran et al., 2021; Martin and Magne, 2015), profit/revenue 119 

(Browne et al., 2013; Kandulu et al., 2012; Komarek et al., 2015; Rigolot et al., 2017), soil moisture 120 

(Eeswaran et al., 2021), crop failure (Jones and Thornton, 2009), and farming risks (Komarek et 121 

al., 2015). 122 

No-till has been endorsed for enhancing ecosystem services such as carbon sequestration, 123 

greenhouse gas mitigation, microclimate regulation, control of nutrient leaching, soil erosion 124 

control and improving species richness (Lal, 2013; Robertson and Swinton, 2005; Syswerda and 125 

Robertson, 2014; Zhang et al., 2016), often at the field scale. Considering all of the aforementioned 126 

benefits, there is an increasing trend in the adoption of no-till agriculture around the world (Kassam 127 

et al., 2019). However, there is a dearth of knowledge on how no-till affects the overall resilience 128 

at a larger scale. To fill this gap, we present an approach that integrates long-term field 129 

experimental data and modeling to evaluate an ecosystem service (i.e., groundwater recharge and 130 

water table) and resiliency (i.e., soil moisture, drought mitigation, yield, and net return) of 131 

convetinal and no-till practices in a large, diverse watershed. The objectives of this study are: 1) 132 
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assess recharge, groundwater table, and soil moisture variabilities for the long-term corn-soybean-133 

wheat rotation under conventional and no-till practices at a watershed scale; 2) estimate yields and 134 

net returns under conventional and no-till practices within a large, diverse watershed; and 3) 135 

evaluate the overall changes in resiliency as affected by the adaptation of no-till as conservation 136 

agriculture.             137 

2. Materials and Methods 138 

2.1. Overview of Methodology 139 

The modeling framework of this study is presented in Figure 1. Initially, observed data from a 140 

long-term (1993-2019) corn-soybean-winter wheat rotation experiment of both conventional 141 

tillage and no-till treatments were used to parameterize a crop model (i.e., the Decision Support 142 

System for Agrotechnology Transfer-DSSAT) (Jones et al., 2003). Next, the DSSAT model was 143 

calibrated using the measured volumetric soil moisture and crop yield from the long-term field 144 

experiment. The calibrated DSSAT model was applied to individual fields within a large and 145 

diverse watershed. The results from the large-scale crop model were used to calculate the annual 146 

recharge and resilience measures for individual fields.  147 

The simulated drainage from the crop model, i.e. the deep percolation from the bottom of the soil 148 

profile, was assumed to reach the water table instantaneously and act as recharge from the 149 

agricultural land use (Xiang et al., 2020). This assumption can be supported by the existence of 150 

permeable soils and strong connection between the surface and groundwater within the study 151 

watershed (Grannemann et al., 2008). Groundwater flow in the watershed was modeled using a 152 

process-based groundwater model called Interactive Groundwater (IGW) (Li and Liu, 2006; Liao 153 

et al., 2015a) and calibrated using static water level data. Finally, changes in the water table as 154 
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ecosystem service and metrics of resilience were evaluated as affected by the adaptation of a no-155 

till treatment and compared to the base scenario (a conventional tillage treatment). 156 
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Figure 1. An overview of the modeling process 158 

2.2. Study Area 159 

Our research project comprises of both field experiments and modeling efforts. The following 160 

sections describe the study area for each of these efforts. 161 

2.2.1. Description of Long-Term Field Experiment 162 

The DSSAT cropping system model (Jones et al., 2003) for the watershed scale evaluation was 163 

developed using the long-term experimental data collected from the Main Cropping System 164 

Experiment (MCSE) of the Kellogg Biological Station (KBS). KBS is located within the 165 

Kalamazoo River watershed in Michigan, U.S. at the coordinates of 42.41˚ N, 85.37˚ W and the 166 

altitude of 288m AMSL (Figure 2). The annual precipitation at the KBS is about 1,027 mm, while 167 

the annual mean temperature is 10.1 ˚C, ranging from the lowest monthly mean of -9.4 ˚C to the 168 

highest of 28.9 ˚C in January and July, respectively (Cusser et al., 2020). This experimental site 169 

has fine loamy, well-drained, mesic Typic Hapludalf (Kalamazoo loam series) soils formed from 170 

the glacial till and outwash (Syswerda and Robertson, 2014).  171 

The MCSE, established in 1989, consists of several experimental treatments of annual and 172 

perennial cropping systems. To meet the objectives of this study, only conventional and no-till 173 

treatments were considered of a corn (Zea mays), soybean (Glycine max), and winter wheat 174 

(Triticum aestivum) annual rotation. Both treatments have been under rainfed management. 175 

Further, each of these experimental treatments consisted of six replicants (blocks) in a randomized 176 

complete block design, and each block has a dimension of 87 × 105 m. In the conventional 177 

treatment, crops were planted following the primary tillage using moldboard plough until 1998 178 

and thereafter using chisel plough. Primary tillage was followed by soil finishing each year. 179 
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Disking was practiced as secondary tillage before planting a wheat crop in the rotation while inter-180 

row cultivation was performed for corn and soybean. Nitrogen fertilizer was applied as per the 181 

soil-test recommendations for each crop. Appropriate herbicides were broadcasted to control 182 

weeds depending on the weed intensity. Crops were not applied with any manure or insecticides. 183 

The same management was used for the no-till treatment, except crops were planted without tillage 184 

using a no-till drill (Robertson and Hamilton, 2015). Even though the MCSE was established in 185 

the late 1980s, an appropriate experimental design was adopted from 1993. Therefore, our study 186 

was designed for the experimental period of 1993-2019. The crop rotation begins with corn in 187 

1993 and ends with wheat harvest in 2019, covering nine complete rotations (27 years). The 188 

following data were used to parameterize the crop model developed for this experiment.  189 

The daily weather data (precipitation, maximum temperature, minimum temperature, and solar 190 

radiation) for the experimental period were obtained from the automated weather station located 191 

within the MCSE site. The soil analysis data of bulk density, organic carbon, total nitrogen, soil 192 

pH, extractable phosphorous, and exchangeable potassium at different depths were collected from 193 

previously published data (Crum and Collins, 1995). Crop management data such as cultivar, 194 

planting (date of planting, planting method, planting distribution, planting density, row spacing, 195 

row direction, and planting depth), nitrogen fertilizer application (date of application, type of 196 

nitrogen fertilizer, method of application, depth of application and quantity of application), tillage 197 

(date of tillage, tillage implement and tillage depth), and harvesting date were collected from the 198 

MCSE agronomic log. The gravimetric soil moisture was measured typically in biweekly intervals 199 

at a depth of 0-25 cm from each replicate of the treatment during the study period. Periodically, 200 

updated soil bulk density data for the same depth (0-25 cm) was used to transform gravimetric soil 201 

moisture into volumetric soil moisture. The detailed procedure for sampling gravimetric soil 202 
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moisture and the conversion into volumetric soil moisture can be found in Eeswaran et al. (2021). 203 

Crop yields were measured at harvest using combine harvesters for the entire block. The seed yield 204 

was calculated based on the standard seed moisture level of 15.5% for corn and 12.5% for wheat 205 

and soybean.  206 

207 

Figure 2.  Location of the experimental site and the Kalamazoo River Watershed in Michigan, 208 

USA 209 

2.1.2. Description of the Study Watershed 210 
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The study was conducted in the Kalamazoo River watershed, which is in the southwest part of 211 

Michigan, USA (Figure 2). The watershed drains an extent of 5,232 km2 from the counties of 212 

Allegan, Barry, Calhoun, Eaton, Hillsdale, Jackson, Kalamazoo, Kent, Ottawa, and Van Buren 213 

into Lake Michigan near the towns of Saugatuck and Douglas (KRWC, 2011). The hydrogeology 214 

of this watershed is defined by thick glacial deposits of sand and gravel that contribute to 215 

permeable soils and stable groundwater inflows (Wesley, 2005). Generally, there is a high degree 216 

of connection between surface and groundwater in the basin (Grannemann et al., 2008). Soil 217 

groups which make up the watershed are 40% of sandy loam, 30% of loamy sand, 25% of clay 218 

loam, and 5% of organic soils (Wesley, 2005). The watershed has a gentle to moderate slope, and 219 

the drainage class is moderate to well-drained (Schaetzl et al., 2009).  220 

The Kalamazoo River Watershed is historically well known for its richness in biodiversity, 221 

ecosystem services, and recreational opportunities as it consists of several lakes, headwater 222 

streams, wetlands, and flood plains that are heavily contributed by its groundwater system 223 

(Alexander et al., 2014; KRWC, 2011). A stable baseflow to streams and other habitats is essential 224 

to attenuate temperature extremes and to sustain aquatic life (KRWC, 2011). In contrast, growing 225 

pressures from development, urbanization, and agricultural operations have significantly altered 226 

the hydrology and water quality within the watershed (Wesley, 2005). Moreover, groundwater is 227 

extracted for industries, public water supply, domestic wells, irrigation, livestock, mining, and 228 

other commercial purposes; thus, groundwater withdrawal in this watershed is rated highest in the 229 

State of Michigan (Wesley, 2005). The high groundwater withdrawal within the Kalamazoo River 230 

Watershed warranted its use for this study.  231 

Agriculture is the primary land use within the watershed (47%) followed by forest cover and 232 

successional vegetation (30%), lakes, wetlands, and flood plains (15%), and urban areas (8%) 233 
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(Figure 2; KRWC, 2011). Row crops such as corn, soybean, and wheat dominate agricultural lands 234 

while pasture, alfalfa, fruit crops, and livestock are also produced in the region. The climate varies 235 

across the watershed depending on location, distance from Lake Michigan (lake effect), the 236 

formation of air masses, and atmospheric disturbances. The mean annual temperature of the basin 237 

is about 8.8 ˚C, and the annual precipitation ranges between 810-865 mm, of which about half is 238 

snowfall (Wesley, 2005). 239 

Watershed scale crop modeling was performed for the period 1993-2019 and the following data 240 

were collected for this task. The daily weather data (precipitation, maximum temperature, and 241 

minimum temperature) for the study period were obtained from eight meteorological stations in 242 

the Kalamazoo River Watershed (Figure 2) using NOAA’s National Centers for Environmental 243 

Information. To fill in the missing weather data, the Soil Water Assessment Tool (SWAT) weather 244 

generator, i.e., WXGEN, was used (Sharpley and Williams, 1990). The soil data for the watershed 245 

were downloaded from a global soil profile database for crop modeling applications available at 246 

Harvard Dataverse (Han et al., 2015). This soil data is compatible to the DSSAT crop model (.SOL 247 

format) at 10 km resolution and recommended for large scale crop modeling (Han et al., 2019). A 248 

total of 85 grids were found in the Kalamazoo River Watershed. The land use data were collected 249 

from National Land Cover Database (NLCD) 2013 (Homer et al., 2020) and the agricultural land 250 

use (legend 82: cultivated crops) in the watershed was extracted using ArcGIS 10.6 (Esri, 251 

Redlands, California, USA). Finally, the soil grids were assigned to respective weather stations 252 

using geoprocessing tools (Thiessen method) in ArcGIS (Thiessen, 1911). Therefore, a total of 85 253 

modeling domains were used for crop modeling in the watershed.                      254 

2.3. Crop Modeling  255 
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Crop modeling for conventional and no-till treatments of the long-term experiment was performed 256 

in DSSAT. DSSAT is one of the most highly cited crop modeling platforms in global agricultural 257 

research and currently consists of process-based simulation models for more than 42 crops 258 

(Hoogenboom et al., 2019; Jones et al., 2003, 2017). DSSAT has been successfully implemented 259 

in the evaluation of interactions among genetics, environment, and management at scales ranging 260 

from field to landscape (Adnan et al., 2019; Eitzinger et al., 2017). This includes the assessment 261 

of genetic improvement (Boote et al., 1996), evaluation of the impacts of climate change (Fodor 262 

et al., 2017; Rosenzweig et al., 2014), optimization of management practices such as tillage, water, 263 

and nutrients (Iocola et al., 2017; Kropp et al., 2019; Liu et al., 2013; Malik and Dechmi, 2019; 264 

Roy et al., 2019), and yield gap analysis (Teixeira et al., 2019). Moreover, DSSAT was applied 265 

for yield forecasting, precision farming, decision support, and policy analysis in agriculture (Boote 266 

et al., 1996; Shelia et al., 2015; Thorp et al., 2008). Crop modeling can also offer valuable 267 

opportunities to evaluate resilience against climate extremes when integrated with long-term 268 

research experiments (Rötter et al., 2018). 269 

In this study, the SEQUENCE modeling procedure (Bowen et al., 1998; Liu et al., 2013; Salmerón 270 

et al., 2014) in DSSAT-CSM was used to simulate the corn-soybean-winter wheat rotation for the 271 

conventional and the no-till treatments. The DSSAT version 4.7.5 (Hoogenboom et al., 2019) was 272 

used to simulate corn, soybean, and winter wheat by applying crop models of CERES-maize, 273 

CROPGRO-soybean, and CERES-wheat for the respective crops (Jones et al., 2003). Weatherman 274 

application within the DSSAT (Pickering et al., 1994) was used to create DSSAT format (.WTH) 275 

weather files for the experimental period (1993-2019) using collected daily precipitation, 276 

maximum temperature, minimum temperature, and solar radiation from the MCSE site. The soil 277 

information (Kalamazoo Loam soil-MSKB 890006) was obtained from the DSSAT soil database 278 
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and the Web Soil Survey (NRCS, 2020), and the relevant model parameters, such as the saturated 279 

hydraulic conductivity (SSKS), were updated accordingly. The soil analysis data collected from 280 

Crum and Collins, (1995) were used as the initial soil analysis values.  281 

The best cultivar options suggested by Grace and Robertson for MCSE at KBS were available in 282 

DSSAT sequence models (MSKB8902.SQX) and were used to initialize the simulation 283 

(Hoogenboom et al., 2019). Accordingly, four crop cultivars (two corn cultivars and one cultivar 284 

each for soybean and winter wheat) were used for crop modeling. The identification codes of the 285 

corn cultivars used are IB0090 and IB0093, both belong to the ecotype IB0001. The identification 286 

code of the soybean cultivar is 990002 (ecotype: SB0201) while the identification code for the 287 

wheat cultivar is IB0488 (ecotype: USWH01). Planting information, nitrogen fertilizer 288 

applications, and harvesting information were incorporated for both treatments. The period 289 

between crops in the rotation was modeled as fallows. Irrigation information was not required as 290 

both treatments were managed as rainfed. Treatments were appropriately assigned in separate files 291 

(.SQX), and simulation was initiated using the following methods: The Priestly-Taylor/Ritchie 292 

method was used to estimate evapotranspiration (Priestley and Taylor, 1972), Suleiman-Ritchie 293 

method (Suleiman and Ritchie, 2003) was used to estimate soil evaporation, infiltration rate was 294 

estimated using the Soil Conservation Service method (SCS, 1985), Century method (Parton, 295 

1996) was used to simulate soil organic matter, and soil layer distribution was set to the modified 296 

soil profile. The soil water balance was simulated in DSSAT as a function of daily precipitation, 297 

irrigation (if any), transpiration, soil evaporation, runoff, and drainage on a daily basis (Ritchie, 298 

1998).  299 

Daily volumetric soil moisture was simulated for the depths of 0-5 cm, 5-15 cm, 15-22 cm, and 300 

22-31 cm using the DSSAT model. Then, weighted average soil moistures were calculated for the 301 
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comparison with the observed soil moisture at 0-25 cm depth. The root growth factor (SRGF), 302 

lower limit/wilting point (SLLL), drained upper limit/field capacity (SDUL) were manually 303 

adjusted to match the simulated and observed soil moisture to calibrate the DSSAT soil water 304 

balance module (Calmon et al., 1999; Fang et al., 2008). The final soil properties generated from 305 

soil data calibration is presented in Table S1. Performance of the soil moisture and yield calibration 306 

was evaluated using coefficient of determination (R2) (Equation 1), normalized root mean square 307 

error (NRMSE) (Equation 2), and index of agreement (d) (Equation 3). NRMSE and d are 308 

commonly used to statistically evaluate the goodness of fit between observed and simulated soil 309 

moisture and yield (Araya et al., 2017; Dokoohaki et al., 2016; Liu et al., 2013; Yang et al., 2014). 310 

The model performance according to NRMSE goodness of fit can be classified as 0-15% (good), 311 

15-30% (moderate), and >30% (poor). Goodness of fit based on d (Willmott, 1982) can be 312 

categorized as <0.7 (poor), 0.7-0.8 (moderate), 0.8-0.9 (good), and 0.9-1.0 (excellent) as proposed 313 

by Liu et al. (2013). 314 

𝑅2 =
[∑ (𝑆𝑖−𝑆̅)(𝑂𝑖−𝑂̅)]2 𝑛

𝑖=1

∑ (𝑆𝑖−𝑆̅)2𝑛
𝑖=1  ∑ (𝑂𝑖−𝑂̅)2𝑛

𝑖=1

                                                                                                           (1) 315 

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑆𝑖−𝑂𝑖)2/𝑛𝑛

𝑖=1

𝑂̅
 × 100                                                                                                 (2) 316 

𝑑 = 1 −  
∑ (𝑆𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑆𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2𝑛
𝑖=1

                                                                                                          (3) 317 

where, 𝑆𝑖 is the simulated ith value, 𝑂𝑖 is the observed ith value, 𝑆̅ is the mean of the simulated 318 

values, 𝑂̅ is the mean of the observed values, and n is the number of values.  319 

     320 

2.5. Groundwater Modeling 321 
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Groundwater flow in the shallow unconsolidated glacial deposits was modeled using Interactive 322 

Groundwater (IGW), a groundwater modeling software introduced by Li and Liu (2006), which 323 

uses the finite difference approximation of the governing partial differential equation (Equation 4) 324 

to solve confined and unconfined flow conditions: 325 

𝑆𝑠
𝜕ℎ

𝜕𝑡
= ∇(𝐾 ∙ ∇𝐻) + 𝑞                                                                                                                   (4) 326 

where, Ss is the specific storage coefficient, h is the hydraulic head [L], t is time [T], K is the 327 

saturated hydraulic conductivity, ∇ is the mathematical gradient operator, q is the net source 328 

(positive) or sink (negative) flux term, including recharge, and surface seepage [LT−1].   329 

IGW is periodically updated (see, e.g., Liao et al., 2015a, 2015b, 2020); for this study, the IGW 330 

model was developed, calibrated, and visualized using the new web-based version of IGW called 331 

MAGNET – Multi-scale Adaptive Global Network – 4 Water, accessible on the magnet4water 332 

website: https://www.magnet4water.com/magnet.  333 

The IGW modeling software is live linked to a database comprising terabytes of raw and derived 334 

data useful for the groundwater modeling. A high-resolution (10 m) digital elevation model (DEM) 335 

(NED USGS 2006) was used to map topographic variations (i.e., the aquifer top) and to simulate 336 

groundwater-surface seeps in the watershed (see more below). The bottom boundary is represented 337 

by a spatially variable surface based on the top of the bedrock underneath the unconsolidated 338 

sediments. The bedrock top elevation raster (500 m resolution) was interpolated from borehole 339 

records found in the statewide water well database called Wellogic (MDEQ, 2020). Hydraulic 340 

conductivity (K) of the aquifer was represented by a spatially-variable, two-dimensional (2D) 341 

raster of horizontal hydraulic conductivity. This was generated by interpolating estimated K values 342 

from records in the Wellogic database, public water supply, and U.S. Geological Society aquifer-343 
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tests, and aquifer properties reported in the literature (State of Michigan, 2006). Given that the 344 

horizontal extent of the model was much larger than the vertical extent, it was hypothesized that 345 

flow was predominantly two-dimensional (2D) and that a 2D model could capture the dominant 346 

flow processes. The model extent was divided into 418 cells in the x- (west-east) direction and 258 347 

cells in the y- (north-south) direction.   348 

The model was executed for the period 1993-2019 using a one-year time step. The initial condition 349 

was generated by running the model in steady-state mode to represent long-term mean conditions, 350 

since no data was available to prescribe the initial head distribution. Annual recharge distributions 351 

from the calibrated DSSAT SEQUENCE model were included in the source/sink term at each time 352 

step. In non-cropland areas, the long-term mean recharge applied in the steady-state model was 353 

used. Natural, long-term mean recharge to the aquifer was input to the steady-state model and was 354 

created following empirical methods presented by Holtschlag (1997) involving observed 355 

streamflow hydrographs and information related to land use, soil conditions, and watershed 356 

characteristics (State of Michigan, 2006).  357 

For both the ‘initial condition’ steady-state model and the subsequent transient model, groundwater 358 

discharge into lakes, streams, and wetlands/springs - the major control of the long-term prevailing 359 

groundwater flow patterns – was captured through the critical use of high-resolution Digital 360 

Elevation Models (DEMs). Specifically, the entire land surface, modeled using the 10 m DEM 361 

from USGS NED (2006), was treated as a one-way head-dependent boundary condition (seepage). 362 

This allowed groundwater to discharge to the surface where the groundwater level intercepted the 363 

land surface. The flux per unit area leaving the aquifer was the product of the leakance (hydraulic 364 

conductivity per unit thickness) of the land surface with the difference between the land surface 365 

elevation and the head in the aquifer. Leakance is a calibration parameter that is manually 366 
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calibrated. For example, if the leakance was too low the flooded area would be too large and vice 367 

versa (note: a final calibrated value of 1 day-1 was used for transient simulation). Surface seepage 368 

maps at different time-steps were compared to the surface water features obtained from USGS 369 

NHD (2010) to ensure that this approach effectively captured the spatial patterns of groundwater 370 

discharge to the surface water bodies. Groundwater pumping was not represented in the initial 371 

condition model nor the transient simulation. A ‘no-flow’ condition (i.e., zero groundwater flux) 372 

was applied along the lateral and bottom boundaries of both steady state and transient models. In 373 

short, recharge in the watershed was balanced by surface seepage to surface water bodies in the 374 

simulations presented here. 375 

Annual recharge distributions from the calibrated DSSAT SEQUENCE model for the conventional 376 

and no-till treatments were included in the source/sink term at each time step in sperate runs. All 377 

other aquifer properties / attributes from the steady-state model were applied during the transient 378 

simulation. In addition, a specific yield of 0.1 was assigned based on the aforementioned 379 

distribution of soil types in the watershed (detailed specific yield data was not available).  380 

2.6. Simulation of Crop Yields and Recharge at the Watershed Scale 381 

Calibrated DSSAT SEQUENCE model for the conventional and no-till treatments were used to 382 

simulate crop yields and agricultural recharge for the period of 1993-2019. The watershed was 383 

clustered according to climate and soil types. It was assumed that the corn-soybean-wheat rotation 384 

was planted on all agricultural land within the watershed. The crop model was later run for each 385 

unique set of climate and soil type under the conventional and no-till treatment scenarios.  386 

2.7. Assessment of Ecosystem Services and Resilience as Affected by the Adoption of No-387 

Till Agriculture 388 
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A rising groundwater table from increased recharge is beneficial since many natural habitats, such 389 

as wetlands, depend on year-round groundwater availability (McLaughlin and Cohen, 2013; 390 

Sampath et al., 2015, 2016). In addition, increases in soil moisture within the root zone can 391 

improve the resilience of rainfed agricultural productions (Eeswaran et al., 2021). Yield, net return, 392 

and soil moisture metrics, namely mean relative difference (MRD) and soil water deficit index 393 

(SWDI), were used as metrics of resilience. MRD and SWDI were shown to be suitable metrics to 394 

evaluate resilience in agricultural systems (Eeswaran et al., 2021). MRD was presented by 395 

(Vachaud et al., 1985) to evaluate the temporal stability of spatially distributed soil moisture 396 

measurements. Additionally, treatment with a higher MRD was considered resilient to climate 397 

extremes, such as droughts (Eeswaran et al., 2021). The MRD during a particular growing season 398 

was computed as follows: 399 

𝑀𝑅𝐷 =  
1

𝑁
∑ {(Ɵ𝑣 − Ɵ̅𝑁

𝑗=1 )/Ɵ̅}                                                                                                                        (5) 400 

Ɵ̅ =  
1

𝑛
 ∑ Ɵ𝑣

𝑛
𝑖=1                                                                                                                                      (6) 401 

where, Ɵ𝑣 is the simulated daily volumetric soil moisture for ith treatment on jth day. This soil 402 

moisture was derived as a weighted average for 0-25 cm depth from the simulation outputs. The 403 

number of treatments denoted by n. Ɵ̅ is the average volumetric soil moisture of all treatments and 404 

N is the total number of days in the growing season. In this study, the growing season was 405 

considered to start on April 1st and end October 31st, since it covered the critical stages of each 406 

crop and the MRD values were calculated in percentages. Probability analysis (Alizadeh, 2013) 407 

was conducted for the annual MRD values, and probability curves were compared between 408 

treatments to assess the resilience as affected by the adoption of the no-till treatment. 409 
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SWDI is an agricultural drought index proposed by Martínez-Fernández et al. (2015) and can be 410 

implemented to assess droughts when continuous soil moisture data is available. The SWDI is 411 

calculated using the following formula; 412 

𝑆𝑊𝐷𝐼 =  (
Ɵ𝑣−Ɵ𝑓𝑐

Ɵ𝑓𝑐−Ɵ𝑤𝑝
) × 10                                                                                                                           (7) 413 

where, Ɵ𝑣 is the simulated daily volumetric soil moisture during the growing season as above. Ɵ𝑓𝑐 414 

is the field capacity/drain upper limit, and Ɵ𝑤𝑝 is the wilting point/lower limit. Ɵ𝑓𝑐 and Ɵ𝑤𝑝 values 415 

were obtained from each selected soil file (Han et al., 2015) as weighted averages for the 0-25 cm 416 

soil depth. A particular soil will have excess water when SWDI is positive, soil will be at the field 417 

capacity when SWDI equals zero, and be in a drought phase when SWDI is negative. Moreover, 418 

drought severity categories can be classified based on SWDI as  “no drought” if SWDI > 0, as 419 

“mild” if 0 > SWDI > -2, as “moderate” if -2 > SWDI > -5, as “severe” if -5 > SWDI > -10, and 420 

as “extreme” if -10 > SWDI (Martínez-Fernández et al., 2015). Calculated SWDI for the entire 421 

growing season (April-October) for each year during the study period (1993-2019) was used to 422 

calculate the median, mean, maximum, and minimum across all soils, and these values were later 423 

arranged in descending order to perform probability analysis for each treatment (Alizadeh, 2013). 424 

Probability curves were compared between treatments to assess the resilience of the no-till 425 

agriculture to drought. 426 

The net return was estimated through cost-benefit analysis using the annual crop yields and the 427 

price received for crops in November 2018 in Michigan (USDA, 2019). In 2018, the price of corn, 428 

soybean, and winter wheat was 131.50, 307.50, and 180.76 US dollars per ton, respectively. The 429 

cost was calculated using the variable cost involved in all agricultural operations for both 430 

treatments during the year 2018 in the long-term research experiment. This cost was estimated 431 
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based on a detailed 2018 enterprise budget from Clemson University Cooperative Extension for 432 

the respective crops (Clemson, 2020). The pricing of cost and benefit components were considered 433 

as static over the years of simulation and the fixed cost was excluded due to lack of information 434 

for reliable estimates.  435 

The yield, net return, and annual recharge were statistically analyzed in a mixed model (Equation 436 

8) to evaluate the significance of fixed and random effects on these response variables for each 437 

evaluated crop (i.e., corn, soybean and wheat). 438 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑎𝑘 + 𝑡𝑖 + 𝑠𝑗 + (𝑡𝑎)𝑖𝑘 + (𝑠𝑎)𝑗𝑘 + (𝑡𝑠)𝑖𝑗 + 𝜀𝑖𝑗𝑘                       (8) 439 

where, 𝑌𝑖𝑗𝑘 is the  response (grain yield/net return/annual recharge) simulated for the ith treatment, 440 

within jth soil type on the kth cropping year; µ is the intercept; 𝑎𝑘 is the fixed effect of the cropping 441 

year k; 𝑡𝑖 is the fixed effect of the treatment i; 𝑠𝑗 represents the random effects of the jth soil type, 442 

with 𝑠~𝑁(0, 𝜎𝑠
2); (𝑡𝑎)𝑖𝑘 denotes the fixed interaction between the ith treatment and kth cropping 443 

year; (𝑠𝑎)𝑗𝑘 is the random effect of the interaction between jth soil type and kth cropping year, 444 

with (𝑠𝑎)~𝑁(0, 𝜎𝑠𝑎
2 ); (𝑡𝑠)𝑖𝑗 is the random effect of the interaction between the ith treatment and 445 

jth soil type, (𝑡𝑠)~𝑁(0, 𝜎𝑡𝑠
2 ); and 𝜀𝑖𝑗𝑘 is the error associated with each observation, with 446 

𝜀~𝑁(0, 𝜎𝜀
2). To ensure the normality of the residuals and the homogeneity of variances, the grain 447 

yield and annual recharge data were log-transformed. Transformations were not needed for net 448 

return. There were varying extents of acreage of agricultural land use for each soil in the watershed. 449 

Hence, the area of each soil was used as a weighting factor in the model. The comparison between 450 

the means was performed using the Tukey-Kramer test, assuming 𝛼 = 0.05  (Herberich et al., 451 

2010). All analyses were performed using the GLIMMIX procedure (Milliken and Johnson, 2009) 452 

in the SAS software version 9.4 (SAS Institute Inc. Cary, North Carolina, USA).  453 
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  454 

3. Results and Discussion 455 

3.1. Calibration of the Crop Model 456 

The sequential DSSAT crop model was calibrated and validated for yield and soil moisture during 457 

the period of 1993-2019, which included nine complete rotations of corn-soybean-wheat crops. 458 

The performance of the model to simulate crop yields under both treatments was measured by the 459 

goodness of fit indicators shown in Table 1. According to the R2 and d-index, the model 460 

performance was considered excellent, whereas the NRMSE indicated moderate performance (Liu 461 

et al., 2013; Willmott, 1982). However, relatively large NRMSE values are expected when 462 

modeling long-term crop performance for multiple growing seasons as a result of interannual 463 

variations. It is also important to note that the performance of the no-till model was slightly better 464 

than the conventional model. A similar performance was observed for the simulation of soil 465 

moisture. However, performance indicators show that the crop model was reasonably calibrated 466 

for the corn-soybean-wheat rotation (Table 1).  467 

Table 1. The goodness of fit parameters of the calibrated crop model to simulate yield and soil 468 

moisture under the conventional and no-till treatments. 469 

Treatment Crop yield Soil moisture 

R2 NRMSE (%) d-index R2 NRMSE (%) d-index 

Conventional 0.73 27.6 0.92 0.74 29.0 0.8 
No-till 0.75 26.6 0.93 0.74 19.3 0.9 

 470 

3.2. Calibration of Groundwater Model 471 

The steady-state simulation results are shown in Figure S1. The comparison between the simulated 472 

results (heads) of the steady-state model and Static Water Level (SWL) measurements from water 473 
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well records in the Wellogic database can be seen in Figure 3. SWL observations from 23,757 474 

glacial wells were used to calibrate the model. The solid 45-degree line represents “perfect 475 

agreement” between simulated and actual observations while the dashed lines represent confidence 476 

intervals of one standard deviation. Calibration results show that the model performance was good, 477 

as indicated by a strong Nash-Sutcliffe model efficiency coefficient of 0.90. Even though there 478 

was large spread of the data points, all data was centered around the line of perfect agreement. The 479 

center-focused distribution demonstrates that the model was able to capture the dominant spatial 480 

structure of the groundwater system (i.e., the distribution of groundwater recharge and discharge 481 

areas). Large spread in the data, as indicated by the root-mean-square error of 7.91 m, primarily 482 

reflects the significant noise embedded in the SWL observations (Curtis et al., 2018). 483 

 484 
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Figure 3.  Comparison between simulated groundwater heads and observed groundwater heads. 485 

The solid red line in the calibration indicates a 1:1 perfect agreement.  The dashed lines represent 486 

a confidence interval of one standard deviation 487 

3.3. Resilience as Affected by the Adoption of No-Till Agriculture 488 

In this study, we quantified resilience in terms of recharge, groundwater table, soil moisture 489 

metrics, crop yield, and net return for both the conventional and the no-till treatments. Treatments 490 

with higher recharge, groundwater table, soil moisture retention, ability to mitigate drought, larger 491 

crop yields, and higher net revenues were considered as resilient over the long-term (1993-2019) 492 

evaluation. 493 

 494 

3.3.1. Recharge and Groundwater Table as Affected by the Adoption of No-Till Agriculture 495 

The statistical analysis for the annual recharge showed that the effects of treatment, year, and the 496 

interaction between treatment and year were strongly significant (see the supplementary material 497 

Table S2). The means of the annual recharge across different soils and years from each crop can 498 

be seen in Figure 4. Results showed that the no-till treatment significantly increased the annual 499 

recharge from all crops in comparison to the conventional treatment. The annual recharge from the 500 

no-till treatment for corn, soybean, and wheat were 12.4%, 6.2%, and 13.2% greater than the 501 

annual recharge from the conventional treatment, respectively. The soybean had the highest 502 

recharge followed by wheat and corn. Because the interaction effect between treatment and year 503 

was also significant for the annual recharge (Table S2), the comparisons between treatments for 504 

each crop during the period of study is presented in Figure S2. In most years, the no-till treatment 505 

had significantly higher recharge than the conventional treatment. The changes in recharge across 506 
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the years can be attributed to the changes in precipitation and crop growth, which affect other water 507 

balance components (Figure S2).         508 

509 

Figure 4.  The mean annual recharge from different crops under two treatments in the Kalamazoo 510 

River watershed. ** indicates strongly significant means at p<0.0001 511 

    512 

The results from the transient groundwater flow simulation for the conventional and no-till 513 

treatments are presented in Figures 5 and 6. Figure 5 shows the 2019 hydraulic head distribution 514 

under the conventional treatment, and the location of the six (‘virtual’) monitoring wells where 515 

transient head results were reported. Note that the changes in the water table at the watershed scale 516 

over time were difficult to distinguish, therefore no comparison of plan-view model results under 517 
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each agricultural scenario was presented. Therefore, temporal changes of groundwater levels were 518 

presented at each monitoring wells (Figure 6). The time-series comparisons show that the no-till 519 

treatment resulted in higher water tables compared to the conventional treatment. The differences 520 

were typically small: about 0.3-0.5 m at Monitoring Well 1, 0.1-0.3 m at Monitoring Well 4, and 521 

0.1 m or less at the other locations. However, even a relatively small improvement in the 522 

groundwater table can have beneficial effects on streams and aquatic ecosystems in the Kalamazoo 523 

River Watershed, due to the large contribution of groundwater to streamflow in this region (Cooper 524 

and Merritt, 2012; Sampath et al., 2016). 525 

526 

Figure 5.  Monitoring well (MW) locations superimposed over the 2019 head distribution under 527 

conventional treatment 528 
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529 

Figure 6. Simulated water table heads under the conventional and no-till treatments for the six 530 

monitoring wells 531 
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As observed in our study, higher recharge in the no-till treatment simultaneously increased the 532 

groundwater table; however, the magnitude of change was dependent upon the characteristics of 533 

the underlying groundwater system (Figure 6). The higher recharge observed under the no-till 534 

treatment in this study may have been caused by the greater infiltration of rainwater (Nunes et al., 535 

2018). According to Kravchenko et al. (2011), the no-till system establishes large pores associated 536 

with the undisturbed root channels created by previous crops. The macropores in a no-till system 537 

may contribute to greater infiltration and thus recharge. In agreement with the findings reported 538 

here, Syswerda and Robertson (2014) also found higher downward drainage under the no-till 539 

treatment compared to the conventional treatment.  540 

In many regions of the world, groundwater is tapped at rates greater than the local recharge, leading 541 

to the depletion of aquifers (Dalin et al., 2017; Reitz et al., 2017). Furthermore, increasing climate 542 

variability has already posed additional challenges to water resources and accelerated stresses to 543 

the water-energy-food nexus (Smidt et al., 2016). Therefore, an improved recharge and water table 544 

under the no-till practice can increase the resilience of the food systems, while also supporting the 545 

sustainability of groundwater-dependent ecosystems.  546 

3.3.2. Soil Moisture Metrics as Affected by the Adoption of No-Till Agriculture 547 

The probability distribution of the of mean, maximum, and minimum of MRD for both treatments 548 

across 85 soils over the period of the study is presented in Figure 7. MRD measures soil moisture 549 

deviations from the average soil moisture of agricultural treatments, and a positive MRD signifies 550 

a wetter treatment while a negative MRD signified a drier treatment (Eeswaran et al., 2021). The 551 

mean of the MRD clearly shows that the conventional treatment mostly (>93% probability) 552 

generated a negative MRD while the no-till treatment generated a positive MRD. Therefore, the 553 

no-till treatment consistently retained higher soil moisture than the conventional treatment. Based 554 
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on the maximum line for the conventional treatment (Figure 7a), it also had a small probability 555 

(<14%) to be wetter than the no-till treatment. Similarly, the minimum line of the no-till treatment 556 

(Figure 7b) shows that it also had the chance to be drier than the conventional treatment by the 557 

same magnitude of probability as above.  558 

The probability distribution of SWDI across all soils over the study period is shown in Figure 8. 559 

As shown in Figure 8, the probability of having different drought severity levels can be analyzed 560 

based on respective SWDI values (Martínez-Fernández et al., 2015). Based on the mean SWDI, 561 

the no-till treatment had a 43% probability of having no drought events, which was substantially 562 

higher than the conventional treatment (38%). Moreover, the no-till treatment had a lower 563 

probability of having mild, moderate, severe, and extreme droughts in comparison to the 564 

conventional treatment. According to the maximum SWDI, the no-till treatment had 78% 565 

probability to have drought free days while the probability for the conventional treatment was 566 

75%. The minimum SWDI also showed that the no-till treatment (13%) had higher drought free 567 

days than the conventional treatment (10%). Thus, the no-till treatment was superior in mitigating 568 

drought compared to the conventional treatment in this watershed.  569 



32 
 

570 

Figure 7. The probability distribution for the mean, maximum, and minimum of MRD across 571 

different soils in the Kalamazoo River watershed for the period of 1993-2019 as affected by the 572 

conventional (a) and the no-till (b) treatments. Note: Red dashed line at zero MRD indicates the 573 

demarcation, where the positive MRD values signify wetter treatment while the negative MRD 574 

values signify drier treatment 575 

 576 
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577 

Figure 8. The probability distribution for the mean, maximum, and minimum of SWDI across 578 

different soils in the Kalamazoo River watershed for the period of 1993-2019 as affected by the 579 

conventional (a) and the no-till (b) treatments (b). Note: Red dashed lines are to demarcate 580 

different drought severity levels 581 

 582 

Consistently higher soil moisture retention by the no-till treatment was due to the beneficial 583 

improvement of soil physical properties, such as water holding capacity (Moebius-Clune et al., 584 

2008). Furthermore, the no-till treatment has been found to increase rainwater infiltration, decrease 585 

runoff, and to reduce soil evaporation, thereby increasing the proportion of available water in the 586 

root zone (Lal et al., 2012; Lampurlanés et al., 2016; Verhulst et al., 2011). The ability of the no-587 
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till treatment to store more soil moisture could help to mitigate the impacts of droughts on the 588 

crops, as evident in this study. This is in agreement with the findings of Thierfelder and Wall 589 

(2010) where the no-till system performed better for soil water dynamics in a drought-prone region 590 

of Africa. Based on the above findings, the no-till treatment was more resilient than the 591 

conventional treatment and adaptation of the no-till management in the Kalamazoo River 592 

Watershed would enhance its resilience to extreme drought events, which are detrimental to 593 

rainfed systems. 594 

3.3.3. Crop Yield and Net Return as Affected by the Adoption of the No-Till Agriculture 595 

The probabilities for the statistical significance of the effects evaluated for crop yield and net return 596 

is presented in Table S2. To perform this statistical analysis, the extent of each soil in the 597 

agricultural land use was used as a weighting factor, since it is critical to consider production area 598 

when comparing management effects at larger scales (Leng et al., 2019). As a result, we evaluated 599 

the effects of treatments in the watershed over the entire study period with high confidence. The 600 

statistical analysis showed that the effect of treatments was strongly significant on the yield of corn 601 

and soybean, but not in wheat. Nonetheless, treatment effect was strongly significant for the net 602 

return from all crops. Furthermore, the effect of year and interaction between the treatment and 603 

year were significant for both yield and net return of all crops (Table S2).  604 

The means of crop yield and net return as separated by treatments across the years and soils are 605 

presented in Table 2. Accordingly, the yield increased under the no-till treatment by 1.23%, 0.61%, 606 

and 0.24% for corn, soybean, and wheat, respectively. Deines et al. (2019) reported a 3.3% and 607 

0.74% yield improvement, respectively, for corn and soybean as a result of conservation tillage 608 

adoption in the US corn belt region. However, it is important to note that conservation tillage is a 609 

mixture of different intensities of reduced tillage and not necessarily entirely no-tillage. In this 610 
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study, the net return was 20%, 23.4%, and 48.3% higher under the no-till treatment for corn, 611 

soybean, and wheat, respectively (Table 2). The higher margin of net revenues for the no-till 612 

treatment was mainly because of its lower production costs compared to the conventional 613 

treatment. The no-till treatment was cheaper due to absence of tillage operations, even though the 614 

herbicide application rates were higher than the conventional tillage. The costs to produce corn, 615 

soybean, and wheat conventionally were 918.84, 705.03, 586.56 USD/ha, respectively. On the 616 

other hand, no-till treatment costs were 867.36, 632.12, and 508.58 USD/ha, for corn, soybean, 617 

and wheat productions, respectively. As the interaction effects between treatment and year were 618 

significant for both yield and net return in all the crops, the strength of significance may vary 619 

across different years. This differential performance, as affected by treatment and years, is shown 620 

in Figure S3 (yield) and Figure S4 (net return). In summary, the no-till outperformed the 621 

conventional treatment in the majority of the years.               622 

Table 2. The mean yield and net return for different crops under two treatments in the 623 

Kalamazoo River watershed* 624 

Treatment Corn Soybean Wheat 

Yield 

(Mg/ha) 

Net return 

(USD/ha) 

Yield 

(Mg/ha) 

Net return 

(USD/ha) 

Yield 

(Mg/ha) 

Net return 

(USD/ha) 

Conventional 8.91b 315.31b 3.27b 345.87b 4.09a 165.77b 

No-till 9.02a 378.47a 3.29a 426.78a 4.10a 245.88a 

*Means with the same letter in each column are not significantly different at p<0.05. 625 

 626 

The no-till treatment increased crop yields in most studies around the world (Corbeels et al., 2014; 627 

Pittelkow et al., 2015; Rusinamhodzi et al., 2011). However, some studies have found no 628 

significant effects on yield under the no-till systems (e.g., Daigh et al., 2018), while a few other 629 



36 
 

studies reported reductions in crop yield (e.g., Powlson et al., 2014). In contrast, to see the 630 

consistently outperforming trends under the adoption of the no-till agriculture the evaluation must 631 

be longer than a decade (Cusser et al., 2020). This study was built on this need and successfully 632 

captured the long-term impacts of the no-till treatment. The results showed that the adoption of the 633 

no-till treatment could significantly improve the resilience of agricultural systems by increasing 634 

crop yields and net return. The increment in crop yields under the no-till management can be 635 

attributed to the enhancement of soil physical, chemical, and biological properties (Nunes et al., 636 

2018).  637 

 638 

4. Conclusions 639 

In this long-term study, we found that the adoption of no-till treatment for a corn-soybean-wheat 640 

rotation has potential to increase the resilience in the Kalamazoo River Watershed. This 641 

improvement of resilience was demonstrated using the following metrics: recharge, water table, 642 

soil moisture, drought vulnerability, yield, and net return. The no-till treatment had significantly 643 

higher annual recharge, for corn, soybean, and wheat which were 12.4%, 6.2%, and 13.2% greater 644 

than the annual recharge from the conventional treatment, respectively. The highest recharge was 645 

observed for soybean followed by wheat then corn. The rise in the water table resulting from the 646 

adoption of the no-till treatment in the watershed ranged between 0.1-0.5 m, which could 647 

substantially contribute to replenishing the aquifers and groundwater-dependent ecosystems. MRD 648 

of soil moisture clearly showed that the no-till treatment consistently maintained higher soil 649 

moisture compared to the conventional treatment, thus remained as a relatively wetter treatment. 650 

Therefore, the no-till treatment had a higher resilience against drought compared to the 651 

conventional treatment as quantified by the drought index (SWDI). Yields and net returns were 652 
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also improved under the no-till treatment for all crops in the rotation. When averaged across the 653 

years and soils, the no-till treatment produced 1.23%, 0.61%, and 0.24% higher grain yields for 654 

corn, soybean, and wheat, respectively. Moreover, the no-till generated 20.0%, 23.4%, and 48.3% 655 

higher net returns for corn, soybean, and wheat, respectively.  656 

There were two major assumptions in this study. First, all agricultural land use in the Kalamazoo 657 

River Watershed was assumed to be planted with a corn-soybean-wheat rotation. However, 658 

farmers plant a variety of crops throughout the watershed; therefore, the findings are mostly 659 

applicable to the row crop rotations in this region. Secondly, we assumed that the deep percolation 660 

simulated by the crop model instantly reached the water table. This assumption is only valid in 661 

regions where there is a greater connection between the surface and groundwater, similar to our 662 

study area. To expand our approach to different landscapes with varying climate, soil, 663 

groundwater, and cropping systems, we recommend modifying both the crop and groundwater 664 

modeling procedures adhering to site-specific parameters and requirements.  665 

5. Acknowledgments 666 

This research project was financially supported by the Dissertation Completion Fellowship from 667 

the College of Agricultural and Natural Resources at Michigan State University. The KBS Long-668 

Term Ecological Research (KBS-LTER) experiment was funded by the National Science 669 

Foundation Long-term Ecological Research Program (DEB 1832042) at the Kellogg Biological 670 

Station and by Michigan State University AgBioResearch. We also thank principal investigators 671 

and staff at the KBS-LTER for their assistance in this research.  This work was also supported by 672 

the USDA National Institute of Food and Agriculture, Hatch project 1019654. 673 

6. Disclaimer 674 



38 
 

Any opinions, findings, conclusions, and recommendations reported in this paper are those of the 675 

authors and do not necessarily reflect the views of the National Science Foundation and the 676 

USDA National Institute of Food and Agriculture. 677 

 678 

 679 

 680 

 681 

 682 

 683 

7. References 684 

Adnan, A.A., Diels, J., Jibrin, J.M., Kamara, A.Y., Craufurd, P., Shaibu, A.S., Mohammed, I.B., 685 

Tonnang, Z.E.H., 2019. Options for calibrating CERES-maize genotype specific parameters 686 

under data-scarce environments. PLoS One 14, e0200118. 687 

https://doi.org/10.1371/journal.pone.0200118 688 

Alexander, K., Jackson, J., Kikuyama, F., Sasamoto, B., Stevens, A., 2014. Kalamazoo River 689 

Watershed Land Conservation Plan. University of Michigan, School of Natural Resources 690 

and Environment, Ann Arbor, MI, USA. 691 

Alizadeh, A., 2013. The Principles of Applied Hydrology, 36th Editi. ed. University of Mashhad. 692 

Andresen, J., Hilberg, S., Kunkel, K., 2012. Historical Climate and Climate Trends in the 693 

Midwestern USA, U.S. National Climate Assessment Midwest Technical Input Report. 694 



39 
 

Araya, A., Kisekka, I., Gowda, P.H., Prasad, P.V.V., 2017. Evaluation of water-limited cropping 695 

systems in a semi-arid climate using DSSAT-CSM. Agric. Syst. 150, 86–98. 696 

https://doi.org/10.1016/j.agsy.2016.10.007 697 

Bailey, I., Buck, L.E., 2016. Managing for resilience: a landscape framework for food and 698 

livelihood security and ecosystem services. Food Secur. 8, 477–490. 699 

https://doi.org/10.1007/s12571-016-0575-9 700 

Biggs, R., Schlüter, M., Biggs, D., Bohensky, E.L., BurnSilver, S., Cundill, G., Dakos, V., Daw, 701 

T.M., Evans, L.S., Kotschy, K., Leitch, A.M., Meek, C., Quinlan, A., Raudsepp-Hearne, C., 702 

Robards, M.D., Schoon, M.L., Schultz, L., West, P.C., 2012. Toward Principles for 703 

Enhancing the Resilience of Ecosystem Services. Annu. Rev. Environ. Resour. 37, 421–704 

448. https://doi.org/10.1146/annurev-environ-051211-123836 705 

Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification: harnessing ecosystem 706 

services for food security. Trends Ecol. Evol. 28, 230–238. 707 

https://doi.org/10.1016/j.tree.2012.10.012 708 

Boote, K.J., Jones, J.W., Pickering, N.B., 1996. Potential Uses and Limitations of Crop Models I. 709 

Model Use as a Research Tool. Agron. J. 716, 704–716. 710 

Bowen, W.T., Thornton, P.K., Hoogenboom, G., 1998. The simulation of cropping sequences 711 

using DSSAT, in: Tsuji, G.Y., Hoogenboom, G., Thornton, P. (Eds.), Understanding 712 

Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, pp. 313–327. 713 

https://doi.org/10.1007/978-94-017-3624-4_15 714 

Browne, N., Kingwell, R., Behrendt, R., Eckard, R., 2013. The relative profitability of dairy, 715 

sheep, beef and grain farm enterprises in southeast Australia under selected rainfall and 716 



40 
 

price scenarios. Agric. Syst. 117, 35–44. https://doi.org/10.1016/j.agsy.2013.01.002 717 

Calmon, M.A., Batchelor, W.D., Jones, J.W., Ritchie, J.T., Boote, K.J., Hammond, L.C., 1999. 718 

Simulating Soybean Root Growth and Soil Water Extraction Using a Functional Crop 719 

Model. Trans. ASAE 42, 1867–1878. https://doi.org/10.13031/2013.13352 720 

Clemson, 2020. Agronomic Crops Enterprise Budgets [WWW Document]. Enterp. Budgets. 721 

URL https://www.clemson.edu/extension/agribusiness/enterprise-budget/index.html 722 

(accessed 6.1.20). 723 

Coates, D., Pert, P.L., Barron, J., Muthuri, C., Nguyen-Khoa, S., Boelee, E., Jarvis, D.I., 2013. 724 

Water-related ecosystem services and food security., in: Managing Water and 725 

Agroecosystems for Food Security. CABI, Wallingford, pp. 29–41. 726 

https://doi.org/10.1079/9781780640884.0029 727 

Cooper, D.J., Merritt, D.M., 2012. Assessing the water needs of riparian and wetland vegetation 728 

in the western United States. USDA For. Serv. - Gen. Tech. Rep. RMRS-GTR-282 1–125. 729 

https://doi.org/10.2737/RMRS-GTR-282 730 

Corbeels, M., Sakyi, R.K., Kühne, R.F., Whitbread, A., Kühne, R.F., Whitbread, A., 2014. Meta-731 

analysis of crop responses to conservation agriculture in sub-Saharan Africa. Copenhagen: 732 

CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). 733 

Costanza, R., D’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, 734 

S., O’Neill, R. V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value 735 

of the world’s ecosystem services and natural capital. Nature 387, 253–260. 736 

https://doi.org/10.1038/387253a0 737 



41 
 

Crum, J.R., Collins, H.P., 1995. KBS Soils. KBS LTER Special Publication. Zenodo 1–2. 738 

Curtis, Z.K., Li, S.-G., Liao, H.-S., Lusch, D., 2018. Data-Driven Approach for Analyzing 739 

Hydrogeology and Groundwater Quality Across Multiple Scales. Groundwater 56, 377–740 

398. https://doi.org/10.1111/gwat.12584 741 

Cusser, S., Bahlai, C., Swinton, S.M., Robertson, G.P., Haddad, N.M., 2020. Long‐term research 742 

avoids spurious and misleading trends in sustainability attributes of no‐till. Glob. Chang. 743 

Biol. 26, 3715–3725. https://doi.org/10.1111/gcb.15080 744 

Daigh, A.L.M., Dick, W.A., Helmers, M.J., Lal, R., Lauer, J.G., Nafziger, E., Pederson, C.H., 745 

Strock, J., Villamil, M., Mukherjee, A., Cruse, R., 2018. Yields and yield stability of no-till 746 

and chisel-plow fields in the Midwestern US Corn Belt. F. Crop. Res. 218, 243–253. 747 

https://doi.org/10.1016/j.fcr.2017.04.002 748 

Dale, V.H., Polasky, S., 2007. Measures of the effects of agricultural practices on ecosystem 749 

services. Ecol. Econ. 64, 286–296. https://doi.org/10.1016/j.ecolecon.2007.05.009 750 

Dalin, C., Wada, Y., Kastner, T., Puma, M.J., 2017. Groundwater depletion embedded in 751 

international food trade. Nature 543, 700–704. https://doi.org/10.1038/nature21403 752 

DeClerck, F., Jones, S., Attwood, S., Bossio, D., Girvetz, E., Chaplin-Kramer, B., Enfors, E., 753 

Fremier, A., Gordon, L., Kizito, F., Lopez Noriega, I., Matthews, N., McCartney, M., 754 

Meacham, M., Noble, A., Quintero, M., Remans, R., Soppe, R., Willemen, L., Wood, S., 755 

Zhang, W., 2016. Agricultural ecosystems and their services: the vanguard of 756 

sustainability? Curr. Opin. Environ. Sustain. 23, 92–99. 757 

https://doi.org/10.1016/j.cosust.2016.11.016 758 



42 
 

Deines, J.M., Wang, S., Lobell, D.B., 2019. Satellites reveal a small positive yield effect from 759 

conservation tillage across the US Corn Belt. Environ. Res. Lett. 14, 124038. 760 

https://doi.org/10.1088/1748-9326/ab503b 761 

Di Falco, S., Chavas, J.P., 2008. Rainfall shocks, resilience, and the effects of crop biodiversity 762 

on agroecosystem productivity. Land Econ. 84, 83–96. https://doi.org/10.3368/le.84.1.83 763 

Dokoohaki, H., Gheysari, M., Mousavi, S.-F., Zand-Parsa, S., Miguez, F.E., Archontoulis, S. V., 764 

Hoogenboom, G., 2016. Coupling and testing a new soil water module in DSSAT CERES-765 

Maize model for maize production under semi-arid condition. Agric. Water Manag. 163, 766 

90–99. https://doi.org/10.1016/j.agwat.2015.09.002 767 

Douxchamps, S., Debevec, L., Giordano, M., Barron, J., 2017. Monitoring and evaluation of 768 

climate resilience for agricultural development – A review of currently available tools. 769 

World Dev. Perspect. 5, 10–23. https://doi.org/10.1016/j.wdp.2017.02.001 770 

Eeswaran, R., Nejadhashemi, A.P., Alves, F.C., Saravi, B., 2021. Evaluating the applicability of 771 

soil moisture-based metrics for gauging the resiliency of rainfed agricultural systems in the 772 

midwestern United States. Soil Tillage Res. 205, 104818. 773 

https://doi.org/10.1016/j.still.2020.104818 774 

Eitzinger, A., Läderach, P., Rodriguez, B., Fisher, M., Beebe, S., Sonder, K., Schmidt, A., 2017. 775 

Assessing high-impact spots of climate change: spatial yield simulations with Decision 776 

Support System for Agrotechnology Transfer (DSSAT) model. Mitig. Adapt. Strateg. Glob. 777 

Chang. 22, 743–760. https://doi.org/10.1007/s11027-015-9696-2 778 

El Chami, D., Daccache, A., El Moujabber, M., 2020. How Can Sustainable Agriculture Increase 779 

Climate Resilience? A Systematic Review. Sustainability 12, 3119. 780 



43 
 

https://doi.org/10.3390/su12083119 781 

Fang, Q., Ma, L., Yu, Q., Malone, R.W., Saseendran, S.A., Ahuja, L.R., 2008. Modeling 782 

Nitrogen and Water Management Effects in a Wheat-Maize Double-Cropping System. J. 783 

Environ. Qual. 37, 2232–2242. https://doi.org/10.2134/jeq2007.0601 784 

Fedele, G., Locatelli, B., Djoudi, H., 2017. Mechanisms mediating the contribution of ecosystem 785 

services to human well-being and resilience. Ecosyst. Serv. 28, 43–54. 786 

https://doi.org/10.1016/j.ecoser.2017.09.011 787 

Fisher, B., Turner, R.K., Morling, P., 2009. Defining and classifying ecosystem services for 788 

decision making. Ecol. Econ. 68, 643–653. https://doi.org/10.1016/j.ecolecon.2008.09.014 789 

Fodor, N., Challinor, A., Droutsas, I., Ramirez-Villegas, J., Zabel, F., Koehler, A.-K., Foyer, 790 

C.H., 2017. Integrating Plant Science and Crop Modeling: Assessment of the Impact of 791 

Climate Change on Soybean and Maize Production. Plant Cell Physiol. 58, 1833–1847. 792 

https://doi.org/10.1093/pcp/pcx141 793 

Fuchs, B.A., Wood, D.A., Ebbeka, D., 2015. From too much to too little: How the central US 794 

drought of 2012 evolved out of one of the most devastating floods on record in 2011. 795 

National Drought Mitigation Center (NDMC), University of Nebraska–Lincoln, USA. 796 

Gaba, S., Lescourret, F., Boudsocq, S., Enjalbert, J., Hinsinger, P., Journet, E.-P., Navas, M.-L., 797 

Wery, J., Louarn, G., Malézieux, E., Pelzer, E., Prudent, M., Ozier-Lafontaine, H., 2015. 798 

Multiple cropping systems as drivers for providing multiple ecosystem services: from 799 

concepts to design. Agron. Sustain. Dev. 35, 607–623. https://doi.org/10.1007/s13593-014-800 

0272-z 801 



44 
 

Gordon, L.J., Finlayson, C.M., Falkenmark, M., 2010. Managing water in agriculture for food 802 

production and other ecosystem services. Agric. Water Manag. 97, 512–519. 803 

https://doi.org/10.1016/j.agwat.2009.03.017 804 

Grannemann, N.G., Hunt, R.J., Nicholas, J.., Reilly, T.E., Winter, T.., 2008. The importance of 805 

ground water in the Great Lakes Region, Water-Resources Investigations Report 00–4008, 806 

U.S. Geological Survey. 807 

Griebler, C., Avramov, M., 2015. Groundwater ecosystem services: a review. Freshw. Sci. 34, 808 

355–367. https://doi.org/10.1086/679903 809 

Han, E., Ines, A., Koo, J., 2015. Global high-resolution soil profile database for crop modeling 810 

applications. Harvard Dataverse. https://doi.org/10.7910/DVN/1PEEY0 811 

Han, E., Ines, A.V.M., Koo, J., 2019. Development of a 10-km resolution global soil profile 812 

dataset for crop modeling applications. Environ. Model. Softw. 119, 70–83. 813 

https://doi.org/10.1016/j.envsoft.2019.05.012 814 

Hatfield, J.L., Antle, J., Garrett, K.A., Izaurralde, R.C., Mader, T., Marshall, E., Nearing, M., 815 

Philip Robertson, G., Ziska, L., 2018. Indicators of climate change in agricultural systems. 816 

Clim. Change 1–14. https://doi.org/10.1007/s10584-018-2222-2 817 

Hatfield, Jerry, 2012. Agriculture in the Midwest, in: Winkler, J., Andresen, J., Hatfield, J, 818 

Bidwell, D., Brown, D. (Eds.), U.S. National Climate Assessment Midwest Technical Input 819 

Report. pp. 1–8. 820 

Herberich, E., Sikorski, J., Hothorn, T., 2010. A Robust Procedure for Comparing Multiple 821 

Means under Heteroscedasticity in Unbalanced Designs. PLoS One 5, e9788. 822 



45 
 

https://doi.org/10.1371/journal.pone.0009788 823 

Holtschlag, D.., 1997. A generalized estimate of ground-water-recharge rates in the Lower 824 

Peninsula of Michigan. Department of the Interior, US Geological Survey, Washington, 825 

DC. 826 

Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., 827 

Wickham, J., Stehman, S., Auch, R., Riitters, K., 2020. Conterminous United States land 828 

cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. 829 

Photogramm. Remote Sens. 162, 184–199. https://doi.org/10.1016/j.isprsjprs.2020.02.019 830 

Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., 831 

Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W., 2019. 832 

Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 833 

(https://DSSAT.net), DSSAT Foundation, Gainesville, Florida, USA. 834 

Iocola, I., Bassu, S., Farina, R., Antichi, D., Basso, B., Bindi, M., Dalla Marta, A., Danuso, F., 835 

Doro, L., Ferrise, R., Giglio, L., Ginaldi, F., Mazzoncini, M., Mula, L., Orsini, R., Corti, G., 836 

Pasqui, M., Seddaiu, G., Tomozeiu, R., Ventrella, D., Villani, G., Roggero, P.P., 2017. Can 837 

conservation tillage mitigate climate change impacts in Mediterranean cereal systems? A 838 

soil organic carbon assessment using long term experiments. Eur. J. Agron. 90, 96–107. 839 

https://doi.org/10.1016/j.eja.2017.07.011 840 

Jin, Z., Ainsworth, E.A., Leakey, A.D.B., Lobell, D.B., 2018. Increasing drought and 841 

diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. 842 

Glob. Chang. Biol. 24, e522–e533. https://doi.org/10.1111/gcb.13946 843 

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., 844 



46 
 

Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H., 845 

Rosenzweig, C., Wheeler, T.R., 2017. Toward a new generation of agricultural system data, 846 

models, and knowledge products: State of agricultural systems science. Agric. Syst. 155, 847 

269–288. https://doi.org/10.1016/j.agsy.2016.09.021 848 

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, 849 

P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model. 850 

Eur. J. Agron. 18, 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7 851 

Jones, P.G., Thornton, P.K., 2009. Croppers to livestock keepers: livelihood transitions to 2050 852 

in Africa due to climate change. Environ. Sci. Policy 12, 427–437. 853 

https://doi.org/10.1016/j.envsci.2008.08.006 854 

Kandulu, J.M., Bryan, B.A., King, D., Connor, J.D., 2012. Mitigating economic risk from 855 

climate variability in rain-fed agriculture through enterprise mix diversification. Ecol. Econ. 856 

79, 105–112. https://doi.org/10.1016/j.ecolecon.2012.04.025 857 

Kassam, A., Friedrich, T., Derpsch, R., 2019. Global spread of Conservation Agriculture. Int. J. 858 

Environ. Stud. 76, 29–51. https://doi.org/10.1080/00207233.2018.1494927 859 

Komarek, A.M., Bell, L.W., Whish, J.P.M., Robertson, M.J., Bellotti, W.D., 2015. Whole-farm 860 

economic, risk and resource-use trade-offs associated with integrating forages into crop-861 

livestock systems in western China. Agric. Syst. 133, 63–72. 862 

https://doi.org/10.1016/j.agsy.2014.10.008 863 

Kravchenko, A.N., Wang, A.N.W., Smucker, A.J.M., Rivers, M.L., 2011. Long-term Differences 864 

in Tillage and Land Use Affect Intra-aggregate Pore Heterogeneity. Soil Sci. Soc. Am. J. 865 

75, 1658–1666. https://doi.org/10.2136/sssaj2011.0096 866 



47 
 

Kropp, I., Nejadhashemi, A.P., Deb, K., Abouali, M., Roy, P.C., Adhikari, U., Hoogenboom, G., 867 

2019. A multi-objective approach to water and nutrient efficiency for sustainable 868 

agricultural intensification. Agric. Syst. 173, 289–302. 869 

https://doi.org/10.1016/j.agsy.2019.03.014 870 

KRWC, 2011. Kalamazoo River Watershed Management Plan. Kalamazoo River Watershed 871 

Council, Prepared for the Michigan Nonpoint Source Program (Michigan Department of 872 

Environmental Quality and the United States Environmental Protection Agency). 873 

Lal, R., 2013. Enhancing ecosystem services with no-till. Renew. Agric. Food Syst. 28, 102–114. 874 

https://doi.org/10.1017/S1742170512000452 875 

Lal, R., Delgado, J.A., Gulliford, J., Nielsen, D., Rice, C.W., Pelt, R.S. Van, 2012. Adapting 876 

agriculture to drought and extreme events. J. Soil Water Conserv. 67, 162–166. 877 

https://doi.org/10.2489/jswc.67.6.162A 878 

Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J., Cantero-Martínez, C., 2016. Long-term 879 

analysis of soil water conservation and crop yield under different tillage systems in 880 

Mediterranean rainfed conditions. F. Crop. Res. 189, 59–67. 881 

https://doi.org/10.1016/j.fcr.2016.02.010 882 

Landis, D.A., 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. 883 

Basic Appl. Ecol. 18, 1–12. https://doi.org/10.1016/j.baae.2016.07.005 884 

Leng, G., Peng, J., Huang, S., 2019. Recent changes in county-level maize production in the 885 

United States: Spatial-temporal patterns, climatic drivers and the implications for crop 886 

modelling. Sci. Total Environ. 686, 819–827. 887 

https://doi.org/10.1016/j.scitotenv.2019.06.026 888 



48 
 

Li, S.G., Liu, Q., 2006. A Real-Time, Interactive Steering Environment for Integrated Ground 889 

Water Modeling. Ground Water 44, 758–763. https://doi.org/10.1111/j.1745-890 

6584.2006.00225.x 891 

Liao, H.S., Curtis, Z.K., Sampath, P.V., Li, S.G., 2020. Simulation of Flow in a Complex 892 

Aquifer System Subjected to Long‐Term Well Network Growth. Groundwater 58, 301–322. 893 

https://doi.org/10.1111/gwat.12918 894 

Liao, H.S., Sampath, P. V., Curtis, Z.K., Li, S.G., 2015a. Hierarchical modeling of a 895 

groundwater remediation capture system. J. Hydrol. 527, 196–211. 896 

https://doi.org/10.1016/j.jhydrol.2015.04.057 897 

Liao, H.S., Sampath, P. V., Curtis, Z.K., Li, S.G., 2015b. Hierarchical Modeling and Parameter 898 

Estimation for a Coupled Groundwater–Lake System. J. Hydrol. Eng. 20, 04015027. 899 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001219 900 

Liu, S., Yang, J.Y., Zhang, X.Y., Drury, C.F., Reynolds, W.D., Hoogenboom, G., 2013. 901 

Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation 902 

under conventional and conservation tillage systems in Northeast China. Agric. Water 903 

Manag. 123, 32–44. https://doi.org/10.1016/j.agwat.2013.03.001 904 

Malik, W., Dechmi, F., 2019. DSSAT modelling for best irrigation management practices 905 

assessment under Mediterranean conditions. Agric. Water Manag. 216, 27–43. 906 

https://doi.org/10.1016/j.agwat.2019.01.017 907 

Martin, G., Magne, M.A., 2015. Agricultural diversity to increase adaptive capacity and reduce 908 

vulnerability of livestock systems against weather variability - A farm-scale simulation 909 

study. Agric. Ecosyst. Environ. 199, 301–311. https://doi.org/10.1016/j.agee.2014.10.006 910 



49 
 

Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., 2015. A soil water 911 

based index as a suitable agricultural drought indicator. J. Hydrol. 522, 265–273. 912 

https://doi.org/10.1016/j.jhydrol.2014.12.051 913 

McLaughlin, D.L., Cohen, M.J., 2013. Realizing ecosystem services: wetland hydrologic 914 

function along a gradient of ecosystem condition. Ecol. Appl. 23, 1619–1631. 915 

https://doi.org/10.1890/12-1489.1 916 

MDEQ, 2020. Wellogic System (periodically updated) [WWW Document]. Michigan Dep. 917 

Environ. Qual. URL https://secure1.state.mi.us/wellogic/ (accessed 9.20.20). 918 

MEA, 2005. Millennium Ecosystem Assessment-Ecosystems and Human Well-being: Synthesis. 919 

Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-484-0_1 920 

Mengist, W., Soromessa, T., Feyisa, G.L., 2020. A global view of regulatory ecosystem services: 921 

existed knowledge, trends, and research gaps. Ecol. Process. 9, 40. 922 

https://doi.org/10.1186/s13717-020-00241-w 923 

Milliken, G.., Johnson, D.., 2009. Analysis of messy data, Volume I: Designed Experiments, 2nd 924 

editio. ed. Chapman and Hall/CRC. 925 

Moebius-Clune, B.N., van Es, H.M., Idowu, O.J., Schindelbeck, R.R., Moebius-Clune, D.J., 926 

Wolfe, D.W., Abawi, G.S., Thies, J.E., Gugino, B.K., Lucey, R., 2008. Long-Term Effects 927 

of Harvesting Maize Stover and Tillage on Soil Quality. Soil Sci. Soc. Am. J. 72, 960–969. 928 

https://doi.org/10.2136/sssaj2007.0248 929 

Montoya, J.M., Raffaelli, D., 2010. Climate change, biotic interactions and ecosystem services. 930 

Philos. Trans. R. Soc. B Biol. Sci. 365, 2013–2018. https://doi.org/10.1098/rstb.2010.0114 931 



50 
 

Munang, R., Thiaw, I., Alverson, K., Liu, J., Han, Z., 2013. The role of ecosystem services in 932 

climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 5, 47–933 

52. https://doi.org/10.1016/j.cosust.2013.02.002 934 

NED USGS. 2006. National Elevation Dataset. Reston, Virginia: U.S. Geological Survey. 935 

http://ned.usgs.gov/Ned/about.asp 936 

NHD USGS. 2010. USGS: National Hydrography Dataset.Reston, Virginia: U.S. Geological 937 

Survey. http://nhd.usgs.gov/index.html 938 

NRCS, 2020. Web Soil Survey [WWW Document]. United States Dep. Agric. URL 939 

http://websoilsurvey.sc.egov.usda.gov/ (accessed 8.28.20). 940 

Nunes, M.R., van Es, H.M., Schindelbeck, R., Ristow, A.J., Ryan, M., 2018. No-till and 941 

cropping system diversification improve soil health and crop yield. Geoderma 328, 30–43. 942 

https://doi.org/10.1016/j.geoderma.2018.04.031 943 

Oppedahl, D.B., 2018. Midwest agriculture’s ties to the global economy. Chicago Fed Lett. 944 

Parton, W.J., 1996. The CENTURY model, in: Powlson, D.S., Smith, P., Smith, J.. (Eds.), 945 

Evaluation of Soil Organic Matter Models. Springer-Verlag Berlin Heidelherg, pp. 283–946 

291. https://doi.org/10.1007/978-3-642-61094-3_23 947 

Pickering, N.B., Hansen, J.W., Jones, J.W., Wells, C.M., Chan, V.K., Godwin, D.C., 1994. 948 

WeatherMan: A Utility for Managing and Generating Daily Weather Data. Agron. J. 86, 949 

332–337. https://doi.org/10.2134/agronj1994.00021962008600020023x 950 

Pittelkow, C.M., Linquist, B.A., Lundy, M.E., Liang, X., Van Groenigen, K.., Lee, J., Van 951 

Gestel, N., Six, J., Venterea, R.T., Van Kessel, C., 2015. When does no-till yield more ? A 952 



51 
 

global meta-analysis. F. Crop. Res. 183, 156–168. https://doi.org/10.1016/j.fcr.2015.07.020 953 

Power, A.G., 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philos. Trans. 954 

R. Soc. B Biol. Sci. 365, 2959–2971. https://doi.org/10.1098/rstb.2010.0143 955 

Powlson, D.S., Stirling, C.M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, 956 

K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. 957 

Chang. 4, 678–683. https://doi.org/10.1038/nclimate2292 958 

Priestley, C.H.B., Taylor, R.J., 1972. On the Assessment of Surface Heat Flux and Evaporation 959 

Using Large-Scale Parameters. Mon. Weather Rev. 100, 81–92. 960 

https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2 961 

Prudencio, L., Null, S.E., 2018. Stormwater management and ecosystem services: a review. 962 

Environ. Res. Lett. 13, 033002. https://doi.org/10.1088/1748-9326/aaa81a 963 

Reitz, M., Sanford, W.E., Senay, G.B., Cazenas, J., 2017. Annual Estimates of Recharge, Quick-964 

Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using Empirical Regression 965 

Equations. JAWRA J. Am. Water Resour. Assoc. 53, 961–983. 966 

https://doi.org/10.1111/1752-1688.12546 967 

Rigolot, C., de Voil, P., Douxchamps, S., Prestwidge, D., Van Wijk, M., Thornton, P.K., 968 

Rodriguez, D., Henderson, B., Medina, D., Herrero, M., 2017. Interactions between 969 

intervention packages, climatic risk, climate change and food security in mixed crop–970 

livestock systems in Burkina Faso. Agric. Syst. 151, 217–224. 971 

https://doi.org/10.1016/j.agsy.2015.12.017 972 

Ritchie, J.T., 1998. Soil water balance and plant water stress, in: Tsuji, G.Y., Hoogenboom, G., 973 



52 
 

Thornton, P. (Eds.), Understanding Options for Agricultural Production. Kluwer Academic 974 

Publishers, Dordrecht, pp. 41–54. https://doi.org/10.1007/978-94-017-3624-4_3 975 

Robertson, G.P;, Hamilton, S.., 2015. Long-Term Ecological Research at the Kellogg Biological 976 

Station LTER Site, in: Hamilton, S.., Doll, J.., Robertson, G.P (Eds.), The Ecology of 977 

Agricultural Landscapes: Long-Term Research on the Path to Sustainability. Oxford 978 

University Press, New York, USA, pp. 1–32. 979 

Robertson, G.P., Swinton, S.M., 2005. Reconciling Agricultural Productivity and Environmental 980 

Integrity: A Grand Challenge for Agriculture. Front. Ecol. Environ. 3, 38. 981 

https://doi.org/10.2307/3868443 982 

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., 983 

Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M., Schmid, 984 

E., Stehfest, E., Yang, H., Jones, J.W., 2014. Assessing agricultural risks of climate change 985 

in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. 986 

111, 3268–3273. https://doi.org/10.1073/pnas.1222463110 987 

Rötter, R.P., Appiah, M., Fichtler, E., Kersebaum, K.C., Trnka, M., Hoffmann, M.., 2018. 988 

Linking modelling and experimentation to better capture crop impacts of agroclimatic 989 

extremes—A review. F. Crop. Res. 221, 142–156. https://doi.org/10.1016/j.fcr.2018.02.023 990 

Roy, P.C., Guber, A., Abouali, M., Nejadhashemi, A.P., Deb, K., Smucker, A.J.M., 2019. Crop 991 

yield simulation optimization using precision irrigation and subsurface water retention 992 

technology. Environ. Model. Softw. 119, 433–444. 993 

https://doi.org/10.1016/j.envsoft.2019.07.006 994 

Rusinamhodzi, L., Corbeels, M., Van Wijk, M.., Rufino, M.., Nyamangara, J., Giller, K.., 2011. 995 



53 
 

A meta-analysis of long-term effects of conservation agriculture on maize grain yield under 996 

rain-fed conditions. Agron. Sustain. Dev. 31, 657–673. https://doi.org/10.1007/s13593-011-997 

0040-2 998 

Salmerón, M., Cavero, J., Isla, R., Porter, C.H., Jones, J.W., Boote, K.J., 2014. DSSAT Nitrogen 999 

Cycle Simulation of Cover Crop-Maize Rotations under Irrigated Mediterranean 1000 

Conditions. Agron. J. 106, 1283–1296. https://doi.org/10.2134/agronj13.0560 1001 

Sampath, P.V., Liao, H.S., Curtis, Z.K., Doran, P.J., Herbert, M.E., May, C.A., Li, S.G., 2015. 1002 

Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: 1003 

Implications for Conservation. PLoS One 10, e0140430. 1004 

https://doi.org/10.1371/journal.pone.0140430 1005 

Sampath, P.V., Liao, H.S., Curtis, Z.K., Herbert, M.E., Doran, P.J., May, C.A., Landis, D.A., Li, 1006 

S.G., 2016. Understanding fen hydrology across multiple scales. Hydrol. Process. 30, 3390–1007 

3407. https://doi.org/10.1002/hyp.10865 1008 

Scanlon, B.R., Faunt, C.C., Longuevergne, L., Reedy, R.C., Alley, W.M., McGuire, V.L., 1009 

McMahon, P.B., 2012. Groundwater depletion and sustainability of irrigation in the US 1010 

High Plains and Central Valley. Proc. Natl. Acad. Sci. 109, 9320–9325. 1011 

https://doi.org/10.1073/pnas.1200311109 1012 

Schaetzl, R.J., Darden, J.T., Brandt, D, S., 2009. Michigan Geography and Geology. Pearson 1013 

Custom Publishing, New York. 1014 

Scherr, S.J., Shames, S., Friedman, R., 2012. From climate-smart agriculture to climate-smart 1015 

landscapes. Agric. Food Secur. 1, 12. https://doi.org/10.1186/2048-7010-1-12 1016 



54 
 

SCS, 1985. National Engineering Handbook Section 4: Hydrology. Soil Conservation Service, 1017 

United States Department of Agriculture, Washington, DC. 1018 

Serfilippi, E., Ramnath, G., 2018. Resilience Measurement and Conceptual Frameworks: a 1019 

Review of the Literature. Ann. Public Coop. Econ. 89, 645–664. 1020 

https://doi.org/10.1111/apce.12202 1021 

Serna-Chavez, H.M., Schulp, C.J.E., van Bodegom, P.M., Bouten, W., Verburg, P.H., Davidson, 1022 

M.D., 2014. A quantitative framework for assessing spatial flows of ecosystem services. 1023 

Ecol. Indic. 39, 24–33. https://doi.org/10.1016/j.ecolind.2013.11.024 1024 

Sharpley, A.N., Williams, J.R., 1990. EPIC-The erosion/productivity impact calculator: 1. Model 1025 

Documentation. U.S. Dep. Agric. Tech. Bull. 235. 1026 

Shelia, V., Sharda, V., Hansen, J., Porter, C., Zhang, M., Aggarwal, P., Hoogenboom, G., 2015. 1027 

CCAFS Regional Agricultural Forecasting Toolbox (CRAFT): software for forecasting of 1028 

crop production, risk analysis and climate change impact studies, in: 2015 ASABE 1029 

International Meeting. American Society of Agricultural and Biological Engineers, pp. 1030 

1094–1116. https://doi.org/10.13031/aim.20152182505 1031 

Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Döll, P., Portmann, F.T., 2010. 1032 

Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1033 

1880. https://doi.org/10.5194/hess-14-1863-2010 1034 

Smidt, S.J., Haacker, E.M.K., Kendall, A.D., Deines, J.M., Pei, L., Cotterman, K.A., Li, H., Liu, 1035 

X., Basso, B., Hyndman, D.W., 2016. Complex water management in modern agriculture: 1036 

Trends in the water-energy-food nexus over the High Plains Aquifer. Sci. Total Environ. 1037 

566–567, 988–1001. https://doi.org/10.1016/j.scitotenv.2016.05.127 1038 



55 
 

State of Michigan, 2006. Public Act 148—Groundwater inventory and map project (GWIM): 1039 

Executive Summary. Michigan State University, East Lansing, MI, USA. 1040 

Suleiman, A.A., Ritchie, J.T., 2003. Modeling Soil Water Redistribution during Second-Stage 1041 

Evaporation. Soil Sci. Soc. Am. J. 67, 377–386. https://doi.org/10.2136/sssaj2003.3770 1042 

Swift, M.J., Izac, A.-M.N., van Noordwijk, M., 2004. Biodiversity and ecosystem services in 1043 

agricultural landscapes—are we asking the right questions? Agric. Ecosyst. Environ. 104, 1044 

113–134. https://doi.org/10.1016/j.agee.2004.01.013 1045 

Swinton, S.M., Lupi, F., Robertson, G.P., Hamilton, S.K., 2007. Ecosystem services and 1046 

agriculture: Cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64, 245–1047 

252. https://doi.org/10.1016/j.ecolecon.2007.09.020 1048 

Syswerda, S.P., Robertson, G.P., 2014. Ecosystem services along a management gradient in 1049 

Michigan (USA) cropping systems. Agric. Ecosyst. Environ. 189, 28–35. 1050 

https://doi.org/10.1016/j.agee.2014.03.006 1051 

Tancoigne, E., Barbier, M., Cointet, J.-P., Richard, G., 2014. The place of agricultural sciences 1052 

in the literature on ecosystem services. Ecosyst. Serv. 10, 35–48. 1053 

https://doi.org/10.1016/j.ecoser.2014.07.004 1054 

Teixeira, W.W.R., Battisti, R., Sentelhas, P.C., Moraes, M.F., Oliveira Junior, A., 2019. 1055 

Uncertainty assessment of soya bean yield gaps using DSSAT‐CSM‐CROPGRO‐Soybean 1056 

calibrated by cultivar maturity groups. J. Agron. Crop Sci. 205, 533–544. 1057 

https://doi.org/10.1111/jac.12343 1058 

Thierfelder, C., Wall, P.C., 2010. Investigating Conservation Agriculture (CA) Systems in 1059 



56 
 

Zambia and Zimbabwe to Mitigate Future Effects of Climate Change. J. Crop Improv. 24, 1060 

113–121. https://doi.org/10.1080/15427520903558484 1061 

Thiessen, A.H., 1911. Precipitation avarages for large areas. Mon. Weather Rev. 39, 1082–1084. 1062 

https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2 1063 

Thorp, K.R., DeJonge, K.C., Kaleita, A.L., Batchelor, W.D., Paz, J.O., 2008. Methodology for 1064 

the use of DSSAT models for precision agriculture decision support. Comput. Electron. 1065 

Agric. 64, 276–285. https://doi.org/10.1016/j.compag.2008.05.022 1066 

USDA, 2019. Agricultural Prices. National Agricultural Statistics Service (NASS), United States 1067 

Department of Agriculture, Washington, DC. 1068 

Vachaud, G., Passerat de Silans, A. Balabanis, P., Vauclin, M., 1985. Temporal Stability of 1069 

Spatially Measured Soil Water Probability Density Function. Soil Sci. Soc. Am. J. 49, 822–1070 

828. 1071 

Verhulst, N., Nelissen, V., Jespers, N., Haven, H., Sayre, K.D., Raes, D., Deckers, J., Govaerts, 1072 

B., 2011. Soil water content, maize yield and its stability as affected by tillage and crop 1073 

residue management in rainfed semi-arid highlands. Plant Soil 344, 73–85. 1074 

https://doi.org/10.1007/s11104-011-0728-8 1075 

Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., Bierkens, 1076 

M.F.P., 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37, n/a-n/a. 1077 

https://doi.org/10.1029/2010GL044571 1078 

Walker, B., Holling, C.S., Carpenter, S.R., Kinzig, A., 2004. Resilience , Adaptability and 1079 

Transformability in Social – ecological Systems. Ecol. Soc. 9, 5. 1080 



57 
 

Wang, R., Bowling, L.C., Cherkauer, K.A., 2016. Estimation of the effects of climate variability 1081 

on crop yield in the Midwest USA. Agric. For. Meteorol. 216, 141–156. 1082 

https://doi.org/10.1016/j.agrformet.2015.10.001 1083 

Wesley, J., 2005. Kalamazoo River Assessment. Michigan Department of Natural Resources, 1084 

Fisheries Division, Special Report 35, Ann Arbor, MI, USA. 1085 

Willmott, C.J., 1982. Some Comments on the Evaluation of Model Performance. Bull. Am. 1086 

Meteorol. Soc. 63, 1309–1313. https://doi.org/10.1175/1520-1087 

0477(1982)063<1309:SCOTEO>2.0.CO;2 1088 

Wood, S.A., Karp, D.S., DeClerck, F., Kremen, C., Naeem, S., Palm, C.A., 2015. Functional 1089 

traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–1090 

539. https://doi.org/10.1016/j.tree.2015.06.013 1091 

Xiang, Z., Bailey, R.T., Nozari, S., Husain, Z., Kisekka, I., Sharda, V., Gowda, P., 2020. 1092 

DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation 1093 

strategies in irrigated areas. Agric. Water Manag. 232, 106033. 1094 

https://doi.org/10.1016/j.agwat.2020.106033 1095 

Yang, J.M., Yang, J.Y., Liu, S., Hoogenboom, G., 2014. An evaluation of the statistical methods 1096 

for testing the performance of crop models with observed data. Agric. Syst. 127, 81–89. 1097 

https://doi.org/10.1016/j.agsy.2014.01.008 1098 

Zhang, X.Q., Pu, C., Zhao, X., Xue, J.-F., Zhang, R., Nie, Z.-J., Chen, F., Lal, R., Zhang, H.-L., 1099 

2016. Tillage effects on carbon footprint and ecosystem services of climate regulation in a 1100 

winter wheat–summer maize cropping system of the North China Plain. Ecol. Indic. 67, 1101 

821–829. https://doi.org/10.1016/j.ecolind.2016.03.046 1102 



58 
 

 Supplementary Material 1103 

Quantification of Resilience Metrics as Affected by a Conservation Agricultural 1104 

Practice at a Watershed Scale  1105 

Rasu Eeswaran a, A. Pouyan Nejadhashemi a, b, *, Josué Kpodo b, c, Zachary K. Curtis d, Umesh 1106 

Adhikari d,  Huasheng Liao d,  Shu-Guang Li d,e,  J. Sebastian Hernandez-Suarez b, Filipe Couto 1107 

Alves f, Anna Raschke b, Prakash Kumar Jha g 1108 

a Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824 USA 1109 

b Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824 USA 1110 

c Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 USA 1111 

dHydrosimulatics inc., 721 N Captial Ave. Ste. 2, Lansing, MI 48906 USA 1112 

e Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA  1113 

f Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824 USA 1114 

g Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, 1115 

KS, 66506 USA 1116 

* Corresponding author: Tel.: +1 (517) 432-7653 Fax: +1 (517) 432-2892. Email address: pouyan@msu.edu  1117 

 1118 

 1119 

 1120 

 1121 

 1122 

 1123 

 1124 

 1125 



59 
 

Table S1. Soil properties at the KBS Main Cropping System Experiment site used to develop the 1126 

sequential DSSAT model. 1127 

Soil 
depth 

 

Bulk 
density 

 

Organic 
carbon 

 

Sand Silt Clay Root growth 
factor in 

soil* 

Saturated 
hydraulic 

conductivity 

Field 
capacity 

water 
content 

at 
33kPa* 

Wilting 
point 
water 

content at 
1,500kPa* 

(cm) (g/cm 3) ---------------(%)---------------- unitless cm/h cm 3/cm 3 cm 3/cm 3 
0-10 1.60 1.10 43 38 19 1.0 0.36 0.267 0.125 

10-22 1.60 0.90 43 38 19 0.8 0.36 0.267 0.137 
22-31 1.60 0.70 31 47 22 0.5 0.25 0.267 0.137 
31-41 1.60 0.30 33 44 23 0.4 0.20 0.295 0.165 
41-51 1.60 0.22 56 19 25 0.3 0.20 0.297 0.165 
51-61 1.60 0.10 62 17 21 0.3 0.20 0.267 0.137 
61-75 1.60 0.05 69 12 19 0.2 0.96 0.267 0.137 
75-89 1.60 0.02 89 4 7 0.2 1.98 0.160 0.060 
89-102 1.60 0.02 88 5 7 0.1 20.0 0.160 0.060 

102-120 1.60 0.02 88 5 7 0.1 20.0 0.160 0.060 
 *parameters used to calibrate the soil water module of the DSSAT. 1128 
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Table S2. Probability values for the significance of the effects evaluated in the statistical mixed 1146 

model for crop yields and net return. 1147 

Crop Fixed effect  Probability (p-value) of the parameters 
Yield Net return Recharge 

Corn Treatment (trt) <0.0001 <0.0001 <0.0001 
Year (yr) <0.0001 <0.0001 <0.0001 
Interaction between treatment and year (trt × yr) <0.0001 <0.0001 <0.0001 

Soybean Treatment (trt) <0.0001 <0.0001 <0.0001 
Year (yr) <0.0001 <0.0001 <0.0001 
Interaction between treatment and year (trt × yr) <0.0001 <0.0001 <0.0001 

Wheat Treatment (trt) 0.0856 <0.0001 <0.0001 
Year (yr) <0.0001 <0.0001 <0.0001 
Interaction between treatment and year (trt × yr) <0.0001 <0.0001 <0.0001 
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 1159 

Figure S1. Results of the calibrated steady-state groundwater model including head 1160 

contours, color map for head, and velocity vectors. 1161 
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 1165 

Figure S2. Mean annual recharge from corn (a), soybean (b), and wheat (c) across different soils 1166 

in the Kalamazoo River watershed for the period between 1993-2019 as affected by the 1167 

conventional and the no-till treatments. Strongly significant means (p<0.0001) are indicated by 1168 

** , and non-significance cases are denoted by “ns”. 1169 
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 1175 

Figure S3. Mean yield of corn (a), soybean (b), and wheat (c) across different soils in the 1176 

Kalamazoo River watershed for the period between 1993-2019 as affected by the conventional 1177 

and the no-till treatments. Strongly significant means (p<0.0001) are indicated by **, significant 1178 

means (p<0.05) are indicated by *, and non-significance cases are denoted by “ns”. 1179 
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      1181 

Figure S4. Average net return of corn (a), soybean (b), and wheat (c) across different soils in the 1182 

Kalamazoo River watershed for the period between 1993-2019 as affected by the conventional 1183 

and the no-till treatments. Strongly significant means (p<0.0001) are indicated by **, significant 1184 

means (p<0.05) are indicated by *, and non-significance cases are denoted by “ns”. 1185 
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