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Abstract: It is suggested that conventional tillage operations exacerbate global environmental
changes and affect the sustainability of our food production systems. Therefore, no-till has
been introduced as one of the conservation practices to counteract these challenges. No-till has
been adopted by a substantial number of farmers in major cropping regions; however, its
resilience from large scale implementation has been overlooked. The majority of the studies
have reported only a few aspects of the no-till practice (e.g., yield, soil properties, etc.), often
with contradicting observations. To fill this gap, we present an approach that integrates long-
term field experimental data and modeling to quantify resilience at a watershed scale. The
study was conducted in the Kalamazoo River watershed located in Michigan, USA. Recharge,
groundwater table, soil moisture, yield, and net return were used as resilience metrics. The
DSSAT sequence crop model was developed for a corn-soybean-wheat rotation and calibrated
using the yield and soil moisture data from a long-term (1993-2019) experiment for the
conventional and the no-till treatment conducted within the study area. Soil moisture, recharge
and yield were simulated, and the recharge was fed into a calibrated groundwater model to
analyze changes in groundwater heads. The results showed clear evidence of higher recharge
and net return under the no-till treatment, which were statistically significant for all crops at
the watershed scale. Moreover, the no-till treatment consistently retained greater soil moisture
than the conventional treatment, thereby helping to mitigate the impacts of droughts. The rise
in groundwater table as affected by the adoption of no-till practices in this watershed has
ranged between 0.1-0.5 m, depending on the underlying groundwater system, and has the
potential to beneficially affect the aquifers and groundwater-dependent ecosystems. Therefore,

the no-till treatment could improve the overall resilience of the row crop system.
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1. Introduction

Similarly to other regions in the world, the Midwestern United States has already been adversely
impacted by climate change and variability (Andresen et al., 2012; Fuchs et al., 2015; Hatfield et
al., 2018), and the increasing climate extremes, such as droughts, are projected to increase in the
future (Jin et al., 2018). These extreme events have lead to substantial crop yield losses (Hatfield
et al., 2018; Wang et al., 2016), affecting both producers and consumers. To counteract these
drought extremes, groundwater based irrigation systems are widely used in the U.S. (Siebert et al.,
2010). However, extraction of groundwater for irrigation above the rate of recharge has
significantly reduced groundwater levels, affecting the baseflow to streams, groundwater-fed
wetlands, and other groundwater dependent habitats and species (Dalin et al., 2017; Scanlon et al.,
2012; Wada et al., 2010). Therefore, there is an increasing consensus among researchers that the
resilience and ecosystem services provided by agricultural production systems should be

improved.

Ecosystem services denote all the benefits humans obtain from different natural systems for their
physical and socio-economic prosperity (Costanza et al., 1997; Mengist et al., 2020). Agricultural
practices are responsible for the primary production of food and fiber, while providing numerous
ecosystem services at different scales (Dale and Polasky, 2007; Power, 2010; Swinton et al., 2007,
Tancoigne et al., 2014; Wood et al., 2015). Comprehensive documentation of ecosystem services
has been conducted within the framework of the Millennium Ecosystem Assessment (MEA);
accordingly, ecosystem services can be broadly categorized based on provisioning, regulating,

supporting, and cultural roles of the ecosystem (Fisher et al., 2009; MEA, 2005).

Supporting services are fundamental in nature; without them, other types of services cannot occur.

Nevertheless, the current trend of agricultural intensification deliberately focuses on a few

4
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provisioning services (e.g., food, water, energy), through agricultural landscape simplification,
rather than harnessing a range of ecosystem services (Bommarco et al., 2013; Gaba et al., 2015;
Robertson and Swinton, 2005) which in turn affects the resilience and sustainability of the
agricultural systems. This phenomenon is very common in the Midwestern United States (Landis,
2017), which is one of the industrialized large-scale agricultural regions in the world, and
contributes significantly to global food security and the economy as it produces the majority of the

U.S. row crops and several other food, feed, and fuel crops (Hatfield, 2012; Oppedahl, 2018).

Ecosystem services and resilience are interconnected, where the ecosystems with lower resilience
are vulnerable to disturbances (e.g., climate perturbations) and higher resilience ensures a stable
supply and/or recovery of ecosystem services (Biggs et al., 2012; Fedele et al., 2017; Montoya and
Raffaelli, 2010). In other words, the loss of ecosystem resilience could compromise ecosystem
services that are indispensable for sustainable agricultural production systems (DeClerck et al.,
2016; El Chami et al., 2020; Swift et al., 2004). Therefore, increased resilience and ecosystem
services can be seen as an opportunity for climate change adaptation and disaster risk reduction

(Munang et al., 2013).

Improving agroecosystem services and resilience is not only confined to the farm scale, but can be
expanded across the landscape (Bailey and Buck, 2016; Scherr et al., 2012). For example,
agricultural recharge, which is the water leaving the vadose zone from agricultural farms, may
contribute to groundwater-dependent wetlands, streams, and dependent species (Gordon et al.,
2010; Sampath et al., 2015) beyond those farms. These groundwater-dependent systems deliver
services such as microclimate regulation, water for irrigation, flood mitigation, and control of pests
and diseases (Griebler and Avramov, 2015; McLaughlin and Cohen, 2013), which in turn enhance

the resilience of agro-ecosystems. Although groundwater recharge is broadly considered as a
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provisioning service (Prudencio and Null, 2018; Serna-Chavez et al., 2014), it is also indirectly
linked to regulatory and support services. Therefore, recharge can be considered as a major water-
related ecosystem service and can be used as a metric to evaluate resilience in agro-ecosystems

(Coates et al., 2013; Serna-Chavez et al., 2014).

Resilience signifies the ability of an agricultural ecosystem to maintain its structure and function
in the face of disturbances (Walker et al., 2004). The initial step of improving resilience is the
assessment of resilience at appropriate scales. Resilience metrics are used to quantify resilience
and can be used individually or in combination (Douxchamps et al., 2017; Serfilippi and Ramnath,
2018). Commonly used resilience metrics are means and variance of agricultural production/yields
(Di Falco and Chavas, 2008; Eeswaran et al., 2021; Martin and Magne, 2015), profit/revenue
(Browne et al., 2013; Kandulu et al., 2012; Komarek et al., 2015; Rigolot et al., 2017), soil moisture
(Eeswaran et al., 2021), crop failure (Jones and Thornton, 2009), and farming risks (Komarek et

al., 2015).

No-till has been endorsed for enhancing ecosystem services such as carbon sequestration,
greenhouse gas mitigation, microclimate regulation, control of nutrient leaching, soil erosion
control and improving species richness (Lal, 2013; Robertson and Swinton, 2005; Syswerda and
Robertson, 2014; Zhang et al., 2016), often at the field scale. Considering all of the aforementioned
benefits, there is an increasing trend in the adoption of no-till agriculture around the world (Kassam
et al., 2019). However, there is a dearth of knowledge on how no-till affects the overall resilience
at a larger scale. To fill this gap, we present an approach that integrates long-term field
experimental data and modeling to evaluate an ecosystem service (i.e., groundwater recharge and
water table) and resiliency (i.e., soil moisture, drought mitigation, yield, and net return) of

convetinal and no-till practices in a large, diverse watershed. The objectives of this study are: 1)
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assess recharge, groundwater table, and soil moisture variabilities for the long-term corn-soybean-
wheat rotation under conventional and no-till practices at a watershed scale; 2) estimate yields and
net returns under conventional and no-till practices within a large, diverse watershed; and 3)
evaluate the overall changes in resiliency as affected by the adaptation of no-till as conservation

agriculture.

2. Materials and Methods

2.1. Overview of Methodology

The modeling framework of this study is presented in Figure 1. Initially, observed data from a
long-term (1993-2019) corn-soybean-winter wheat rotation experiment of both conventional
tillage and no-till treatments were used to parameterize a crop model (i.e., the Decision Support
System for Agrotechnology Transfer-DSSAT) (Jones et al., 2003). Next, the DSSAT model was
calibrated using the measured volumetric soil moisture and crop yield from the long-term field
experiment. The calibrated DSSAT model was applied to individual fields within a large and
diverse watershed. The results from the large-scale crop model were used to calculate the annual

recharge and resilience measures for individual fields.

The simulated drainage from the crop model, i.e. the deep percolation from the bottom of the soil
profile, was assumed to reach the water table instantaneously and act as recharge from the
agricultural land use (Xiang et al., 2020). This assumption can be supported by the existence of
permeable soils and strong connection between the surface and groundwater within the study
watershed (Grannemann et al., 2008). Groundwater flow in the watershed was modeled using a
process-based groundwater model called Interactive Groundwater (IGW) (Li and Liu, 2006; Liao

et al., 2015a) and calibrated using static water level data. Finally, changes in the water table as



155  ecosystem service and metrics of resilience were evaluated as affected by the adaptation of a no-

156  till treatment and compared to the base scenario (a conventional tillage treatment).
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Figure 1. An overview of the modeling process

2.2. Study Area

Our research project comprises of both field experiments and modeling efforts. The following

sections describe the study area for each of these efforts.

2.2.1. Description of Long-Term Field Experiment

The DSSAT cropping system model (Jones et al., 2003) for the watershed scale evaluation was
developed using the long-term experimental data collected from the Main Cropping System
Experiment (MCSE) of the Kellogg Biological Station (KBS). KBS is located within the
Kalamazoo River watershed in Michigan, U.S. at the coordinates of 42.41° N, 85.37° W and the
altitude of 288m AMSL (Figure 2). The annual precipitation at the KBS is about 1,027 mm, while
the annual mean temperature is 10.1 °C, ranging from the lowest monthly mean of -9.4 °C to the
highest of 28.9 °C in January and July, respectively (Cusser et al., 2020). This experimental site
has fine loamy, well-drained, mesic Typic Hapludalf (Kalamazoo loam series) soils formed from

the glacial till and outwash (Syswerda and Robertson, 2014).

The MCSE, established in 1989, consists of several experimental treatments of annual and
perennial cropping systems. To meet the objectives of this study, only conventional and no-till
treatments were considered of a corn (Zea mays), soybean (Glycine max), and winter wheat
(Triticum aestivum) annual rotation. Both treatments have been under rainfed management.
Further, each of these experimental treatments consisted of six replicants (blocks) in a randomized
complete block design, and each block has a dimension of 87 x 105 m. In the conventional
treatment, crops were planted following the primary tillage using moldboard plough until 1998

and thereafter using chisel plough. Primary tillage was followed by soil finishing each year.

10
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Disking was practiced as secondary tillage before planting a wheat crop in the rotation while inter-
row cultivation was performed for corn and soybean. Nitrogen fertilizer was applied as per the
soil-test recommendations for each crop. Appropriate herbicides were broadcasted to control
weeds depending on the weed intensity. Crops were not applied with any manure or insecticides.
The same management was used for the no-till treatment, except crops were planted without tillage
using a no-till drill (Robertson and Hamilton, 2015). Even though the MCSE was established in
the late 1980s, an appropriate experimental design was adopted from 1993. Therefore, our study
was designed for the experimental period of 1993-2019. The crop rotation begins with corn in
1993 and ends with wheat harvest in 2019, covering nine complete rotations (27 years). The

following data were used to parameterize the crop model developed for this experiment.

The daily weather data (precipitation, maximum temperature, minimum temperature, and solar
radiation) for the experimental period were obtained from the automated weather station located
within the MCSE site. The soil analysis data of bulk density, organic carbon, total nitrogen, soil
pH, extractable phosphorous, and exchangeable potassium at different depths were collected from
previously published data (Crum and Collins, 1995). Crop management data such as cultivar,
planting (date of planting, planting method, planting distribution, planting density, row spacing,
row direction, and planting depth), nitrogen fertilizer application (date of application, type of
nitrogen fertilizer, method of application, depth of application and quantity of application), tillage
(date of tillage, tillage implement and tillage depth), and harvesting date were collected from the
MCSE agronomic log. The gravimetric soil moisture was measured typically in biweekly intervals
at a depth of 0-25 cm from each replicate of the treatment during the study period. Periodically,
updated soil bulk density data for the same depth (0-25 cm) was used to transform gravimetric soil

moisture into volumetric soil moisture. The detailed procedure for sampling gravimetric soil

11
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moisture and the conversion into volumetric soil moisture can be found in Eeswaran et al. (2021).
Crop yields were measured at harvest using combine harvesters for the entire block. The seed yield
was calculated based on the standard seed moisture level of 15.5% for corn and 12.5% for wheat

and soybean.
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Figure 2. Location of the experimental site and the Kalamazoo River Watershed in Michigan,
USA

2.1.2. Description of the Study Watershed
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The study was conducted in the Kalamazoo River watershed, which is in the southwest part of
Michigan, USA (Figure 2). The watershed drains an extent of 5,232 km? from the counties of
Allegan, Barry, Calhoun, Eaton, Hillsdale, Jackson, Kalamazoo, Kent, Ottawa, and Van Buren
into Lake Michigan near the towns of Saugatuck and Douglas (KRWC, 2011). The hydrogeology
of this watershed is defined by thick glacial deposits of sand and gravel that contribute to
permeable soils and stable groundwater inflows (Wesley, 2005). Generally, there is a high degree
of connection between surface and groundwater in the basin (Grannemann et al., 2008). Soil
groups which make up the watershed are 40% of sandy loam, 30% of loamy sand, 25% of clay
loam, and 5% of organic soils (Wesley, 2005). The watershed has a gentle to moderate slope, and

the drainage class is moderate to well-drained (Schaetzl et al., 2009).

The Kalamazoo River Watershed is historically well known for its richness in biodiversity,
ecosystem services, and recreational opportunities as it consists of several lakes, headwater
streams, wetlands, and flood plains that are heavily contributed by its groundwater system
(Alexander et al., 2014; KRWC, 2011). A stable baseflow to streams and other habitats is essential
to attenuate temperature extremes and to sustain aquatic life (KRWC, 2011). In contrast, growing
pressures from development, urbanization, and agricultural operations have significantly altered
the hydrology and water quality within the watershed (Wesley, 2005). Moreover, groundwater is
extracted for industries, public water supply, domestic wells, irrigation, livestock, mining, and
other commercial purposes; thus, groundwater withdrawal in this watershed is rated highest in the
State of Michigan (Wesley, 2005). The high groundwater withdrawal within the Kalamazoo River

Watershed warranted its use for this study.

Agriculture is the primary land use within the watershed (47%) followed by forest cover and

successional vegetation (30%), lakes, wetlands, and flood plains (15%), and urban areas (8%)

13
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(Figure 2; KRWC, 2011). Row crops such as corn, soybean, and wheat dominate agricultural lands
while pasture, alfalfa, fruit crops, and livestock are also produced in the region. The climate varies
across the watershed depending on location, distance from Lake Michigan (lake effect), the
formation of air masses, and atmospheric disturbances. The mean annual temperature of the basin
is about 8.8 °C, and the annual precipitation ranges between 810-865 mm, of which about half is

snowfall (Wesley, 2005).

Watershed scale crop modeling was performed for the period 1993-2019 and the following data
were collected for this task. The daily weather data (precipitation, maximum temperature, and
minimum temperature) for the study period were obtained from eight meteorological stations in
the Kalamazoo River Watershed (Figure 2) using NOAA’s National Centers for Environmental
Information. To fill in the missing weather data, the Soil Water Assessment Tool (SWAT) weather
generator, i.e., WXGEN, was used (Sharpley and Williams, 1990). The soil data for the watershed
were downloaded from a global soil profile database for crop modeling applications available at
Harvard Dataverse (Han et al., 2015). This soil data is compatible to the DSSAT crop model (.SOL
format) at 10 km resolution and recommended for large scale crop modeling (Han et al., 2019). A
total of 85 grids were found in the Kalamazoo River Watershed. The land use data were collected
from National Land Cover Database (NLCD) 2013 (Homer et al., 2020) and the agricultural land
use (legend 82: cultivated crops) in the watershed was extracted using ArcGIS 10.6 (Esri,
Redlands, California, USA). Finally, the soil grids were assigned to respective weather stations
using geoprocessing tools (Thiessen method) in ArcGIS (Thiessen, 1911). Therefore, a total of 85

modeling domains were used for crop modeling in the watershed.

2.3. Crop Modeling

14



256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

Crop modeling for conventional and no-till treatments of the long-term experiment was performed
in DSSAT. DSSAT is one of the most highly cited crop modeling platforms in global agricultural
research and currently consists of process-based simulation models for more than 42 crops
(Hoogenboom et al., 2019; Jones et al., 2003, 2017). DSSAT has been successfully implemented
in the evaluation of interactions among genetics, environment, and management at scales ranging
from field to landscape (Adnan et al., 2019; Eitzinger et al., 2017). This includes the assessment
of genetic improvement (Boote et al., 1996), evaluation of the impacts of climate change (Fodor
etal., 2017; Rosenzweig et al., 2014), optimization of management practices such as tillage, water,
and nutrients (Iocola et al., 2017; Kropp et al., 2019; Liu et al., 2013; Malik and Dechmi, 2019;
Roy et al., 2019), and yield gap analysis (Teixeira et al., 2019). Moreover, DSSAT was applied
for yield forecasting, precision farming, decision support, and policy analysis in agriculture (Boote
et al., 1996; Shelia et al., 2015; Thorp et al., 2008). Crop modeling can also offer valuable
opportunities to evaluate resilience against climate extremes when integrated with long-term

research experiments (Rétter et al., 2018).

In this study, the SEQUENCE modeling procedure (Bowen et al., 1998; Liu et al., 2013; Salmeréon
et al., 2014) in DSSAT-CSM was used to simulate the corn-soybean-winter wheat rotation for the
conventional and the no-till treatments. The DSSAT version 4.7.5 (Hoogenboom et al., 2019) was
used to simulate corn, soybean, and winter wheat by applying crop models of CERES-maize,
CROPGRO-soybean, and CERES-wheat for the respective crops (Jones et al., 2003). Weatherman
application within the DSSAT (Pickering et al., 1994) was used to create DSSAT format (. WTH)
weather files for the experimental period (1993-2019) using collected daily precipitation,
maximum temperature, minimum temperature, and solar radiation from the MCSE site. The soil

information (Kalamazoo Loam soil-MSKB 890006) was obtained from the DSSAT soil database
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and the Web Soil Survey (NRCS, 2020), and the relevant model parameters, such as the saturated
hydraulic conductivity (SSKS), were updated accordingly. The soil analysis data collected from

Crum and Collins, (1995) were used as the initial soil analysis values.

The best cultivar options suggested by Grace and Robertson for MCSE at KBS were available in
DSSAT sequence models (MSKB8902.SQX) and were used to initialize the simulation
(Hoogenboom et al., 2019). Accordingly, four crop cultivars (two corn cultivars and one cultivar
each for soybean and winter wheat) were used for crop modeling. The identification codes of the
corn cultivars used are IB0O090 and IB0093, both belong to the ecotype IBO001. The identification
code of the soybean cultivar is 990002 (ecotype: SB0201) while the identification code for the
wheat cultivar is IB0488 (ecotype: USWHO1). Planting information, nitrogen fertilizer
applications, and harvesting information were incorporated for both treatments. The period
between crops in the rotation was modeled as fallows. Irrigation information was not required as
both treatments were managed as rainfed. Treatments were appropriately assigned in separate files
(.SQX), and simulation was initiated using the following methods: The Priestly-Taylor/Ritchie
method was used to estimate evapotranspiration (Priestley and Taylor, 1972), Suleiman-Ritchie
method (Suleiman and Ritchie, 2003) was used to estimate soil evaporation, infiltration rate was
estimated using the Soil Conservation Service method (SCS, 1985), Century method (Parton,
1996) was used to simulate soil organic matter, and soil layer distribution was set to the modified
soil profile. The soil water balance was simulated in DSSAT as a function of daily precipitation,
irrigation (if any), transpiration, soil evaporation, runoff, and drainage on a daily basis (Ritchie,

1998).

Daily volumetric soil moisture was simulated for the depths of 0-5 cm, 5-15 cm, 15-22 c¢m, and

22-31 cm using the DSSAT model. Then, weighted average soil moistures were calculated for the

16



302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

comparison with the observed soil moisture at 0-25 cm depth. The root growth factor (SRGF),
lower limit/wilting point (SLLL), drained upper limit/field capacity (SDUL) were manually
adjusted to match the simulated and observed soil moisture to calibrate the DSSAT soil water
balance module (Calmon et al., 1999; Fang et al., 2008). The final soil properties generated from
soil data calibration is presented in Table S1. Performance of the soil moisture and yield calibration
was evaluated using coefficient of determination (R?) (Equation 1), normalized root mean square
error (NRMSE) (Equation 2), and index of agreement (d) (Equation 3). NRMSE and d are
commonly used to statistically evaluate the goodness of fit between observed and simulated soil
moisture and yield (Araya et al., 2017; Dokoohaki et al., 2016; Liu et al., 2013; Yang et al., 2014).
The model performance according to NRMSE goodness of fit can be classified as 0-15% (good),
15-30% (moderate), and >30% (poor). Goodness of fit based on d (Willmott, 1982) can be
categorized as <0.7 (poor), 0.7-0.8 (moderate), 0.8-0.9 (good), and 0.9-1.0 (excellent) as proposed

by Liu et al. (2013).

n 7\ 12
R2 — [Xi1(Si=8)(0;-0)] i} |
Y592 ¥, (0;-0)? (M

S, (5-002/n
NRMSE =YY"~ %100 )

?:1(Si_0i)2

d=1- %i=1(15i=01+0;-01)?

)

where, S; is the simulated ith value, O; is the observed ith value, S is the mean of the simulated

values, O is the mean of the observed values, and # is the number of values.

2.5. Groundwater Modeling
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Groundwater flow in the shallow unconsolidated glacial deposits was modeled using Interactive
Groundwater (IGW), a groundwater modeling software introduced by Li and Liu (2006), which
uses the finite difference approximation of the governing partial differential equation (Equation 4)

to solve confined and unconfined flow conditions:

S;S-=V(K-VH) +q (4)

where, Ss is the specific storage coefficient, 4 is the hydraulic head [L], ¢ is time [T], K is the
saturated hydraulic conductivity, I/ is the mathematical gradient operator, ¢ is the net source

(positive) or sink (negative) flux term, including recharge, and surface seepage [LT '].

IGW is periodically updated (see, e.g., Liao et al., 2015a, 2015b, 2020); for this study, the IGW
model was developed, calibrated, and visualized using the new web-based version of IGW called
MAGNET — Multi-scale Adaptive Global Network — 4 Water, accessible on the magnet4water

website: https://www.magnet4water.com/magnet.

The IGW modeling software is live linked to a database comprising terabytes of raw and derived
data useful for the groundwater modeling. A high-resolution (10 m) digital elevation model (DEM)
(NED USGS 2006) was used to map topographic variations (i.e., the aquifer top) and to simulate
groundwater-surface seeps in the watershed (see more below). The bottom boundary is represented
by a spatially variable surface based on the top of the bedrock underneath the unconsolidated
sediments. The bedrock top elevation raster (500 m resolution) was interpolated from borehole
records found in the statewide water well database called Wellogic (MDEQ, 2020). Hydraulic
conductivity (K) of the aquifer was represented by a spatially-variable, two-dimensional (2D)
raster of horizontal hydraulic conductivity. This was generated by interpolating estimated K values

from records in the Wellogic database, public water supply, and U.S. Geological Society aquifer-
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tests, and aquifer properties reported in the literature (State of Michigan, 2006). Given that the
horizontal extent of the model was much larger than the vertical extent, it was hypothesized that
flow was predominantly two-dimensional (2D) and that a 2D model could capture the dominant
flow processes. The model extent was divided into 418 cells in the x- (west-east) direction and 258

cells in the y- (north-south) direction.

The model was executed for the period 1993-2019 using a one-year time step. The initial condition
was generated by running the model in steady-state mode to represent long-term mean conditions,
since no data was available to prescribe the initial head distribution. Annual recharge distributions
from the calibrated DSSAT SEQUENCE model were included in the source/sink term at each time
step. In non-cropland areas, the long-term mean recharge applied in the steady-state model was
used. Natural, long-term mean recharge to the aquifer was input to the steady-state model and was
created following empirical methods presented by Holtschlag (1997) involving observed
streamflow hydrographs and information related to land use, soil conditions, and watershed

characteristics (State of Michigan, 20006).

For both the ‘initial condition’ steady-state model and the subsequent transient model, groundwater
discharge into lakes, streams, and wetlands/springs - the major control of the long-term prevailing
groundwater flow patterns — was captured through the critical use of high-resolution Digital
Elevation Models (DEMs). Specifically, the entire land surface, modeled using the 10 m DEM
from USGS NED (2006), was treated as a one-way head-dependent boundary condition (seepage).
This allowed groundwater to discharge to the surface where the groundwater level intercepted the
land surface. The flux per unit area leaving the aquifer was the product of the leakance (hydraulic
conductivity per unit thickness) of the land surface with the difference between the land surface

elevation and the head in the aquifer. Leakance is a calibration parameter that is manually
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calibrated. For example, if the leakance was too low the flooded area would be too large and vice
versa (note: a final calibrated value of 1 day™' was used for transient simulation). Surface seepage
maps at different time-steps were compared to the surface water features obtained from USGS
NHD (2010) to ensure that this approach effectively captured the spatial patterns of groundwater
discharge to the surface water bodies. Groundwater pumping was not represented in the initial
condition model nor the transient simulation. A ‘no-flow’ condition (i.e., zero groundwater flux)
was applied along the lateral and bottom boundaries of both steady state and transient models. In
short, recharge in the watershed was balanced by surface seepage to surface water bodies in the

simulations presented here.

Annual recharge distributions from the calibrated DSSAT SEQUENCE model for the conventional
and no-till treatments were included in the source/sink term at each time step in sperate runs. All
other aquifer properties / attributes from the steady-state model were applied during the transient
simulation. In addition, a specific yield of 0.1 was assigned based on the aforementioned

distribution of soil types in the watershed (detailed specific yield data was not available).
2.6. Simulation of Crop Yields and Recharge at the Watershed Scale

Calibrated DSSAT SEQUENCE model for the conventional and no-till treatments were used to
simulate crop yields and agricultural recharge for the period of 1993-2019. The watershed was
clustered according to climate and soil types. It was assumed that the corn-soybean-wheat rotation
was planted on all agricultural land within the watershed. The crop model was later run for each

unique set of climate and soil type under the conventional and no-till treatment scenarios.

2.7. Assessment of Ecosystem Services and Resilience as Affected by the Adoption of No-

Till Agriculture
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A rising groundwater table from increased recharge is beneficial since many natural habitats, such
as wetlands, depend on year-round groundwater availability (McLaughlin and Cohen, 2013;
Sampath et al., 2015, 2016). In addition, increases in soil moisture within the root zone can
improve the resilience of rainfed agricultural productions (Eeswaran et al., 2021). Yield, net return,
and soil moisture metrics, namely mean relative difference (MRD) and soil water deficit index
(SWDI), were used as metrics of resilience. MRD and SWDI were shown to be suitable metrics to
evaluate resilience in agricultural systems (Eeswaran et al., 2021). MRD was presented by
(Vachaud et al., 1985) to evaluate the temporal stability of spatially distributed soil moisture
measurements. Additionally, treatment with a higher MRD was considered resilient to climate
extremes, such as droughts (Eeswaran et al., 2021). The MRD during a particular growing season

was computed as follows:

MRD = % Y {6, —8)/8} (5)

— 1
6=13,6, (©6)

where, 0, is the simulated daily volumetric soil moisture for ith treatment on jth day. This soil
moisture was derived as a weighted average for 0-25 cm depth from the simulation outputs. The
number of treatments denoted by 7. © is the average volumetric soil moisture of all treatments and
N 1is the total number of days in the growing season. In this study, the growing season was
considered to start on April 1* and end October 31%, since it covered the critical stages of each
crop and the MRD values were calculated in percentages. Probability analysis (Alizadeh, 2013)
was conducted for the annual MRD values, and probability curves were compared between

treatments to assess the resilience as affected by the adoption of the no-till treatment.
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SWDI is an agricultural drought index proposed by Martinez-Fernandez et al. (2015) and can be
implemented to assess droughts when continuous soil moisture data is available. The SWDI is

calculated using the following formula;

elz_ej‘c

SWDI = ( ) x 10 7)

Ofc—Owp

where, 0, is the simulated daily volumetric soil moisture during the growing season as above. B,
is the field capacity/drain upper limit, and 6,,,,, is the wilting point/lower limit. . and 8,,,,, values
were obtained from each selected soil file (Han et al., 2015) as weighted averages for the 0-25 cm
soil depth. A particular soil will have excess water when SWDI is positive, soil will be at the field
capacity when SWDI equals zero, and be in a drought phase when SWDI is negative. Moreover,
drought severity categories can be classified based on SWDI as “no drought” if SWDI > 0, as
“mild” 1f 0 > SWDI > -2, as “moderate” if -2 > SWDI > -5, as “severe” if -5 > SWDI > -10, and
as “extreme” if -10 > SWDI (Martinez-Fernandez et al., 2015). Calculated SWDI for the entire
growing season (April-October) for each year during the study period (1993-2019) was used to
calculate the median, mean, maximum, and minimum across all soils, and these values were later
arranged in descending order to perform probability analysis for each treatment (Alizadeh, 2013).
Probability curves were compared between treatments to assess the resilience of the no-till

agriculture to drought.

The net return was estimated through cost-benefit analysis using the annual crop yields and the
price received for crops in November 2018 in Michigan (USDA, 2019). In 2018, the price of corn,
soybean, and winter wheat was 131.50, 307.50, and 180.76 US dollars per ton, respectively. The
cost was calculated using the variable cost involved in all agricultural operations for both

treatments during the year 2018 in the long-term research experiment. This cost was estimated
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based on a detailed 2018 enterprise budget from Clemson University Cooperative Extension for
the respective crops (Clemson, 2020). The pricing of cost and benefit components were considered
as static over the years of simulation and the fixed cost was excluded due to lack of information

for reliable estimates.

The yield, net return, and annual recharge were statistically analyzed in a mixed model (Equation
8) to evaluate the significance of fixed and random effects on these response variables for each

evaluated crop (i.e., corn, soybean and wheat).
Yiik =+ ap+t;+s+ (@a)y + (sa)j + (ts);j + €k (8)

where, Y is the response (grain yield/net return/annual recharge) simulated for the i" treatment,
within j'" soil type on the k™ cropping year; u is the intercept, a is the fixed effect of the cropping
year k; t; is the fixed effect of the treatment i; s; represents the random effects of the jth soil type,
with s~N(0,02); (ta);, denotes the fixed interaction between the ith treatment and kth cropping
year; (sa)jy is the random effect of the interaction between jth soil type and kth cropping year,
with (sa)~N(0,c2); (ts); ; 1s the random effect of the interaction between the ith treatment and
jth soil type, (ts)~N(0,02); and ¢; jk is the error associated with each observation, with
£~N(0,52). To ensure the normality of the residuals and the homogeneity of variances, the grain
yield and annual recharge data were log-transformed. Transformations were not needed for net
return. There were varying extents of acreage of agricultural land use for each soil in the watershed.
Hence, the area of each soil was used as a weighting factor in the model. The comparison between
the means was performed using the Tukey-Kramer test, assuming a = 0.05 (Herberich et al.,
2010). All analyses were performed using the GLIMMIX procedure (Milliken and Johnson, 2009)

in the SAS software version 9.4 (SAS Institute Inc. Cary, North Carolina, USA).
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3. Results and Discussion
3.1. Calibration of the Crop Model

The sequential DSSAT crop model was calibrated and validated for yield and soil moisture during
the period of 1993-2019, which included nine complete rotations of corn-soybean-wheat crops.
The performance of the model to simulate crop yields under both treatments was measured by the
goodness of fit indicators shown in Table 1. According to the R’ and d-index, the model
performance was considered excellent, whereas the NRMSE indicated moderate performance (Liu
et al., 2013; Willmott, 1982). However, relatively large NRMSE values are expected when
modeling long-term crop performance for multiple growing seasons as a result of interannual
variations. It is also important to note that the performance of the no-till model was slightly better
than the conventional model. A similar performance was observed for the simulation of soil
moisture. However, performance indicators show that the crop model was reasonably calibrated
for the corn-soybean-wheat rotation (Table 1).

Table 1. The goodness of fit parameters of the calibrated crop model to simulate yield and soil

moisture under the conventional and no-till treatments.

Treatment Crop yield Soil moisture

R’ NRMSE (%)  d-index R’ NRMSE (%)  d-index
Conventional 0.73 27.6 0.92 0.74 29.0 0.8
No-till 0.75 26.6 0.93 0.74 193 0.9

3.2. Calibration of Groundwater Model

The steady-state simulation results are shown in Figure S1. The comparison between the simulated
results (heads) of the steady-state model and Static Water Level (SWL) measurements from water
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well records in the Wellogic database can be seen in Figure 3. SWL observations from 23,757
glacial wells were used to calibrate the model. The solid 45-degree line represents “perfect
agreement” between simulated and actual observations while the dashed lines represent confidence
intervals of one standard deviation. Calibration results show that the model performance was good,
as indicated by a strong Nash-Sutcliffe model efficiency coefficient of 0.90. Even though there
was large spread of the data points, all data was centered around the line of perfect agreement. The
center-focused distribution demonstrates that the model was able to capture the dominant spatial
structure of the groundwater system (i.e., the distribution of groundwater recharge and discharge
areas). Large spread in the data, as indicated by the root-mean-square error of 7.91 m, primarily

reflects the significant noise embedded in the SWL observations (Curtis et al., 2018).
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Figure 3. Comparison between simulated groundwater heads and observed groundwater heads.
The solid red line in the calibration indicates a 1:1 perfect agreement. The dashed lines represent
a confidence interval of one standard deviation

3.3. Resilience as Affected by the Adoption of No-Till Agriculture

In this study, we quantified resilience in terms of recharge, groundwater table, soil moisture
metrics, crop yield, and net return for both the conventional and the no-till treatments. Treatments
with higher recharge, groundwater table, soil moisture retention, ability to mitigate drought, larger
crop yields, and higher net revenues were considered as resilient over the long-term (1993-2019)

evaluation.

3.3.1. Recharge and Groundwater Table as Affected by the Adoption of No-Till Agriculture

The statistical analysis for the annual recharge showed that the effects of treatment, year, and the
interaction between treatment and year were strongly significant (see the supplementary material
Table S2). The means of the annual recharge across different soils and years from each crop can
be seen in Figure 4. Results showed that the no-till treatment significantly increased the annual
recharge from all crops in comparison to the conventional treatment. The annual recharge from the
no-till treatment for corn, soybean, and wheat were 12.4%, 6.2%, and 13.2% greater than the
annual recharge from the conventional treatment, respectively. The soybean had the highest
recharge followed by wheat and corn. Because the interaction effect between treatment and year
was also significant for the annual recharge (Table S2), the comparisons between treatments for
each crop during the period of study is presented in Figure S2. In most years, the no-till treatment

had significantly higher recharge than the conventional treatment. The changes in recharge across
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the years can be attributed to the changes in precipitation and crop growth, which affect other water

balance components (Figure S2).
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Figure 4. The mean annual recharge from different crops under two treatments in the Kalamazoo

River watershed. ** indicates strongly significant means at p<0.0001

The results from the transient groundwater flow simulation for the conventional and no-till
treatments are presented in Figures 5 and 6. Figure 5 shows the 2019 hydraulic head distribution
under the conventional treatment, and the location of the six (‘virtual’) monitoring wells where
transient head results were reported. Note that the changes in the water table at the watershed scale

over time were difficult to distinguish, therefore no comparison of plan-view model results under
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each agricultural scenario was presented. Therefore, temporal changes of groundwater levels were

presented at each monitoring wells (Figure 6). The time-series comparisons show that the no-till

treatment resulted in higher water tables compared to the conventional treatment. The differences

were typically small: about 0.3-0.5 m at Monitoring Well 1, 0.1-0.3 m at Monitoring Well 4, and

0.1 m or less at the other locations. However, even a relatively small improvement in the

groundwater table can have beneficial effects on streams and aquatic ecosystems in the Kalamazoo

River Watershed, due to the large contribution of groundwater to streamflow in this region (Cooper

and Merritt, 2012; Sampath et al., 2016).
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As observed in our study, higher recharge in the no-till treatment simultaneously increased the
groundwater table; however, the magnitude of change was dependent upon the characteristics of
the underlying groundwater system (Figure 6). The higher recharge observed under the no-till
treatment in this study may have been caused by the greater infiltration of rainwater (Nunes et al.,
2018). According to Kravchenko et al. (2011), the no-till system establishes large pores associated
with the undisturbed root channels created by previous crops. The macropores in a no-till system
may contribute to greater infiltration and thus recharge. In agreement with the findings reported
here, Syswerda and Robertson (2014) also found higher downward drainage under the no-till

treatment compared to the conventional treatment.

In many regions of the world, groundwater is tapped at rates greater than the local recharge, leading
to the depletion of aquifers (Dalin et al., 2017; Reitz et al., 2017). Furthermore, increasing climate
variability has already posed additional challenges to water resources and accelerated stresses to
the water-energy-food nexus (Smidt et al., 2016). Therefore, an improved recharge and water table
under the no-till practice can increase the resilience of the food systems, while also supporting the

sustainability of groundwater-dependent ecosystems.

3.3.2. Soil Moisture Metrics as Affected by the Adoption of No-Till Agriculture

The probability distribution of the of mean, maximum, and minimum of MRD for both treatments
across 85 soils over the period of the study is presented in Figure 7. MRD measures soil moisture
deviations from the average soil moisture of agricultural treatments, and a positive MRD signifies
a wetter treatment while a negative MRD signified a drier treatment (Eeswaran et al., 2021). The
mean of the MRD clearly shows that the conventional treatment mostly (>93% probability)
generated a negative MRD while the no-till treatment generated a positive MRD. Therefore, the

no-till treatment consistently retained higher soil moisture than the conventional treatment. Based
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on the maximum line for the conventional treatment (Figure 7a), it also had a small probability
(<14%) to be wetter than the no-till treatment. Similarly, the minimum line of the no-till treatment
(Figure 7b) shows that it also had the chance to be drier than the conventional treatment by the

same magnitude of probability as above.

The probability distribution of SWDI across all soils over the study period is shown in Figure 8.
As shown in Figure 8, the probability of having different drought severity levels can be analyzed
based on respective SWDI values (Martinez-Fernandez et al., 2015). Based on the mean SWDI,
the no-till treatment had a 43% probability of having no drought events, which was substantially
higher than the conventional treatment (38%). Moreover, the no-till treatment had a lower
probability of having mild, moderate, severe, and extreme droughts in comparison to the
conventional treatment. According to the maximum SWDI, the no-till treatment had 78%
probability to have drought free days while the probability for the conventional treatment was
75%. The minimum SWDI also showed that the no-till treatment (13%) had higher drought free
days than the conventional treatment (10%). Thus, the no-till treatment was superior in mitigating

drought compared to the conventional treatment in this watershed.
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Figure 8. The probability distribution for the mean, maximum, and minimum of SWDI across
different soils in the Kalamazoo River watershed for the period of 1993-2019 as affected by the
conventional (a) and the no-till (b) treatments (b). Note: Red dashed lines are to demarcate

different drought severity levels

Consistently higher soil moisture retention by the no-till treatment was due to the beneficial
improvement of soil physical properties, such as water holding capacity (Moebius-Clune et al.,
2008). Furthermore, the no-till treatment has been found to increase rainwater infiltration, decrease
runoff, and to reduce soil evaporation, thereby increasing the proportion of available water in the

root zone (Lal et al., 2012; Lampurlanés et al., 2016; Verhulst et al., 2011). The ability of the no-
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till treatment to store more soil moisture could help to mitigate the impacts of droughts on the
crops, as evident in this study. This is in agreement with the findings of Thierfelder and Wall
(2010) where the no-till system performed better for soil water dynamics in a drought-prone region
of Africa. Based on the above findings, the no-till treatment was more resilient than the
conventional treatment and adaptation of the no-till management in the Kalamazoo River
Watershed would enhance its resilience to extreme drought events, which are detrimental to

rainfed systems.

3.3.3. Crop Yield and Net Return as Affected by the Adoption of the No-Till Agriculture

The probabilities for the statistical significance of the effects evaluated for crop yield and net return
is presented in Table S2. To perform this statistical analysis, the extent of each soil in the
agricultural land use was used as a weighting factor, since it is critical to consider production area
when comparing management effects at larger scales (Leng et al., 2019). As a result, we evaluated
the effects of treatments in the watershed over the entire study period with high confidence. The
statistical analysis showed that the effect of treatments was strongly significant on the yield of corn
and soybean, but not in wheat. Nonetheless, treatment effect was strongly significant for the net
return from all crops. Furthermore, the effect of year and interaction between the treatment and

year were significant for both yield and net return of all crops (Table S2).

The means of crop yield and net return as separated by treatments across the years and soils are
presented in Table 2. Accordingly, the yield increased under the no-till treatment by 1.23%, 0.61%,
and 0.24% for corn, soybean, and wheat, respectively. Deines et al. (2019) reported a 3.3% and
0.74% yield improvement, respectively, for corn and soybean as a result of conservation tillage
adoption in the US corn belt region. However, it is important to note that conservation tillage is a

mixture of different intensities of reduced tillage and not necessarily entirely no-tillage. In this
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study, the net return was 20%, 23.4%, and 48.3% higher under the no-till treatment for corn,
soybean, and wheat, respectively (Table 2). The higher margin of net revenues for the no-till
treatment was mainly because of its lower production costs compared to the conventional
treatment. The no-till treatment was cheaper due to absence of tillage operations, even though the
herbicide application rates were higher than the conventional tillage. The costs to produce corn,
soybean, and wheat conventionally were 918.84, 705.03, 586.56 USD/ha, respectively. On the
other hand, no-till treatment costs were 867.36, 632.12, and 508.58 USD/ha, for corn, soybean,
and wheat productions, respectively. As the interaction effects between treatment and year were
significant for both yield and net return in all the crops, the strength of significance may vary
across different years. This differential performance, as affected by treatment and years, is shown
in Figure S3 (yield) and Figure S4 (net return). In summary, the no-till outperformed the
conventional treatment in the majority of the years.

Table 2. The mean yield and net return for different crops under two treatments in the

Kalamazoo River watershed*

Treatment Corn Soybean Wheat

Yield Net return Yield Net return Yield Net return
(Mg/ha) (USD/ha) (Mg/ha) (USD/ha) (Mg/ha) (USD/ha)

Conventional 8.91° 315.31° 3.27° 345.87° 4.09% 165.77°

No-till 9.02° 378.47* 3.29° 426.78° 4.10° 245.88°

*Means with the same letter in each column are not significantly different at p<<0.05.

The no-till treatment increased crop yields in most studies around the world (Corbeels et al., 2014;
Pittelkow et al., 2015; Rusinamhodzi et al., 2011). However, some studies have found no

significant effects on yield under the no-till systems (e.g., Daigh et al., 2018), while a few other
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studies reported reductions in crop yield (e.g., Powlson et al., 2014). In contrast, to see the
consistently outperforming trends under the adoption of the no-till agriculture the evaluation must
be longer than a decade (Cusser et al., 2020). This study was built on this need and successfully
captured the long-term impacts of the no-till treatment. The results showed that the adoption of the
no-till treatment could significantly improve the resilience of agricultural systems by increasing
crop yields and net return. The increment in crop yields under the no-till management can be
attributed to the enhancement of soil physical, chemical, and biological properties (Nunes et al.,

2018).

4. Conclusions

In this long-term study, we found that the adoption of no-till treatment for a corn-soybean-wheat
rotation has potential to increase the resilience in the Kalamazoo River Watershed. This
improvement of resilience was demonstrated using the following metrics: recharge, water table,
soil moisture, drought vulnerability, yield, and net return. The no-till treatment had significantly
higher annual recharge, for corn, soybean, and wheat which were 12.4%, 6.2%, and 13.2% greater
than the annual recharge from the conventional treatment, respectively. The highest recharge was
observed for soybean followed by wheat then corn. The rise in the water table resulting from the
adoption of the no-till treatment in the watershed ranged between 0.1-0.5 m, which could
substantially contribute to replenishing the aquifers and groundwater-dependent ecosystems. MRD
of soil moisture clearly showed that the no-till treatment consistently maintained higher soil
moisture compared to the conventional treatment, thus remained as a relatively wetter treatment.
Therefore, the no-till treatment had a higher resilience against drought compared to the

conventional treatment as quantified by the drought index (SWDI). Yields and net returns were
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also improved under the no-till treatment for all crops in the rotation. When averaged across the
years and soils, the no-till treatment produced 1.23%, 0.61%, and 0.24% higher grain yields for
corn, soybean, and wheat, respectively. Moreover, the no-till generated 20.0%, 23.4%, and 48.3%

higher net returns for corn, soybean, and wheat, respectively.

There were two major assumptions in this study. First, all agricultural land use in the Kalamazoo
River Watershed was assumed to be planted with a corn-soybean-wheat rotation. However,
farmers plant a variety of crops throughout the watershed; therefore, the findings are mostly
applicable to the row crop rotations in this region. Secondly, we assumed that the deep percolation
simulated by the crop model instantly reached the water table. This assumption is only valid in
regions where there is a greater connection between the surface and groundwater, similar to our
study area. To expand our approach to different landscapes with varying climate, soil,
groundwater, and cropping systems, we recommend modifying both the crop and groundwater

modeling procedures adhering to site-specific parameters and requirements.
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1126 Table S1. Soil properties at the KBS Main Cropping System Experiment site used to develop the

1127 sequential DSSAT model.

Soil Bulk Organic Sand  Silt Clay Root growth Saturated Field Wilting
depth density  carbon factor in hydraulic capacity point
soil* conductivity water water

content  content at

at 1,500kPa*

33kPa*

(cm) (g/cm?) (%) unitless cm/h cm®cm?®  cm’/cm?
0-10 1.60 1.10 43 38 19 1.0 0.36 0.267 0.125
10-22 1.60 0.90 43 38 19 0.8 0.36 0.267 0.137
22-31 1.60 0.70 31 47 22 0.5 0.25 0.267 0.137
31-41 1.60 0.30 33 44 23 0.4 0.20 0.295 0.165
41-51 1.60 0.22 56 19 25 0.3 0.20 0.297 0.165
51-61 1.60 0.10 62 17 21 0.3 0.20 0.267 0.137
61-75 1.60 0.05 69 12 19 0.2 0.96 0.267 0.137
75-89 1.60 0.02 89 4 7 0.2 1.98 0.160 0.060
89-102 1.60 0.02 88 5 7 0.1 20.0 0.160 0.060
102-120 1.60 0.02 88 5 7 0.1 20.0 0.160 0.060

1128  *parameters used to calibrate the soil water module of the DSSAT.
1129
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1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145
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1146  Table S2. Probability values for the significance of the effects evaluated in the statistical mixed
1147  model for crop yields and net return.

Crop Fixed effect Probability (p-value) of the parameters
Yield Netreturn ~ Recharge

Corn  Treatment (¢rf) <0.0001 <0.0001 <0.0001

Year (yr) <0.0001 <0.0001 <0.0001

Interaction between treatment and year (¢7¢ X yr)  <0.0001 <0.0001 <0.0001

Soybean Treatment (¢rt) <0.0001 <0.0001 <0.0001

Year (yr) <0.0001 <0.0001 <0.0001

Interaction between treatment and year (¢t x yr)  <0.0001 <0.0001 <0.0001

Wheat  Treatment (#77) 0.0856 <0.0001 <0.0001

Year (yr) <0.0001 <0.0001 <0.0001

Interaction between treatment and year (#7¢ X yr)  <0.0001 <0.0001 <0.0001
1148
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