

Quantification of Resilience Metrics as Affected by a Conservation Agricultural Practice at a Watershed Scale

Rasu Eeswaran ^a, A. Pouyan Nejadhashemi ^{a, b, *}, Josué Kpodo ^{b, c}, Zachary K. Curtis ^d, Umesh Adhikari ^d, Huasheng Liao ^d, Shu-Guang Li ^{d, e}, J. Sebastian Hernandez-Suarez ^b, Filipe Couto Alves ^f, Anna Raschke ^b, Prakash Kumar Jha ^g

^a Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824 USA

^b Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824 USA

^c Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 USA

^d Hydrosimulatics inc., 721 N Ste. 2Capital Ave., Lansing, MI 48906 USA

^c Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA

^f Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824 USA

^g Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, 66506 USA

* Corresponding author: Tel.: +1 (517) 432-7653 Fax: +1 (517) 432-2892. Email address: pouyan@msu.edu

23 **Abstract:** It is suggested that conventional tillage operations exacerbate global environmental
24 changes and affect the sustainability of our food production systems. Therefore, no-till has
25 been introduced as one of the conservation practices to counteract these challenges. No-till has
26 been adopted by a substantial number of farmers in major cropping regions; however, its
27 resilience from large scale implementation has been overlooked. The majority of the studies
28 have reported only a few aspects of the no-till practice (e.g., yield, soil properties, etc.), often
29 with contradicting observations. To fill this gap, we present an approach that integrates long-
30 term field experimental data and modeling to quantify resilience at a watershed scale. The
31 study was conducted in the Kalamazoo River watershed located in Michigan, USA. Recharge,
32 groundwater table, soil moisture, yield, and net return were used as resilience metrics. The
33 DSSAT sequence crop model was developed for a corn-soybean-wheat rotation and calibrated
34 using the yield and soil moisture data from a long-term (1993-2019) experiment for the
35 conventional and the no-till treatment conducted within the study area. Soil moisture, recharge
36 and yield were simulated, and the recharge was fed into a calibrated groundwater model to
37 analyze changes in groundwater heads. The results showed clear evidence of higher recharge
38 and net return under the no-till treatment, which were statistically significant for all crops at
39 the watershed scale. Moreover, the no-till treatment consistently retained greater soil moisture
40 than the conventional treatment, thereby helping to mitigate the impacts of droughts. The rise
41 in groundwater table as affected by the adoption of no-till practices in this watershed has
42 ranged between 0.1-0.5 m, depending on the underlying groundwater system, and has the
43 potential to beneficially affect the aquifers and groundwater-dependent ecosystems. Therefore,
44 the no-till treatment could improve the overall resilience of the row crop system.

45 **Keywords:** Crop Modeling; Drought; Groundwater Modeling; No-till; Recharge; Soil
46 Moisture

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64 **1. Introduction**

65 Similarly to other regions in the world, the Midwestern United States has already been adversely
66 impacted by climate change and variability (Andresen et al., 2012; Fuchs et al., 2015; Hatfield et
67 al., 2018), and the increasing climate extremes, such as droughts, are projected to increase in the
68 future (Jin et al., 2018). These extreme events have lead to substantial crop yield losses (Hatfield
69 et al., 2018; Wang et al., 2016), affecting both producers and consumers. To counteract these
70 drought extremes, groundwater based irrigation systems are widely used in the U.S. (Siebert et al.,
71 2010). However, extraction of groundwater for irrigation above the rate of recharge has
72 significantly reduced groundwater levels, affecting the baseflow to streams, groundwater-fed
73 wetlands, and other groundwater dependent habitats and species (Dalin et al., 2017; Scanlon et al.,
74 2012; Wada et al., 2010). Therefore, there is an increasing consensus among researchers that the
75 resilience and ecosystem services provided by agricultural production systems should be
76 improved.

77 Ecosystem services denote all the benefits humans obtain from different natural systems for their
78 physical and socio-economic prosperity (Costanza et al., 1997; Mengist et al., 2020). Agricultural
79 practices are responsible for the primary production of food and fiber, while providing numerous
80 ecosystem services at different scales (Dale and Polasky, 2007; Power, 2010; Swinton et al., 2007;
81 Tancoigne et al., 2014; Wood et al., 2015). Comprehensive documentation of ecosystem services
82 has been conducted within the framework of the Millennium Ecosystem Assessment (MEA);
83 accordingly, ecosystem services can be broadly categorized based on provisioning, regulating,
84 supporting, and cultural roles of the ecosystem (Fisher et al., 2009; MEA, 2005).

85 Supporting services are fundamental in nature; without them, other types of services cannot occur.
86 Nevertheless, the current trend of agricultural intensification deliberately focuses on a few

87 provisioning services (e.g., food, water, energy), through agricultural landscape simplification,
88 rather than harnessing a range of ecosystem services (Bommarco et al., 2013; Gaba et al., 2015;
89 Robertson and Swinton, 2005) which in turn affects the resilience and sustainability of the
90 agricultural systems. This phenomenon is very common in the Midwestern United States (Landis,
91 2017), which is one of the industrialized large-scale agricultural regions in the world, and
92 contributes significantly to global food security and the economy as it produces the majority of the
93 U.S. row crops and several other food, feed, and fuel crops (Hatfield, 2012; Oppedahl, 2018).

94 Ecosystem services and resilience are interconnected, where the ecosystems with lower resilience
95 are vulnerable to disturbances (e.g., climate perturbations) and higher resilience ensures a stable
96 supply and/or recovery of ecosystem services (Biggs et al., 2012; Fedele et al., 2017; Montoya and
97 Raffaelli, 2010). In other words, the loss of ecosystem resilience could compromise ecosystem
98 services that are indispensable for sustainable agricultural production systems (DeClerck et al.,
99 2016; El Chami et al., 2020; Swift et al., 2004). Therefore, increased resilience and ecosystem
100 services can be seen as an opportunity for climate change adaptation and disaster risk reduction
101 (Munang et al., 2013).

102 Improving agroecosystem services and resilience is not only confined to the farm scale, but can be
103 expanded across the landscape (Bailey and Buck, 2016; Scherr et al., 2012). For example,
104 agricultural recharge, which is the water leaving the vadose zone from agricultural farms, may
105 contribute to groundwater-dependent wetlands, streams, and dependent species (Gordon et al.,
106 2010; Sampath et al., 2015) beyond those farms. These groundwater-dependent systems deliver
107 services such as microclimate regulation, water for irrigation, flood mitigation, and control of pests
108 and diseases (Griebler and Avramov, 2015; McLaughlin and Cohen, 2013), which in turn enhance
109 the resilience of agro-ecosystems. Although groundwater recharge is broadly considered as a

110 provisioning service (Prudencio and Null, 2018; Serna-Chavez et al., 2014), it is also indirectly
111 linked to regulatory and support services. Therefore, recharge can be considered as a major water-
112 related ecosystem service and can be used as a metric to evaluate resilience in agro-ecosystems
113 (Coates et al., 2013; Serna-Chavez et al., 2014).

114 Resilience signifies the ability of an agricultural ecosystem to maintain its structure and function
115 in the face of disturbances (Walker et al., 2004). The initial step of improving resilience is the
116 assessment of resilience at appropriate scales. Resilience metrics are used to quantify resilience
117 and can be used individually or in combination (Douxchamps et al., 2017; Serfilippi and Ramnath,
118 2018). Commonly used resilience metrics are means and variance of agricultural production/yields
119 (Di Falco and Chavas, 2008; Eeswaran et al., 2021; Martin and Magne, 2015), profit/revenue
120 (Browne et al., 2013; Kandulu et al., 2012; Komarek et al., 2015; Rigolot et al., 2017), soil moisture
121 (Eeswaran et al., 2021), crop failure (Jones and Thornton, 2009), and farming risks (Komarek et
122 al., 2015).

123 No-till has been endorsed for enhancing ecosystem services such as carbon sequestration,
124 greenhouse gas mitigation, microclimate regulation, control of nutrient leaching, soil erosion
125 control and improving species richness (Lal, 2013; Robertson and Swinton, 2005; Syswerda and
126 Robertson, 2014; Zhang et al., 2016), often at the field scale. Considering all of the aforementioned
127 benefits, there is an increasing trend in the adoption of no-till agriculture around the world (Kassam
128 et al., 2019). However, there is a dearth of knowledge on how no-till affects the overall resilience
129 at a larger scale. To fill this gap, we present an approach that integrates long-term field
130 experimental data and modeling to evaluate an ecosystem service (i.e., groundwater recharge and
131 water table) and resiliency (i.e., soil moisture, drought mitigation, yield, and net return) of
132 conventional and no-till practices in a large, diverse watershed. The objectives of this study are: 1)

133 assess recharge, groundwater table, and soil moisture variabilities for the long-term corn-soybean-
134 wheat rotation under conventional and no-till practices at a watershed scale; 2) estimate yields and
135 net returns under conventional and no-till practices within a large, diverse watershed; and 3)
136 evaluate the overall changes in resiliency as affected by the adaptation of no-till as conservation
137 agriculture.

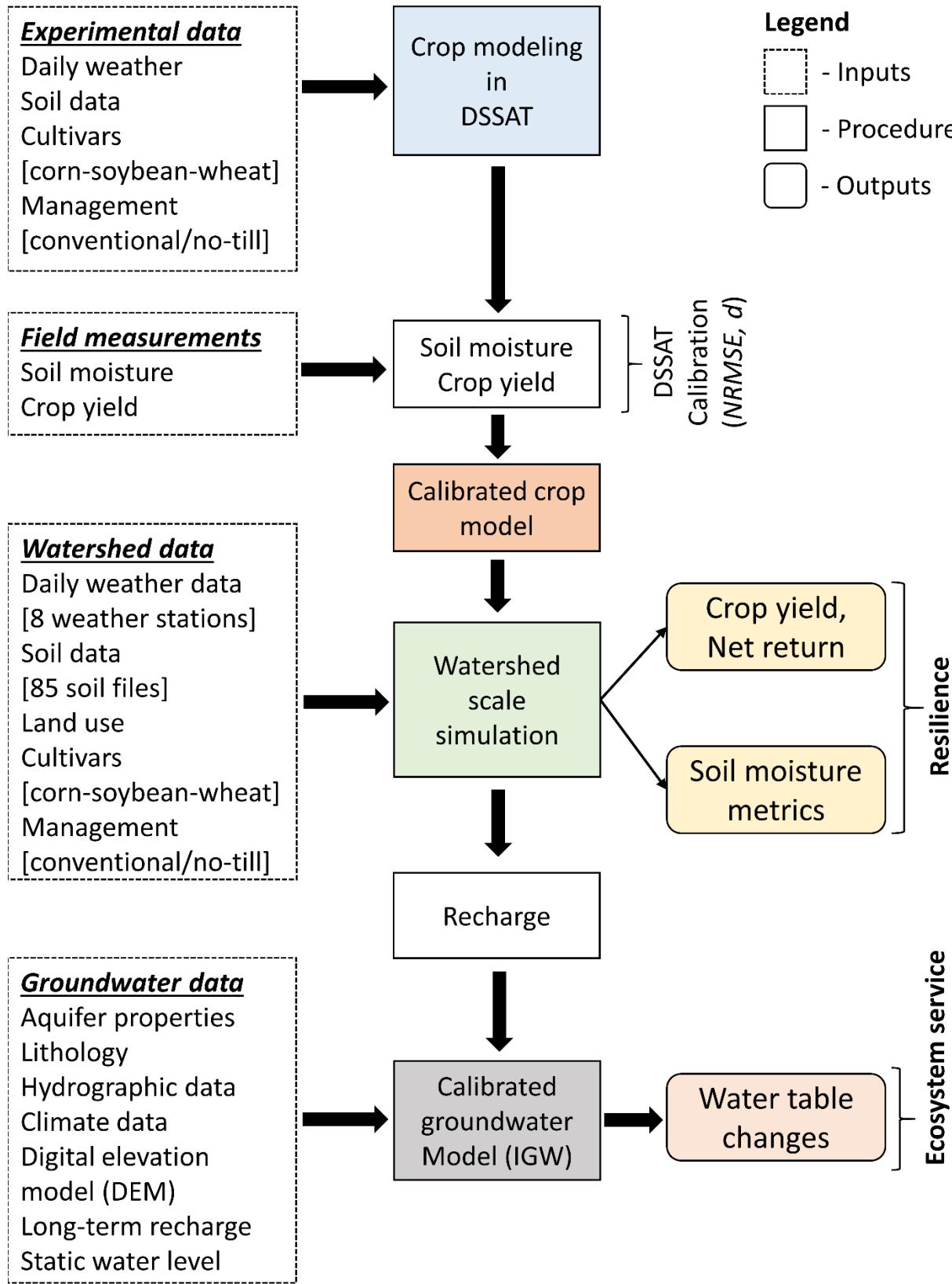
138 **2. Materials and Methods**

139 **2.1. Overview of Methodology**

140 The modeling framework of this study is presented in Figure 1. Initially, observed data from a
141 long-term (1993-2019) corn-soybean-winter wheat rotation experiment of both conventional
142 tillage and no-till treatments were used to parameterize a crop model (i.e., the Decision Support
143 System for Agrotechnology Transfer-DSSAT) (Jones et al., 2003). Next, the DSSAT model was
144 calibrated using the measured volumetric soil moisture and crop yield from the long-term field
145 experiment. The calibrated DSSAT model was applied to individual fields within a large and
146 diverse watershed. The results from the large-scale crop model were used to calculate the annual
147 recharge and resilience measures for individual fields.

148 The simulated drainage from the crop model, i.e. the deep percolation from the bottom of the soil
149 profile, was assumed to reach the water table instantaneously and act as recharge from the
150 agricultural land use (Xiang et al., 2020). This assumption can be supported by the existence of
151 permeable soils and strong connection between the surface and groundwater within the study
152 watershed (Grannemann et al., 2008). Groundwater flow in the watershed was modeled using a
153 process-based groundwater model called Interactive Groundwater (IGW) (Li and Liu, 2006; Liao
154 et al., 2015a) and calibrated using static water level data. Finally, changes in the water table as

155 ecosystem service and metrics of resilience were evaluated as affected by the adaptation of a no-
156 till treatment and compared to the base scenario (a conventional tillage treatment).



158 Figure 1. An overview of the modeling process

159 2.2. Study Area

160 Our research project comprises of both field experiments and modeling efforts. The following
161 sections describe the study area for each of these efforts.

162 2.2.1. Description of Long-Term Field Experiment

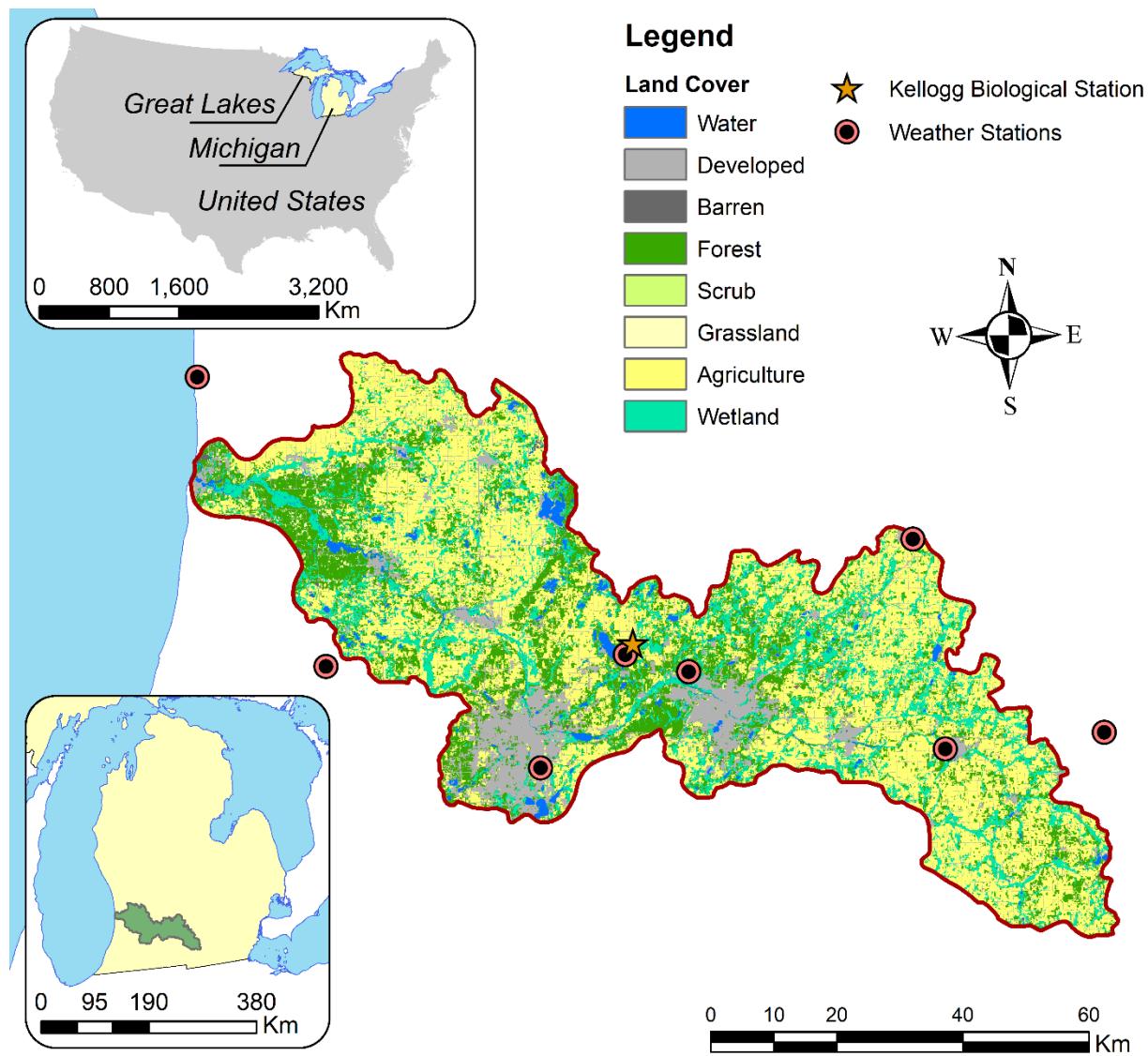
163 The DSSAT cropping system model (Jones et al., 2003) for the watershed scale evaluation was
164 developed using the long-term experimental data collected from the Main Cropping System
165 Experiment (MCSE) of the Kellogg Biological Station (KBS). KBS is located within the
166 Kalamazoo River watershed in Michigan, U.S. at the coordinates of 42.41° N, 85.37° W and the
167 altitude of 288m AMSL (Figure 2). The annual precipitation at the KBS is about 1,027 mm, while
168 the annual mean temperature is 10.1 °C, ranging from the lowest monthly mean of -9.4 °C to the
169 highest of 28.9 °C in January and July, respectively (Cusser et al., 2020). This experimental site
170 has fine loamy, well-drained, mesic Typic Hapludalf (Kalamazoo loam series) soils formed from
171 the glacial till and outwash (Syswerda and Robertson, 2014).

172 The MCSE, established in 1989, consists of several experimental treatments of annual and
173 perennial cropping systems. To meet the objectives of this study, only conventional and no-till
174 treatments were considered of a corn (*Zea mays*), soybean (*Glycine max*), and winter wheat
175 (*Triticum aestivum*) annual rotation. Both treatments have been under rainfed management.
176 Further, each of these experimental treatments consisted of six replicants (blocks) in a randomized
177 complete block design, and each block has a dimension of 87×105 m. In the conventional
178 treatment, crops were planted following the primary tillage using moldboard plough until 1998
179 and thereafter using chisel plough. Primary tillage was followed by soil finishing each year.

180 Disking was practiced as secondary tillage before planting a wheat crop in the rotation while inter-
181 row cultivation was performed for corn and soybean. Nitrogen fertilizer was applied as per the
182 soil-test recommendations for each crop. Appropriate herbicides were broadcasted to control
183 weeds depending on the weed intensity. Crops were not applied with any manure or insecticides.
184 The same management was used for the no-till treatment, except crops were planted without tillage
185 using a no-till drill (Robertson and Hamilton, 2015). Even though the MCSE was established in
186 the late 1980s, an appropriate experimental design was adopted from 1993. Therefore, our study
187 was designed for the experimental period of 1993-2019. The crop rotation begins with corn in
188 1993 and ends with wheat harvest in 2019, covering nine complete rotations (27 years). The
189 following data were used to parameterize the crop model developed for this experiment.

190 The daily weather data (precipitation, maximum temperature, minimum temperature, and solar
191 radiation) for the experimental period were obtained from the automated weather station located
192 within the MCSE site. The soil analysis data of bulk density, organic carbon, total nitrogen, soil
193 pH, extractable phosphorous, and exchangeable potassium at different depths were collected from
194 previously published data (Crum and Collins, 1995). Crop management data such as cultivar,
195 planting (date of planting, planting method, planting distribution, planting density, row spacing,
196 row direction, and planting depth), nitrogen fertilizer application (date of application, type of
197 nitrogen fertilizer, method of application, depth of application and quantity of application), tillage
198 (date of tillage, tillage implement and tillage depth), and harvesting date were collected from the
199 MCSE agronomic log. The gravimetric soil moisture was measured typically in biweekly intervals
200 at a depth of 0-25 cm from each replicate of the treatment during the study period. Periodically,
201 updated soil bulk density data for the same depth (0-25 cm) was used to transform gravimetric soil
202 moisture into volumetric soil moisture. The detailed procedure for sampling gravimetric soil

203 moisture and the conversion into volumetric soil moisture can be found in Eeswaran et al. (2021).
204 Crop yields were measured at harvest using combine harvesters for the entire block. The seed yield
205 was calculated based on the standard seed moisture level of 15.5% for corn and 12.5% for wheat
206 and soybean.



207
208 Figure 2. Location of the experimental site and the Kalamazoo River Watershed in Michigan,
209 USA
210 **2.1.2. Description of the Study Watershed**

211 The study was conducted in the Kalamazoo River watershed, which is in the southwest part of
212 Michigan, USA (Figure 2). The watershed drains an extent of 5,232 km² from the counties of
213 Allegan, Barry, Calhoun, Eaton, Hillsdale, Jackson, Kalamazoo, Kent, Ottawa, and Van Buren
214 into Lake Michigan near the towns of Saugatuck and Douglas (KRWC, 2011). The hydrogeology
215 of this watershed is defined by thick glacial deposits of sand and gravel that contribute to
216 permeable soils and stable groundwater inflows (Wesley, 2005). Generally, there is a high degree
217 of connection between surface and groundwater in the basin (Grannemann et al., 2008). Soil
218 groups which make up the watershed are 40% of sandy loam, 30% of loamy sand, 25% of clay
219 loam, and 5% of organic soils (Wesley, 2005). The watershed has a gentle to moderate slope, and
220 the drainage class is moderate to well-drained (Schaetzl et al., 2009).

221 The Kalamazoo River Watershed is historically well known for its richness in biodiversity,
222 ecosystem services, and recreational opportunities as it consists of several lakes, headwater
223 streams, wetlands, and flood plains that are heavily contributed by its groundwater system
224 (Alexander et al., 2014; KRWC, 2011). A stable baseflow to streams and other habitats is essential
225 to attenuate temperature extremes and to sustain aquatic life (KRWC, 2011). In contrast, growing
226 pressures from development, urbanization, and agricultural operations have significantly altered
227 the hydrology and water quality within the watershed (Wesley, 2005). Moreover, groundwater is
228 extracted for industries, public water supply, domestic wells, irrigation, livestock, mining, and
229 other commercial purposes; thus, groundwater withdrawal in this watershed is rated highest in the
230 State of Michigan (Wesley, 2005). The high groundwater withdrawal within the Kalamazoo River
231 Watershed warranted its use for this study.

232 Agriculture is the primary land use within the watershed (47%) followed by forest cover and
233 successional vegetation (30%), lakes, wetlands, and flood plains (15%), and urban areas (8%)

234 (Figure 2; KRWC, 2011). Row crops such as corn, soybean, and wheat dominate agricultural lands
235 while pasture, alfalfa, fruit crops, and livestock are also produced in the region. The climate varies
236 across the watershed depending on location, distance from Lake Michigan (lake effect), the
237 formation of air masses, and atmospheric disturbances. The mean annual temperature of the basin
238 is about 8.8 °C, and the annual precipitation ranges between 810-865 mm, of which about half is
239 snowfall (Wesley, 2005).

240 Watershed scale crop modeling was performed for the period 1993-2019 and the following data
241 were collected for this task. The daily weather data (precipitation, maximum temperature, and
242 minimum temperature) for the study period were obtained from eight meteorological stations in
243 the Kalamazoo River Watershed (Figure 2) using NOAA's National Centers for Environmental
244 Information. To fill in the missing weather data, the Soil Water Assessment Tool (SWAT) weather
245 generator, i.e., WXGEN, was used (Sharpley and Williams, 1990). The soil data for the watershed
246 were downloaded from a global soil profile database for crop modeling applications available at
247 Harvard Dataverse (Han et al., 2015). This soil data is compatible to the DSSAT crop model (.SOL
248 format) at 10 km resolution and recommended for large scale crop modeling (Han et al., 2019). A
249 total of 85 grids were found in the Kalamazoo River Watershed. The land use data were collected
250 from National Land Cover Database (NLCD) 2013 (Homer et al., 2020) and the agricultural land
251 use (legend 82: cultivated crops) in the watershed was extracted using ArcGIS 10.6 (Esri,
252 Redlands, California, USA). Finally, the soil grids were assigned to respective weather stations
253 using geoprocessing tools (Thiessen method) in ArcGIS (Thiessen, 1911). Therefore, a total of 85
254 modeling domains were used for crop modeling in the watershed.

255 **2.3. Crop Modeling**

256 Crop modeling for conventional and no-till treatments of the long-term experiment was performed
257 in DSSAT. DSSAT is one of the most highly cited crop modeling platforms in global agricultural
258 research and currently consists of process-based simulation models for more than 42 crops
259 (Hoogenboom et al., 2019; Jones et al., 2003, 2017). DSSAT has been successfully implemented
260 in the evaluation of interactions among genetics, environment, and management at scales ranging
261 from field to landscape (Adnan et al., 2019; Eitzinger et al., 2017). This includes the assessment
262 of genetic improvement (Boote et al., 1996), evaluation of the impacts of climate change (Fodor
263 et al., 2017; Rosenzweig et al., 2014), optimization of management practices such as tillage, water,
264 and nutrients (Iocola et al., 2017; Kropp et al., 2019; Liu et al., 2013; Malik and Dechmi, 2019;
265 Roy et al., 2019), and yield gap analysis (Teixeira et al., 2019). Moreover, DSSAT was applied
266 for yield forecasting, precision farming, decision support, and policy analysis in agriculture (Boote
267 et al., 1996; Shelia et al., 2015; Thorp et al., 2008). Crop modeling can also offer valuable
268 opportunities to evaluate resilience against climate extremes when integrated with long-term
269 research experiments (Rötter et al., 2018).

270 In this study, the SEQUENCE modeling procedure (Bowen et al., 1998; Liu et al., 2013; Salmerón
271 et al., 2014) in DSSAT-CSM was used to simulate the corn-soybean-winter wheat rotation for the
272 conventional and the no-till treatments. The DSSAT version 4.7.5 (Hoogenboom et al., 2019) was
273 used to simulate corn, soybean, and winter wheat by applying crop models of CERES-maize,
274 CROPGRO-soybean, and CERES-wheat for the respective crops (Jones et al., 2003). Weatherman
275 application within the DSSAT (Pickering et al., 1994) was used to create DSSAT format (.WTH)
276 weather files for the experimental period (1993-2019) using collected daily precipitation,
277 maximum temperature, minimum temperature, and solar radiation from the MCSE site. The soil
278 information (Kalamazoo Loam soil-MSKB 890006) was obtained from the DSSAT soil database

279 and the Web Soil Survey (NRCS, 2020), and the relevant model parameters, such as the saturated
280 hydraulic conductivity (SSKS), were updated accordingly. The soil analysis data collected from
281 Crum and Collins, (1995) were used as the initial soil analysis values.

282 The best cultivar options suggested by Grace and Robertson for MCSE at KBS were available in
283 DSSAT sequence models (MSKB8902.SQX) and were used to initialize the simulation
284 (Hoogenboom et al., 2019). Accordingly, four crop cultivars (two corn cultivars and one cultivar
285 each for soybean and winter wheat) were used for crop modeling. The identification codes of the
286 corn cultivars used are IB0090 and IB0093, both belong to the ecotype IB0001. The identification
287 code of the soybean cultivar is 990002 (ecotype: SB0201) while the identification code for the
288 wheat cultivar is IB0488 (ecotype: USWH01). Planting information, nitrogen fertilizer
289 applications, and harvesting information were incorporated for both treatments. The period
290 between crops in the rotation was modeled as fallows. Irrigation information was not required as
291 both treatments were managed as rainfed. Treatments were appropriately assigned in separate files
292 (.SQX), and simulation was initiated using the following methods: The Priestly-Taylor/Ritchie
293 method was used to estimate evapotranspiration (Priestley and Taylor, 1972), Suleiman-Ritchie
294 method (Suleiman and Ritchie, 2003) was used to estimate soil evaporation, infiltration rate was
295 estimated using the Soil Conservation Service method (SCS, 1985), Century method (Parton,
296 1996) was used to simulate soil organic matter, and soil layer distribution was set to the modified
297 soil profile. The soil water balance was simulated in DSSAT as a function of daily precipitation,
298 irrigation (if any), transpiration, soil evaporation, runoff, and drainage on a daily basis (Ritchie,
299 1998).

300 Daily volumetric soil moisture was simulated for the depths of 0-5 cm, 5-15 cm, 15-22 cm, and
301 22-31 cm using the DSSAT model. Then, weighted average soil moistures were calculated for the

302 comparison with the observed soil moisture at 0-25 cm depth. The root growth factor (SRGF),
 303 lower limit/wilting point (SLLL), drained upper limit/field capacity (SDUL) were manually
 304 adjusted to match the simulated and observed soil moisture to calibrate the DSSAT soil water
 305 balance module (Calmon et al., 1999; Fang et al., 2008). The final soil properties generated from
 306 soil data calibration is presented in Table S1. Performance of the soil moisture and yield calibration
 307 was evaluated using coefficient of determination (R^2) (Equation 1), normalized root mean square
 308 error ($NRMSE$) (Equation 2), and index of agreement (d) (Equation 3). $NRMSE$ and d are
 309 commonly used to statistically evaluate the goodness of fit between observed and simulated soil
 310 moisture and yield (Araya et al., 2017; Dokooohaki et al., 2016; Liu et al., 2013; Yang et al., 2014).
 311 The model performance according to $NRMSE$ goodness of fit can be classified as 0-15% (good),
 312 15-30% (moderate), and >30% (poor). Goodness of fit based on d (Willmott, 1982) can be
 313 categorized as <0.7 (poor), 0.7-0.8 (moderate), 0.8-0.9 (good), and 0.9-1.0 (excellent) as proposed
 314 by Liu et al. (2013).

$$315 \quad R^2 = \frac{[\sum_{i=1}^n (S_i - \bar{S})(O_i - \bar{O})]^2}{\sum_{i=1}^n (S_i - \bar{S})^2 \sum_{i=1}^n (O_i - \bar{O})^2} \quad (1)$$

$$316 \quad NRMSE = \frac{\sqrt{\sum_{i=1}^n (S_i - O_i)^2 / n}}{\bar{O}} \times 100 \quad (2)$$

$$317 \quad d = 1 - \frac{\sum_{i=1}^n (S_i - O_i)^2}{\sum_{i=1}^n (|S_i - \bar{O}| + |O_i - \bar{O}|)^2} \quad (3)$$

318 where, S_i is the simulated i th value, O_i is the observed i th value, \bar{S} is the mean of the simulated
 319 values, \bar{O} is the mean of the observed values, and n is the number of values.

320

321 **2.5. Groundwater Modeling**

322 Groundwater flow in the shallow unconsolidated glacial deposits was modeled using Interactive
323 Groundwater (IGW), a groundwater modeling software introduced by Li and Liu (2006), which
324 uses the finite difference approximation of the governing partial differential equation (Equation 4)
325 to solve confined and unconfined flow conditions:

$$326 S_s \frac{\partial h}{\partial t} = \nabla(K \cdot \nabla H) + q \quad (4)$$

327 where, S_s is the specific storage coefficient, h is the hydraulic head [L], t is time [T], K is the
328 saturated hydraulic conductivity, ∇ is the mathematical gradient operator, q is the net source
329 (positive) or sink (negative) flux term, including recharge, and surface seepage [LT^{-1}].

330 IGW is periodically updated (see, e.g., Liao et al., 2015a, 2015b, 2020); for this study, the IGW
331 model was developed, calibrated, and visualized using the new web-based version of IGW called
332 MAGNET – Multi-scale Adaptive Global Network – 4 Water, accessible on the magnet4water
333 website: <https://www.magnet4water.com/magnet>.

334 The IGW modeling software is live linked to a database comprising terabytes of raw and derived
335 data useful for the groundwater modeling. A high-resolution (10 m) digital elevation model (DEM)
336 (NED USGS 2006) was used to map topographic variations (i.e., the aquifer top) and to simulate
337 groundwater-surface seeps in the watershed (see more below). The bottom boundary is represented
338 by a spatially variable surface based on the top of the bedrock underneath the unconsolidated
339 sediments. The bedrock top elevation raster (500 m resolution) was interpolated from borehole
340 records found in the statewide water well database called Wellogic (MDEQ, 2020). Hydraulic
341 conductivity (K) of the aquifer was represented by a spatially-variable, two-dimensional (2D)
342 raster of horizontal hydraulic conductivity. This was generated by interpolating estimated K values
343 from records in the Wellogic database, public water supply, and U.S. Geological Society aquifer-

344 tests, and aquifer properties reported in the literature (State of Michigan, 2006). Given that the
345 horizontal extent of the model was much larger than the vertical extent, it was hypothesized that
346 flow was predominantly two-dimensional (2D) and that a 2D model could capture the dominant
347 flow processes. The model extent was divided into 418 cells in the x- (west-east) direction and 258
348 cells in the y- (north-south) direction.

349 The model was executed for the period 1993-2019 using a one-year time step. The initial condition
350 was generated by running the model in steady-state mode to represent long-term mean conditions,
351 since no data was available to prescribe the initial head distribution. Annual recharge distributions
352 from the calibrated DSSAT SEQUENCE model were included in the source/sink term at each time
353 step. In non-cropland areas, the long-term mean recharge applied in the steady-state model was
354 used. Natural, long-term mean recharge to the aquifer was input to the steady-state model and was
355 created following empirical methods presented by Holtschlag (1997) involving observed
356 streamflow hydrographs and information related to land use, soil conditions, and watershed
357 characteristics (State of Michigan, 2006).

358 For both the ‘initial condition’ steady-state model and the subsequent transient model, groundwater
359 discharge into lakes, streams, and wetlands/springs - the major control of the long-term prevailing
360 groundwater flow patterns – was captured through the critical use of high-resolution Digital
361 Elevation Models (DEMs). Specifically, the entire land surface, modeled using the 10 m DEM
362 from USGS NED (2006), was treated as a one-way head-dependent boundary condition (seepage).
363 This allowed groundwater to discharge to the surface where the groundwater level intercepted the
364 land surface. The flux per unit area leaving the aquifer was the product of the leakance (hydraulic
365 conductivity per unit thickness) of the land surface with the difference between the land surface
366 elevation and the head in the aquifer. Leakance is a calibration parameter that is manually

367 calibrated. For example, if the leakance was too low the flooded area would be too large and vice
368 versa (note: a final calibrated value of 1 day^{-1} was used for transient simulation). Surface seepage
369 maps at different time-steps were compared to the surface water features obtained from USGS
370 NHD (2010) to ensure that this approach effectively captured the spatial patterns of groundwater
371 discharge to the surface water bodies. Groundwater pumping was not represented in the initial
372 condition model nor the transient simulation. A ‘no-flow’ condition (i.e., zero groundwater flux)
373 was applied along the lateral and bottom boundaries of both steady state and transient models. In
374 short, recharge in the watershed was balanced by surface seepage to surface water bodies in the
375 simulations presented here.

376 Annual recharge distributions from the calibrated DSSAT SEQUENCE model for the conventional
377 and no-till treatments were included in the source/sink term at each time step in separate runs. All
378 other aquifer properties / attributes from the steady-state model were applied during the transient
379 simulation. In addition, a specific yield of 0.1 was assigned based on the aforementioned
380 distribution of soil types in the watershed (detailed specific yield data was not available).

381 **2.6. Simulation of Crop Yields and Recharge at the Watershed Scale**

382 Calibrated DSSAT SEQUENCE model for the conventional and no-till treatments were used to
383 simulate crop yields and agricultural recharge for the period of 1993-2019. The watershed was
384 clustered according to climate and soil types. It was assumed that the corn-soybean-wheat rotation
385 was planted on all agricultural land within the watershed. The crop model was later run for each
386 unique set of climate and soil type under the conventional and no-till treatment scenarios.

387 **2.7. Assessment of Ecosystem Services and Resilience as Affected by the Adoption of No-
388 Till Agriculture**

389 A rising groundwater table from increased recharge is beneficial since many natural habitats, such
390 as wetlands, depend on year-round groundwater availability (McLaughlin and Cohen, 2013;
391 Sampath et al., 2015, 2016). In addition, increases in soil moisture within the root zone can
392 improve the resilience of rainfed agricultural productions (Eeswaran et al., 2021). Yield, net return,
393 and soil moisture metrics, namely mean relative difference (MRD) and soil water deficit index
394 (SWDI), were used as metrics of resilience. MRD and SWDI were shown to be suitable metrics to
395 evaluate resilience in agricultural systems (Eeswaran et al., 2021). MRD was presented by
396 (Vachaud et al., 1985) to evaluate the temporal stability of spatially distributed soil moisture
397 measurements. Additionally, treatment with a higher MRD was considered resilient to climate
398 extremes, such as droughts (Eeswaran et al., 2021). The MRD during a particular growing season
399 was computed as follows:

$$400 \quad MRD = \frac{1}{N} \sum_{j=1}^N \{(\theta_v - \bar{\theta})/\bar{\theta}\} \quad (5)$$

$$401 \quad \bar{\theta} = \frac{1}{n} \sum_{i=1}^n \theta_v \quad (6)$$

402 where, θ_v is the simulated daily volumetric soil moisture for i th treatment on j th day. This soil
403 moisture was derived as a weighted average for 0-25 cm depth from the simulation outputs. The
404 number of treatments denoted by n . $\bar{\theta}$ is the average volumetric soil moisture of all treatments and
405 N is the total number of days in the growing season. In this study, the growing season was
406 considered to start on April 1st and end October 31st, since it covered the critical stages of each
407 crop and the MRD values were calculated in percentages. Probability analysis (Alizadeh, 2013)
408 was conducted for the annual MRD values, and probability curves were compared between
409 treatments to assess the resilience as affected by the adoption of the no-till treatment.

410 SWDI is an agricultural drought index proposed by Martínez-Fernández et al. (2015) and can be
411 implemented to assess droughts when continuous soil moisture data is available. The SWDI is
412 calculated using the following formula;

$$413 \quad SWDI = \left(\frac{\Theta_v - \Theta_{fc}}{\Theta_{fc} - \Theta_{wp}} \right) \times 10 \quad (7)$$

414 where, Θ_v is the simulated daily volumetric soil moisture during the growing season as above. Θ_{fc}
415 is the field capacity/drain upper limit, and Θ_{wp} is the wilting point/lower limit. Θ_{fc} and Θ_{wp} values
416 were obtained from each selected soil file (Han et al., 2015) as weighted averages for the 0-25 cm
417 soil depth. A particular soil will have excess water when SWDI is positive, soil will be at the field
418 capacity when SWDI equals zero, and be in a drought phase when SWDI is negative. Moreover,
419 drought severity categories can be classified based on SWDI as “no drought” if $SWDI > 0$, as
420 “mild” if $0 > SWDI > -2$, as “moderate” if $-2 > SWDI > -5$, as “severe” if $-5 > SWDI > -10$, and
421 as “extreme” if $-10 > SWDI$ (Martínez-Fernández et al., 2015). Calculated SWDI for the entire
422 growing season (April-October) for each year during the study period (1993-2019) was used to
423 calculate the median, mean, maximum, and minimum across all soils, and these values were later
424 arranged in descending order to perform probability analysis for each treatment (Alizadeh, 2013).
425 Probability curves were compared between treatments to assess the resilience of the no-till
426 agriculture to drought.

427 The net return was estimated through cost-benefit analysis using the annual crop yields and the
428 price received for crops in November 2018 in Michigan (USDA, 2019). In 2018, the price of corn,
429 soybean, and winter wheat was 131.50, 307.50, and 180.76 US dollars per ton, respectively. The
430 cost was calculated using the variable cost involved in all agricultural operations for both
431 treatments during the year 2018 in the long-term research experiment. This cost was estimated

432 based on a detailed 2018 enterprise budget from Clemson University Cooperative Extension for
433 the respective crops (Clemson, 2020). The pricing of cost and benefit components were considered
434 as static over the years of simulation and the fixed cost was excluded due to lack of information
435 for reliable estimates.

436 The yield, net return, and annual recharge were statistically analyzed in a mixed model (Equation
437 8) to evaluate the significance of fixed and random effects on these response variables for each
438 evaluated crop (i.e., corn, soybean and wheat).

$$439 \quad Y_{ijk} = \mu + a_k + t_i + s_j + (ta)_{ik} + (sa)_{jk} + (ts)_{ij} + \varepsilon_{ijk} \quad (8)$$

440 where, Y_{ijk} is the response (grain yield/net return/annual recharge) simulated for the i^{th} treatment,
441 within j^{th} soil type on the k^{th} cropping year; μ is the intercept; a_k is the fixed effect of the cropping
442 year k ; t_i is the fixed effect of the treatment i ; s_j represents the random effects of the j^{th} soil type,
443 with $s \sim N(0, \sigma_s^2)$; $(ta)_{ik}$ denotes the fixed interaction between the i^{th} treatment and k^{th} cropping
444 year; $(sa)_{jk}$ is the random effect of the interaction between j^{th} soil type and k^{th} cropping year,
445 with $(sa) \sim N(0, \sigma_{sa}^2)$; $(ts)_{ij}$ is the random effect of the interaction between the i^{th} treatment and
446 j^{th} soil type, $(ts) \sim N(0, \sigma_{ts}^2)$; and ε_{ijk} is the error associated with each observation, with
447 $\varepsilon \sim N(0, \sigma_\varepsilon^2)$. To ensure the normality of the residuals and the homogeneity of variances, the grain
448 yield and annual recharge data were log-transformed. Transformations were not needed for net
449 return. There were varying extents of acreage of agricultural land use for each soil in the watershed.
450 Hence, the area of each soil was used as a weighting factor in the model. The comparison between
451 the means was performed using the Tukey-Kramer test, assuming $\alpha = 0.05$ (Herberich et al.,
452 2010). All analyses were performed using the GLIMMIX procedure (Milliken and Johnson, 2009)
453 in the SAS software version 9.4 (SAS Institute Inc. Cary, North Carolina, USA).

454

455 **3. Results and Discussion**

456 **3.1. Calibration of the Crop Model**

457 The sequential DSSAT crop model was calibrated and validated for yield and soil moisture during
458 the period of 1993-2019, which included nine complete rotations of corn-soybean-wheat crops.
459 The performance of the model to simulate crop yields under both treatments was measured by the
460 goodness of fit indicators shown in Table 1. According to the R^2 and *d-index*, the model
461 performance was considered excellent, whereas the *NRMSE* indicated moderate performance (Liu
462 et al., 2013; Willmott, 1982). However, relatively large *NRMSE* values are expected when
463 modeling long-term crop performance for multiple growing seasons as a result of interannual
464 variations. It is also important to note that the performance of the no-till model was slightly better
465 than the conventional model. A similar performance was observed for the simulation of soil
466 moisture. However, performance indicators show that the crop model was reasonably calibrated
467 for the corn-soybean-wheat rotation (Table 1).

468 Table 1. The goodness of fit parameters of the calibrated crop model to simulate yield and soil
469 moisture under the conventional and no-till treatments.

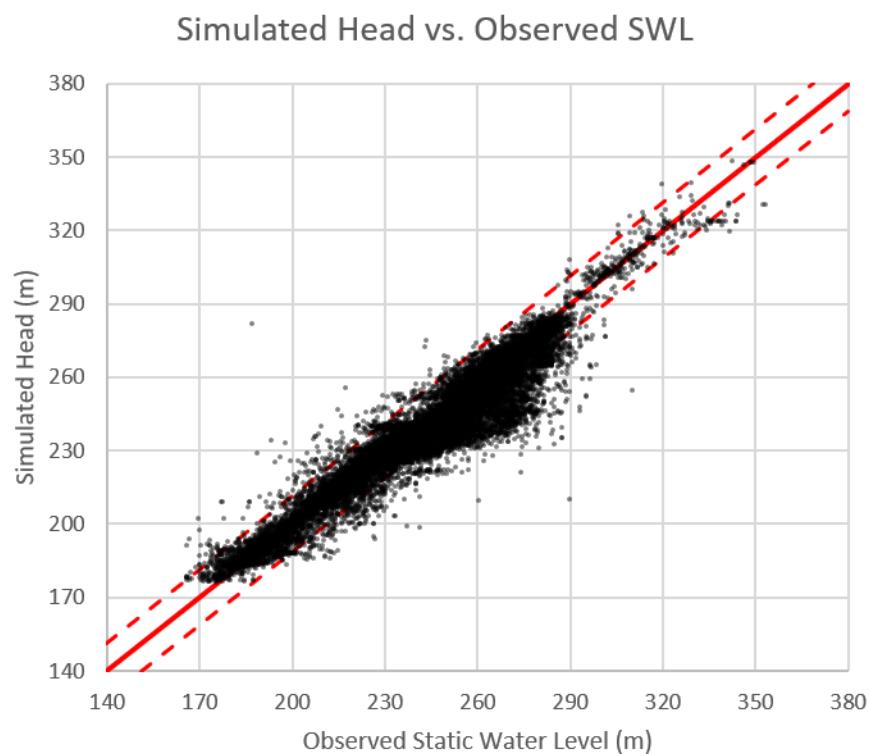
Treatment	Crop yield			Soil moisture		
	R^2	<i>NRMSE (%)</i>	<i>d-index</i>	R^2	<i>NRMSE (%)</i>	<i>d-index</i>
Conventional	0.73	27.6	0.92	0.74	29.0	0.8
No-till	0.75	26.6	0.93	0.74	19.3	0.9

470

471 **3.2. Calibration of Groundwater Model**

472 The steady-state simulation results are shown in Figure S1. The comparison between the simulated
473 results (heads) of the steady-state model and Static Water Level (SWL) measurements from water

474 well records in the Wellogic database can be seen in Figure 3. SWL observations from 23,757
475 glacial wells were used to calibrate the model. The solid 45-degree line represents “perfect
476 agreement” between simulated and actual observations while the dashed lines represent confidence
477 intervals of one standard deviation. Calibration results show that the model performance was good,
478 as indicated by a strong Nash-Sutcliffe model efficiency coefficient of 0.90. Even though there
479 was large spread of the data points, all data was centered around the line of perfect agreement. The
480 center-focused distribution demonstrates that the model was able to capture the dominant spatial
481 structure of the groundwater system (i.e., the distribution of groundwater recharge and discharge
482 areas). Large spread in the data, as indicated by the root-mean-square error of 7.91 m, primarily
483 reflects the significant noise embedded in the SWL observations (Curtis et al., 2018).



484

485 Figure 3. Comparison between simulated groundwater heads and observed groundwater heads.
486 The solid red line in the calibration indicates a 1:1 perfect agreement. The dashed lines represent
487 a confidence interval of one standard deviation

488 **3.3. Resilience as Affected by the Adoption of No-Till Agriculture**

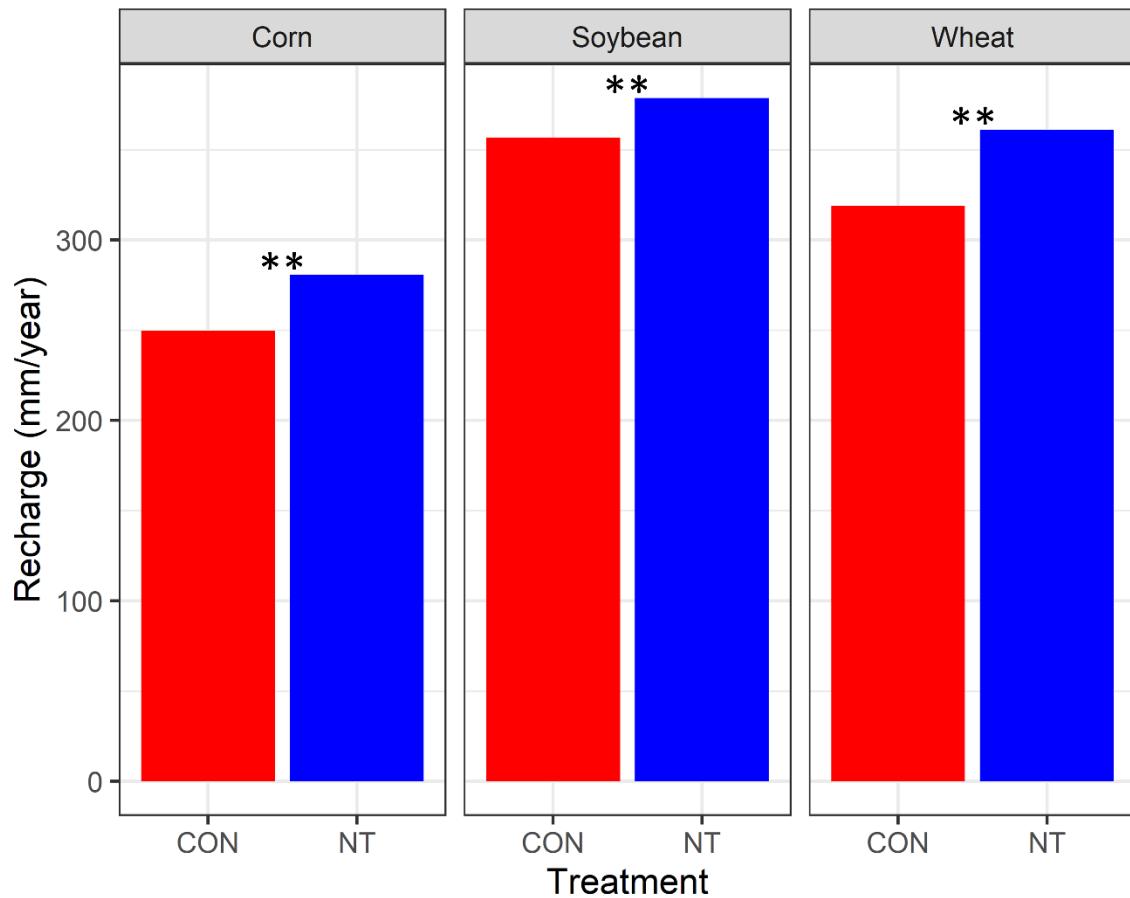
489 In this study, we quantified resilience in terms of recharge, groundwater table, soil moisture
490 metrics, crop yield, and net return for both the conventional and the no-till treatments. Treatments
491 with higher recharge, groundwater table, soil moisture retention, ability to mitigate drought, larger
492 crop yields, and higher net revenues were considered as resilient over the long-term (1993-2019)
493 evaluation.

494

495 **3.3.1. Recharge and Groundwater Table as Affected by the Adoption of No-Till Agriculture**

496 The statistical analysis for the annual recharge showed that the effects of treatment, year, and the
497 interaction between treatment and year were strongly significant (see the supplementary material
498 Table S2). The means of the annual recharge across different soils and years from each crop can
499 be seen in Figure 4. Results showed that the no-till treatment significantly increased the annual
500 recharge from all crops in comparison to the conventional treatment. The annual recharge from the
501 no-till treatment for corn, soybean, and wheat were 12.4%, 6.2%, and 13.2% greater than the
502 annual recharge from the conventional treatment, respectively. The soybean had the highest
503 recharge followed by wheat and corn. Because the interaction effect between treatment and year
504 was also significant for the annual recharge (Table S2), the comparisons between treatments for
505 each crop during the period of study is presented in Figure S2. In most years, the no-till treatment
506 had significantly higher recharge than the conventional treatment. The changes in recharge across

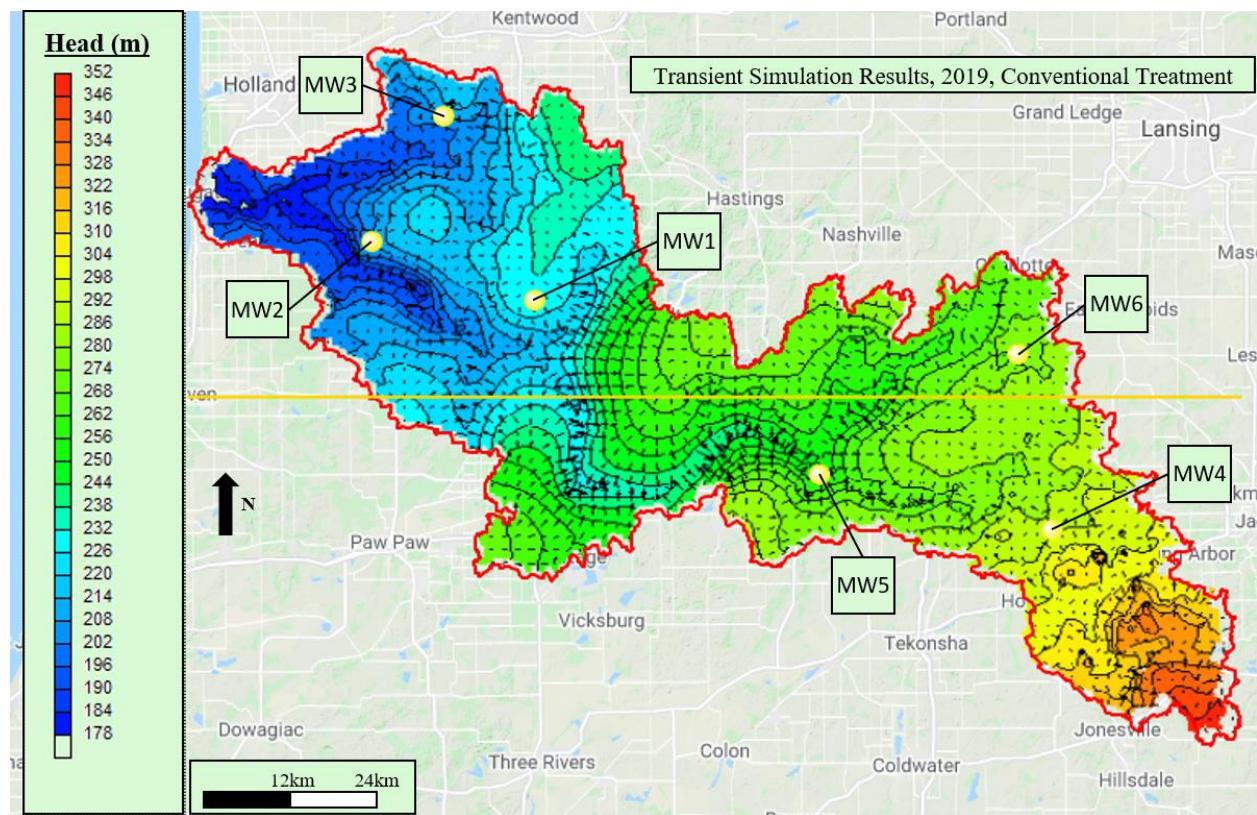
507 the years can be attributed to the changes in precipitation and crop growth, which affect other water
508 balance components (Figure S2).



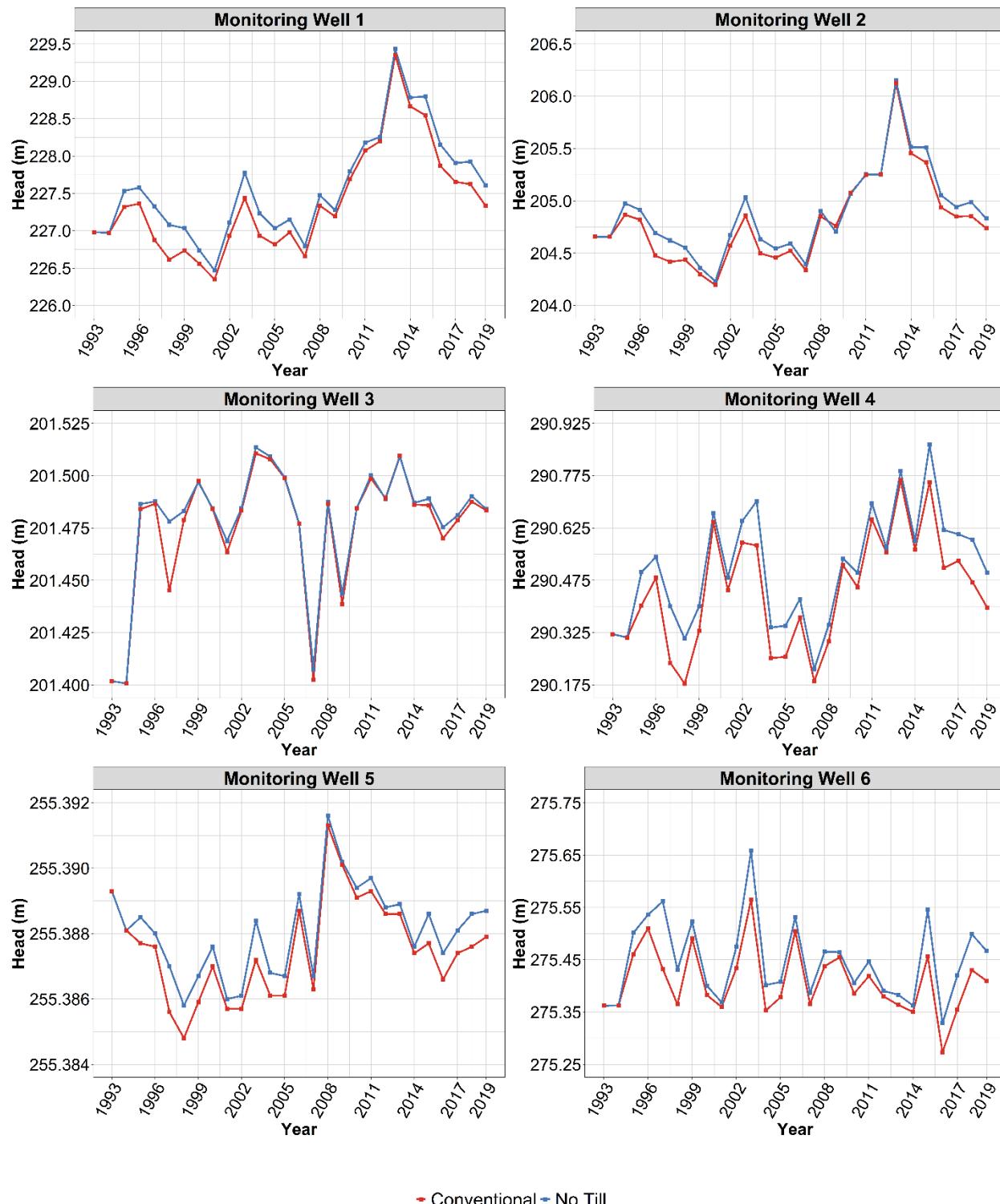
509
510 Figure 4. The mean annual recharge from different crops under two treatments in the Kalamazoo
511 River watershed. ** indicates strongly significant means at $p<0.0001$
512

513 The results from the transient groundwater flow simulation for the conventional and no-till
514 treatments are presented in Figures 5 and 6. Figure 5 shows the 2019 hydraulic head distribution
515 under the conventional treatment, and the location of the six ('virtual') monitoring wells where
516 transient head results were reported. Note that the changes in the water table at the watershed scale
517 over time were difficult to distinguish, therefore no comparison of plan-view model results under

518 each agricultural scenario was presented. Therefore, temporal changes of groundwater levels were
519 presented at each monitoring wells (Figure 6). The time-series comparisons show that the no-till
520 treatment resulted in higher water tables compared to the conventional treatment. The differences
521 were typically small: about 0.3-0.5 m at Monitoring Well 1, 0.1-0.3 m at Monitoring Well 4, and
522 0.1 m or less at the other locations. However, even a relatively small improvement in the
523 groundwater table can have beneficial effects on streams and aquatic ecosystems in the Kalamazoo
524 River Watershed, due to the large contribution of groundwater to streamflow in this region (Cooper
525 and Merritt, 2012; Sampath et al., 2016).



527 Figure 5. Monitoring well (MW) locations superimposed over the 2019 head distribution under
528 conventional treatment



529

530 Figure 6. Simulated water table heads under the conventional and no-till treatments for the six
 531 monitoring wells

532 As observed in our study, higher recharge in the no-till treatment simultaneously increased the
533 groundwater table; however, the magnitude of change was dependent upon the characteristics of
534 the underlying groundwater system (Figure 6). The higher recharge observed under the no-till
535 treatment in this study may have been caused by the greater infiltration of rainwater (Nunes et al.,
536 2018). According to Kravchenko et al. (2011), the no-till system establishes large pores associated
537 with the undisturbed root channels created by previous crops. The macropores in a no-till system
538 may contribute to greater infiltration and thus recharge. In agreement with the findings reported
539 here, Syswerda and Robertson (2014) also found higher downward drainage under the no-till
540 treatment compared to the conventional treatment.

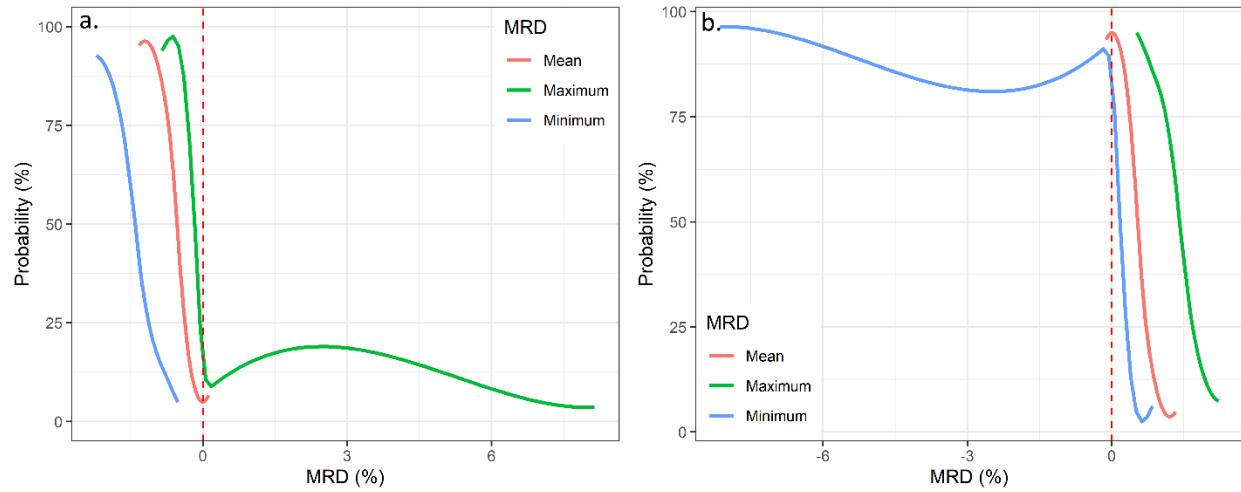
541 In many regions of the world, groundwater is tapped at rates greater than the local recharge, leading
542 to the depletion of aquifers (Dalin et al., 2017; Reitz et al., 2017). Furthermore, increasing climate
543 variability has already posed additional challenges to water resources and accelerated stresses to
544 the water-energy-food nexus (Smidt et al., 2016). Therefore, an improved recharge and water table
545 under the no-till practice can increase the resilience of the food systems, while also supporting the
546 sustainability of groundwater-dependent ecosystems.

547 **3.3.2. Soil Moisture Metrics as Affected by the Adoption of No-Till Agriculture**

548 The probability distribution of the of mean, maximum, and minimum of MRD for both treatments
549 across 85 soils over the period of the study is presented in Figure 7. MRD measures soil moisture
550 deviations from the average soil moisture of agricultural treatments, and a positive MRD signifies
551 a *wetter* treatment while a negative MRD signified a *drier* treatment (Eeswaran et al., 2021). The
552 mean of the MRD clearly shows that the conventional treatment mostly (>93% probability)
553 generated a negative MRD while the no-till treatment generated a positive MRD. Therefore, the
554 no-till treatment consistently retained higher soil moisture than the conventional treatment. Based

555 on the maximum line for the conventional treatment (Figure 7a), it also had a small probability
556 (<14%) to be *wetter* than the no-till treatment. Similarly, the minimum line of the no-till treatment
557 (Figure 7b) shows that it also had the chance to be *drier* than the conventional treatment by the
558 same magnitude of probability as above.

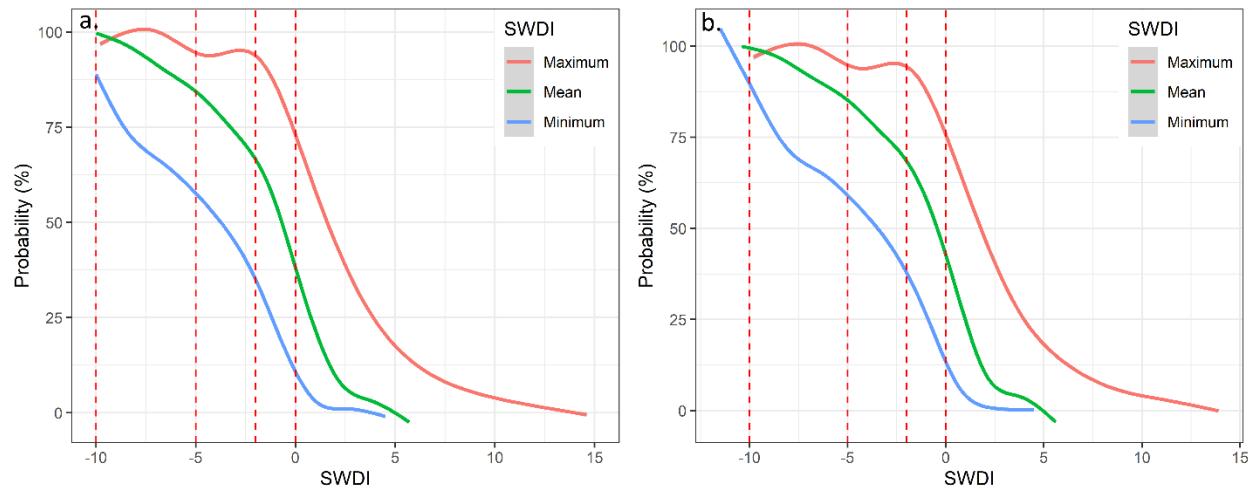
559 The probability distribution of SWDI across all soils over the study period is shown in Figure 8.
560 As shown in Figure 8, the probability of having different drought severity levels can be analyzed
561 based on respective SWDI values (Martínez-Fernández et al., 2015). Based on the mean SWDI,
562 the no-till treatment had a 43% probability of having no drought events, which was substantially
563 higher than the conventional treatment (38%). Moreover, the no-till treatment had a lower
564 probability of having mild, moderate, severe, and extreme droughts in comparison to the
565 conventional treatment. According to the maximum SWDI, the no-till treatment had 78%
566 probability to have drought free days while the probability for the conventional treatment was
567 75%. The minimum SWDI also showed that the no-till treatment (13%) had higher drought free
568 days than the conventional treatment (10%). Thus, the no-till treatment was superior in mitigating
569 drought compared to the conventional treatment in this watershed.



570

571 Figure 7. The probability distribution for the mean, maximum, and minimum of MRD across
 572 different soils in the Kalamazoo River watershed for the period of 1993-2019 as affected by the
 573 conventional (a) and the no-till (b) treatments. Note: Red dashed line at zero MRD indicates the
 574 demarcation, where the positive MRD values signify *wetter* treatment while the negative MRD
 575 values signify *drier* treatment

576



577

578 Figure 8. The probability distribution for the mean, maximum, and minimum of SWDI across
 579 different soils in the Kalamazoo River watershed for the period of 1993-2019 as affected by the
 580 conventional (a) and the no-till (b) treatments (b). Note: Red dashed lines are to demarcate
 581 different drought severity levels

582

583 Consistently higher soil moisture retention by the no-till treatment was due to the beneficial
 584 improvement of soil physical properties, such as water holding capacity (Moebius-Clune et al.,
 585 2008). Furthermore, the no-till treatment has been found to increase rainwater infiltration, decrease
 586 runoff, and to reduce soil evaporation, thereby increasing the proportion of available water in the
 587 root zone (Lal et al., 2012; Lampurlanés et al., 2016; Verhulst et al., 2011). The ability of the no-

588 till treatment to store more soil moisture could help to mitigate the impacts of droughts on the
589 crops, as evident in this study. This is in agreement with the findings of Thierfelder and Wall
590 (2010) where the no-till system performed better for soil water dynamics in a drought-prone region
591 of Africa. Based on the above findings, the no-till treatment was more resilient than the
592 conventional treatment and adaptation of the no-till management in the Kalamazoo River
593 Watershed would enhance its resilience to extreme drought events, which are detrimental to
594 rainfed systems.

595 **3.3.3. Crop Yield and Net Return as Affected by the Adoption of the No-Till Agriculture**

596 The probabilities for the statistical significance of the effects evaluated for crop yield and net return
597 is presented in Table S2. To perform this statistical analysis, the extent of each soil in the
598 agricultural land use was used as a weighting factor, since it is critical to consider production area
599 when comparing management effects at larger scales (Leng et al., 2019). As a result, we evaluated
600 the effects of treatments in the watershed over the entire study period with high confidence. The
601 statistical analysis showed that the effect of treatments was strongly significant on the yield of corn
602 and soybean, but not in wheat. Nonetheless, treatment effect was strongly significant for the net
603 return from all crops. Furthermore, the effect of year and interaction between the treatment and
604 year were significant for both yield and net return of all crops (Table S2).

605 The means of crop yield and net return as separated by treatments across the years and soils are
606 presented in Table 2. Accordingly, the yield increased under the no-till treatment by 1.23%, 0.61%,
607 and 0.24% for corn, soybean, and wheat, respectively. Deines et al. (2019) reported a 3.3% and
608 0.74% yield improvement, respectively, for corn and soybean as a result of conservation tillage
609 adoption in the US corn belt region. However, it is important to note that conservation tillage is a
610 mixture of different intensities of reduced tillage and not necessarily entirely no-tillage. In this

611 study, the net return was 20%, 23.4%, and 48.3% higher under the no-till treatment for corn,
 612 soybean, and wheat, respectively (Table 2). The higher margin of net revenues for the no-till
 613 treatment was mainly because of its lower production costs compared to the conventional
 614 treatment. The no-till treatment was cheaper due to absence of tillage operations, even though the
 615 herbicide application rates were higher than the conventional tillage. The costs to produce corn,
 616 soybean, and wheat conventionally were 918.84, 705.03, 586.56 USD/ha, respectively. On the
 617 other hand, no-till treatment costs were 867.36, 632.12, and 508.58 USD/ha, for corn, soybean,
 618 and wheat productions, respectively. As the interaction effects between treatment and year were
 619 significant for both yield and net return in all the crops, the strength of significance may vary
 620 across different years. This differential performance, as affected by treatment and years, is shown
 621 in Figure S3 (yield) and Figure S4 (net return). In summary, the no-till outperformed the
 622 conventional treatment in the majority of the years.

623 Table 2. The mean yield and net return for different crops under two treatments in the
 624 Kalamazoo River watershed*

Treatment	Corn		Soybean		Wheat	
	Yield	Net return	Yield	Net return	Yield	Net return
	(Mg/ha)	(USD/ha)	(Mg/ha)	(USD/ha)	(Mg/ha)	(USD/ha)
Conventional	8.91 ^b	315.31 ^b	3.27 ^b	345.87 ^b	4.09 ^a	165.77 ^b
No-till	9.02 ^a	378.47 ^a	3.29 ^a	426.78 ^a	4.10 ^a	245.88 ^a

625 *Means with the same letter in each column are not significantly different at $p < 0.05$.

626
 627 The no-till treatment increased crop yields in most studies around the world (Corbeels et al., 2014;
 628 Pittelkow et al., 2015; Rusinamhodzi et al., 2011). However, some studies have found no
 629 significant effects on yield under the no-till systems (e.g., Daigh et al., 2018), while a few other

630 studies reported reductions in crop yield (e.g., Powlson et al., 2014). In contrast, to see the
631 consistently outperforming trends under the adoption of the no-till agriculture the evaluation must
632 be longer than a decade (Cusser et al., 2020). This study was built on this need and successfully
633 captured the long-term impacts of the no-till treatment. The results showed that the adoption of the
634 no-till treatment could significantly improve the resilience of agricultural systems by increasing
635 crop yields and net return. The increment in crop yields under the no-till management can be
636 attributed to the enhancement of soil physical, chemical, and biological properties (Nunes et al.,
637 2018).

638

639 **4. Conclusions**

640 In this long-term study, we found that the adoption of no-till treatment for a corn-soybean-wheat
641 rotation has potential to increase the resilience in the Kalamazoo River Watershed. This
642 improvement of resilience was demonstrated using the following metrics: recharge, water table,
643 soil moisture, drought vulnerability, yield, and net return. The no-till treatment had significantly
644 higher annual recharge, for corn, soybean, and wheat which were 12.4%, 6.2%, and 13.2% greater
645 than the annual recharge from the conventional treatment, respectively. The highest recharge was
646 observed for soybean followed by wheat then corn. The rise in the water table resulting from the
647 adoption of the no-till treatment in the watershed ranged between 0.1-0.5 m, which could
648 substantially contribute to replenishing the aquifers and groundwater-dependent ecosystems. MRD
649 of soil moisture clearly showed that the no-till treatment consistently maintained higher soil
650 moisture compared to the conventional treatment, thus remained as a relatively *wetter* treatment.
651 Therefore, the no-till treatment had a higher resilience against drought compared to the
652 conventional treatment as quantified by the drought index (SWDI). Yields and net returns were

653 also improved under the no-till treatment for all crops in the rotation. When averaged across the
654 years and soils, the no-till treatment produced 1.23%, 0.61%, and 0.24% higher grain yields for
655 corn, soybean, and wheat, respectively. Moreover, the no-till generated 20.0%, 23.4%, and 48.3%
656 higher net returns for corn, soybean, and wheat, respectively.

657 There were two major assumptions in this study. First, all agricultural land use in the Kalamazoo
658 River Watershed was assumed to be planted with a corn-soybean-wheat rotation. However,
659 farmers plant a variety of crops throughout the watershed; therefore, the findings are mostly
660 applicable to the row crop rotations in this region. Secondly, we assumed that the deep percolation
661 simulated by the crop model instantly reached the water table. This assumption is only valid in
662 regions where there is a greater connection between the surface and groundwater, similar to our
663 study area. To expand our approach to different landscapes with varying climate, soil,
664 groundwater, and cropping systems, we recommend modifying both the crop and groundwater
665 modeling procedures adhering to site-specific parameters and requirements.

666 **5. Acknowledgments**

667 This research project was financially supported by the Dissertation Completion Fellowship from
668 the College of Agricultural and Natural Resources at Michigan State University. The KBS Long-
669 Term Ecological Research (KBS-LTER) experiment was funded by the National Science
670 Foundation Long-term Ecological Research Program (DEB 1832042) at the Kellogg Biological
671 Station and by Michigan State University AgBioResearch. We also thank principal investigators
672 and staff at the KBS-LTER for their assistance in this research. This work was also supported by
673 the USDA National Institute of Food and Agriculture, Hatch project 1019654.

674 **6. Disclaimer**

675 Any opinions, findings, conclusions, and recommendations reported in this paper are those of the
676 authors and do not necessarily reflect the views of the National Science Foundation and the
677 USDA National Institute of Food and Agriculture.

678

679

680

681

682

683

684 **7. References**

685 Adnan, A.A., Diels, J., Jibrin, J.M., Kamara, A.Y., Craufurd, P., Shaibu, A.S., Mohammed, I.B.,
686 Tonnang, Z.E.H., 2019. Options for calibrating CERES-maize genotype specific parameters
687 under data-scarce environments. PLoS One 14, e0200118.
688 <https://doi.org/10.1371/journal.pone.0200118>

689 Alexander, K., Jackson, J., Kikuyama, F., Sasamoto, B., Stevens, A., 2014. Kalamazoo River
690 Watershed Land Conservation Plan. University of Michigan, School of Natural Resources
691 and Environment, Ann Arbor, MI, USA.

692 Alizadeh, A., 2013. The Principles of Applied Hydrology, 36th Editi. ed. University of Mashhad.
693 Andresen, J., Hilberg, S., Kunkel, K., 2012. Historical Climate and Climate Trends in the
694 Midwestern USA, U.S. National Climate Assessment Midwest Technical Input Report.

695 Araya, A., Kisekka, I., Gowda, P.H., Prasad, P.V.V., 2017. Evaluation of water-limited cropping
696 systems in a semi-arid climate using DSSAT-CSM. *Agric. Syst.* 150, 86–98.
697 <https://doi.org/10.1016/j.agrsy.2016.10.007>

698 Bailey, I., Buck, L.E., 2016. Managing for resilience: a landscape framework for food and
699 livelihood security and ecosystem services. *Food Secur.* 8, 477–490.
700 <https://doi.org/10.1007/s12571-016-0575-9>

701 Biggs, R., Schlueter, M., Biggs, D., Bohensky, E.L., BurnSilver, S., Cundill, G., Dakos, V., Daw,
702 T.M., Evans, L.S., Kotschy, K., Leitch, A.M., Meek, C., Quinlan, A., Raudsepp-Hearne, C.,
703 Robards, M.D., Schoon, M.L., Schultz, L., West, P.C., 2012. Toward Principles for
704 Enhancing the Resilience of Ecosystem Services. *Annu. Rev. Environ. Resour.* 37, 421–
705 448. <https://doi.org/10.1146/annurev-environ-051211-123836>

706 Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification: harnessing ecosystem
707 services for food security. *Trends Ecol. Evol.* 28, 230–238.
708 <https://doi.org/10.1016/j.tree.2012.10.012>

709 Boote, K.J., Jones, J.W., Pickering, N.B., 1996. Potential Uses and Limitations of Crop Models I.
710 Model Use as a Research Tool. *Agron. J.* 716, 704–716.

711 Bowen, W.T., Thornton, P.K., Hoogenboom, G., 1998. The simulation of cropping sequences
712 using DSSAT, in: Tsuji, G.Y., Hoogenboom, G., Thornton, P. (Eds.), *Understanding
713 Options for Agricultural Production*. Kluwer Academic Publishers, Dordrecht, pp. 313–327.
714 https://doi.org/10.1007/978-94-017-3624-4_15

715 Browne, N., Kingwell, R., Behrendt, R., Eckard, R., 2013. The relative profitability of dairy,
716 sheep, beef and grain farm enterprises in southeast Australia under selected rainfall and

717 price scenarios. *Agric. Syst.* 117, 35–44. <https://doi.org/10.1016/j.agsy.2013.01.002>

718 Calmon, M.A., Batchelor, W.D., Jones, J.W., Ritchie, J.T., Boote, K.J., Hammond, L.C., 1999.

719 Simulating Soybean Root Growth and Soil Water Extraction Using a Functional Crop

720 Model. *Trans. ASAE* 42, 1867–1878. <https://doi.org/10.13031/2013.13352>

721 Clemson, 2020. Agronomic Crops Enterprise Budgets [WWW Document]. Enterp. Budgets.

722 URL <https://www.clemson.edu/extension/agribusiness/enterprise-budget/index.html>

723 (accessed 6.1.20).

724 Coates, D., Pert, P.L., Barron, J., Muthuri, C., Nguyen-Khoa, S., Boelee, E., Jarvis, D.I., 2013.

725 Water-related ecosystem services and food security., in: Managing Water and

726 Agroecosystems for Food Security. CABI, Wallingford, pp. 29–41.

727 <https://doi.org/10.1079/9781780640884.0029>

728 Cooper, D.J., Merritt, D.M., 2012. Assessing the water needs of riparian and wetland vegetation

729 in the western United States. *USDA For. Serv. - Gen. Tech. Rep. RMRS-GTR-282* 1–125.

730 <https://doi.org/10.2737/RMRS-GTR-282>

731 Corbeels, M., Sakyi, R.K., Kühne, R.F., Whitbread, A., Kühne, R.F., Whitbread, A., 2014. Meta-

732 analysis of crop responses to conservation agriculture in sub-Saharan Africa. Copenhagen:

733 CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

734 Costanza, R., D'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem,

735 S., O'Neill, R. V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value

736 of the world's ecosystem services and natural capital. *Nature* 387, 253–260.

737 <https://doi.org/10.1038/387253a0>

738 Crum, J.R., Collins, H.P., 1995. KBS Soils. KBS LTER Special Publication. Zenodo 1–2.

739 Curtis, Z.K., Li, S.-G., Liao, H.-S., Lusch, D., 2018. Data-Driven Approach for Analyzing
740 Hydrogeology and Groundwater Quality Across Multiple Scales. *Groundwater* 56, 377–
741 398. <https://doi.org/10.1111/gwat.12584>

742 Cusser, S., Bahlai, C., Swinton, S.M., Robertson, G.P., Haddad, N.M., 2020. Long-term research
743 avoids spurious and misleading trends in sustainability attributes of no-till. *Glob. Chang.*
744 *Biol.* 26, 3715–3725. <https://doi.org/10.1111/gcb.15080>

745 Daigh, A.L.M., Dick, W.A., Helmers, M.J., Lal, R., Lauer, J.G., Nafziger, E., Pederson, C.H.,
746 Strock, J., Villamil, M., Mukherjee, A., Cruse, R., 2018. Yields and yield stability of no-till
747 and chisel-plow fields in the Midwestern US Corn Belt. *F. Crop. Res.* 218, 243–253.
748 <https://doi.org/10.1016/j.fcr.2017.04.002>

749 Dale, V.H., Polasky, S., 2007. Measures of the effects of agricultural practices on ecosystem
750 services. *Ecol. Econ.* 64, 286–296. <https://doi.org/10.1016/j.ecolecon.2007.05.009>

751 Dalin, C., Wada, Y., Kastner, T., Puma, M.J., 2017. Groundwater depletion embedded in
752 international food trade. *Nature* 543, 700–704. <https://doi.org/10.1038/nature21403>

753 DeClerck, F., Jones, S., Attwood, S., Bossio, D., Girvetz, E., Chaplin-Kramer, B., Enfors, E.,
754 Fremier, A., Gordon, L., Kizito, F., Lopez Noriega, I., Matthews, N., McCartney, M.,
755 Meacham, M., Noble, A., Quintero, M., Remans, R., Soppe, R., Willemen, L., Wood, S.,
756 Zhang, W., 2016. Agricultural ecosystems and their services: the vanguard of
757 sustainability? *Curr. Opin. Environ. Sustain.* 23, 92–99.
758 <https://doi.org/10.1016/j.cosust.2016.11.016>

759 Deines, J.M., Wang, S., Lobell, D.B., 2019. Satellites reveal a small positive yield effect from
760 conservation tillage across the US Corn Belt. *Environ. Res. Lett.* 14, 124038.
761 <https://doi.org/10.1088/1748-9326/ab503b>

762 Di Falco, S., Chavas, J.P., 2008. Rainfall shocks, resilience, and the effects of crop biodiversity
763 on agroecosystem productivity. *Land Econ.* 84, 83–96. <https://doi.org/10.3388/le.84.1.83>

764 Dokooohaki, H., Gheysari, M., Mousavi, S.-F., Zand-Parsa, S., Miguez, F.E., Archontoulis, S. V.,
765 Hoogenboom, G., 2016. Coupling and testing a new soil water module in DSSAT CERES-
766 Maize model for maize production under semi-arid condition. *Agric. Water Manag.* 163,
767 90–99. <https://doi.org/10.1016/j.agwat.2015.09.002>

768 Douxchamps, S., Debevec, L., Giordano, M., Barron, J., 2017. Monitoring and evaluation of
769 climate resilience for agricultural development – A review of currently available tools.
770 *World Dev. Perspect.* 5, 10–23. <https://doi.org/10.1016/j.wdp.2017.02.001>

771 Eeswaran, R., Nejadhashemi, A.P., Alves, F.C., Saravi, B., 2021. Evaluating the applicability of
772 soil moisture-based metrics for gauging the resiliency of rainfed agricultural systems in the
773 midwestern United States. *Soil Tillage Res.* 205, 104818.
774 <https://doi.org/10.1016/j.still.2020.104818>

775 Eitzinger, A., Läderach, P., Rodriguez, B., Fisher, M., Beebe, S., Sonder, K., Schmidt, A., 2017.
776 Assessing high-impact spots of climate change: spatial yield simulations with Decision
777 Support System for Agrotechnology Transfer (DSSAT) model. *Mitig. Adapt. Strateg. Glob.*
778 *Chang.* 22, 743–760. <https://doi.org/10.1007/s11027-015-9696-2>

779 El Chami, D., Daccache, A., El Moujabber, M., 2020. How Can Sustainable Agriculture Increase
780 Climate Resilience? A Systematic Review. *Sustainability* 12, 3119.

781 <https://doi.org/10.3390/su12083119>

782 Fang, Q., Ma, L., Yu, Q., Malone, R.W., Saseendran, S.A., Ahuja, L.R., 2008. Modeling
783 Nitrogen and Water Management Effects in a Wheat-Maize Double-Cropping System. *J.*
784 *Environ. Qual.* 37, 2232–2242. <https://doi.org/10.2134/jeq2007.0601>

785 Fedele, G., Locatelli, B., Djoudi, H., 2017. Mechanisms mediating the contribution of ecosystem
786 services to human well-being and resilience. *Ecosyst. Serv.* 28, 43–54.
787 <https://doi.org/10.1016/j.ecoser.2017.09.011>

788 Fisher, B., Turner, R.K., Morling, P., 2009. Defining and classifying ecosystem services for
789 decision making. *Ecol. Econ.* 68, 643–653. <https://doi.org/10.1016/j.ecolecon.2008.09.014>

790 Fodor, N., Challinor, A., Droutsas, I., Ramirez-Villegas, J., Zabel, F., Koehler, A.-K., Foyer,
791 C.H., 2017. Integrating Plant Science and Crop Modeling: Assessment of the Impact of
792 Climate Change on Soybean and Maize Production. *Plant Cell Physiol.* 58, 1833–1847.
793 <https://doi.org/10.1093/pcp/pcx141>

794 Fuchs, B.A., Wood, D.A., Ebbeka, D., 2015. From too much to too little: How the central US
795 drought of 2012 evolved out of one of the most devastating floods on record in 2011.
796 National Drought Mitigation Center (NDMC), University of Nebraska–Lincoln, USA.

797 Gaba, S., Lescourret, F., Boudsocq, S., Enjalbert, J., Hinsinger, P., Journet, E.-P., Navas, M.-L.,
798 Wery, J., Louarn, G., Malézieux, E., Pelzer, E., Prudent, M., Ozier-Lafontaine, H., 2015.
799 Multiple cropping systems as drivers for providing multiple ecosystem services: from
800 concepts to design. *Agron. Sustain. Dev.* 35, 607–623. <https://doi.org/10.1007/s13593-014-0272-z>

802 Gordon, L.J., Finlayson, C.M., Falkenmark, M., 2010. Managing water in agriculture for food
803 production and other ecosystem services. *Agric. Water Manag.* 97, 512–519.
804 <https://doi.org/10.1016/j.agwat.2009.03.017>

805 Grannemann, N.G., Hunt, R.J., Nicholas, J., Reilly, T.E., Winter, T., 2008. The importance of
806 ground water in the Great Lakes Region, Water-Resources Investigations Report 00–4008,
807 U.S. Geological Survey.

808 Griebler, C., Avramov, M., 2015. Groundwater ecosystem services: a review. *Freshw. Sci.* 34,
809 355–367. <https://doi.org/10.1086/679903>

810 Han, E., Ines, A., Koo, J., 2015. Global high-resolution soil profile database for crop modeling
811 applications. Harvard Dataverse. <https://doi.org/10.7910/DVN/1PEEY0>

812 Han, E., Ines, A.V.M., Koo, J., 2019. Development of a 10-km resolution global soil profile
813 dataset for crop modeling applications. *Environ. Model. Softw.* 119, 70–83.
814 <https://doi.org/10.1016/j.envsoft.2019.05.012>

815 Hatfield, J.L., Antle, J., Garrett, K.A., Izaurrealde, R.C., Mader, T., Marshall, E., Nearing, M.,
816 Philip Robertson, G., Ziska, L., 2018. Indicators of climate change in agricultural systems.
817 *Clim. Change* 1–14. <https://doi.org/10.1007/s10584-018-2222-2>

818 Hatfield, Jerry, 2012. Agriculture in the Midwest, in: Winkler, J., Andresen, J., Hatfield, J.,
819 Bidwell, D., Brown, D. (Eds.), U.S. National Climate Assessment Midwest Technical Input
820 Report. pp. 1–8.

821 Herberich, E., Sikorski, J., Hothorn, T., 2010. A Robust Procedure for Comparing Multiple
822 Means under Heteroscedasticity in Unbalanced Designs. *PLoS One* 5, e9788.

823 <https://doi.org/10.1371/journal.pone.0009788>

824 Holtschlag, D., 1997. A generalized estimate of ground-water-recharge rates in the Lower
825 Peninsula of Michigan. Department of the Interior, US Geological Survey, Washington,
826 DC.

827 Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M.,
828 Wickham, J., Stehman, S., Auch, R., Riitters, K., 2020. Conterminous United States land
829 cover change patterns 2001–2016 from the 2016 National Land Cover Database. *ISPRS J.*
830 *Photogramm. Remote Sens.* 162, 184–199. <https://doi.org/10.1016/j.isprsjprs.2020.02.019>

831 Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A.,
832 Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W., 2019.
833 Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5
834 (<https://DSSAT.net>), DSSAT Foundation, Gainesville, Florida, USA.

835 Iocola, I., Bassu, S., Farina, R., Antichi, D., Basso, B., Bindi, M., Dalla Marta, A., Danuso, F.,
836 Doro, L., Ferrise, R., Giglio, L., Ginaldi, F., Mazzoncini, M., Mula, L., Orsini, R., Corti, G.,
837 Pasqui, M., Seddaiu, G., Tomozeiu, R., Ventrella, D., Villani, G., Roggero, P.P., 2017. Can
838 conservation tillage mitigate climate change impacts in Mediterranean cereal systems? A
839 soil organic carbon assessment using long term experiments. *Eur. J. Agron.* 90, 96–107.
840 <https://doi.org/10.1016/j.eja.2017.07.011>

841 Jin, Z., Ainsworth, E.A., Leakey, A.D.B., Lobell, D.B., 2018. Increasing drought and
842 diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest.
843 *Glob. Chang. Biol.* 24, e522–e533. <https://doi.org/10.1111/gcb.13946>

844 Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J.,

845 Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H.,
846 Rosenzweig, C., Wheeler, T.R., 2017. Toward a new generation of agricultural system data,
847 models, and knowledge products: State of agricultural systems science. *Agric. Syst.* 155,
848 269–288. <https://doi.org/10.1016/j.agrsy.2016.09.021>

849 Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens,
850 P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model.
851 *Eur. J. Agron.* 18, 235–265. [https://doi.org/10.1016/S1161-0301\(02\)00107-7](https://doi.org/10.1016/S1161-0301(02)00107-7)

852 Jones, P.G., Thornton, P.K., 2009. Croppers to livestock keepers: livelihood transitions to 2050
853 in Africa due to climate change. *Environ. Sci. Policy* 12, 427–437.
854 <https://doi.org/10.1016/j.envsci.2008.08.006>

855 Kandulu, J.M., Bryan, B.A., King, D., Connor, J.D., 2012. Mitigating economic risk from
856 climate variability in rain-fed agriculture through enterprise mix diversification. *Ecol. Econ.*
857 79, 105–112. <https://doi.org/10.1016/j.ecolecon.2012.04.025>

858 Kassam, A., Friedrich, T., Derpsch, R., 2019. Global spread of Conservation Agriculture. *Int. J.*
859 *Environ. Stud.* 76, 29–51. <https://doi.org/10.1080/00207233.2018.1494927>

860 Komarek, A.M., Bell, L.W., Whish, J.P.M., Robertson, M.J., Bellotti, W.D., 2015. Whole-farm
861 economic, risk and resource-use trade-offs associated with integrating forages into crop-
862 livestock systems in western China. *Agric. Syst.* 133, 63–72.
863 <https://doi.org/10.1016/j.agrsy.2014.10.008>

864 Kravchenko, A.N., Wang, A.N.W., Smucker, A.J.M., Rivers, M.L., 2011. Long-term Differences
865 in Tillage and Land Use Affect Intra-aggregate Pore Heterogeneity. *Soil Sci. Soc. Am. J.*
866 75, 1658–1666. <https://doi.org/10.2136/sssaj2011.0096>

867 Kropf, I., Nejadhashemi, A.P., Deb, K., Abouali, M., Roy, P.C., Adhikari, U., Hoogenboom, G.,
868 2019. A multi-objective approach to water and nutrient efficiency for sustainable
869 agricultural intensification. *Agric. Syst.* 173, 289–302.
870 <https://doi.org/10.1016/j.agrsy.2019.03.014>

871 KRWC, 2011. Kalamazoo River Watershed Management Plan. Kalamazoo River Watershed
872 Council, Prepared for the Michigan Nonpoint Source Program (Michigan Department of
873 Environmental Quality and the United States Environmental Protection Agency).

874 Lal, R., 2013. Enhancing ecosystem services with no-till. *Renew. Agric. Food Syst.* 28, 102–114.
875 <https://doi.org/10.1017/S1742170512000452>

876 Lal, R., Delgado, J.A., Gulliford, J., Nielsen, D., Rice, C.W., Pelt, R.S. Van, 2012. Adapting
877 agriculture to drought and extreme events. *J. Soil Water Conserv.* 67, 162–166.
878 <https://doi.org/10.2489/jswc.67.6.162A>

879 Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J., Cantero-Martínez, C., 2016. Long-term
880 analysis of soil water conservation and crop yield under different tillage systems in
881 Mediterranean rainfed conditions. *F. Crop. Res.* 189, 59–67.
882 <https://doi.org/10.1016/j.fcr.2016.02.010>

883 Landis, D.A., 2017. Designing agricultural landscapes for biodiversity-based ecosystem services.
884 *Basic Appl. Ecol.* 18, 1–12. <https://doi.org/10.1016/j.baae.2016.07.005>

885 Leng, G., Peng, J., Huang, S., 2019. Recent changes in county-level maize production in the
886 United States: Spatial-temporal patterns, climatic drivers and the implications for crop
887 modelling. *Sci. Total Environ.* 686, 819–827.
888 <https://doi.org/10.1016/j.scitotenv.2019.06.026>

889 Li, S.G., Liu, Q., 2006. A Real-Time, Interactive Steering Environment for Integrated Ground
890 Water Modeling. *Ground Water* 44, 758–763. <https://doi.org/10.1111/j.1745-6584.2006.00225.x>

891

892 Liao, H.S., Curtis, Z.K., Sampath, P.V., Li, S.G., 2020. Simulation of Flow in a Complex
893 Aquifer System Subjected to Long-Term Well Network Growth. *Groundwater* 58, 301–322.
894 <https://doi.org/10.1111/gwat.12918>

895 Liao, H.S., Sampath, P. V., Curtis, Z.K., Li, S.G., 2015a. Hierarchical modeling of a
896 groundwater remediation capture system. *J. Hydrol.* 527, 196–211.
897 <https://doi.org/10.1016/j.jhydrol.2015.04.057>

898 Liao, H.S., Sampath, P. V., Curtis, Z.K., Li, S.G., 2015b. Hierarchical Modeling and Parameter
899 Estimation for a Coupled Groundwater–Lake System. *J. Hydrol. Eng.* 20, 04015027.
900 [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0001219](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001219)

901 Liu, S., Yang, J.Y., Zhang, X.Y., Drury, C.F., Reynolds, W.D., Hoogenboom, G., 2013.
902 Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation
903 under conventional and conservation tillage systems in Northeast China. *Agric. Water
904 Manag.* 123, 32–44. <https://doi.org/10.1016/j.agwat.2013.03.001>

905 Malik, W., Dechmi, F., 2019. DSSAT modelling for best irrigation management practices
906 assessment under Mediterranean conditions. *Agric. Water Manag.* 216, 27–43.
907 <https://doi.org/10.1016/j.agwat.2019.01.017>

908 Martin, G., Magne, M.A., 2015. Agricultural diversity to increase adaptive capacity and reduce
909 vulnerability of livestock systems against weather variability - A farm-scale simulation
910 study. *Agric. Ecosyst. Environ.* 199, 301–311. <https://doi.org/10.1016/j.agee.2014.10.006>

911 Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., 2015. A soil water
912 based index as a suitable agricultural drought indicator. *J. Hydrol.* 522, 265–273.
913 <https://doi.org/10.1016/j.jhydrol.2014.12.051>

914 McLaughlin, D.L., Cohen, M.J., 2013. Realizing ecosystem services: wetland hydrologic
915 function along a gradient of ecosystem condition. *Ecol. Appl.* 23, 1619–1631.
916 <https://doi.org/10.1890/12-1489.1>

917 MDEQ, 2020. Wellogic System (periodically updated) [WWW Document]. Michigan Dep.
918 Environ. Qual. URL <https://secure1.state.mi.us/wellogic/> (accessed 9.20.20).

919 MEA, 2005. Millennium Ecosystem Assessment-Ecosystems and Human Well-being: Synthesis.
920 Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-484-0_1

921 Mengist, W., Soromessa, T., Feyisa, G.L., 2020. A global view of regulatory ecosystem services:
922 existed knowledge, trends, and research gaps. *Ecol. Process.* 9, 40.
923 <https://doi.org/10.1186/s13717-020-00241-w>

924 Milliken, G., Johnson, D., 2009. Analysis of messy data, Volume I: Designed Experiments, 2nd
925 editio. ed. Chapman and Hall/CRC.

926 Moebius-Clune, B.N., van Es, H.M., Idowu, O.J., Schindelbeck, R.R., Moebius-Clune, D.J.,
927 Wolfe, D.W., Abawi, G.S., Thies, J.E., Gugino, B.K., Lucey, R., 2008. Long-Term Effects
928 of Harvesting Maize Stover and Tillage on Soil Quality. *Soil Sci. Soc. Am. J.* 72, 960–969.
929 <https://doi.org/10.2136/sssaj2007.0248>

930 Montoya, J.M., Raffaelli, D., 2010. Climate change, biotic interactions and ecosystem services.
931 *Philos. Trans. R. Soc. B Biol. Sci.* 365, 2013–2018. <https://doi.org/10.1098/rstb.2010.0114>

932 Munang, R., Thiaw, I., Alverson, K., Liu, J., Han, Z., 2013. The role of ecosystem services in
933 climate change adaptation and disaster risk reduction. *Curr. Opin. Environ. Sustain.* 5, 47–
934 52. <https://doi.org/10.1016/j.cosust.2013.02.002>

935 NED USGS. 2006. National Elevation Dataset. Reston, Virginia: U.S. Geological Survey.
936 <http://ned.usgs.gov/Ned/about.asp>

937 NHD USGS. 2010. USGS: National Hydrography Dataset. Reston, Virginia: U.S. Geological
938 Survey. <http://nhd.usgs.gov/index.html>

939 NRCS, 2020. Web Soil Survey [WWW Document]. United States Dep. Agric. URL
940 <http://websoilsurvey.sc.egov.usda.gov/> (accessed 8.28.20).

941 Nunes, M.R., van Es, H.M., Schindelbeck, R., Ristow, A.J., Ryan, M., 2018. No-till and
942 cropping system diversification improve soil health and crop yield. *Geoderma* 328, 30–43.
943 <https://doi.org/10.1016/j.geoderma.2018.04.031>

944 Oppedahl, D.B., 2018. Midwest agriculture's ties to the global economy. *Chicago Fed Lett.*

945 Parton, W.J., 1996. The CENTURY model, in: Powlson, D.S., Smith, P., Smith, J.. (Eds.),
946 Evaluation of Soil Organic Matter Models. Springer-Verlag Berlin Heidelherg, pp. 283–
947 291. https://doi.org/10.1007/978-3-642-61094-3_23

948 Pickering, N.B., Hansen, J.W., Jones, J.W., Wells, C.M., Chan, V.K., Godwin, D.C., 1994.
949 WeatherMan: A Utility for Managing and Generating Daily Weather Data. *Agron. J.* 86,
950 332–337. <https://doi.org/10.2134/agronj1994.00021962008600020023x>

951 Pittelkow, C.M., Linquist, B.A., Lundy, M.E., Liang, X., Van Groenigen, K., Lee, J., Van
952 Gestel, N., Six, J., Venterea, R.T., Van Kessel, C., 2015. When does no-till yield more ? A

953 global meta-analysis. *F. Crop. Res.* 183, 156–168. <https://doi.org/10.1016/j.fcr.2015.07.020>

954 Power, A.G., 2010. Ecosystem services and agriculture: tradeoffs and synergies. *Philos. Trans. R. Soc. B Biol. Sci.* 365, 2959–2971. <https://doi.org/10.1098/rstb.2010.0143>

955

956 Powlson, D.S., Stirling, C.M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. *Nat. Clim. Chang.* 4, 678–683. <https://doi.org/10.1038/nclimate2292>

957

958

959 Priestley, C.H.B., Taylor, R.J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. *Mon. Weather Rev.* 100, 81–92.

960

961 [https://doi.org/10.1175/1520-0493\(1972\)100<0081:otaosh>2.3.co;2](https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2)

962 Prudencio, L., Null, S.E., 2018. Stormwater management and ecosystem services: a review.

963 *Environ. Res. Lett.* 13, 033002. <https://doi.org/10.1088/1748-9326/aaa81a>

964 Reitz, M., Sanford, W.E., Senay, G.B., Cazenas, J., 2017. Annual Estimates of Recharge, Quick-

965 Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using Empirical Regression

966 Equations. *JAWRA J. Am. Water Resour. Assoc.* 53, 961–983.

967 <https://doi.org/10.1111/1752-1688.12546>

968 Rigolot, C., de Voil, P., Douxchamps, S., Prestwidge, D., Van Wijk, M., Thornton, P.K.,

969 Rodriguez, D., Henderson, B., Medina, D., Herrero, M., 2017. Interactions between

970 intervention packages, climatic risk, climate change and food security in mixed crop–

971 livestock systems in Burkina Faso. *Agric. Syst.* 151, 217–224.

972 <https://doi.org/10.1016/j.agsy.2015.12.017>

973 Ritchie, J.T., 1998. Soil water balance and plant water stress, in: Tsuji, G.Y., Hoogenboom, G.,

974 Thornton, P. (Eds.), Understanding Options for Agricultural Production. Kluwer Academic
975 Publishers, Dordrecht, pp. 41–54. https://doi.org/10.1007/978-94-017-3624-4_3

976 Robertson, G.P.; Hamilton, S., 2015. Long-Term Ecological Research at the Kellogg Biological
977 Station LTER Site, in: Hamilton, S., Doll, J., Robertson, G.P (Eds.), The Ecology of
978 Agricultural Landscapes: Long-Term Research on the Path to Sustainability. Oxford
979 University Press, New York, USA, pp. 1–32.

980 Robertson, G.P., Swinton, S.M., 2005. Reconciling Agricultural Productivity and Environmental
981 Integrity: A Grand Challenge for Agriculture. *Front. Ecol. Environ.* 3, 38.
982 <https://doi.org/10.2307/3868443>

983 Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J.,
984 Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M., Schmid,
985 E., Stehfest, E., Yang, H., Jones, J.W., 2014. Assessing agricultural risks of climate change
986 in the 21st century in a global gridded crop model intercomparison. *Proc. Natl. Acad. Sci.*
987 111, 3268–3273. <https://doi.org/10.1073/pnas.1222463110>

988 Rötter, R.P., Appiah, M., Fichtler, E., Kersebaum, K.C., Trnka, M., Hoffmann, M., 2018.
989 Linking modelling and experimentation to better capture crop impacts of agroclimatic
990 extremes—A review. *F. Crop. Res.* 221, 142–156. <https://doi.org/10.1016/j.fcr.2018.02.023>

991 Roy, P.C., Guber, A., Abouali, M., Nejadhashemi, A.P., Deb, K., Smucker, A.J.M., 2019. Crop
992 yield simulation optimization using precision irrigation and subsurface water retention
993 technology. *Environ. Model. Softw.* 119, 433–444.
994 <https://doi.org/10.1016/j.envsoft.2019.07.006>

995 Rusinamhodzi, L., Corbeels, M., Van Wijk, M., Rufino, M., Nyamangara, J., Giller, K., 2011.

996 A meta-analysis of long-term effects of conservation agriculture on maize grain yield under
997 rain-fed conditions. *Agron. Sustain. Dev.* 31, 657–673. <https://doi.org/10.1007/s13593-011-0040-2>

999 Salmerón, M., Cavero, J., Isla, R., Porter, C.H., Jones, J.W., Boote, K.J., 2014. DSSAT Nitrogen
1000 Cycle Simulation of Cover Crop-Maize Rotations under Irrigated Mediterranean
1001 Conditions. *Agron. J.* 106, 1283–1296. <https://doi.org/10.2134/agronj13.0560>

1002 Sampath, P.V., Liao, H.S., Curtis, Z.K., Doran, P.J., Herbert, M.E., May, C.A., Li, S.G., 2015.
1003 Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen:
1004 Implications for Conservation. *PLoS One* 10, e0140430.
1005 <https://doi.org/10.1371/journal.pone.0140430>

1006 Sampath, P.V., Liao, H.S., Curtis, Z.K., Herbert, M.E., Doran, P.J., May, C.A., Landis, D.A., Li,
1007 S.G., 2016. Understanding fen hydrology across multiple scales. *Hydrol. Process.* 30, 3390–
1008 3407. <https://doi.org/10.1002/hyp.10865>

1009 Scanlon, B.R., Faunt, C.C., Longuevergne, L., Reedy, R.C., Alley, W.M., McGuire, V.L.,
1010 McMahon, P.B., 2012. Groundwater depletion and sustainability of irrigation in the US
1011 High Plains and Central Valley. *Proc. Natl. Acad. Sci.* 109, 9320–9325.
1012 <https://doi.org/10.1073/pnas.1200311109>

1013 Schaetzl, R.J., Darden, J.T., Brandt, D, S., 2009. Michigan Geography and Geology. Pearson
1014 Custom Publishing, New York.

1015 Scherr, S.J., Shames, S., Friedman, R., 2012. From climate-smart agriculture to climate-smart
1016 landscapes. *Agric. Food Secur.* 1, 12. <https://doi.org/10.1186/2048-7010-1-12>

1017 SCS, 1985. National Engineering Handbook Section 4: Hydrology. Soil Conservation Service,
1018 United States Department of Agriculture, Washington, DC.

1019 Serfilippi, E., Ramnath, G., 2018. Resilience Measurement and Conceptual Frameworks: a
1020 Review of the Literature. *Ann. Public Coop. Econ.* 89, 645–664.
1021 <https://doi.org/10.1111/apce.12202>

1022 Serna-Chavez, H.M., Schulp, C.J.E., van Bodegom, P.M., Bouten, W., Verburg, P.H., Davidson,
1023 M.D., 2014. A quantitative framework for assessing spatial flows of ecosystem services.
1024 *Ecol. Indic.* 39, 24–33. <https://doi.org/10.1016/j.ecolind.2013.11.024>

1025 Sharpley, A.N., Williams, J.R., 1990. EPIC-The erosion/productivity impact calculator: 1. Model
1026 Documentation. *U.S. Dep. Agric. Tech. Bull.* 235.

1027 Shelia, V., Sharda, V., Hansen, J., Porter, C., Zhang, M., Aggarwal, P., Hoogenboom, G., 2015.
1028 CCAFS Regional Agricultural Forecasting Toolbox (CRAFT): software for forecasting of
1029 crop production, risk analysis and climate change impact studies, in: 2015 ASABE
1030 International Meeting. American Society of Agricultural and Biological Engineers, pp.
1031 1094–1116. <https://doi.org/10.13031/aim.20152182505>

1032 Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Döll, P., Portmann, F.T., 2010.
1033 Groundwater use for irrigation – a global inventory. *Hydrol. Earth Syst. Sci.* 14, 1863–
1034 1880. <https://doi.org/10.5194/hess-14-1863-2010>

1035 Smidt, S.J., Haacker, E.M.K., Kendall, A.D., Deines, J.M., Pei, L., Cotterman, K.A., Li, H., Liu,
1036 X., Basso, B., Hyndman, D.W., 2016. Complex water management in modern agriculture:
1037 Trends in the water-energy-food nexus over the High Plains Aquifer. *Sci. Total Environ.*
1038 566–567, 988–1001. <https://doi.org/10.1016/j.scitotenv.2016.05.127>

1039 State of Michigan, 2006. Public Act 148—Groundwater inventory and map project (GWIM):
1040 Executive Summary. Michigan State University, East Lansing, MI, USA.

1041 Suleiman, A.A., Ritchie, J.T., 2003. Modeling Soil Water Redistribution during Second-Stage
1042 Evaporation. *Soil Sci. Soc. Am. J.* 67, 377–386. <https://doi.org/10.2136/sssaj2003.3770>

1043 Swift, M.J., Izac, A.-M.N., van Noordwijk, M., 2004. Biodiversity and ecosystem services in
1044 agricultural landscapes—are we asking the right questions? *Agric. Ecosyst. Environ.* 104,
1045 113–134. <https://doi.org/10.1016/j.agee.2004.01.013>

1046 Swinton, S.M., Leppla, F., Robertson, G.P., Hamilton, S.K., 2007. Ecosystem services and
1047 agriculture: Cultivating agricultural ecosystems for diverse benefits. *Ecol. Econ.* 64, 245–
1048 252. <https://doi.org/10.1016/j.ecolecon.2007.09.020>

1049 Syswerda, S.P., Robertson, G.P., 2014. Ecosystem services along a management gradient in
1050 Michigan (USA) cropping systems. *Agric. Ecosyst. Environ.* 189, 28–35.
1051 <https://doi.org/10.1016/j.agee.2014.03.006>

1052 Tancoigne, E., Barbier, M., Cointet, J.-P., Richard, G., 2014. The place of agricultural sciences
1053 in the literature on ecosystem services. *Ecosyst. Serv.* 10, 35–48.
1054 <https://doi.org/10.1016/j.ecoser.2014.07.004>

1055 Teixeira, W.W.R., Battisti, R., Sentelhas, P.C., Moraes, M.F., Oliveira Junior, A., 2019.
1056 Uncertainty assessment of soya bean yield gaps using DSSAT-CSM-CROPGRO-Soybean
1057 calibrated by cultivar maturity groups. *J. Agron. Crop Sci.* 205, 533–544.
1058 <https://doi.org/10.1111/jac.12343>

1059 Thierfelder, C., Wall, P.C., 2010. Investigating Conservation Agriculture (CA) Systems in

1060 Zambia and Zimbabwe to Mitigate Future Effects of Climate Change. *J. Crop Improv.* 24,
1061 113–121. <https://doi.org/10.1080/15427520903558484>

1062 Thiessen, A.H., 1911. Precipitation avarages for large areas. *Mon. Weather Rev.* 39, 1082–1084.
1063 [https://doi.org/10.1175/1520-0493\(1911\)39<1082b:PAFLA>2.0.CO;2](https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2)

1064 Thorp, K.R., DeJonge, K.C., Kaleita, A.L., Batchelor, W.D., Paz, J.O., 2008. Methodology for
1065 the use of DSSAT models for precision agriculture decision support. *Comput. Electron.*
1066 *Agric.* 64, 276–285. <https://doi.org/10.1016/j.compag.2008.05.022>

1067 USDA, 2019. Agricultural Prices. National Agricultural Statistics Service (NASS), United States
1068 Department of Agriculture, Washington, DC.

1069 Vachaud, G., Passerat de Silans, A., Balabanis, P., Vauclin, M., 1985. Temporal Stability of
1070 Spatially Measured Soil Water Probability Density Function. *Soil Sci. Soc. Am. J.* 49, 822–
1071 828.

1072 Verhulst, N., Nelissen, V., Jespers, N., Haven, H., Sayre, K.D., Raes, D., Deckers, J., Govaerts,
1073 B., 2011. Soil water content, maize yield and its stability as affected by tillage and crop
1074 residue management in rainfed semi-arid highlands. *Plant Soil* 344, 73–85.
1075 <https://doi.org/10.1007/s11104-011-0728-8>

1076 Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., Bierkens,
1077 M.F.P., 2010. Global depletion of groundwater resources. *Geophys. Res. Lett.* 37, n/a-n/a.
1078 <https://doi.org/10.1029/2010GL044571>

1079 Walker, B., Holling, C.S., Carpenter, S.R., Kinzig, A., 2004. Resilience , Adaptability and
1080 Transformability in Social – ecological Systems. *Ecol. Soc.* 9, 5.

1081 Wang, R., Bowling, L.C., Cherkauer, K.A., 2016. Estimation of the effects of climate variability
1082 on crop yield in the Midwest USA. *Agric. For. Meteorol.* 216, 141–156.
1083 <https://doi.org/10.1016/j.agrformet.2015.10.001>

1084 Wesley, J., 2005. Kalamazoo River Assessment. Michigan Department of Natural Resources,
1085 Fisheries Division, Special Report 35, Ann Arbor, MI, USA.

1086 Willmott, C.J., 1982. Some Comments on the Evaluation of Model Performance. *Bull. Am.*
1087 *Meteorol. Soc.* 63, 1309–1313. [https://doi.org/10.1175/1520-0477\(1982\)063<1309:SCOTEO>2.0.CO;2](https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2)

1089 Wood, S.A., Karp, D.S., DeClerck, F., Kremen, C., Naeem, S., Palm, C.A., 2015. Functional
1090 traits in agriculture: agrobiodiversity and ecosystem services. *Trends Ecol. Evol.* 30, 531–
1091 539. <https://doi.org/10.1016/j.tree.2015.06.013>

1092 Xiang, Z., Bailey, R.T., Nozari, S., Husain, Z., Kisekka, I., Sharda, V., Gowda, P., 2020.
1093 DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation
1094 strategies in irrigated areas. *Agric. Water Manag.* 232, 106033.
1095 <https://doi.org/10.1016/j.agwat.2020.106033>

1096 Yang, J.M., Yang, J.Y., Liu, S., Hoogenboom, G., 2014. An evaluation of the statistical methods
1097 for testing the performance of crop models with observed data. *Agric. Syst.* 127, 81–89.
1098 <https://doi.org/10.1016/j.agsy.2014.01.008>

1099 Zhang, X.Q., Pu, C., Zhao, X., Xue, J.-F., Zhang, R., Nie, Z.-J., Chen, F., Lal, R., Zhang, H.-L.,
1100 2016. Tillage effects on carbon footprint and ecosystem services of climate regulation in a
1101 winter wheat–summer maize cropping system of the North China Plain. *Ecol. Indic.* 67,
1102 821–829. <https://doi.org/10.1016/j.ecolind.2016.03.046>

Supplementary Material

Quantification of Resilience Metrics as Affected by a Conservation Agricultural Practice at a Watershed Scale

1106 Rasu Eeswaran ^a, A. Pouyan Nejadhashemi ^{a, b, *}, Josué Kpodo ^{b, c}, Zachary K. Curtis ^d, Umesh
1107 Adhikari ^d, Huasheng Liao ^d, Shu-Guang Li ^{d, e}, J. Sebastian Hernandez-Suarez ^b, Filipe Couto
1108 Alves ^f, Anna Raschke ^b, Prakash Kumar Jha ^g

1109 ^aDepartment of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824 USA

^b Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824 USA

1111 © Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 USA

1112 **Hydrosimulations inc., 721 N Capital Ave. Ste. 2, Lansing, MI 48906 USA**

^e Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA

^fDepartment of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824 USA

1115 ^g Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan,
1116 KS, 66506 USA

1117 * Corresponding author: Tel.: +1 (517) 432-7653 Fax: +1 (517) 432-2892. Email address: pouyan@msu.edu

1118

1119

1120

1121

1122

1123

1121

1125

1126 Table S1. Soil properties at the KBS Main Cropping System Experiment site used to develop the
 1127 sequential DSSAT model.

Soil depth	Bulk density	Organic carbon	Sand	Silt	Clay	Root growth factor in soil*	Saturated hydraulic conductivity	Field capacity water content at 33kPa*	Wilting point water content at 1,500kPa*
(cm)	(g/cm ³)	(%)				unitless	cm/h	cm ³ /cm ³	cm ³ /cm ³
0-10	1.60	1.10	43	38	19	1.0	0.36	0.267	0.125
10-22	1.60	0.90	43	38	19	0.8	0.36	0.267	0.137
22-31	1.60	0.70	31	47	22	0.5	0.25	0.267	0.137
31-41	1.60	0.30	33	44	23	0.4	0.20	0.295	0.165
41-51	1.60	0.22	56	19	25	0.3	0.20	0.297	0.165
51-61	1.60	0.10	62	17	21	0.3	0.20	0.267	0.137
61-75	1.60	0.05	69	12	19	0.2	0.96	0.267	0.137
75-89	1.60	0.02	89	4	7	0.2	1.98	0.160	0.060
89-102	1.60	0.02	88	5	7	0.1	20.0	0.160	0.060
102-120	1.60	0.02	88	5	7	0.1	20.0	0.160	0.060

1128 *parameters used to calibrate the soil water module of the DSSAT.

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146 Table S2. Probability values for the significance of the effects evaluated in the statistical mixed
 1147 model for crop yields and net return.

Crop	Fixed effect	Probability (<i>p</i> -value) of the parameters		
		Yield	Net return	Recharge
Corn	Treatment (<i>trt</i>)	<0.0001	<0.0001	<0.0001
	Year (<i>yr</i>)	<0.0001	<0.0001	<0.0001
	Interaction between treatment and year (<i>trt</i> \times <i>yr</i>)	<0.0001	<0.0001	<0.0001
Soybean	Treatment (<i>trt</i>)	<0.0001	<0.0001	<0.0001
	Year (<i>yr</i>)	<0.0001	<0.0001	<0.0001
	Interaction between treatment and year (<i>trt</i> \times <i>yr</i>)	<0.0001	<0.0001	<0.0001
Wheat	Treatment (<i>trt</i>)	0.0856	<0.0001	<0.0001
	Year (<i>yr</i>)	<0.0001	<0.0001	<0.0001
	Interaction between treatment and year (<i>trt</i> \times <i>yr</i>)	<0.0001	<0.0001	<0.0001

1148

1149

1150

1151

1152

1153

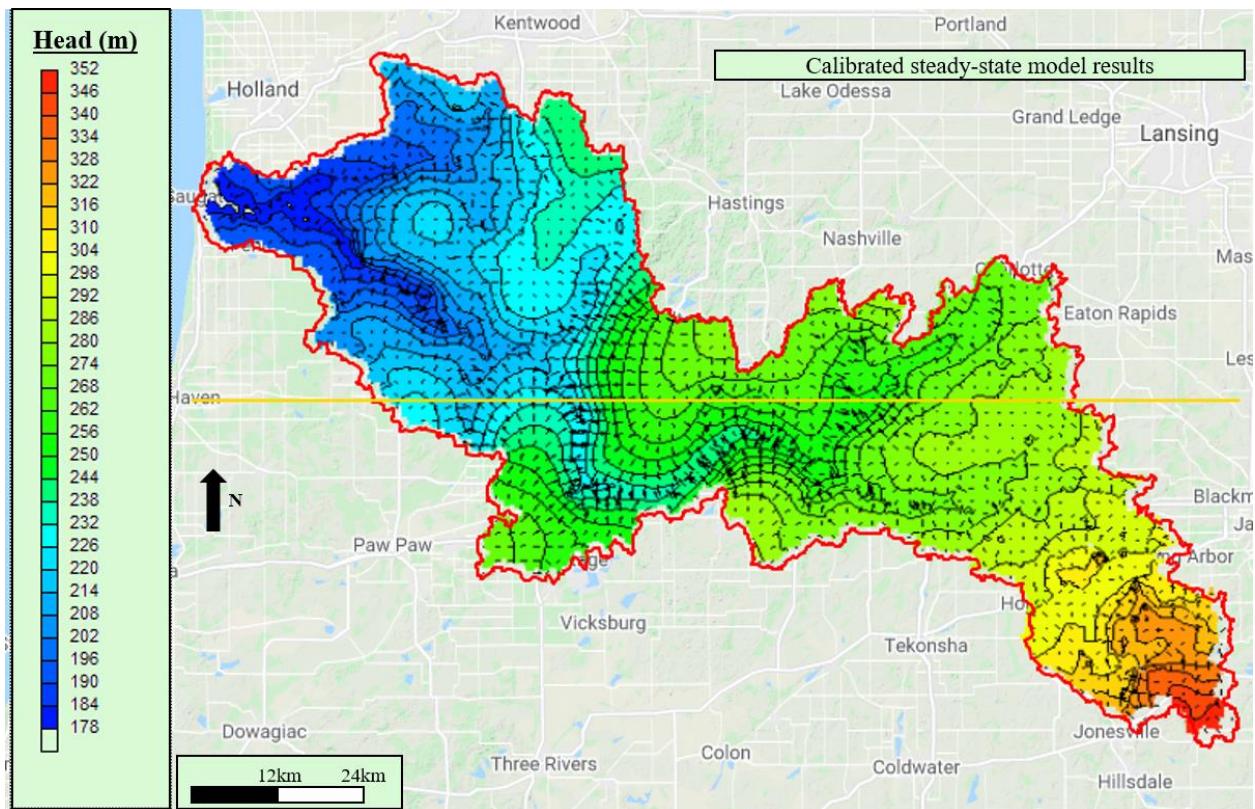
1154

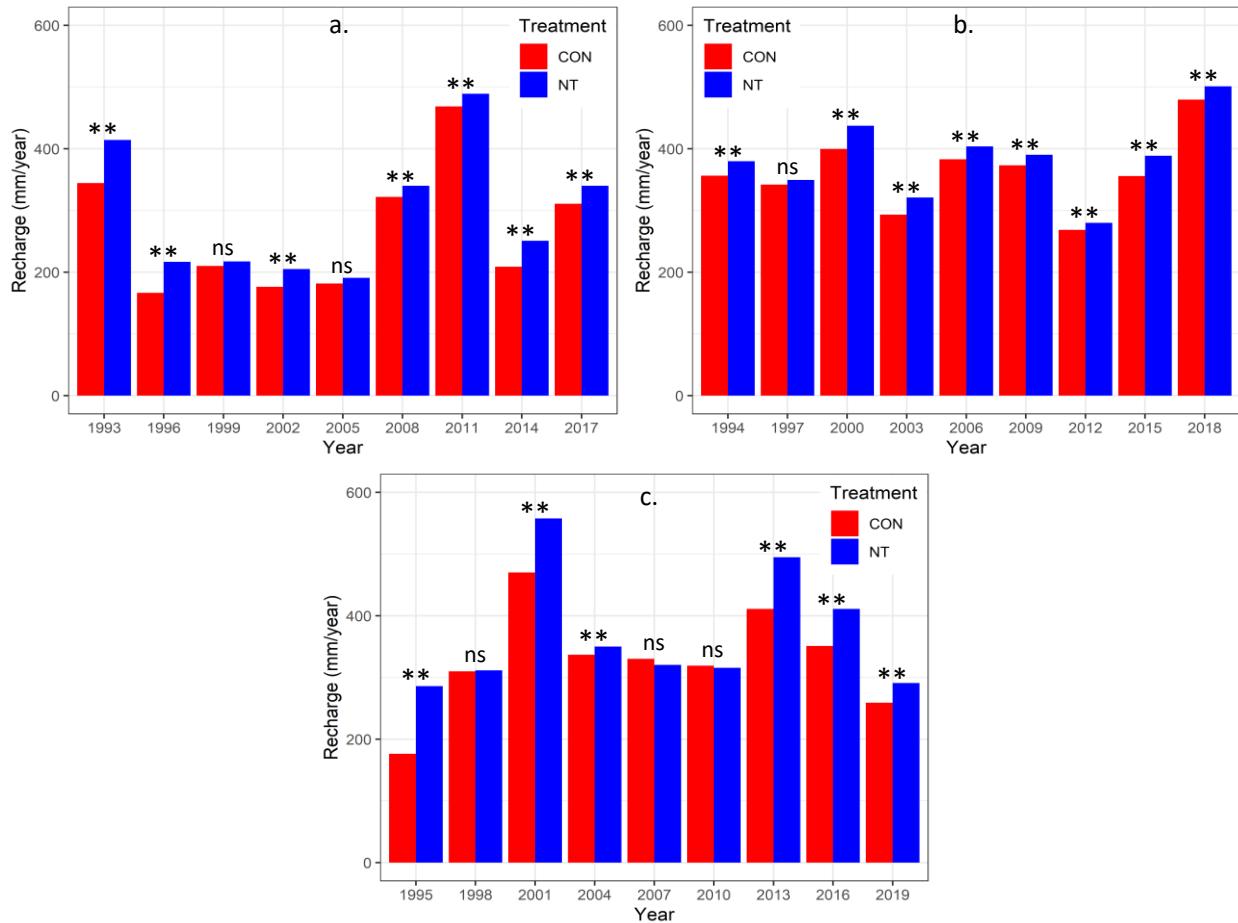
1155

1156

1157

1158





1165

1166 Figure S2. Mean annual recharge from corn (a), soybean (b) and wheat (c) across different soils
 1167 in the Kalamazoo River watershed for the period between 1993-2019 as affected by the
 1168 conventional and the no-till treatments. Strongly significant means ($p < 0.0001$) are indicated by
 1169 ** , and non-significance cases are denoted by “ns”.

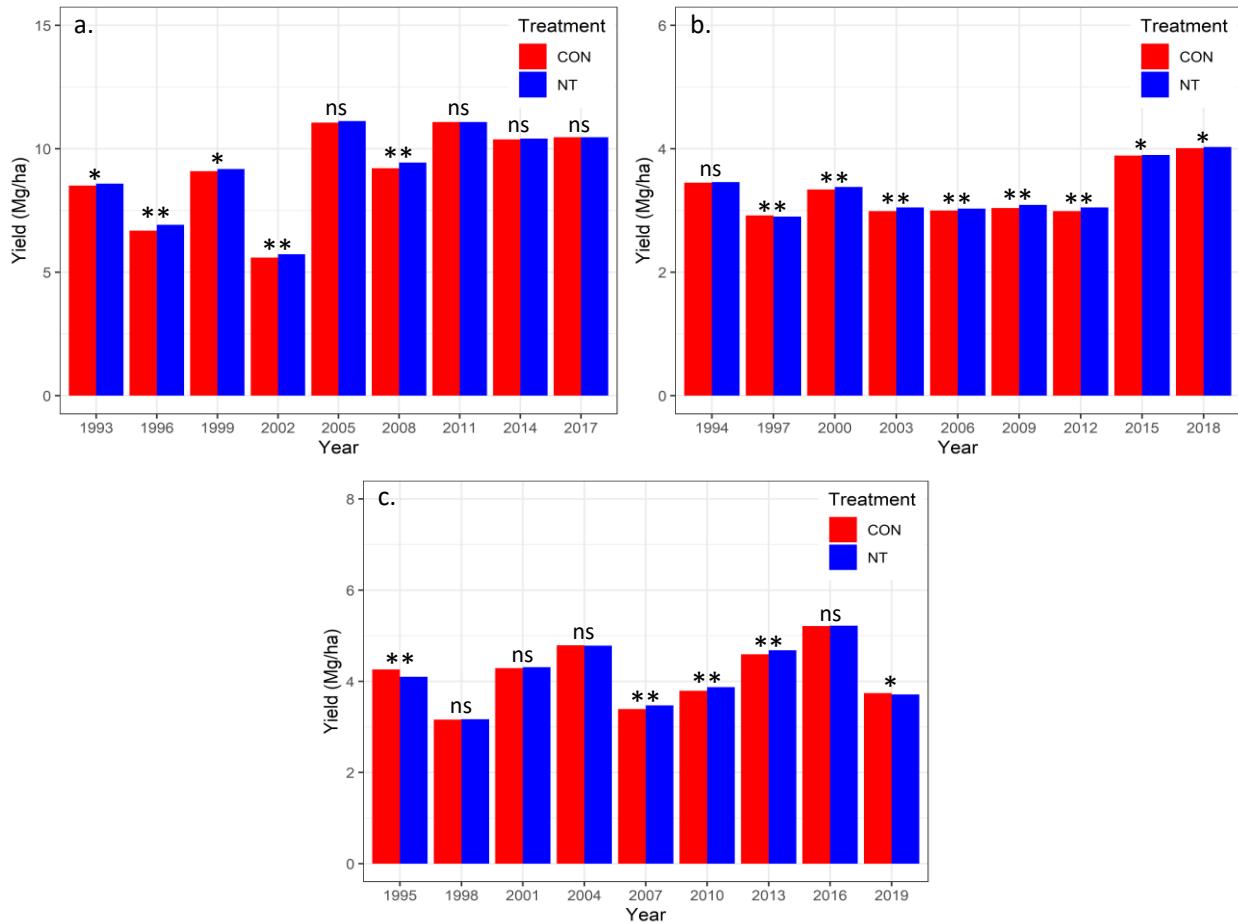
1170

1171

1172

1173

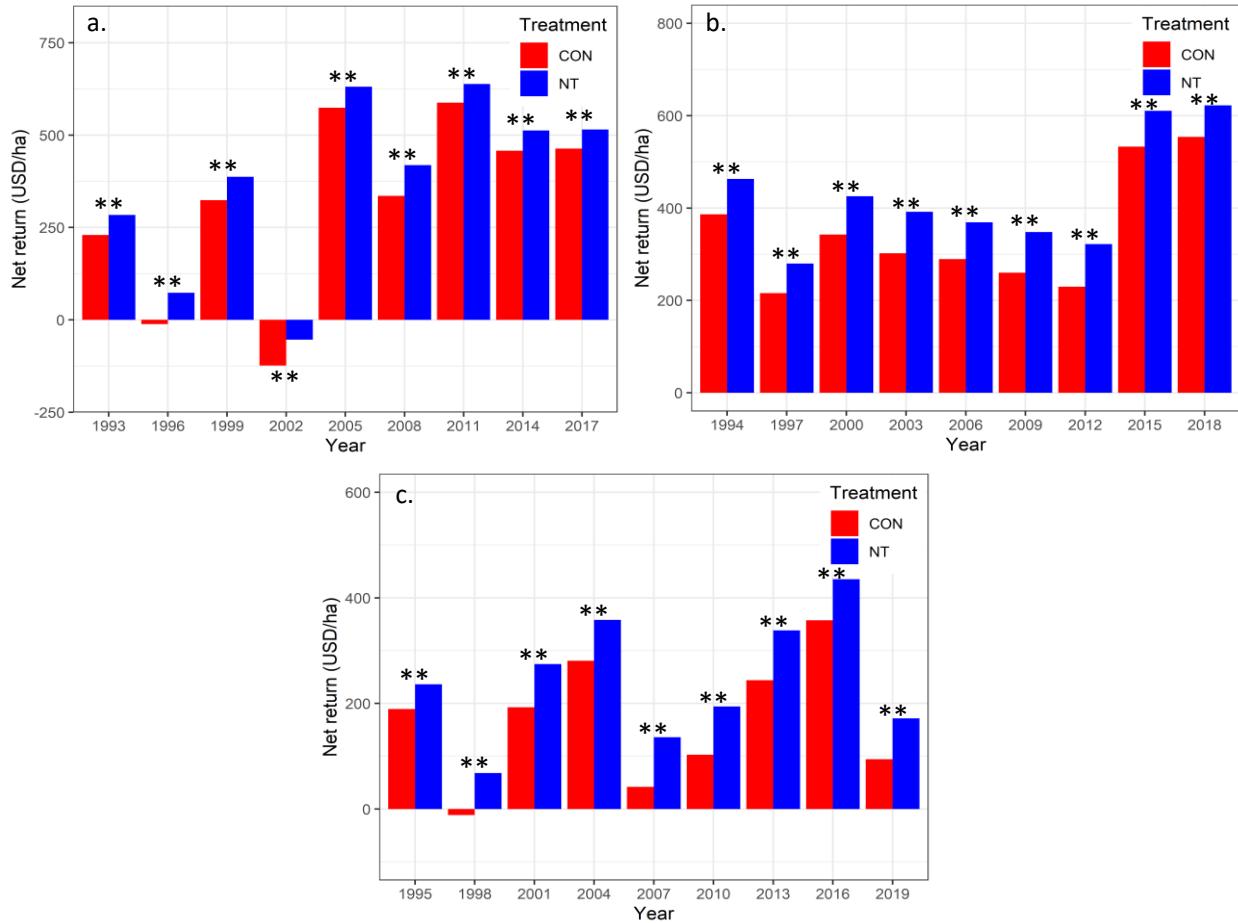
1174



1175

1176 Figure S3. Mean yield of corn (a), soybean (b), and wheat (c) across different soils in the
 1177 Kalamazoo River watershed for the period between 1993-2019 as affected by the conventional
 1178 and the no-till treatments. Strongly significant means ($p < 0.0001$) are indicated by **, significant
 1179 means ($p < 0.05$) are indicated by *, and non-significance cases are denoted by "ns".

1180



1181

1182 Figure S4. Average net return of corn (a), soybean (b), and wheat (c) across different soils in the
 1183 Kalamazoo River watershed for the period between 1993-2019 as affected by the conventional
 1184 and the no-till treatments. Strongly significant means ($p<0.0001$) are indicated by **, significant
 1185 means ($p<0.05$) are indicated by *, and non-significance cases are denoted by “ns”.

1186

1187

1188

1189

1190

1191

1192