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ABSTRACT

Cross-linked amorphous poly(ethylene oxide) (XLPEO) is one of the leading membrane 

materials for post-combustion CO2 capture. For example, XLPEO prepared from poly(ethylene 

glycol) methyl ether acrylate (PEGMEA) exhibited CO2 permeability of 570 Barrer and CO2/N2 

selectivity of 41 at 35°C. However, these XLPEOs cannot be dissolved in coating solutions, 

making it impossible to be fabricated into thin-film composite (TFC) membranes using state-of- 

the-art manufacturing processes. In this study, we synthesized high molecular weight yet soluble 

HPEO via atom transfer radical polymerization (ATRP). These polymers were thoroughly 

characterized and compared with XLPEO, including thermal transitions, free volumes, and pure- 

gas sorption and permeation properties. A polymer with the best combination of CO2 permeability 

(540 Barrer) and CO2/N2 selectivity (43) was fabricated into defect-free TFC membranes with a 

thickness as thin as 506 ± 44 nm. When challenged with simulated flue gas containing water vapor 

at 35C for over 100 h, the membrane shows stable CO2 permeance of 850 GPU and CO2/N2 

selectivity of 37, comparable to the leading commercial membranes for carbon capture.

KEYWORDS: Poly(ethylene oxide); CO2/N2 separation; thin-film composite membrane; post­

combustion carbon capture; atom transfer radical polymerization
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1. Introduction

Carbon capture for utilization and sequestration is an essential path to mitigate the CO2 

emissions to the atmosphere if fossil fuels remain as major sources for electricity generation. The 

flue gas has an enormous volume and very low CO2 partial pressure (0.04 - 0.13 atm), making the 

capture a very challenging proposition [1, 2]. Membrane technology has become one of the leading 

technologies for CO2 capture because of its high energy efficiency, low maintenance, and small 

footprint [3-8]. In particular, industrial membranes with CO2 permeance of >1000 GPU (1 GPU =

10- 6 cm3(STP) cm-2 s-1 cmHg-1) and CO2/N2 selectivity of >30 would make the membrane 

processes economically competitive with the leading amine sorption processes if a multi-step 

membrane system incorporated with a cryogenic unit for liquid CO2 production is used [2]. The 

cost of the CO2 capture can be further reduced by enhancing the CO2 permeance but is not 

influenced by the CO2/N2 selectivity once it is above 30.

The first challenge in developing industrial membranes is to design materials possessing 

excellent CO2/N2 separation properties [9, 10]. One of the leading materials is based on 

poly(ethylene oxide) (PEO) because of the affinity of polar ether oxygens towards CO2 (generating 

high CO2/N2 solubility selectivity) and good chain flexibility (inducing high CO2 diffusivity) [6,

11- 13]. For instance, a cross-linked PEO (XLPEO) synthesized from a prepolymer solution 

containing 98.7 mass% poly(ethylene glycol) methyl ether acrylate (PEGMEA, Mn = 480 g/mol) 

and 1.3 mass% poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) exhibited CO2 

permeability of 570 Barrer (1 Barrer = 10"10 cm3(STP) cm cm-2 s-1 cmHg-1) and CO2/N2 selectivity 

of 41 at 35C [14]. However, the polymers are cross-linked and cannot be dissolved into a coating 

solution for fabricating membranes using typical equipment and processes [7, 15].
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The second challenge in developing industrial membranes is to form a thin layer (<1 pm) 

of a highly selective material on a porous support (providing mechanical strength) [7, 16]. Current 

gas separation membranes are usually prepared from polymer solutions via phase-inversion 

processes (to form integral asymmetric membranes) or coating processes (to form thin-film 

composite or TFC membranes). As XLPEOs cannot be processed into industrial membranes, other 

PEO-based polymers have been widely investigated for TFC membranes, such as Pebax® and 

PolyActiveTM that are microphase-separated block copolymers containing a continuous rubbery 

PEO phase and the other continuous glassy polymer phase (such as polyamide for Pebax and 

polybutylene terephthalate for PolyActive). The glassy polymer phase has much lower gas 

permeability than the amorphous PEO, and thus, Pebax and PolyActive exhibit CO2/N2 selectivity 

close to the amorphous PEO but excellent solution-coatability to be fabricated into TFC 

membranes [17-21]. For instance, TFC membranes comprising 125-nm PolyActive displayed CO2 

permeance as high as 1300 GPU and good CO2/N2 selectivity of 58 at 20°C [22]. Defect-free 

XLPEO layers of ~60 nm were also formed by the continuous assembly on top of a gutter layer of 

polydimethylsiloxane (PDMS), and the resulting membranes exhibited CO2 permeance of 1200 

GPU with mixed-gas CO2/N2 selectivity of 22 [23, 24]. By contrast, if the PEGMEA-co-PEGDA 

(98.7:1.3 by mass ratio) can be fabricated into thin layers of 200 nm, the resulting membranes can 

have potential CO2 permeance as high as 2850 GPU at 35C.

The key challenge to fabricate PEGMEA-co-PEGDA into TFC membranes is to prepare 

the polymers with high molecular weight (to achieve good mechanical properties) and good 

solubility in solvents. Interestingly, PEGDA has been polymerized to produce high molecular 

weight and soluble polymers using atom transfer radical polymerization (ATRP) because it allows 

a slow and controllable polymerization rate and thus results in desired molecular weight [25-27].
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PEGMEA was polymerized using single-electron transfer living radical polymerization (SET-LRP) 

[28], and poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was also synthesized 

by ATRP [29]. However, these polymers are often explored for drug and gene delivery due to their 

biocompatibility and low toxicity and have not been utilized for TFC membranes.

Herein, we synthesized high molecular weight and hyperbranched PEO from PEGMEA 

and PEGDA using ATRP and explored their potential for high-performance TFC membranes for 

CO2/N2 separation. First, the polymers were thoroughly characterized for physical properties, such 

as density, glass transition temperature (Tg), and free volume, and compared with XLPEO prepared 

via photopolymerization. Second, pure-gas transport properties of N2, H2, CH4, and CO2 in these 

polymers were determined to illustrate the effect of molecular weight on gas separation properties. 

Third, the polymer with the best separation properties was fabricated into TFC membranes, and 

the CO2/N2 separation properties were determined using pure- and mixed-gas. The membranes 

were also challenged with simulated flue gas containing water vapor, and their performance is 

compared with the state-of-the-art membranes to elucidate their potential for carbon capture.

2. Experimental

2.1 Materials

For polymer synthesis, PEGMEA (Mn = 480 g/mol), PEGDA (Mn = 700 g/mol), 

anhydrous copper(II) bromide (CuBr2, 99+%), pentaerythritol tetrakis(2-bromo-isobutyrate) (4f- 

BiB, 97%), anhydrous dimethyl sulfoxide (DMSO), 1 -hydroxycyclohexyl phenyl ketone (HCPK), 

anhydrous tetrahydrofuran (THF) and diethyl ether were acquired from Sigma-Aldrich (St. Louis, 

MO). Tris[2-(dimethylamino)ethyl]amine (Me6TREN, 99+%) was procured from Alfa Aesar
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(Haverhill, MA). Bare copper wire with a diameter of ~0.8 mm and hydrochloric acid (HCl) were 

supplied by ThermoFisher Scientific (Waltham, MA).

For TFC membrane fabrication, polysulfone (PSF) support with a nominal molecular 

weight cut-off (MWCO) of 30 kDa was purchased from Ultura Inc. (Oceanside, CA). Sylgard 184 

(PDMS) was procured from Dow Silicones Corporation (Midland, MI). Hexane, isopropyl alcohol 

(IPA), and iso-octane were procured from Sigma-Aldrich.

For the characterization of polymers and membranes, DMSO-de was acquired from Sigma- 

Aldrich. High-pressure gas of CH4, N2, H2, and CO2 with ultrahigh purity were provided by Airgas, 

Inc. (Radnor, PA).

2.2 Polymer synthesis and membrane fabrication

Synthesis of high molecular weight PEO via ATRP. A typical procedure to synthesize the 

high molecular weight PEO is described below [30, 31]. PEGMEA (9.8 g, 19.6 mmol), PEGDA 

(0.2 g, 0.285 mmol), CuBr2 (0.0112 g, 0.05 mmol), and 4f-BiB (initiator) were first added into 

anhydrous DMSO (10 ml) in a flask. The molar ratio of the PEGMEA to the initiator (i.e., r) was 

varied from 400 to 2000 to obtain polymers with different molecular weights. Second, copper wire 

(7 cm) was polished by HCl and then added to the mixture with Me6TREN (62.4 pl). The solution 

was degassed for at least four freeze-pump-thaw cycles and then transferred to a water bath at 33 °C 

to initiate the polymerization under argon protection. Third, after a 90-min reaction, THF (30 ml) 

was poured into the flask to stop the reaction, and then the solution was precipitated in diethyl 

ether (50 ml). Finally, the precipitated polymer was dried using a rotary evaporator to remove the 

residual solvent and then dissolved in water or acetone for further use. The polymers are named 

HPEOx-r, where x is the mass percentage of the PEGDA in the monomers (including PEGMEA 

and PEGDA).
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The HPEO films (~300 pm) were prepared via a solution casting method. An acetone 

solution containing a desirable content of HPEO was cast in a Teflon petri dish and dried at 23C 

in the air for 48 h and then under vacuum for 8 h.

Preparation of TFC membranes. The membranes were prepared using a multi-step coating 

procedure. First, the PSF support was immersed in deionized (DI) water for 30 min with 

ultrasonication to remove the pore preservers, followed by sequential solvent exchange with IPA 

for 20 min and iso-octane for 1 h with ultrasonication. The support was then dried in the fume 

hood for further use.

Second, a PDMS solution was prepared by dissolving PDMS (2 g) and the catalyst (0.2 g) 

in hexane (2 g) and then polymerized at 60C for 1 h before the termination by adding cold hexane. 

The solution was diluted to 10 mass% and kept in a refrigerator before use. The gutter layer was 

formed by coating a solution containing 3 mass% PDMS on the PSF support using Gardo 

automatic drawdown machine. After drying with a heat gun for 3 min, the membrane was kept at 

60C for 2 h for the PDMS to fully cross-link. Finally, the HPEO layer was coated using a solution 

containing various amounts of HPEO in an IPA and water solution (96.5:3.5 by weight). The 

membrane was dried using the heat gun for 5 min to evaporate the solvents.

Synthesis of XLPEO2. XLPEO2 films were prepared by photopolymerization as the 

reference material for HPEO2 following a well-established method [14, 32]. DMSO was used to 

prepare the prepolymer solutions so that the procedure is consistent with the ATRP process. After 

the polymerization, the films were dried under vacuum at 50C for 48 h to evaporate the DMSO.

2.3 Determination of chemical and physical structures

1HNMR (500 MHz Varian Inova-500 spectrometer) was used to determine chemical 

structure of HPEO. The chemical shift peaks are shown below: 1H NMR (DMSO-d6): 5 6.32 (yH,
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cis CH2=CH), 6.18 (yH, ROOCCH=CH2), 5.92 (yH, trans CH2=CH ), 4.19 (2(y)H, 

RCOOCH2CH2O), 4.08 (8H, CH2COOCCH3CH3), 4.08 (2(x+y+2z)H, RCOOCH2CH2O), 3.62 

(4(x+y+z)H, RCOOCH2CH2O), 3.49 ((24x+48(y+z))H, OCH2CH2OCH2CH2OCH2CH2), 3.49 

(2(x)H, CH2OCH3), 3.22 (3(x)H, CH2OCH3), 2.42~2.12 ((x+y+z)H, CH2CH), 1.93~1.30 

(2(x+y+z)H, CH2CH), 1.05 (6H, RCOOCCH3CH3).

The molecular weight and polydispersity of the HPEO were analyzed using Viscotek Gel 

Permeation Chromatography (GPC) equipped with a VE-3580 refractive index detector (Malvern 

Panalytical, UK). VERTEX 70 Fourier transform infrared (FTIR) spectrometer (Billerica, MA) 

was used at ~23°C. Differential Scanning Calorimetry (DSC) of Q2000 (TA Instruments, New 

Castle, DE) was used to determine thermal transitions at temperatures from -90 to 60C at 20 C 

min-1 under N2 flow. Rigaku Ultima IV (Rigaku Corporation, Tokyo, JP) was used to collect wide- 

angle X-ray diffraction (WAXD) spectra. It scanned from 10° to 80° at 1° min-1, and the ^-spacing

is calculated by Bragg's equation:

Ad =
2 sind

(1)

where X is the wavelength of CuKa radiation (1.54 A), and 6 is the diffraction peak.

The film density (pP) was measured by Mettler Toledo XS64 and calculated using Equation

2[32,33]:

Pp =
ma

ma-mb Pl (2)

where MA is the film mass in the air, MB is the film mass in decane, and pL represents the decane 

density (0.73 g/cm3).

A micrometer of Starrett 2900 (L.S. Starrett Co., Athol, MA) was used to measure the film 

thickness. The films were first sandwiched between two microscope glass slides (150 pm) to avoid 

the tip penetration into the soft films (~300 pm). For the TFC membranes, the thickness of the
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HPEO and PDMS layer was determined using F20 Film Measurement Instrument (Filmetrics, San 

Diego, CA) [34]. The PSF support was first dissolved by dimethylformamide (DMF), and then the 

PDMS or HPEO/PDMS layer was transferred onto a silicon wafer and dried under vacuum for 2 

h before the thickness measurement by F20. The refractive index value was 1.47 for HPEO, 1.43 

for PDMS, and 1.63 for PSF [35-37].

A Field Emission Scanning Electron Microscope (FE-SEM) (Hitachi SU70, Tokyo, Japan) 

was used to obtain the cross-section images of TFC membranes. Gold nanoparticles were coated 

before the imaging. Atomic Force Microscopy (AFM) was used to determine sample surface 

roughness and modulus. A Cypher model ES atomic force microscope (Asylum Research, Santa 

Barbara, CA) was used in fast force mapping (FFM) mode. Roughness measurements were taken 

from the height channel scans that provided topography maps, and average modulus and adhesion 

values were taken from the modulus map and adhesion maps, respectively. These scans were 

conducted under photothermal excitation using a gold-coated FMR tip (Nanosensors, Switzerland). 

The JKR contact model was used to estimate elastic modulus at each pixel.

2.4 Determination of gas transport properties

A constant-volume and variable-pressure apparatus was used to determine pure-gas 

permeability (Pa) at a feed pressure of 10 - 30 psig and 35C [32]. Pure- and mixed-gas permeance 

of the TFC membranes was determined using a constant-pressure and variable-volume system at 

35 °C [33, 34]. For the mixed-gas test, gas mixtures were prepared by in-line mixing of pure gases, 

and the permeate was swept using helium. The composition of gas mixtures was determined using 

3000 Micro GC (Inficon Inc., Syracuse, NY). TFC membranes often have an unknown selective 

layer thickness (l), and thus the mixed-gas permeance for component A (Pa/1) can be calculated 

using Equation 3 [33]:
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Pa _-------- ^---------- (3)
^ xsweepAm (P2,A-Pi,a)

where S represents the sweep gas flow rate, Am is the membrane area, and xa and xsweep are the 

volume fraction of gas A and He in the sweep-out stream, respectively.

A dual-volume and dual-transducer apparatus was used to determine sorption isotherms of 

CO2 and C2H6 in polymers 1.39 cm3) according to a pressure decay method [38]. Gas solubility 

(Sa, cm3(STP) cm-3 atm-1) can be calculated using the following equation [39]:

$a _ ^a/Pa (4)

where Ca is the concentration of the gas dissolved in the polymer at pressure pA. Gas diffusion 

coefficient (DA) can be calculated according to the solution-diffusion model, as shown in Equation 

5:

Da _ Pa/$a (5)

3. Results and discussion

3.1 Synthesis and characterization of HPEO

Figure 1a illustrates the synthetic route of the HPEO2 by ATRP and an example 1H-NMR 

spectrum for HPEO2-800. The polymer demonstrates a strong chemical shift of ethylene oxide at 

3.49 ppm, a chemical shift at 3.22 for methyl groups, and peaks of 6.4 - 5.9 ppm, indicating a small 

number of unreacted vinyl groups. Other polymers have similar structures, as shown in Figure S1 

in the Supporting Information (SI).
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Figure 1. Synthesis and characterization of HPEOO and HPE02. (a) Synthetic route of the HPE02 
via ATRP, and 'H NMR spectrum of the HPEO2-S00. Effect of the r (molar ratio of PEGMEA to 
4f-BIB) on (b) Mn and (c) PDI for HPEOO and HPE02.

Figure lb,c compares the molecular weight (Mn) and polydispersity index (PDI) as a 

function of r in HPEOO and HPE02, respectively. For HPEOO, increasing the r value increases 

the molecular weight (cf. Table SI), while the PDI remains low at ~1.2, confirming the controlled 

polymerization by ATRP [28]. However, the polymers are too weak to form freestanding films, 

even for HPEO0-2000 with the highest Mn (384 kDa). By contrast, introducing 2 mass% PEGDA 

into the reaction mixture improves the mechanical strength of the polymers to form freestanding
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films, while the obtained HPEO2 can still be soluble in solvents. Interestingly, the HPEO2 shows 

lower Mn values than HPEOO at the same r values. Increasing the r value significantly increases 

the PDI for HPEO2, indicating a hyperbranched structure, which is consistent with the literature. 

For example, hyperbranched PEO prepared from PEGDA via ATRP showed Mw ranging from 45 

to 403 kDa and PDI varying from 3.2 to 8.8 [25, 27].

Figure 2a compares the WAXD patterns for XLPEO2 and HPEO samples. The XLPEO2 

exhibits a broad halo at 29 values of 21o, consistent with previous reports [40]. The HPEO samples 

show diffraction patterns similar to XLPEO2, indicating that they are amorphous at ~23°C. All 

polymers show the same ^-spacing value (4.2 A, as recorded in Table 1).
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238 Figure 2. Comparison of (a) XRD patterns, (b) DSC thermograms, and (c) FTIR spectra between
239 HPE02 and XLPE02.
240

241 Figure 2b compares DSC thermograms of XLPE02 and HPE02 films. All polymers

242 exhibit similar thermal transitions (cf. Table 1), including Tg, melting enthalpy (AHm),

243 crystallization temperature (Tc), and melting temperature (Tm). The Mn does not exert a significant

244 effect on the thermal transitions since all polymers have very high Mn values. The DSC

245 thermograms also confirm that the HPE02 samples are amorphous at ~23°C. Figure 2c compares

246 FTIR spectra of the HPE02 and prepolymer solution. The characteristic peaks for the acrylate
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groups in the PEGMEA and PEGDA (812, 1190, and 1410 cm-1) almost disappear after the 

reaction, indicating almost full conversion of the monomers [40].

Table 1. Comparison of physical properties of XLPEO2 and HPEO2 samples.

Properties XLPEO2 HPEO2-400 HPEO2-800 HPEO2-1200 HPEO2-1600

Mn (kg/mol) Infinite 142 192 222 198

PDI N/A 2.1 5.2 5.2 5.4

7m (°C) -4.2 -6.3 -3.3 -0.9 -3.4

T (°C) -42 -39 -47 -44 -44

AHm (J/g) 37 37 45 48 44

7; (°C) -66 -67 -69 -65 -66

^-spacing (A) 4.2 N/A 4.2 4.2 4.2

p? (g/cm3) 1.140±0.003 N/A 1.151±0.004 1.131±0.005 1.114±0.008

FFV 0.146 N/A 0.138 0.153 0.166

The density can be used to calculate the fractional free volume (FFV) of the polymers using 

Equation 6:

FEE = ^ (6)

where V means the polymer specific volume at the temperature of interest, and Vo is the specific 

occupied volume at 0 K, which is 1.3 times the van der Waals volume estimated using a group 

contribution method. Interestingly, the FFV values slightly increase with increasing Mn, 

presumably caused by the increased PDI and the rich end groups in these hyperbranched polymers 

[41].

3.2 Pure-gas transport properties of HPEO
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Figure 3a shows the pure-gas permeability of N2, CHa, Fh. and CO2 in HPE02-500. N2, 

CH4, and H2 show permeability independent of the feed pressure, indicating that the films are 

defect-free. CO2 permeability slightly increases from 510 to 540 Barrer with the pressure 

increasing from 10 to 40 psig because of the plasticization effect of CO2 [14, 40].

HPEO 2-800

* CO.

Pressure (psig)

(b) 15
HPEO 2-800

Pressure (atm)

(c) 2.5

CO 1C H

= 0.5 -

XLPE02 HPEO2-800 HPEO2-1200 HPEO2-1600

Figure 3. (a) Pure-gas permeability of N2, CFE, Fh, and CO2 in HPE02-500. (b) Pure-gas sorption 
isotherms of C2H5 and CO2 in HPE02-500 at 35°C. (c) Comparison of pure-gas CO2 solubility 
and CO2/C2H6 solubility selectivity in XLPE02 and HPE02-500.

Table 2 compares the C02/gas separation properties for XLPE02 and HPEO at 35°C. 

Increasing the molecular weight decreases the CO2 permeability from 540 to 450 Barrer while
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retaining the CO2/N2 selectivity of 45. The polymerization methods (ATRP and 

photopolymerization) do not significantly influence gas permeability.

Table 2. Comparison of CO2/gas separation properties of XLPEO2 and HPEO2 at 35°C and 30 
psig.

Polymers Pco2
(Barrer)

Pure-gas selectivity $co2
(cm3(STP) cm" 

atm-1)

3 A702 *106

(cm2 s-1)CO2/N2 CO2/CH4 CO2/H2

XLPEO2 560 47 16 12 1.7 2.5

HPEO2-800 540 43 14 11 1.8 2.3

HPEO2-1200 480 45 15 10 1.7 2.2

HPEO2-1600 450 45 15 12 1.7 2.0

Gas sorption isotherms of CO2 and C2H were measured at 35C. These polymers have the 

sorption of N2, CH4, and H2 too low to determine accurately using our apparatus. Therefore, C2H 

was used as a surrogate, as it does not have specific interactions with the ethylene oxide groups in 

these polymers [38, 40]. Figure 3b presents the sorption isotherms for C2H6 and CO2 in HPEO2- 

800, and the isotherms of other polymers are shown in Figure S2. Within the pressure range studied, 

the gas sorption isotherms are linear, and thus, Sa is calculated and recorded in Table 2. Figure 3c 

compares CO2 and C2H6 sorption behavior in XLPEO2 and HPEO2 at 35C. All polymers exhibit 

similar gas solubility coefficients because these polymers have similar chemical compositions, 

such as the content of the ethylene oxide groups [38]. By contrast, the CO2 diffusivity slightly 

decreases with increasing Mn (Table 2), despite the increased FFV. This can be partially ascribed 

to the increased softness with increasing Mn and thus the severer effect of the compaction caused 

by the feed pressure. However, the mechanical properties of the films were too weak to determine 

using our rheometer.

3.3 Fabrication and characterization of TFC membranes based on HPEO2-800
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The TFC membranes were fabricated using a multi-step coating procedure. First, a gutter 

layer of PDMS was coated on top of the pretreated PSF support due to its high gas permeability, 

excellent thin-film forming ability, and thus negligible gas transport resistance [7, 15, 42]. Second, 

HPEO2-800 with optimal CO2/N2 separation properties and mechanical properties was chosen as 

the selective layer material. The solvent of the coating solutions should have good wettability on 

the PDMS surface to obtain thin defect-free layers. Figure 4a presents the contact angles of 

different solvents with various degrees of hydrophilicity on the PDMS surface. IPA has a contact 

angle of 20o, indicating its excellent compatibility with PDMS, and therefore, it is used as the 

solvent for HPEO2. Additionally, 3.5 mass% water was added into the coating solutions to 

improve the solubility of HPEO2.
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Figure 4. Characterization of TFC membranes, (a) Contact angle of different solvents on the 
PDMS surface, (b) FTIR spectra of different layers of TFC membranes, (c) Impact of the HPE02- 
800 concentration on the selective layer thickness (cf. Table S2).

Figure 4b shows FTIR spectra of different coating layers. After coating the HPE02 on the 

PDMS layer, the characteristic peak of the ethylene oxide (1100 cm"1) appears, confirming the 

successful coating of the HPE02. Figure 4c demonstrates that increasing the HPE02 content in 

the coating solutions increases its layer thickness. The thinnest defect-free selective layer (506 ± 

44 nm) was fabricated using a 0.5 mass% coating solution.
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Figure 5a,b shows the cross-sectional SEM image of the PDMS/PSF and HPEO2- 

800/PDMS/PSF, respectively. The PDMS and HPEO2-800 layer has a thickness of -150 and -480 

nm, respectively, which are consistent with the F20 measurement results (PDMS: 145±50 nm, and 

HPEO: 506±44 nm). The PDMS gutter layer surface is smoothed out with an average roughness 

of 4.7 nm (Figure 5c). The average surface modulus is taken from the modulus map and has a 

value of 11 MPa (Figure 5e). It is stiffer than the bulk PDMS because of the substrate effect since 

the coating is so thin [43]. When HPEO2-800 is coated on the PDMS, the texture does not change 

much but still further smooths out, and the average roughness falls to 3.7 nm (Figure 5d). The 

amorphous HPEO appears to be very sticky, as noted by the increase in adhesion from an average 

of 12 to 75 nN (Figure 5g,h), and it does not behave elastically. Because of this, quantification of 

the surface modulus (Figure 5f) is unreliable. Nevertheless, the PDMS and HPEO/PDMS do show 

distinct surface property differences, confirming the successful coating of PDMS and HPEO.
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Figure 5. Comparison of the PDMS/PSF and HPE02/PDMS/PSF membranes. Cross-sectional 
SEM photos of (a) PDMS and (b) HPE02. AFM topography map of (c) PDMS and (d) HPE02. 
Modules map of (e) PDMS and (f) HPE02. Adhesion scans of (g) PDMS and (h) HPE02.

331 The PDMS/PSF displays CO2 permeance of 10,000 GPU and CO2/N2 selectivity of 10 at

332 35°C. While the selectivity is consistent with the literature (indicating that the PDMS layer is
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defect-free), the CO2 permeance is much lower than expected (25,000 GPU based on the CO2 

permeability of 3800 Barrer and the thickness of 150 nm) [44], which can be ascribed to the 

geometric restriction by the surface pore size and porosity of the PSF support [34, 45, 46].

Figure 6a presents the influence of the selective layer thickness on CO2 permeance and 

CO2/N2 selectivity of the TFC membranes at 35°C. As expected, increasing the selective layer 

thickness decreases gas permeance ((P/Z)M) and increases CO2/N2 selectivity, which is caused by 

the gutter layer with low selectivity and non-negligible gas transport resistance. Gas permeance 

can be described using the resistance-in-series model:

(^)m = (^)hpeo + (^)pdms (7)

where (1/P)hpeo and (1/P)pdms are the gas transport resistance (or the inverse of gas permeance) 

of the HPEO and PDMS layer, respectively. The resistance of the PSF support is negligible 

because of its extremely high gas permeance (such as 800,000 GPU for CO2).

Figure 6. (a) Pure-gas CO2/N2 separation performance of TFC membranes based on HPE02-800 
at 35°C. (b) Estimated CO2/N2 separation performance of the HPE02-500 selective layer based on 
Equation 7.
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Figure 6b presents the calculated permeability and selectivity for the HPEO selective layer 

by Equation 7. As expected, the HPE02 layer of the membranes exhibits similar CO2/N2

separation properties, which are also close to those of the freestanding films of HPE02.

3.4 CO2/N2 separation performance of TFC membranes

The membrane containing 506-nm HPE02-500 exhibits optimal CO2 permeance and 

CO2/N2 selectivity, and thus it was thoroughly evaluated with gas mixtures at different 

temperatures for typical flue gas streams. Figure 7a shows the influence of CO2 partial pressure on 

the mixed-gas permeance at 35°C. Two mixtures of CO2N2 (10:90 and 30:70) were used at a feed 

pressure of 1.4 atm, and the third mixture of CO2 N2 (15:85) was tested at 1.4 and 2.1 atm. 

Increasing the feed CO2 pressure has a negligible impact on CO2 permeance and CO2/N2 selectivity 

because of the low CO2 partial pressure and thus insignificant effect of plasticization.

CO :N 15:85

Temperature (°C)

: CO : N

30:7015:85 ■o—D

- 40 m

10:90

C02 partial pressure (atm)
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Figure 7. Excellent mixed-gas CO2/N2 separation performance in HPE02-500/PDMS/PSF. 
Influence of (a) CO2 partial pressure and (b) temperature on CO2/N2 separation properties. The 
curves in (b) are based on Equation 8. (c) Separation performance when tested with CO2/N2 (15:85) 
and 1.5 mol% water vapor at 2 atm and 35°C. (d) Comparison of HPE02 with state-of-the-art 
membranes for CO2/N2 separation, including Polaris [4], Pebax 2533/P21-1.5 [47], PIM-l@MOF
[48], PVA-g-POEM [49], Pebax/IL80 [50], Pebax/NPs [51], and P@MOF2ZPolyActive [52]. The 
upper bound is drawn, assuming that all the materials are fabricated into 1-pm selective layer. 
Details of these membranes are provided in Table S3.

Figure 7b presents the mixed-gas CO2/N2 separation properties at 25 - 60°C with a gas 

mixture of CO2/N2 (15:85), typical flue gas from coal-fired power plants. Decreasing the 

temperature decreases mixed-gas permeance and increases CO2/N2 selectivity, consistent with the 

behaviors of freestanding films [14]. For example, decreasing the temperature from 60 to 25°C 

decreases CO2 permeance from 1050 to 680 GPU and increases CO2/N2 selectivity from 20 to 50. 

Lowering temperature reduces the polymer chain mobility and thus gas diffusivity and increases 

CO2/N2 solubility selectivity due to the enhanced affinity of the polymer towards CO2. The effect 

of the temperature on gas permeability can be described using Arrhenius Equation [14]:

Pa = ^,oexP(-^r) (8)

where PA 0 is a front factor (Barrer), and EPA is the activation energy of permeation (kl/mol). The 

best fittings in Figure 7b yields the and EPA value of 10 kl/mol for CO2 , which is lower than N2
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(30 kJ/mol), consistent with the smaller kinetic diameter of CO2 than N2 and the literature [14]. As 

such, decreasing the temperature increases the CO2/N2 selectivity.

Flue gas often contains water vapor, which can be absorbed by the HPEO due to its 

hydrophilicity. Figure 7c presents the impact of the water vapor on the CO2/N2 separation 

properties. The membrane was initially exposed to CO2/N2 (15:85) at 2 barg and 35°C for 15 h. 

When 1.5 mol% water vapor was added to the feed, CO2 permeance decreases from 950 to 850 

GPU, and N2 permeance decreases from 36 to 32 GPU while the CO2/N2 selectivity remains at 

~27, presumably because of the increased selective layer thickness by water absorption, consistent 

with those in PEO [6, 39]. However, our apparatus does not allow us to monitor in situ the 

thickness of the selective layer in this multi-layer membrane. Though the real flue gas contains 

water vapor content higher than 1.5 mol%, the result indicates that the HPEO membrane shows 

stable separation performance with water vapor in 98 h. When tested again with the dry mixture, 

the CO2/N2 separation properties recover to the initial values, indicating the membrane stability. 

The membranes should be systematically tested with simulated flue gas containing higher water 

vapor pressure and real flue gas for long-term stability. However, it is beyond the scope of this 

study.

Figure 7d compares the HPEO2-800 with Robeson’s upper bound for CO2/N2 separation, 

assuming that all polymers can be fabricated into membranes with 1-gm selective layer. The 

HPEO2-800 membrane has pure-gas CO2 permeance of 1000 GPU and CO2/N2 selectivity of 39 

at 35C, surpassing the upper bound and superior to Pebax 2533/P21-4.3 with CO2 permeance of 

1330 GPU and CO2/N2 selectivity of 18 [47], and PIM-1@MOF with CO2 permeance of 1200 

GPU and CO2/N2 selectivity of 30 [48]. The HPEO2-800 membranes show CO2/N2 selectivity of 

51 at ~ 23C, comparable with a commercial membrane, Polaris™ [4]. In summary, the HPEO2-
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800 based membranes meet the requirement of the membranes for post-combustion carbon capture 

(CO2 permeance of 1000 GPU and CO2/N2 selectivity of 30), and the performance can be improved 

by lowering the thickness of the selective layer and the transport resistance of the gutter layer.

4. Conclusions

We demonstrate that soluble, amorphous, and high molecular weight PEO can be 

synthesized from acrylate-based monomers using ATRP and then fabricated into high- 

performance TFC membranes for post-combustion carbon capture. A series of HPEO0 and HPEO2 

with various molecular weight values were successfully synthesized. The HPEO2 shows better 

mechanical properties than HPEO0, and thus, HPEO2 is further investigated for gas transport 

properties. Compared with XLPEO2 prepared from photopolymerization, HPEO2 exhibits similar 

thermal transitions, free volume, and pure-gas transport properties. HPEO2-800 with CO2 

permeability of 540 Barrer and CO2/N2 selectivity of 43 was selected to fabricate TFC membranes. 

When challenged with simulated flue gas containing 1.5 mol% H2O for 100 h, the membrane 

shows stable mixed-gas CO2 permeance of 850 GPU and CO2/N2 selectivity of 37 at 35 C, which 

is close to the upper bound and comparable with the leading industrial membranes, demonstrating 

their potential for practical applications. The membranes will be tested with real flue gas for long­

term stability to move the technology beyond the laboratory. This work reveals a new route of 

preparing TFC membranes using state-of-the-art industrial manufacturing processes from 

conventional cross-linked polymers.
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