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Abstract 19 

Populations of cortical neurons generate rhythmic fluctuations in their ongoing spontaneous 20 

activity. These fluctuations can be seen in the local field potential (LFP), which reflects 21 

summed return currents from synaptic activity in the local population near a recording 22 

electrode. The LFP is spectrally broad and many researchers view this breadth as containing 23 

many narrowband oscillatory components which may have distinct functional roles. This view is 24 

supported by the observation that the phase of narrowband oscillations are often correlated 25 

with cortical excitability and can relate to the timing of spiking activity and the fidelity of sensory 26 

evoked responses. Accordingly, researchers commonly “tune in'' to these channels by 27 

narrowband filtering the LFP. Alternatively, neural activity may be fundamentally broadband 28 

and composed of transient, non-stationary rhythms that are difficult to approximate as 29 

oscillations. In this view, the instantaneous state of the broad ensemble relates directly to the 30 

excitability of the local population with no particular allegiance to any frequency band. To test 31 

between these alternatives, we asked whether the spiking activity of neocortical neurons in 32 

marmoset of either sex is better aligned with the phase of the LFP within narrow frequency 33 

bands, or with a broadband measure. We find that the phase of broadband LFP fluctuations 34 

provides a better predictor of spike timing than the phase after filtering in narrow bands. These 35 

results challenge the view of the neocortex as a system composed of narrow-band oscillators, 36 

and supports a view in which neural activity fluctuations are intrinsically broadband. 37 

Significance Statement: Research into the dynamical state of neural populations often 38 

attribute unique significance to the state of narrowband oscillatory components. However, 39 

rhythmic fluctuations in cortical activity are non-stationary and broad spectrum. We find that the 40 

timing of spontaneous spiking activity is better captured by the state of broadband fluctuations 41 

over any latent oscillatory component. These results suggest narrowband interpretations of 42 

rhythmic population activity may be limited, and broader representations may provide higher 43 

fidelity in describing moment-to-moment fluctuations in cortical activity. 44 
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Introduction 45 

Since the first human electroencephalogram (EEG) recordings by Hans Berger(Berger, 46 

1929), neuroscientists have inferred cortical function from the state of rhythmic fluctuations in 47 

neural population activity(Buzsaki, 2004; Wang, 2010). These brain rhythms are believed to 48 

arise from return currents generated by large scale spiking activity in cortical neural 49 

populations(Logothetis, 2003; Katzner et al., 2009; Buzsáki et al., 2012). When recorded 50 

intracranially with penetrating electrodes, rhythmic activity can be measured in the local field 51 

potential (LFP), which typically reflects neural signals arising within ~250 µM of the electrode 52 

tip(Katzner et al., 2009; Lindén et al., 2011). LFP fluctuations are spectrally broad, but are 53 

often thought to be composed of activity in narrow frequency bands correlated with distinct 54 

neural functions(Canolty et al., 2010; Einevoll et al., 2013; Friston et al., 2015). For example, in 55 

the visual cortex, alpha band rhythms (8-15 Hz) are thought to reflect feedback processes of 56 

suppression(Jensen and Mazaheri, 2010; van Kerkoerle et al., 2014) and have been shown to 57 

be attenuated with or modulated by attention(Worden et al., 2000),(Busch and VanRullen, 58 

2010). Beta band rhythms (15-30 Hz) have been linked to motor planning(Sanes and 59 

Donoghue, 1993; Rubino et al., 2006) and feedback regulation of excitability(Bastos et al., 60 

2015; Friston et al., 2015). Theta band (4-8 Hz) activity has been related to 61 

attention(Fiebelkorn and Kastner, 2019), working memory load(Jensen and Tesche, 2002) and 62 

hippocampal function(Buzsáki, 2002). Delta band (< 4 Hz) activity has been related to sleep 63 

and states of arousal(Sanes and Donoghue, 1993; Steriade et al., 2001; McGinley et al., 64 

2015). Higher frequency gamma activity (30-90 Hz) has been linked to local coordination in 65 

excitation and inhibition(Brunel and Wang, 2003; Bartos et al., 2007; Buzsáki and Wang, 66 

2012), attention(Fries et al., 2001, 2008; Gregoriou et al., 2009), memory(Pesaran et al., 2002; 67 

Colgin et al., 2009; van Vugt et al., 2010; Lundqvist et al., 2018), and perception(Singer and 68 

Gray, 1995; Panagiotaropoulos et al., 2012; Misselhorn et al., 2019), and has been used as a 69 

surrogate for measuring cortical activation(Crone et al., 2006; Ray et al., 2008a; Anon, 2013). 70 
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Oscillatory activity can be induced under certain conditions, such as the increased low 71 

frequency power that is observed in the EEG when eyes are closed(Berger, 1929; Geller et al., 72 

2014), optogenetically(Lu et al., 2015; Bitzenhofer et al., 2017; Zutshi et al., 2018), 73 

electrically(Contreras et al., 1997; Kirov et al., 2009; Escobar Sanabria et al., 2020), or 74 

pharmacologically as in the alpha oscillations that occur in medial prefrontal cortex under 75 

propofol induced anesthesia(Purdon et al., 2013; Flores et al., 2017; Bastos et al., 2021).  76 

It has been proposed that certain frequency bands play a privileged role in routing 77 

information among brain areas(Akam and Kullmann, 2010; Bonnefond et al., 2017; 78 

Khamechian et al., 2019). The idea that communication between brain areas occurs through 79 

oscillatory processes within narrow frequency bands bears similarity to a radio, where signals 80 

are broadcast within different frequency bands and a receiver can be tuned to receive 81 

them(Hoppensteadt and Izhikevich, 1998). For example, the idea of cross-cortical 82 

communication through coherence views synchrony in gamma oscillations as periods of 83 

coordination between pre- and postsynaptic groups so as to transmit signals about, for 84 

example, an attended stimulus while blocking competing inputs(Fries, 2015). These patterns of 85 

gamma-band synchronization are proposed to be regulated across cortical areas by top-down 86 

signals within a slower (8-20 Hz) frequency band(Bastos et al., 2015). Other theories posit that 87 

the LFP is composed of multiplexed oscillatory neural signals that are separate streams of 88 

information processing(Lisman and Idiart, 1995; Panzeri et al., 2010; Akam and Kullmann, 89 

2014; Tingley et al., 2018). If oscillatory activity in separate frequencies encodes distinct 90 

information channels, and the spiking activity of neurons are the fundamental units of 91 

information transmission in the nervous system, then the spiking activity of individual neurons 92 

should show preferential alignment of their spiking activity to oscillatory rhythms in order to 93 

“tune in'' to a channel of information(Canolty et al., 2010; Belluscio et al., 2012). There is 94 

evidence to suggest this can occur, as spikes have been found to preferentially align with the 95 
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phase of theta(Takahashi et al., 2014; Souza and Tort, 2017; Strüber et al., 2022), 96 

alpha(Haegens et al., 2011), gamma(Fries et al., 2001; Womelsdorf et al., 2007; Ray et al., 97 

2008b), and beta(Donoghue et al., 1998; Canolty et al., 2010) frequencies.  98 

An alternative view is that neurons spike with no preference for any particular 99 

narrowband frequency. Rather, spiking is modulated by the instantaneous state of fluctuations 100 

in the local population, which varies from moment to moment across a broad range of 101 

frequencies. Supporting this view is the observation that balanced excitation and inhibition 102 

creates fluctuating neural activity patterns in the awake state, which often exhibit 1/fɑ power 103 

spectra across a broad range of frequencies(Destexhe et al., 2001; Gao et al., 2017). Studies 104 

in humans have found that changes in cognitive state are associated with broad spectral 105 

changes in the EEG(Voytek et al., 2015). The membrane potential of individual neurons is 106 

correlated with the population fluctuations measured in the instantaneous LFP(Haider et al., 107 

2016), as opposed to any narrowband component, which suggests the broadband LFP is 108 

therefore informative about the instantaneous excitability of neurons in the population(Davis et 109 

al., 2020). Accordingly, previous work has found that spikes are weakly coupled to all 110 

frequencies of the broadband LFP(Martin and Schröder, 2016), and specific interactions in 111 

narrowband frequencies may at times be due to spurious artifacts from narrowband 112 

filtering(Scheffer-Teixeira and Tort, 2016).  113 

Even when approximately oscillatory activity may be transiently apparent in LFP 114 

recordings, it is difficult to describe the phase of neural fluctuations within a narrow range of 115 

frequencies because of their non-stationarity(Pesaran et al., 2018). LFP phase is a useful 116 

measure for tracking the state of neural fluctuations because it is indicative of the relative 117 

transition in the balance of excitation and inhibition with, for example, the falling phase 118 

reflecting a transition from inhibition to excitation, and the rising phase transitioning from 119 

excitation to inhibition(Atallah and Scanziani, 2009; Poo and Isaacson, 2009; Isaacson and 120 
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Scanziani, 2011; Teleńczuk et al., 2017). This is in contrast to amplitude measures, which can 121 

be ambiguous as the same negative voltage value could reflect neurons becoming more 122 

depolarized or more hyperpolarized depending on the signal history. Under this view, one can 123 

better characterize the state of neural populations from the phase of broadband fluctuations in 124 

LFP activity and neurons will show preferential alignment of their spiking activity to the 125 

broadband signal phase, not to any narrowband oscillatory phase.  126 

In order to ask whether neuronal spiking is better coupled to narrowband oscillations or 127 

broadband fluctuations during waking visual function, we compared spike-phase coupling after 128 

filtering the LFP in various filter bands. If the spiking probability of a neuron is phase-locked 129 

with the LFP within some frequency band, this is evidence that the neuron in question 130 

participates, to some degree, in oscillatory activity of the larger ensemble of neurons whose 131 

transmembrane currents give rise to that rhythm. If narrowband rhythms do reflect distinct 132 

information channels, then the phase of these oscillations should be particularly informative 133 

about the excitability of neurons participating in that oscillatory rhythm, and therefore the timing 134 

of their spontaneous spiking activity. Alternatively, if the excitability of the population is 135 

reflected in the phase of the broad spectrum fluctuations, then the spiking activity of neurons 136 

should be more poorly predicted by any individual oscillatory component and better predicted 137 

by the phase of the broadband LFP. Therefore, in this work we take the magnitude of spike-138 

phase coupling as a direct measure of the degree to which oscillatory activity reflects a discrete 139 

information channel.  140 

The ability to test between these alternatives has been limited, however, because the 141 

calculation of phase using the Hilbert Transform breaks down when the frequency content of a 142 

signal is too broad(Le Van Quyen et al., 2001). It had been infeasible to directly compare the 143 

relative phase-coupling of spiking activity to narrow- or broadband LFP signals without 144 

consideration of this potential confound. To overcome this technical limitation, we have 145 
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developed a measure of phase (Generalized Phase, GP)(Davis et al., 2020), a generalization 146 

of the Hilbert Transform that can be applied to spectrally broad signals, allowing us to directly 147 

compare narrow- and broadband phase estimates of cortical excitability. This enabled us to 148 

test whether the timing of spontaneous spiking activity in cortical populations is better aligned 149 

with the phase of classically defined narrowband oscillations, similar to channels on a radio, or 150 

is more tightly coupled to the phase of the broad ensemble of non-stationary components. In 151 

recordings made from the marmoset middle temporal (MT) extrastriate visual cortex, we find 152 

that spontaneous spiking is more strongly phase-coupled to the broadband LFP than to any 153 

individual narrow band. Thus, fluctuations in spontaneous neuronal spiking are not coupled 154 

preferentially to individual narrowband oscillations, but rather track with the instantaneous 155 

fluctuations of neural activity as they change from moment to moment. 156 

Materials and Methods 157 

Electrophysiology Recordings 158 

One male (monkey W) and one female (monkey T) marmoset monkey (Callithrix 159 

jacchus) was surgically implanted with a headpost for head stabilization and eye tracking. The 160 

headpost contained a hollow chamber housing an Omnetics connector for a Utah array 161 

(Blackrock Microsystems), which was implanted in a 7x10 mm craniotomy over area MT 162 

(stereotaxic coordinates 2 mm anterior, 12 mm dorsal). An 8x8 (64 channel, monkey W) and 163 

9x9 with alternating channels removed (40 channel, monkey T) Utah array was chronically 164 

implanted over area MT using a pneumatic inserter wand. The electrode spacing was 400 μM 165 

with a pitch depth of 1.5 mm. The craniotomy was closed with Duraseal (Integra Life Sciences, 166 

monkey W) or Duragen (Integra Life Sciences, monkey T), and covered with a titanium mesh 167 

embedded in dental acrylic. All surgical procedures were performed with the monkeys under 168 

general anesthesia in an aseptic environment in compliance with NIH guidelines. All 169 
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experimental methods were approved by the Institutional Animal Care and Use Committee 170 

(IACUC) of the Salk Institute for Biological Studies and conformed with NIH guidelines. Data 171 

used in this study was previously used in Davis et al., 2020. 172 

Marmosets were trained to enter a custom-built marmoset chair that was placed inside 173 

a faraday box with an LCD monitor (ASUS VG248QE) at a distance of 40 cm. The monitor was 174 

set to a refresh rate of 100 Hz and gamma corrected with a mean gray luminance of 75 175 

candelas/m2. Electrode voltages were recorded from the Utah arrays using two Intan RHD2132 176 

amplifiers connected to an Intan RHD2000 USB interface board. Data were sampled at 30 kHz 177 

from all channels. The marmosets were headfixed by a headpost for all recordings. Eye 178 

position was measured with an IScan CCD infrared camera sampling eye position at 500 Hz. 179 

Stimulus presentation and behavioral control was managed through MonkeyLogic(Asaad et al., 180 

2013) in Matlab. Digital and analog signals were coordinated through National Instrument DAQ 181 

cards (NI PCI6621) and BNC breakout boxes (NI BNC2090A). Neural data was broken into two 182 

streams for offline processing of spikes (single-unit and multi-unit activity) and LFPs. Spike 183 

data was high-pass filtered at 500 Hz and candidate spike waveforms were defined as 184 

exceeding 4 standard deviations of a sliding 1 second window of ongoing voltage fluctuations. 185 

Artifacts were rejected if appearing synchronously (within 0.5 ms) on over a quarter of all 186 

recorded channels. Segments of data (1.5 ms) around the time of candidate spikes were 187 

selected for spike sorting using principal component analysis through the open source spike 188 

sorting software MClust in Matlab (A. David Redish, University of Minnesota). Sorted units 189 

were classified as single- or multi-units and single units were validated by the presence of a 190 

clear refractory period in the autocorrelogram. LFP data was low-pass filtered at 300 Hz and 191 

down-sampled to 1000 Hz. 192 

Fixation Behavior 193 
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The marmosets were trained to saccade to a marmoset face to initiate each trial. Upon 194 

the gaze arriving at the face, it disappeared and was replaced with a white fixation point (0.15 195 

DVA). The marmosets held fixation on the fixation point (1.5 visual degree tolerance) for a 196 

minimum duration (400 ms monkey W, 300 ms monkey T) awaiting the appearance of a drifting 197 

Gabor target (4 DVA diameter; appearing 6-7 DVA eccentricity at 1 of 2 equally eccentric 198 

locations in the visual field contralateral to the recording array). Spontaneous data were 199 

analyzed from the period of fixation preceding the appearance of a target and excluding the 200 

initial 100 ms following fixation initiation. Early fixation breaks (defined by the excursion of the 201 

eye position from the fixation window) were excluded from analysis. 202 

Free-viewing Natural Scenes 203 

Marmosets were headfixed and their gaze monitored as in the previous task. Grayscale 204 

versions of naturalistic images (spanning 20-30 DVA) were randomly interleaved and 205 

presented to the monkey. The monkey was free to look at the images, and after 10 seconds 206 

was given a juice reward. Visual activity was analyzed as in the spontaneous fixation data 207 

excluding a 250 msec window around the times of saccades. Saccades were defined as 208 

velocity peaks exceeding 25 degrees per second. The time of saccade was taken from the 209 

peak velocity after threshold crossing. Velocity was calculated from the absolute value of the 210 

first numerical derivative of the smoothed vertical and horizontal eye traces (5 ms sliding 211 

Gaussian). We excluded from our analysis spikes that occurred from 50 ms before to 200 ms 212 

after detected saccades. Multi-unit spiking activity from two recording sessions in Monkey T 213 

and one session in Monkey W (N = 142 units) were combined and analyzed as there was no 214 

significant difference in SPI effects between the monkeys (p = 0.10; Wilcoxon rank-sum test). 215 

Spike Artifact Elimination 216 
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In order to eliminate spike artifacts from the LFP, we applied a de-spiking algorithm first 217 

described in Zanos et al. 2011(Zanos et al., 2011). The goal of the algorithm is to eliminate the 218 

contribution of spike waveforms to the signal that, after being down-sampled and low-pass 219 

filtered, constitutes the LFP. The algorithm assumes the LFP is based on the measured 220 

wideband voltage trace recorded from the electrode (𝑦) which is composed of a low-frequency 221 

signal (the LFP, 𝑤), high-frequency spike components 𝜂௞, an offset 𝜇, and white noise ε.  222 

Eq. 1: 223 

𝑦 ൌ 𝑤 ൅ ෍ 𝜂௞ ൅ 𝜇 ൅ 𝜀

௠

௞ୀଵ

 

Here, 𝑚 is the number of spikes for 𝑘th neuron 𝑘. The high-frequency component of 𝑘 is the 224 

convolution of the spike train 𝑠௞ and the spike waveform ф௞ 225 

Eq. 2: 226 

𝜂௞ ൌ  ф௞ ∗ 𝑠௞ 

 227 

Rather than using a spike-triggered average (STA) approach to generate a mean template of 228 

the spike waveform which is subtracted at the time of each spike, the algorithm optimally 229 

estimates the local field potential w, each spike waveform ф௞, and the offset μ which adjusts for 230 

the fact that spike waveforms tend to be negative.  231 

 232 

The first assumption is that the LFP is smooth with most of its power in the lower frequencies 233 

Eq. 3: 234 

𝑝ሺ𝑤ሻ ൌ Νሺ0, 𝛾ଶΓሻ 

 235 

𝑁ሺ𝑎, 𝛴ሻ represents a multivariate Gaussian with mean 𝑎 and covariance 𝛴. Γ is a matrix 236 

representing the assumption of smoothness. Multiplying with some vector 𝑥 (i.e. Γ𝑥) produces 237 
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a low-pass filtered version of 𝑥. 𝛾 controls the strength of the prior. The second assumption is 238 

that 𝜀 is generated by a white noise process 𝑝ሺ𝜀ሻ ൌ  Νሺ0,2Iሻ. The final assumption is that the 239 

spike waveforms ф௞ lie in a subspace B where 𝜑௞ ൌ 𝐵ф௞ and the spike waveforms are 240 

described in a 1.5 ms interval around the peak depolarization. Bayesian inference was used to 241 

obtain maximum a posteriori (MAP) model parameters for the LFP 𝑤, the spike waveforms ф௞, 242 

and the offset μ. By Bayes’ theorem, the log-posterior model is 243 

Eq. 4: 244 

𝑝൫𝑤, ф௞, 𝜇ห𝑦൯ ∝ p൫yหw, ф௞, 𝜇൯ 𝑝ሺ𝑤ሻ ൌ 𝑘𝑒𝑥𝑝 ቎െ
1

2𝜎ଶ ෍ ൭𝑦 െ 𝑤 െ ෍ 𝜂௞ െ 𝜇ሻ

௠

௞ୀଵ

൱
௜

ଶ

െ
1

2𝛾ଶ 𝑤Γିଵ𝑤
௜

቏ 

where 𝑘 is a constant factor. The partial derivatives with respect to the parameters are set to 0 245 

and the log of this expression provides the MAP estimates of the parameters 𝑤ഥ , 𝜑ത௞, and 𝜇̅. 246 

Eq. 5: 247 

𝑤ഥ ൌ ሺ𝛾ଶΓ ൅ 𝜎ଶ𝐼ሻିଵ𝛾ଶΓ ൥𝑦 െ ෍ 𝑠௞

௞

∗ ൫𝐵𝜑ത௞൯ െ 𝜇̅൩ 

𝜑ത௞ ൌ ൫𝑠௞ ∗ 𝐵൯ ൅ ቎𝑦 െ 𝑤ഥ െ ෍ 𝑠௝

௝ஷ௞

∗ ൫𝐵𝜑ത௝൯ െ 𝜇̅቏ 

𝜇̅ ൌ
1
𝑛

෍ ൥𝑦 െ 𝑤ഥ െ ෍ 𝑠௞

௞

∗ ൫𝐵𝜑ത௞൯൩
௞

 

An implementation of this algorithm in MATLAB is available from the original authors’ website 248 

(http://apps.mni.mcgill.ca/research/cpack/lfpcode.zip). 249 

Generalized Phase 250 

We calculated Generalized Phase (GP) as described previously(Davis et al., 2020). The 251 

purpose of GP is to mitigate the breakdown of the analytic signal representation for spectrally 252 

broad signals. As an initial step in the GP representation, then, we filter the signal within a wide 253 

bandpass (i. e. 5-50 Hz; 4th-order zero-phase Butterworth filter), excluding low-frequency 254 
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content that contributes to origin offsets in the complex plane that distort the estimate of phase 255 

angles for higher frequency signals. We then use the single-sided Fourier transform 256 

approach(Johansson, 1999; Marple, 1999) on the wideband signal and compute phase 257 

derivatives as finite differences, which are calculated by multiplications in the complex 258 

plane(Feldman, 2011/4; Muller et al., 2014, 2016). High-frequency intrusions appear in the 259 

analytic signal representation as complex riding cycles(Feldman, 2011/4), which manifest as 260 

periods of negative frequencies in the analytic signal representation. As a secondary step we 261 

then numerically detect these complex riding cycles (Nc points of negative frequency) and 262 

utilize shape-preserving piecewise cubic interpolation on the next 2Nc points following the 263 

detected negative frequency epoch. The resulting representation captures the phase of the 264 

largest fluctuation on the recording electrode at any moment in time (Fig. 1f), without the 265 

distortions due to the large, low-frequency intrusions or the smaller, high-frequency intrusions 266 

characteristic of the 1/f-type fluctuations in cortical LFP(Pereda et al., 1998; Linkenkaer-267 

Hansen et al., 2001; Milstein et al., 2009). All phase estimates of filtered LFP segments were 268 

calculated using the GP algorithm. 269 

Spike-phase coupling 270 

3 second LFP epochs centered on the period of fixation were analyzed during the 271 

fixational behavioral task. The LFP segments were filtered (4th-order zero-phase Butterworth 272 

filter with varying filter bandwidths depending on the analysis condition) and spike-phase 273 

coupling was calculated over epochs of fixation excluding the initial 100 ms following fixation 274 

initiation. The degree of spike-phase coupling was measured as the mean resultant vector 275 

length for the LFP phase distribution collected at the time of observed spikes. This measure 276 

was calculated using the circ_r function in the Circular Statistics Toolbox for Matlab(Berens, 277 

2009). The mean resultant vector r of the spike phase distribution is the normalized sum over 278 

complex exponentials of the phase angles  279 
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Eq. 6: 280 

𝑟 ൌ  
1
𝑀

෍ 𝑒௜ః௝

ே

௝

 

where M is the number of spikes, and the modulus of r ( ) represents the degree of 281 

spike phase modulation. The closer the value is to 0, the more uniform the phase distribution. 282 

The closer the value is to 1, the more concentrated the phases. 283 

Filtered-Raw LFP Signal to Noise Ratio (SNR) 284 

We calculated the signal to noise ratio (SNR) in dB by computing the ratio of the 285 

summed squared magnitude of the filtered LFP (in either theta (4-8 Hz), alpha (8-15 Hz), beta 286 

(15-30 Hz) low gamma (30-50 Hz) or the wideband (5-50 Hz) filter) to the summed squared 287 

magnitude of the broadband 1-100 Hz LFP. The SNR was calculated over a window 288 

corresponding to approximately a single cycle of the mean frequency of each filter band (150 289 

ms, 75 ms, 50 ms, 25 ms, and 50 ms respectively). The tested window was slid by 1/5th the 290 

window width over the entire fixation period. Only spike times that occurred in a window that 291 

exceeded -5 dB SNR was included in the SPI calculation for that narrowband filter. 292 

Generalized Linear Model (GLM) Analysis 293 

In order to compare the relative predictive power of spike timing between multiple 294 

narrow and a single wideband measure of LFP phase (GP), we tested GLMs trained to predict 295 

the likelihood of spiking activity. In particular, both GLMs were trained using LFP phases 296 

recorded at points in time when spikes occurred and an equal size sample of LFP phases, 297 

selected at random, when no spike occurred. The first model used as predictors the phase at 298 

the time of each spike or non-spike for (1) theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), and 299 

low gamma (30-50 Hz) narrowband filtered LFP. The second model used a single predictor: the 300 

narrowband beta phase (15-30 Hz), and the third model also used a single predictor: the 301 
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wideband (4-50 Hz) LFP GP computed on the same training set. In order to linearize the 302 

circular phase variables we used the sine and cosine of each phase value as separate 303 

predictors(Cremers and Klugkist, 2018), resulting in 8 predictors for the narrowband model and 304 

2 predictors for the single narrow and wideband models.  305 

Eq. 7: 306 

 𝑌௜ ൌ  𝜅଴ ൅ 𝜅ଵ sinሺ𝜑ఏሻ ൅ 𝜅ଶ cosሺ𝜑ఏሻ ൅ 𝜅ଷ sinሺ𝜑ఈሻ ൅ 𝜅ସ cosሺ𝜑ఈሻ ൅ 𝜅ହ sin൫𝜑ఉ൯ ൅ 𝜅଺ cos൫𝜑ఉ൯ ൅307 

𝜅଻ sin൫𝜑ఊ൯ ൅ 𝜅଼ cos൫𝜑ఊ൯  308 

 309 

Single narrowband GLM: 310 

Eq. 8: 311 

𝑌௜ ൌ  𝜅଴ ൅ 𝜅ଵ sin൫𝜑ఉ൯ ൅ 𝜅ଶ cos൫𝜑ఉ൯ 

 312 

Single wideband GLM: 313 

Eq. 9: 314 

𝑌௜ ൌ  𝜅଴ ൅ 𝜅ଵ sinሺ𝜑ௐ஻ሻ ൅ 𝜅ଶ cosሺ𝜑ௐ஻ሻ 

Where the model output Yi for the phases at time sample i is determined by the coefficients on 315 

the sine and cosine of the filtered LFP phase. The GLM was fitted using a binominal logit link 316 

function to relate changes in the phase predictor variables to the binary output variable at each 317 

time sample (spike or no spike). GLMs were fit to half the data in each data set (N = 20 across 318 

2 monkeys) and the predictor coefficients were tested on the other half of the data. The 319 

predictive power of each GLM was evaluated by measuring the area under the curve (AUC) for 320 

the receiver-operator characteristic (ROC) curve generated by comparing each model output’s 321 

true spike hit rate to the spike false alarm rate given the model output. 322 

Simulated spike and LFP generation 323 
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In order to generate surrogate spiking and LFP data, we first generated a normal 324 

distribution of random frequency values with a mean of 10 Hz and a standard distribution of 1 325 

Hz. We then generated a 100 second sinusoidal signal whose frequency drifted with random 326 

draws from the frequency distribution. In the case where spikes were generated from the phase 327 

of this narrowband signal, we first filtered this signal between 8-15 Hz and used the phase to 328 

generate spike times. We also generated a broadband noise signal generated from a Gaussian 329 

distribution with mean of 0 and a standard deviation of 1 whose power spectrum followed a 1/f 330 

power-law(Kasdin, 1995). In the case where spikes were generated from the phase of the 331 

broadband signal, the drifting sinusoidal and pink noise signals were summed in the frequency 332 

domain and transformed back into the temporal domain and filtered between 1-100 Hz. The 333 

combination of the sinusoidal signal and the noise signal made up our surrogate LFP signal, 334 

which was identical between the alternative spike generating conditions.  335 

Spike times were generated using a phase-dependent Poisson spike generator. The 336 

phase-dependent spiking probability was defined with a circular-linear function across 21 337 

phase bins with a 0% spiking probability at 0 rad phases and a 1% spiking probability at ±𝛑 rad 338 

phases. At each millisecond in time, a random value was drawn from a Poisson distribution 339 

whose lambda corresponded to the probability of a spike occurring at the phase of either the 340 

sinusoidal (narrowband hypothesis) or surrogate LFP (broadband hypothesis) signal at that 341 

millisecond. Any drawn value that exceeded 0 produced a single spike time. The relative 342 

phase-dependent spike probabilities produced irregular spike trains with mean firing rates 343 

roughly between 5-6 Hz in both conditions. The calculation of spike-phase coupling was 344 

performed identically as to that in the recorded data. The surrogate LFP was filtered in either 345 

narrow or wide filters and the GP was drawn at the time of each spike to generate spike-phase 346 

distributions. 347 

Statistical Analysis 348 
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Statistical tests used in this study include the parametric pair-wise student’s t test, the 349 

non-parametric Wilcoxon signed-rank test, and Wilcoxon rank sum test. Two monkeys were 350 

used in this work. No power analyses were performed as the number of monkeys used 351 

followed with standard conventions to reduce the number of primates required for neuroscience 352 

research. All results were consistent across both monkeys and were therefore collapsed for 353 

analysis. Individual measurements within N = 20 recording session were averaged and 354 

statistical tests were performed on the averages across recording sessions.  355 
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corresponding author upon reasonable request. 363 

Code Availability: An open-source code repository for the Generalized Phase algorithm is 364 

available on http://mullerlab.github.io. 365 

Results  366 

We measured spike-phase coupling for single- and multi-unit spiking activity across 367 

traditional narrowband and broadband filtered LFP signals. Spiking activity and LFP data were 368 

previously recorded from chronically implanted multielectrode arrays (Utah array, Blackrock 369 

Microsystems) in Area MT of two common marmosets (Callithrix jacchus; 10 recording 370 

sessions in each monkey) as they fixated a point on an otherwise blank screen (gray 371 

background, 75 candela/m2; Figure 1a), awaiting the appearance of a faint visual target during 372 

a challenging visual detection task(Davis et al., 2020). Similar experimental paradigms have 373 

been used to study the relationship between pre-stimulus oscillatory phase and sensory 374 
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processing and behavioral performance(Busch et al., 2009; Balasubramanian et al., 2020; 375 

Zareian et al., 2020). The raw LFP (filtered from 1-100 Hz) sporadically exhibited rhythmic 376 

fluctuations across a range of timescales, but there was not a clear peak in the power spectral 377 

density that would be consistent with a clear and consistent oscillatory component (Figure 1b).  378 

The LFP during periods of fixation was filtered in classically defined frequency bands—379 

theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), and low gamma (30-50 Hz)—or in a wideband 380 

filter that spanned all of these narrow bands from 5-50 Hz (Figure 1c-g). The bounds of the 381 

wideband filter were selected to exclude low frequency fluctuations (< 5 Hz) that are 382 

associated with slow changes in arousal(Steriade et al., 2001; Petersen et al., 2003), and high 383 

frequency components that may be contaminated by spiking artifacts and could, therefore, 384 

induce spurious spike-LFP correlations(Ray et al., 2008a; Zanos et al., 2011). However, it 385 

could be possible spiking artifacts exist at sub-50 Hz frequencies, which could, in principle, 386 

bias our estimate of the relationship between spiking activity and LFP phase in our broadband 387 

representation. To mitigate this potential confound, we performed a “de-spiking” procedure on 388 

the data as described in Zanos et al. 2011(Zanos et al., 2011). This removes spike waveforms 389 

from the raw (30 KHz) recorded electrode data signals through spike-waveform subtraction and 390 

interpolation before downsampling and filtering into the LFP. Any remaining relationship 391 

between the phases of sub-50 Hz activity in any frequency band must therefore be due to an 392 

indirect relationship between the population currents that give rise to the LFP and individual 393 

neuronal spiking, and not the direct contribution of that spike occurring itself.  394 

If spiking activity is either organized into oscillations, giving rise to narrowband 395 

fluctuations in the LFP, or if LFP oscillations reflect population-wide subthreshold fluctuations 396 

that modulate the probability of spiking within a particular band, then spikes should tend to be 397 

aligned in phase with the LFP, within these frequency ranges. Alternatively, if no individual 398 

rhythmic component of the LFP dictates the excitability of neurons, but rather the precise, 399 
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moment-by-moment fluctuations of the LFP reflect the state of the population, we would expect 400 

spikes to occur more often at phases of the broadband LFP that correspond to states of 401 

depolarization across the local population, regardless of frequency.  402 

To test these competing hypotheses, we measured the phase of each filtered LFP 403 

signal at the times of multi-unit spiking activity. Phase is conventionally measured for 404 

oscillatory or spectrally narrow signals by calculating the analytic signal(Feldman, 2011/4; 405 

Marple, 1999), where instantaneous amplitude and phase can be expressed in polar 406 

coordinates and whose real and imaginary parts are related to each other by the Hilbert 407 

Transform. However, for spectrally broad signals, the standard computational implementations 408 

break down(Le Van Quyen et al., 2001). Low frequencies can shift the analytic signal 409 

representation by a constant in the complex plane, distorting the estimated phase angle. In 410 

addition, high frequency intrusions introduce complex riding cycles that generate phase 411 

reversals and appear as negative frequencies which distort the analytic signal. To address 412 

these problems, we introduced an updated approach to the analytic signal representation, 413 

termed “generalized phase” (GP)(Davis et al., 2020). Briefly, in this approach we first impose a 414 

high-pass cutoff on the signal (5 Hz). This step aims to eliminate low-frequency intrusions, 415 

while also preserving a significant portion of the signal spectrum and minimizing waveform 416 

distortion. Second, we identify negative frequencies, which can arise from high-frequency 417 

intrusions, and remove them, replacing the phase values with shape-preserving interpolation. 418 

This approximates the continuation of the dominant fluctuation’s trajectory. The result, after 419 

filtering, is an estimate of phase that tracks with the dominant frequency component of the LFP 420 

as it shifts over time (Figure 2a) while minimizing phase distortions that arise due to 421 

narrowband filtering a non-stationary broad spectrum signal such as the raw LFP(Yael et al., 422 

2018). All results reported here, for both broadband and narrowband filtered data, were 423 

computed using GP. Low- and high-frequency intrusions are rare in narrowband filtered signals 424 
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so, for narrowband filtered data, computation of GP should yield very similar phase estimates 425 

to those estimated using the Hilbert transform. To confirm this, all analyses were repeated for 426 

narrowband filtered signals using the Hilbert Transform. As expected, the results were virtually 427 

identical. All future mentions of phase therefore refer to the GP of the signal.  428 

The phase of the wideband filtered signal is strongly coupled to the timing of measured 429 

multi-unit spiking activity (Figure 2b). We measured an index of the coupling of spikes to each 430 

filtered LFP by calculating the mean resultant length of the circular spike-phase distribution. 431 

This spike-phase coupling index (SPI) value ranges from 0 (uniform spike-phase distribution) to 432 

1 (spikes perfectly coupled to a single phase), and for the 5-50 Hz wideband filtered signal, the 433 

average SPI was 0.15 ± 0.009 S.E.M. (N = 20 sessions across 2 monkeys). The wideband 434 

filtered SPI was significantly stronger than the coupling observed after filtering in theta (SPI = 435 

0.08 ± 0.005; p < 1x10-9; two-tailed paired sample t-test), alpha (SPI = 0.07 ± 0.005; p < 1x10-436 

10), beta (SPI = 0.11 ± 0.007; p < 1x10-11) or gamma (SPI = 0.08 ± 0.009; p < 1x10-9) frequency 437 

bands (Figure 2c-f). These results suggest that the instantaneous rhythmic state of neuronal 438 

excitability is better reflected in the phase of the ensemble LFP activity rather than in the phase 439 

of any particular narrowband subcomponent.  440 

If oscillations reflect information streams analogous to channels on a radio, then it could 441 

be the case that some neurons are more coupled to one embedded oscillation and other 442 

neurons are more coupled to a different oscillation, and that by collapsing across multiunit 443 

activity the phase-dependence of the spiking activity is diluted for each narrowband filter. If 444 

true, we might find stronger spike-phase coupling for the wideband filter across the populations 445 

even though individual neurons are best coupled to different narrowband oscillations. To test 446 

this, we measured the spike-phase coupling across filters for well-isolated single units in our 447 

recordings. We did not find any evidence of differential preference across neurons for 448 

narrowband signals. Rather, the majority of neurons had a stronger SPI to the state of the 449 
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wideband signal as compared to theta (78.50%, N = 107 single units; Figure 3a), alpha 450 

(78.50%, Figure 3b), beta (83.18%, Figure 3c), or gamma (85.98%, Figure 3c) filtered signals. 451 

Additionally, for the minority of neurons that did show stronger SPI to a narrowband filtered 452 

signal, they were more weakly coupled in general (average SPI = 0.09) and did not show 453 

specific preference to any one narrowband frequency. Thus, variable population phase-454 

coupling to narrowband signals could not explain why the wideband filtered signals exhibit 455 

stronger spike-phase coupling.  456 

One possibility is that spike timing is only governed by each narrowband oscillation 457 

when that oscillation is strongly present in the data, and as each oscillation is only transiently 458 

present, it is unfair to expect, for example, gamma to predict spike timing when gamma is not 459 

present in the data. To test this we restricted our analysis to only count spikes for each 460 

frequency band at times when there is strong oscillatory power in that band. To do this we 461 

calculated the signal-to-noise (SNR) ratio between the filtered and raw (1-100 Hz) LFP and 462 

identified epochs where the narrowband signal exceeded a -5 dB threshold for at least 1 cycle 463 

of the center frequency of the filter bandwidth. Only spikes that occurred during these epochs 464 

were included for that narrowband’s SPI measure. Despite restricting each filter band to spikes 465 

that occur when those oscillations are transiently apparent in the data, the wideband measure 466 

still captures the strongest SPI values (Figure 4a; wideband mean SPI = 0.16 ± 0.010 S. E. M. 467 

as compared to theta: 0.11 ± 0.010, alpha: 0.08 ± 0.005, beta: 0.12 ± 0.010, and gamma: 0.09 468 

± 0.005; p < 0.001, Wilcoxon signed-rank test), while also describing a majority of the recorded 469 

data (approximate fraction above dB threshold; wideband: 92% vs. theta: 16%, alpha: 46%, 470 

beta: 42%, and low gamma: 19%). 471 

Thus, spike timing is better predicted by broadband phase than narrowband phase for 472 

any of the bands tested. We next asked how well spike timing could be predicted based on the 473 

combination of all four narrowband filtered signals. To test this we constructed a generalized 474 
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linear model (GLM) that took as its input the phase values measured over the four narrow band 475 

frequencies (spanning 4 to 50 Hz) at times when a spike occurred and an equal number of 476 

randomly drawn times when no spike occurred. The GLM was trained to predict whether or not 477 

a spike occurred, based on the four phases. The model was trained on half the data in each 478 

recording session, with the remaining data held out as a test set. The model’s ability to predict 479 

spiking was measured using Receiver Operator Characteristic (ROC) analysis.  480 

We reasoned that if oscillatory activity across the multiple narrow bands drives spiking 481 

activity, the four-factor GLM, which has simultaneous access to the phases of all four 482 

oscillatory signals, should predict spiking better than a GLM trained to predict spiking based on 483 

the phase computed in an individual band (four-factor GLM AUC = 0.578 ± 0.004 S. E. M.; 484 

single narrowband GLM AUC = 0.545 ± 0.003 S. E. M.; p = 0.00009. Wilcoxon signed-rank 485 

test). This analysis shows that more information about spiking is present across multiple 486 

bands. This is consistent with two different hypotheses. The first is that the narrow bands 487 

capture the individual contribution of oscillations that fall within each band, and the four factor 488 

GLM reflects the joint contributions of these oscillatory drivers. An alternative hypothesis is that 489 

the processes that drive spiking activity fluctuate over time in their power spectrum, and spiking 490 

activity follows these fluctuations over time, regardless of where they travel in frequency. If the 491 

first hypothesis is true, the four-factor GLM, which has access to the phase within each band, 492 

should perform better than a single-factor broadband GLM, which is provided with a single 493 

measure of phase that is blind to the interactions across the same frequency space. If the 494 

second hypothesis is true, the single-factor broadband GLM, which uses a measure of phase 495 

that tracks with the dominant LFP frequency as it changes over time, should do as well as the 496 

four-factor GLM.  497 

To test this, a GLM was trained on the same data that was used to train the four-factor 498 

GLM, but instead of providing it with four phases computed within the four narrow bands, it was 499 
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trained using only a unitary measure of phase – GP applied to the wideband (4-50 Hz) signal 500 

as its input, and its ability to predict spiking was measured using the same ROC analysis. As 501 

shown in Figure 4b, there was no significant difference in the ability of the combined 4 502 

narrowband or one wideband GLM to predict spike times as defined by the area under the 503 

curve for each session’s ROC (wideband mean AUC = 0.579 ± 0.005 S. E. M.; p = 0.16, 504 

Wilcoxon signed-rank test). Thus, even when combining signals across multiple frequency 505 

bands, narrowband filtering adds no information beyond what is already present in the phase of 506 

the momentarily dominant fluctuation in the LFP preserved in the wideband representation and 507 

as measured using generalized phase.  508 

Our results suggest spontaneous neuronal spiking in the neocortex is not organized by 509 

oscillatory activity, but rather is modulated by fluctuations in synaptic activity that can be 510 

estimated from the instantaneous phase of the broadband LFP. If true, then SPI values should 511 

be correlated with how much filtering alters the LFP phase relative to the raw recorded LFP. To 512 

test this, we compared the strength of spike-phase coupling to each band pass filtered signal 513 

with the degree of correlation between the LFP signal before and after filtering (Figure 4c). 514 

There was a significant positive correlation between SPI and the raw-filtered LFP correlation 515 

across recording sessions ((Pearson’s r = 0.65 ± 0.11 95% CI, p < 1x10-12), suggesting a direct 516 

relationship between spike-phase coupling and how well the filtered LFP tracked with the raw 517 

LFP.  518 

If spikes are more coupled to the broadband LFP than any embedded narrowband 519 

oscillation, then the optimal filter band for maximizing SPI should be one that is as broad as 520 

possible. To test for an optimal filter band, we scanned across a large parameter space varying 521 

the lower and upper bounds of the band pass filter. The lower bound ranged from 1 to 50 Hz 522 

and the upper bound ranged from 5 to 125 Hz with a minimum bandwidth of 4 Hz. Consistent 523 

with our prior results, the strongest spike-phase coupling was observed for filters that included 524 
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the largest width of the signal spectrum, with an exception for the lowest frequencies (Figure 525 

4d). These results indicate optimal filters for maximizing spike-phase coupling estimates span 526 

from 3 Hz in the lower band and as high as we sampled in the upper band (125 Hz), assuming 527 

spike-artifacts are effectively removed from high frequency components in the LFP. If not, a 528 

cautious step then is maintaining a low-pass filter which serves to help mitigate spurious 529 

coupling values due to residual spike artifacts in higher frequencies.  530 

Spiking activity can bleed into the LFP, artifactually inflating estimates of spike-phase 531 

coupling in high frequency bands. Spike artifacts may be responsible for some gamma phase 532 

relationships with spiking activity, as the contribution of spike artifacts in the LFP had been 533 

previously observed down to 50 Hz(Ray and Maunsell, 2011; Zanos et al., 2011). To avoid this 534 

we performed a de-spiking procedure, and examined the consequence of that de-spiking on 535 

SPI estimates. A comparison of SPI values on the same data with and without de-spiking found 536 

that the de-spiking procedure significantly reduced SPI values for frequency bands that 537 

included frequencies below 50 Hz (but not below 15 Hz) such as low gamma (30-50Hz; not de-538 

spiked SPI = 0.13, p = 1.65 x 10-7 two-tailed Wilcoxon ranked sum test), beta (15-30 Hz; SPI = 539 

0.13, p = 0.026) and the wideband (5-50 Hz; SPI = 0.18, p = 0.009). There was no significant 540 

reduction in either alpha (8-15 Hz; SPI = 0.08, p = 0.067) or theta (4-8 Hz; SPI = 0.09, p = 541 

0.190) when we de-spiked the LFP. These observations are consistent with recent reports of 542 

spike-artifacts impacting spike-LFP synchronization at frequencies as low as 20 Hz(Banaie 543 

Boroujeni et al., 2020). These results argue either that the artificial coupling of spiking activity 544 

to LFP phase may be present at low frequencies, or that de-spiking techniques are overly 545 

liberal in the removal of spike waveforms. Regardless, even if we consider the possibility that 546 

the de-spiking procedure is introducing more noise than it is eliminating, the main result —that 547 

the broadband LFP phase produces the strongest SPI values— holds when this technique is 548 

not applied and the raw data is left intact. 549 
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The results described so far are limited to spontaneous activity recorded during a 550 

period in which animals foveated a  fixation point at the center of a blank screen while awaiting 551 

the appearance of a faint visual target. Do these findings generalize to more naturalistic 552 

viewing conditions? To test this, we calculated SPI for each frequency band in animals as they 553 

freely viewed natural scene images.  Since the focus here is on intrinsic fluctuations, not the 554 

transient responses that are evoked at the time of the saccade, neural activity at the time of the 555 

saccade (from 50 ms before and ending 200 ms after saccades) was eliminated from 556 

analysis.  Consistent with the pattern observed during fixation of a blank screen,  the wideband 557 

filtered signal produced the strongest SPI values (0.16 ± 0.008; N = 142 multi-units across 2 558 

sessions in Monkey T and 1 session in Monkey W), which was significantly stronger than the 559 

SPI values measured for theta (0.14 ± 0.007; p < 1x10-7 Wilcoxon signed rank test), alpha 560 

(0.13 ± 0.007; p < 1x10-16), beta (0.10 ± 0.006; p < 1x10-14), and low gamma (0.11 ± 0.006; p < 561 

1x10-12). Thus the spontaneous coupling of spiking activity to broadband fluctuations is not 562 

limited to fixating a blank screen, but is apparent during more dynamic active vision. 563 

While our experimental results suggest spiking activity is better correlated with the 564 

instantaneous state of the broadband LFP rather than any individual oscillatory component, the 565 

ground truth mechanism relating spiking to rhythmic LFP activity is unknown in our recordings. 566 

To explore whether our observations can be explained by the hypothesis that spiking activity is 567 

coupled to broadband LFP phase as opposed to a narrowband oscillation, we simulated an 568 

LFP signal by combining a narrowband oscillatory fluctuation that consisted of spectral power 569 

drifting between 8-15 Hz with broad spectrum noise. The power spectral density of this 570 

simulated LFP fluctuation was designed to be consistent with the typical 1/f power-law 571 

observed in cortical recordings in vivo(Miller et al., 2009) (Figure 5d). We then generated spike 572 

times from a Poisson spike generator where the probability was dependent on either the phase 573 

of the narrowband 8-15 Hz oscillatory signal (hypothesis A; Figure 5a) or the phase of the 574 
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combined narrowband and broad spectrum signals (hypothesis B; Figure 5b). Spike probability 575 

was phase dependent with spikes most likely to occur near ±π radians and spikes least likely 576 

to occur near 0 radians. Importantly, the spectral content of the simulated LFP was identical 577 

between the two alternative hypotheses and only the timing of spikes differed between the two 578 

conditions (Figure 5c).  579 

In order to recover the signal correlated with spike-generation we filtered the simulated 580 

LFP in either a narrow bandpass filter from 8-15 Hz, or a wide band pass filter from 5-100 Hz. 581 

In the case where spikes were correlated with the phase of the narrowband oscillatory 582 

component (hypothesis A, blue), the narrowband filtered LFP signal was relatively weakly 583 

correlated with the raw simulated LFP (Pearson’s r = 0.49, Figure 6a). However, spike timing 584 

was strongly coupled to the phase of the narrowband filtered LFP signal (SPI = 0.34 ± 0.002 585 

S.E.M; N = 20 simulations). This coupling was significantly stronger than when using the 586 

wideband filter to recover spike phases (SPI = 0.16 ± 0.002 S.E.M; p = < 0.0001 two-tailed 587 

Wilcoxon signed-rank test; Figure 6b). In the case where the spikes were generated from the 588 

phase of the broad spectral content of the simulated LFP (hypothesis B, orange), the wideband 589 

filtered LFP was strongly correlated with the raw simulated LFP (Pearson’s r = 0.84, Figure 6c) 590 

and the spike-phase relationship was significantly stronger after filtering in the wideband (SPI = 591 

0.29 ± 0.002 S.E.M.) as compared to the spike-phase coupling to the narrowband filtered LFP 592 

(SPI = 0.14 ± 0.002 S.E.M.; p = < 0.0001 two-tailed Wilcoxon signed-rank test; Figure 6d). 593 

These results indicate that, in principle, if neurons were coupled to an oscillatory component, 594 

then narrowband filtering to extract that oscillation would indeed yield stronger spike-phase 595 

coupling than the broadband signal.  596 

We next asked whether a narrowband or broadband spike-correlated signal could 597 

reproduce the observed relationship of increasing spike-phase coupling with increasing 598 

correlation between the filtered and raw LFP signal. We filtered the signal under various filters 599 
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(theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), wideband (5-50 Hz)) as in the cortical 600 

recordings, as well as a broad band pass from 1-100 Hz, and measured both the spike-phase 601 

coupling for narrowband and broadband correlated spike generation and the correlation 602 

between the filtered and raw LFP signal. In the case where spikes were correlated with the 603 

narrowband signal, the best filter was the 8-15 Hz filter (matching the source of the spike 604 

generating signal), followed by the wideband and broadband filters which each included the 605 

spike generating signal band within its bandwidth, but also included a smaller and larger part of 606 

the “noise” spectrum respectively (Figure 7a). In the case where spikes were correlated with 607 

the broadband signal, the best filter was the broadband filter, and decreased as the filters 608 

became narrower (Figure 7b). The narrowband spike source had a weak correlation between 609 

the SPI (Pearson’s r = 0.27), and the degree of filter-raw signal similarity as the optimal filter 610 

was one that eliminated the broadband noise from the simulated LFP. In contrast, the 611 

broadband spike source reproduced the strong positive correlation between SPI and filtered-612 

raw LFP similarity observed in our recordings (Pearson’s r = 0.92; Figure 7c). Our results 613 

indicate a model where spikes are coupled to the state of fluctuations in the broad spectral 614 

content of the LFP is sufficient to account for our observations in vivo, and suggest neuronal 615 

spiking is not preferentially coupled to narrowband oscillations.  616 

Discussion  617 

A central goal of systems neuroscience is to understand how brain activity underlies 618 

information processing and behavior. Ideally, we would like to record every action potential of 619 

every neuron and ask how they relate to one another in the service of behavior, but even with 620 

the best available neurophysiological tools -- sets of electrode arrays with contacts numbering 621 

in the thousands -- we can only sample a tiny fraction of the neurons in the brain. Therefore, 622 

neurophysiologists typically rely on indirect measures of the activity to estimate the spiking 623 

statistics of larger cortical populations. These include LFP, EEG, or MEG, which provide 624 

indirect measures of the activity of larger populations of neurons. Rhythmic patterns of activity 625 
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are often observed in these measures, and it is common to treat these rhythmic patterns as 626 

meaningful computational units, potentially serving as independent channels of information 627 

processing, or if not independent in the context of cross-frequency phase-amplitude 628 

coupling(Munia and Aviyente, 2019), at least functionally dissociable from the signal in which 629 

they are embedded(Thut et al., 2012; Einevoll et al., 2013), similar to turning the dial on a radio 630 

to receive different streams of information.  631 

One way of thinking about rhythmic dynamics is that the spiking probabilities of the 632 

neurons in the larger population co-vary within some frequency band and that this results in an 633 

oscillation — for the example studied here, in the LFP. If so, then by filtering the LFP within that 634 

oscillatory band and asking how it relates to some measure of either behavior (e.g. 635 

performance on a discrimination task), a neural property (such as spike timing or transmission 636 

of information across areas), or its covariation with some behavioral manipulation (e.g. 637 

directing attention into or away from the retinotopic locus of the electrode), one can identify the 638 

contribution of the oscillation to neural computations or behavior. However there are some 639 

problems with treating neural fluctuations as oscillations. First, neural fluctuations are often 640 

only transiently rhythmic in the awake state(Jones, 2016), and even then they are not purely 641 

sinusoidal(Cole and Voytek, 2017) as they drift in frequency content from moment to moment 642 

with changes in arousal(Vinck et al., 2015), attention(Fries et al., 2001), or sensory 643 

input(Henrie and Shapley, 2005). Even in the case when neural fluctuations are strongly 644 

rhythmic, we find narrowband filtering captures less of the spike-phase relationship than when 645 

maintaining a wideband representation. This may be because the application of narrowband 646 

filters to signals that are non-stationary in their frequency content can result in a loss of timing 647 

precision in phase estimates(Yael et al., 2018). 648 

The results presented here argue that neurons are not specifically coupled to 649 

narrowband oscillatory activity, but rather it is the state of the broadband moment-to-moment 650 
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fluctuations that are informative of the relative excitability of the local population. This is not to 651 

say that rhythms are not apparent in fluctuating dynamics or that they are irrelevant for cortical 652 

function. Nor are we suggesting that rhythmic power is limited to what one would expect from 653 

stochastic synchronizations in a 1/f noise process. For example, it is not the case that 654 

oscillatory rhythms are only as informative as their fraction of the spectral content of broadband 655 

fluctuations. We observed that low gamma filtered signals had stronger SPI values than one 656 

might expect based on their relative power in the PSD and given how poorly correlated the 657 

gamma filtered signals were to the raw LFP. Similarly, the alpha band filtered signals had much 658 

more power and were relatively well correlated with the raw LFP, yet had weaker SPI values 659 

than the beta band filtered signals, which were more poorly correlated with the raw LFP. 660 

Indeed, there is variation in the degree to which spikes couple to LFP phase across the five 661 

frequency bands studied here. However, that does not imply those frequency bands are 662 

independent information channels, distinct from the rest of the LFP. It is evident that they are 663 

not, as we see the strongest SPI values for the broadest frequency bands.  664 

In order to test what one would expect to see if it were the case spikes preferentially 665 

coupled to a narrow set of frequencies, we simulated spike trains generated from the phase of 666 

oscillatory signals embedded in an otherwise 1/f noise spectrum (Hypothesis A). Under these 667 

conditions, we found stronger SPI to the narrowband filter that best matched the signal 668 

underlying spike generation signal. We also found a reduction in SPI values when the 669 

broadband filter was used. This matches what one would intuitively expect from a system 670 

composed of an oscillatory signal combined additively with a broad noise. This is the intuition 671 

that often underlies narrowband filtering approaches in electrophysiological signal analysis. 672 

While there may be alternative explanations for why a broadband signal produces stronger SPI 673 

values in our cortical recordings, the second model, where spikes are fluctuation driven 674 
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(Hypothesis B), was sufficient to account for the spike-LFP coupling relationships observed in 675 

the data.  676 

Since the phase of narrowband oscillatory activity does not predict spiking activity as 677 

well as the phase of wideband activity, it raises a question as to whether and when narrowband 678 

filtering is appropriate to study rhythmic spiking dynamics. The use of narrowband filters 679 

assumes a frequency resolved signal in the brain that is embedded in noise. As shown by 680 

hypothesis A and in Figure 5, when neural activity is strongly coupled to latent oscillatory 681 

activity, narrowband filtering is effective at recovering the signal. Therefore, in situations with 682 

steady, ongoing oscillatory activity that has low variance in frequency, such as sleep spindles, 683 

hippocampal theta, or gamma oscillations due to strong feed-forward input, narrowband 684 

filtering may better capture spiking. However, if the signal is not known, narrowband filtering 685 

imposes an assumption of what is signal and noise that may not be warranted and may yield 686 

misleading results. Analytic techniques that allow for the contribution of broader frequency 687 

ranges, as used here, may reveal the degree to which results are frequency dependent or filter 688 

dependent. 689 

It is important to note the limitations of the present findings. First, all analyses here 690 

have focused on spontaneous activity. We cannot generalize the present results to neural data 691 

collected under other conditions such as data collected during stimulus-evoked responses. 692 

Some narrow-band frequency ranges, such as the gamma band, do not exhibit much power in 693 

the absence of strong sensory input(Henrie and Shapley, 2005; Ray and Maunsell, 2010). 694 

Additional experiments will be needed to determine the degree to which gamma band and 695 

generalized phase predict spike timing under these conditions. Further, the majority of the data 696 

analyzed here were recorded from the visual cortex in monkeys performing a particular task, in 697 

which they foveated a fixation spot at the center of a blank screen, awaiting the appearance of 698 

a faint visual target. In our spontaneous cortical recordings, which are largely representative of 699 
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the aperiodic 1/f power law observed in primate visual cortex(Fries et al., 2001; Henrie and 700 

Shapley, 2005; Yu and Ferster, 2010), even when oscillations are transiently present, 701 

narrowband filtering produces a weaker estimate of the spike-LFP relationship than a wider 702 

representation.  703 

The Generalized Phase approach used here provides a meaningful measure of phase 704 

for spectrally broad signals(Davis et al., 2020), and reveals a stronger relationship between 705 

broadband LFP fluctuations and spiking probability than could be estimated from any individual 706 

narrowband filtered signal. The advantage of GP over narrowband signals is that it follows the 707 

moment-to-moment fluctuations in the signal and provides a phase value that generalizes 708 

across changes in frequency content. This approach can reveal patterns that would not be 709 

clear from an analysis of narrowband oscillations. For example, analysis of broadband 710 

measures of phase led to the discovery that the alignment of spontaneous traveling waves of 711 

cortical activity with the retinotopic locations of faint visual targets was predictive of the 712 

magnitude of evoked activity and perceptual sensitivity(Davis et al., 2020). These effects were 713 

only apparent in the data when the state of broadband LFP fluctuations was considered. When 714 

filtered in narrow bands, the predictive power of wave phase on behavioral performance was 715 

abolished. Consistent with those findings, the results presented here show that, at least in the 716 

spontaneous waking activity of Area MT, the instantaneous state of cortical populations is 717 

better estimated from the GP of broadband LFP fluctuations than from any narrowband 718 

oscillatory component. These results suggest that the phase of broadband neural fluctuations, 719 

rather than any specific narrowband frequency content, is the main influence on spontaneous 720 

spiking activity in the cortex.  721 
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Figures 989 

Figure 1. Cortical LFP recordings are inherently broad spectrum (a) Spikes and local field 990 

potentials (LFP) were recorded from area MT of common marmosets while they held fixation 991 

on a blank screen. 3 seconds of raw LFP (filtered 1-100 Hz) and spike times from a well 992 

isolated neuron recorded on the same electrode is plotted on the right. The red box indicates a 993 

period of fixation during the recording epoch. (b) The power spectrum for the LFP trace in (a) is 994 

plotted in black. 10 additional 3 second epochs are plotted in grey. The red dashed line is the 995 

mean power spectrum across trials. (c) The raw LFP during fixation is plotted in black against 996 

the narrowband filtered theta oscillatory component (4-8 Hz, red dotted line). (d, e, f, same as 997 

c, but for alpha (8-15 Hz), beta (15-30 Hz), and low gamma (30-50 Hz) band pass filters. (g) 998 

The wideband filtered (5-50 Hz) LFP follows the dominant fluctuation in the raw LFP as it shifts 999 

in temporal frequency. 1000 

 1001 
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Figure 2. Spikes are more strongly coupled to the phase of wideband filtered LFP 1002 

signals than narrowband oscillatory components. (a) The raw (5-200 Hz) filtered LFP trace 1003 

from Figure 1 is plotted in black. The wideband filtered trace (5-50 Hz) is plotted in pseudocolor 1004 

corresponding to the generalized phase (GP) of the wideband filtered trace according to the 1005 

color wheel. GP captures the troughs (blue/purple) and peaks (yellow/green) of the dominant 1006 

fluctuations while interpolating over the higher frequency, lower amplitude riding cycles. (b) 1007 

Histogram showing the fraction of spikes that occurred during different phases of the wideband 1008 

filtered LFP (10 phase bins, N = 20 sessions across 2 monkeys; error bars indicate S.E.M.) (c) 1009 

The spike-phase distribution was flatter for theta band (4-8 Hz) filtered LFP. The mean spike-1010 

phase index (SPI), which quantifies the mean vector length of the circular distribution of spike 1011 

phases, is plotted across 20 sessions from 2 monkeys. The wideband filtered LFP (blue) had 1012 

significantly stronger SPI values than theta filtered LFP (red; p < 1x10-9, two-tailed paired 1013 

sample t-test) (d-f) Same as c, but for alpha (green; p < 1x10-10), beta (pink, p < 1x10-11), and 1014 

gamma filtered LFP (green; p < 1x10-9). 1015 

 1016 

Figure 3. Stronger wideband spike-phase coupling is consistent across the population 1017 

of recorded single-units. (a) Scatter plot comparing the magnitude of SPI after use of a 1018 

broadband filter (x-axis) or theta band filter (y-axis) for each identified single unit (N = 107 1019 

across 20 recordings sessions). (b-d) Same as for (a) but for alpha, beta, and gamma filters. 1020 

The wideband filter had a consistently stronger SPI than the narrowband filtered oscillatory 1021 

phases across the population of single-units. 1022 

 1023 

Figure 4. Narrowband signals do not contain more spike-phase information. (a) SPI 1024 

values after restricting the inclusion of spikes to when significant power is present in each 1025 

individual filter band (-5 dB SNR threshold, percentages indicate fraction of data above 1026 

threshold; colored dots are N = 20 sessions from 2 monkeys; black dots are the population 1027 
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mean). (b) Representative ROC curves for GLM analyses comparing model sensitivity for 1028 

identifying spike times based on phase, computed in four narrowband frequency ranges that 1029 

tile the frequency space from 4-50 Hz (red), a single measure of narrowband oscillatory phase 1030 

(blue), or the single wideband GP measure applied to the same frequency range as the 4-1031 

factor GLM (black). There was no significant difference between the 4-factor and wideband 1032 

models in identifying spike times based on phase (Wilcoxon signed-rank test, p = 0.16), 1033 

whereas the single best narrowband model was significantly weaker (beta; p = 0.00008). (c) 1034 

Scatter plot comparing the correlation between the raw LFP and the filtered LFP signal (y-axis) 1035 

and the SPI after filtering (x-axis) in each filter band. There was a significant positive 1036 

correlation between SPI and how similar the raw LFP was with the signal after filtering 1037 

(Pearson’s r = 0.65, p < 1x10-12). (d) SPI for a range of band pass filters ranging in high pass 1038 

(lower band, 1-50 Hz) and low pass (upper band, 5-125 Hz). Each pixel is color coded with its 1039 

average SPI across each recording session (N = 20 sessions from 2 monkeys). White pixels 1040 

are filter combinations that have bandwidths less than 4 Hz. Black contour lines denote SPI 1041 

intervals (0.02). 1042 

 1043 

Figure 5. Two alternative hypotheses regarding the relationship between spiking activity 1044 

and LFP fluctuations. (a) Signals generated under the hypothesis embedded narrowband 1045 

fluctuations drive spiking activity. We generated a narrowband oscillatory fluctuation with power 1046 

between 8 and 15 Hz. Spikes were generated with a Poisson spike generator coupled to a 1047 

phase-dependent probability distribution with spikes more likely at π/-π phases and less likely 1048 

at 0 phases of the narrowband oscillation. This narrowband signal was added to randomly 1049 

generated broadband noise to create a simulated LFP. (b) Signals generated under the 1050 

hypothesis ensemble broadband fluctuations drive spiking activity. We generated the same 1051 

narrowband oscillatory fluctuation and added the same randomly generated broadband noise 1052 

as in the simulated LFP in a. Spikes were then generated as in (a), but to the phase of the 1053 
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broadband simulated LFP signal. (c) The result of the 2 signal generation paradigms is 2 1054 

identical simulated LFP traces, but with different spike trains generated in relation to the state 1055 

of either the narrow (blue raster) or broadband (red raster) signal. (d) The mean power 1056 

spectrum across 20 simulated LFP signals (error bars are S.E.M). 1057 

 1058 

Figure 6. Spike-phase relationship is best recovered when the filter matches the signal 1059 

(a) The 8-15 Hz narrowband filtered LFP (solid blue line) is the recovered spike-generating 1060 

signal from the ensemble simulated LFP (dotted blue line) under hypothesis A. (b) The SPI 1061 

from the phase of the narrowband signal is significantly stronger after narrowband filtering as 1062 

compared to wideband filtering for the simulation where spikes were coupled to the phase of 1063 

the narrowband component (5-100 Hz; N = 20 simulations; p < 0.0001 two-tailed Wilcoxon 1064 

signed-rank test). (c) The wideband filtered LFP (5-100 Hz, red line) is the recovered spike-1065 

generating signal from the broadband simulated LFP under hypothesis B (dotted red line). (d) 1066 

The SPI from the phase of the wideband is significantly stronger after wideband filtering as 1067 

compared to narrowband filtering for the simulation where spikes were coupled to the phase of 1068 

the broadband LFP (p < 0.0001 two-tailed Wilcoxon signed-rank test). 1069 

 1070 

Figure 7. The model with a broadband spike correlation best matches cortical recordings. 1071 

(a) SPI values after filtering simulated LFP in various band passes when spike times are 1072 

correlated to the phase of 8-15 Hz narrowband component. In this case, the optimal filter is 1073 

aligned to the signal source (8-15 Hz). (b) Same as (a), but when spike times are coupled to the 1074 

phase of the broadband LFP. The pattern of SPI across filters is well matched to the pattern 1075 

observed in data (Figure 4c). (c) SPI (x-axis) is poorly correlated with the similarity between 1076 

filtered and raw simulated LFP (y-axis) when spikes are correlated with narrowband signal 1077 

phase (blue dots, r2 = 0.08). Conversely, the correlation is strong when spikes are correlated 1078 
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with broad-band signal phase (red dots, r2 = 0.85). The relationship for a broad-band signal 1079 

source is well matched to the pattern observed in the cortical recordings (Figure 4c). 1080 
















