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Abstract

Populations of cortical neurons generate rhythmic fluctuations in their ongoing spontaneous
activity. These fluctuations can be seen in the local field potential (LFP), which reflects
summed return currents from synaptic activity in the local population near a recording
electrode. The LFP is spectrally broad and many researchers view this breadth as containing
many narrowband oscillatory components which may have distinct functional roles. This view is
supported by the observation that the phase of narrowband oscillations are often correlated
with cortical excitability and can relate to the timing of spiking activity and the fidelity of sensory
evoked responses. Accordingly, researchers commonly “tune in" to these channels by
narrowband filtering the LFP. Alternatively, neural activity may be fundamentally broadband
and composed of transient, non-stationary rhythms that are difficult to approximate as
oscillations. In this view, the instantaneous state of the broad ensemble relates directly to the
excitability of the local population with no particular allegiance to any frequency band. To test
between these alternatives, we asked whether the spiking activity of neocortical neurons in
marmoset of either sex is better aligned with the phase of the LFP within narrow frequency
bands, or with a broadband measure. We find that the phase of broadband LFP fluctuations
provides a better predictor of spike timing than the phase after filtering in narrow bands. These
results challenge the view of the neocortex as a system composed of narrow-band oscillators,
and supports a view in which neural activity fluctuations are intrinsically broadband.
Significance Statement: Research into the dynamical state of neural populations often
attribute unique significance to the state of narrowband oscillatory components. However,
rhythmic fluctuations in cortical activity are non-stationary and broad spectrum. We find that the
timing of spontaneous spiking activity is better captured by the state of broadband fluctuations
over any latent oscillatory component. These results suggest narrowband interpretations of
rhythmic population activity may be limited, and broader representations may provide higher

fidelity in describing moment-to-moment fluctuations in cortical activity.
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Introduction

Since the first human electroencephalogram (EEG) recordings by Hans Berger(Berger,
1929), neuroscientists have inferred cortical function from the state of rhythmic fluctuations in
neural population activity(Buzsaki, 2004; Wang, 2010). These brain rhythms are believed to
arise from return currents generated by large scale spiking activity in cortical neural
populations(Logothetis, 2003; Katzner et al., 2009; Buzsaki et al., 2012). When recorded
intracranially with penetrating electrodes, rhythmic activity can be measured in the local field
potential (LFP), which typically reflects neural signals arising within ~250 uM of the electrode
tip(Katzner et al., 2009; Lindén et al., 2011). LFP fluctuations are spectrally broad, but are
often thought to be composed of activity in narrow frequency bands correlated with distinct
neural functions(Canolty et al., 2010; Einevoll et al., 2013; Friston et al., 2015). For example, in
the visual cortex, alpha band rhythms (8-15 Hz) are thought to reflect feedback processes of
suppression(Jensen and Mazaheri, 2010; van Kerkoerle et al., 2014) and have been shown to
be attenuated with or modulated by attention(Worden et al., 2000),(Busch and VanRullen,
2010). Beta band rhythms (15-30 Hz) have been linked to motor planning(Sanes and
Donoghue, 1993; Rubino et al.,, 2006) and feedback regulation of excitability(Bastos et al.,
2015; Friston et al., 2015). Theta band (4-8 Hz) activity has been related to
attention(Fiebelkorn and Kastner, 2019), working memory load(Jensen and Tesche, 2002) and
hippocampal function(Buzsaki, 2002). Delta band (< 4 Hz) activity has been related to sleep
and states of arousal(Sanes and Donoghue, 1993; Steriade et al., 2001; McGinley et al.,
2015). Higher frequency gamma activity (30-90 Hz) has been linked to local coordination in
excitation and inhibition(Brunel and Wang, 2003; Bartos et al., 2007; Buzsaki and Wang,
2012), attention(Fries et al., 2001, 2008; Gregoriou et al., 2009), memory(Pesaran et al., 2002;
Colgin et al., 2009; van Vugt et al., 2010; Lundqvist et al., 2018), and perception(Singer and
Gray, 1995; Panagiotaropoulos et al., 2012; Misselhorn et al., 2019), and has been used as a
surrogate for measuring cortical activation(Crone et al., 2006; Ray et al., 2008a; Anon, 2013).

3
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Oscillatory activity can be induced under certain conditions, such as the increased low
frequency power that is observed in the EEG when eyes are closed(Berger, 1929; Geller et al.,
2014), optogenetically(Lu et al., 2015; Bitzenhofer et al., 2017; Zutshi et al., 2018),
electrically(Contreras et al.,, 1997; Kirov et al., 2009; Escobar Sanabria et al., 2020), or
pharmacologically as in the alpha oscillations that occur in medial prefrontal cortex under

propofol induced anesthesia(Purdon et al., 2013; Flores et al., 2017; Bastos et al., 2021).

It has been proposed that certain frequency bands play a privileged role in routing
information among brain areas(Akam and Kullmann, 2010; Bonnefond et al., 2017;
Khamechian et al., 2019). The idea that communication between brain areas occurs through
oscillatory processes within narrow frequency bands bears similarity to a radio, where signals
are broadcast within different frequency bands and a receiver can be tuned to receive
them(Hoppensteadt and Izhikevich, 1998). For example, the idea of cross-cortical
communication through coherence views synchrony in gamma oscillations as periods of
coordination between pre- and postsynaptic groups so as to transmit signals about, for
example, an attended stimulus while blocking competing inputs(Fries, 2015). These patterns of
gamma-band synchronization are proposed to be regulated across cortical areas by top-down
signals within a slower (8-20 Hz) frequency band(Bastos et al., 2015). Other theories posit that
the LFP is composed of multiplexed oscillatory neural signals that are separate streams of
information processing(Lisman and Idiart, 1995; Panzeri et al., 2010; Akam and Kullmann,
2014; Tingley et al., 2018). If oscillatory activity in separate frequencies encodes distinct
information channels, and the spiking activity of neurons are the fundamental units of
information transmission in the nervous system, then the spiking activity of individual neurons
should show preferential alignment of their spiking activity to oscillatory rhythms in order to
“tune in" to a channel of information(Canolty et al., 2010; Belluscio et al., 2012). There is

evidence to suggest this can occur, as spikes have been found to preferentially align with the
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phase of theta(Takahashi et al., 2014; Souza and Tort, 2017; Striber et al., 2022),
alpha(Haegens et al., 2011), gamma(Fries et al., 2001; Womelsdorf et al., 2007; Ray et al.,

2008b), and beta(Donoghue et al., 1998; Canolty et al., 2010) frequencies.

An alternative view is that neurons spike with no preference for any particular
narrowband frequency. Rather, spiking is modulated by the instantaneous state of fluctuations
in the local population, which varies from moment to moment across a broad range of
frequencies. Supporting this view is the observation that balanced excitation and inhibition
creates fluctuating neural activity patterns in the awake state, which often exhibit 1/f power
spectra across a broad range of frequencies(Destexhe et al., 2001; Gao et al., 2017). Studies
in humans have found that changes in cognitive state are associated with broad spectral
changes in the EEG(Voytek et al., 2015). The membrane potential of individual neurons is
correlated with the population fluctuations measured in the instantaneous LFP(Haider et al.,
2016), as opposed to any narrowband component, which suggests the broadband LFP is
therefore informative about the instantaneous excitability of neurons in the population(Davis et
al., 2020). Accordingly, previous work has found that spikes are weakly coupled to all
frequencies of the broadband LFP(Martin and Schréder, 2016), and specific interactions in
narrowband frequencies may at times be due to spurious artifacts from narrowband

filtering(Scheffer-Teixeira and Tort, 2016).

Even when approximately oscillatory activity may be transiently apparent in LFP
recordings, it is difficult to describe the phase of neural fluctuations within a narrow range of
frequencies because of their non-stationarity(Pesaran et al., 2018). LFP phase is a useful
measure for tracking the state of neural fluctuations because it is indicative of the relative
transition in the balance of excitation and inhibition with, for example, the falling phase
reflecting a transition from inhibition to excitation, and the rising phase transitioning from

excitation to inhibition(Atallah and Scanziani, 2009; Poo and Isaacson, 2009; Isaacson and
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Scanziani, 2011; Telenczuk et al., 2017). This is in contrast to amplitude measures, which can
be ambiguous as the same negative voltage value could reflect neurons becoming more
depolarized or more hyperpolarized depending on the signal history. Under this view, one can
better characterize the state of neural populations from the phase of broadband fluctuations in
LFP activity and neurons will show preferential alignment of their spiking activity to the

broadband signal phase, not to any narrowband oscillatory phase.

In order to ask whether neuronal spiking is better coupled to narrowband oscillations or
broadband fluctuations during waking visual function, we compared spike-phase coupling after
filtering the LFP in various filter bands. If the spiking probability of a neuron is phase-locked
with the LFP within some frequency band, this is evidence that the neuron in question
participates, to some degree, in oscillatory activity of the larger ensemble of neurons whose
transmembrane currents give rise to that rhythm. If narrowband rhythms do reflect distinct
information channels, then the phase of these oscillations should be particularly informative
about the excitability of neurons participating in that oscillatory rhythm, and therefore the timing
of their spontaneous spiking activity. Alternatively, if the excitability of the population is
reflected in the phase of the broad spectrum fluctuations, then the spiking activity of neurons
should be more poorly predicted by any individual oscillatory component and better predicted
by the phase of the broadband LFP. Therefore, in this work we take the magnitude of spike-
phase coupling as a direct measure of the degree to which oscillatory activity reflects a discrete

information channel.

The ability to test between these alternatives has been limited, however, because the
calculation of phase using the Hilbert Transform breaks down when the frequency content of a
signal is too broad(Le Van Quyen et al., 2001). It had been infeasible to directly compare the
relative phase-coupling of spiking activity to narrow- or broadband LFP signals without

consideration of this potential confound. To overcome this technical limitation, we have
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developed a measure of phase (Generalized Phase, GP)(Davis et al., 2020), a generalization
of the Hilbert Transform that can be applied to spectrally broad signals, allowing us to directly
compare narrow- and broadband phase estimates of cortical excitability. This enabled us to
test whether the timing of spontaneous spiking activity in cortical populations is better aligned
with the phase of classically defined narrowband oscillations, similar to channels on a radio, or
is more tightly coupled to the phase of the broad ensemble of non-stationary components. In
recordings made from the marmoset middle temporal (MT) extrastriate visual cortex, we find
that spontaneous spiking is more strongly phase-coupled to the broadband LFP than to any
individual narrow band. Thus, fluctuations in spontaneous neuronal spiking are not coupled
preferentially to individual narrowband oscillations, but rather track with the instantaneous

fluctuations of neural activity as they change from moment to moment.

Materials and Methods

Electrophysiology Recordings

One male (monkey W) and one female (monkey T) marmoset monkey (Callithrix
jacchus) was surgically implanted with a headpost for head stabilization and eye tracking. The
headpost contained a hollow chamber housing an Omnetics connector for a Utah array
(Blackrock Microsystems), which was implanted in a 7x10 mm craniotomy over area MT
(stereotaxic coordinates 2 mm anterior, 12 mm dorsal). An 8x8 (64 channel, monkey W) and
9x9 with alternating channels removed (40 channel, monkey T) Utah array was chronically
implanted over area MT using a pneumatic inserter wand. The electrode spacing was 400 uM
with a pitch depth of 1.5 mm. The craniotomy was closed with Duraseal (Integra Life Sciences,
monkey W) or Duragen (Integra Life Sciences, monkey T), and covered with a titanium mesh
embedded in dental acrylic. All surgical procedures were performed with the monkeys under

general anesthesia in an aseptic environment in compliance with NIH guidelines. All
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experimental methods were approved by the Institutional Animal Care and Use Committee
(IACUC) of the Salk Institute for Biological Studies and conformed with NIH guidelines. Data

used in this study was previously used in Davis et al., 2020.

Marmosets were trained to enter a custom-built marmoset chair that was placed inside
a faraday box with an LCD monitor (ASUS VG248QE) at a distance of 40 cm. The monitor was
set to a refresh rate of 100 Hz and gamma corrected with a mean gray luminance of 75
candelas/m?. Electrode voltages were recorded from the Utah arrays using two Intan RHD2132
amplifiers connected to an Intan RHD2000 USB interface board. Data were sampled at 30 kHz
from all channels. The marmosets were headfixed by a headpost for all recordings. Eye
position was measured with an IScan CCD infrared camera sampling eye position at 500 Hz.
Stimulus presentation and behavioral control was managed through MonkeyLogic(Asaad et al.,
2013) in Matlab. Digital and analog signals were coordinated through National Instrument DAQ
cards (NI PC16621) and BNC breakout boxes (NI BNC2090A). Neural data was broken into two
streams for offline processing of spikes (single-unit and multi-unit activity) and LFPs. Spike
data was high-pass filtered at 500 Hz and candidate spike waveforms were defined as
exceeding 4 standard deviations of a sliding 1 second window of ongoing voltage fluctuations.
Artifacts were rejected if appearing synchronously (within 0.5 ms) on over a quarter of all
recorded channels. Segments of data (1.5 ms) around the time of candidate spikes were
selected for spike sorting using principal component analysis through the open source spike
sorting software MClust in Matlab (A. David Redish, University of Minnesota). Sorted units
were classified as single- or multi-units and single units were validated by the presence of a
clear refractory period in the autocorrelogram. LFP data was low-pass filtered at 300 Hz and

down-sampled to 1000 Hz.

Fixation Behavior
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The marmosets were trained to saccade to a marmoset face to initiate each trial. Upon
the gaze arriving at the face, it disappeared and was replaced with a white fixation point (0.15
DVA). The marmosets held fixation on the fixation point (1.5 visual degree tolerance) for a
minimum duration (400 ms monkey W, 300 ms monkey T) awaiting the appearance of a drifting
Gabor target (4 DVA diameter; appearing 6-7 DVA eccentricity at 1 of 2 equally eccentric
locations in the visual field contralateral to the recording array). Spontaneous data were
analyzed from the period of fixation preceding the appearance of a target and excluding the
initial 100 ms following fixation initiation. Early fixation breaks (defined by the excursion of the

eye position from the fixation window) were excluded from analysis.

Free-viewing Natural Scenes

Marmosets were headfixed and their gaze monitored as in the previous task. Grayscale
versions of naturalistic images (spanning 20-30 DVA) were randomly interleaved and
presented to the monkey. The monkey was free to look at the images, and after 10 seconds
was given a juice reward. Visual activity was analyzed as in the spontaneous fixation data
excluding a 250 msec window around the times of saccades. Saccades were defined as
velocity peaks exceeding 25 degrees per second. The time of saccade was taken from the
peak velocity after threshold crossing. Velocity was calculated from the absolute value of the
first numerical derivative of the smoothed vertical and horizontal eye traces (5 ms sliding
Gaussian). We excluded from our analysis spikes that occurred from 50 ms before to 200 ms
after detected saccades. Multi-unit spiking activity from two recording sessions in Monkey T
and one session in Monkey W (N = 142 units) were combined and analyzed as there was no

significant difference in SPI effects between the monkeys (p = 0.10; Wilcoxon rank-sum test).

Spike Artifact Elimination
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In order to eliminate spike artifacts from the LFP, we applied a de-spiking algorithm first
described in Zanos et al. 2011(Zanos et al., 2011). The goal of the algorithm is to eliminate the
contribution of spike waveforms to the signal that, after being down-sampled and low-pass
filtered, constitutes the LFP. The algorithm assumes the LFP is based on the measured
wideband voltage trace recorded from the electrode (y) which is composed of a low-frequency
signal (the LFP, w), high-frequency spike components n*, an offset u, and white noise .

Eq. 1:
m
y=w+ z n+pu+e
k=1
Here, m is the number of spikes for kth neuron k. The high-frequency component of k is the
convolution of the spike train s* and the spike waveform ¢*
Eq. 2:

nk = @k x sk

Rather than using a spike-triggered average (STA) approach to generate a mean template of
the spike waveform which is subtracted at the time of each spike, the algorithm optimally
estimates the local field potential w, each spike waveform ¢*, and the offset y which adjusts for

the fact that spike waveforms tend to be negative.

The first assumption is that the LFP is smooth with most of its power in the lower frequencies
Eq. 3:

p(w) = N(0,y?I)

N(a,2) represents a multivariate Gaussian with mean a and covariance X. I' is a matrix

representing the assumption of smoothness. Multiplying with some vector x (i.e. T'x) produces

10
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a low-pass filtered version of x. y controls the strength of the prior. The second assumption is
that € is generated by a white noise process p(¢) = N(0,2I). The final assumption is that the
spike waveforms ¢* lie in a subspace B where ¢* = Bd* and the spike waveforms are
described in a 1.5 ms interval around the peak depolarization. Bayesian inference was used to
obtain maximum a posteriori (MAP) model parameters for the LFP w, the spike waveforms ¢¥,
and the offset y. By Bayes’ theorem, the log-posterior model is

Eq. 4:

m 2
1 1
p(w, &%, uly) o p(y|w, &%, 1) p(w) = kexp _FZ (y -w-— Z nk — u)) - 2—),2wF‘1w
i k=1 i

where k is a constant factor. The partial derivatives with respect to the parameters are set to 0
and the log of this expression provides the MAP estimates of the parameters w, ¢*, and f.
Eq. 5:

w = (y?I'+ o2~ 1y?T [y - Z sk« (Bpk) — ﬁ]
%

y—W—Zsf*(Bq‘ﬂ')—ﬁ]

j*k

y—W—ZSk*(Bék)

k

__1
=2,
X

An implementation of this algorithm in MATLAB is available from the original authors’ website

(http://apps.mni.mcgill.ca/research/cpack/Ifpcode.zip).

Generalized Phase

We calculated Generalized Phase (GP) as described previously(Davis et al., 2020). The
purpose of GP is to mitigate the breakdown of the analytic signal representation for spectrally
broad signals. As an initial step in the GP representation, then, we filter the signal within a wide

bandpass (i. e. 5-50 Hz; 4™-order zero-phase Butterworth filter), excluding low-frequency

11
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content that contributes to origin offsets in the complex plane that distort the estimate of phase
angles for higher frequency signals. We then use the single-sided Fourier transform
approach(Johansson, 1999; Marple, 1999) on the wideband signal and compute phase
derivatives as finite differences, which are calculated by multiplications in the complex
plane(Feldman, 2011/4; Muller et al., 2014, 2016). High-frequency intrusions appear in the
analytic signal representation as complex riding cycles(Feldman, 2011/4), which manifest as
periods of negative frequencies in the analytic signal representation. As a secondary step we
then numerically detect these complex riding cycles (N, points of negative frequency) and
utilize shape-preserving piecewise cubic interpolation on the next 2N, points following the
detected negative frequency epoch. The resulting representation captures the phase of the
largest fluctuation on the recording electrode at any moment in time (Fig. 1f), without the
distortions due to the large, low-frequency intrusions or the smaller, high-frequency intrusions
characteristic of the 1/ftype fluctuations in cortical LFP(Pereda et al., 1998; Linkenkaer-
Hansen et al., 2001; Milstein et al., 2009). All phase estimates of filtered LFP segments were

calculated using the GP algorithm.
Spike-phase coupling

3 second LFP epochs centered on the period of fixation were analyzed during the
fixational behavioral task. The LFP segments were filtered (4"-order zero-phase Butterworth
filter with varying filter bandwidths depending on the analysis condition) and spike-phase
coupling was calculated over epochs of fixation excluding the initial 100 ms following fixation
initiation. The degree of spike-phase coupling was measured as the mean resultant vector
length for the LFP phase distribution collected at the time of observed spikes. This measure
was calculated using the circ_r function in the Circular Statistics Toolbox for Matlab(Berens,
2009). The mean resultant vector r of the spike phase distribution is the normalized sum over

complex exponentials of the phase angles 0

12
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Eq. 6:
1w
r= MZ el®J
J
where M is the number of spikes, and the modulus of r (|7"| e [0, 1]) represents the degree of
spike phase modulation. The closer the value is to 0, the more uniform the phase distribution.

The closer the value is to 1, the more concentrated the phases.

Filtered-Raw LFP Signal to Noise Ratio (SNR)

We calculated the signal to noise ratio (SNR) in dB by computing the ratio of the
summed squared magnitude of the filtered LFP (in either theta (4-8 Hz), alpha (8-15 Hz), beta
(15-30 Hz) low gamma (30-50 Hz) or the wideband (5-50 Hz) filter) to the summed squared
magnitude of the broadband 1-100 Hz LFP. The SNR was calculated over a window
corresponding to approximately a single cycle of the mean frequency of each filter band (150
ms, 75 ms, 50 ms, 25 ms, and 50 ms respectively). The tested window was slid by 1/5th the
window width over the entire fixation period. Only spike times that occurred in a window that

exceeded -5 dB SNR was included in the SPI calculation for that narrowband filter.

Generalized Linear Model (GLM) Analysis

In order to compare the relative predictive power of spike timing between multiple
narrow and a single wideband measure of LFP phase (GP), we tested GLMs trained to predict
the likelihood of spiking activity. In particular, both GLMs were trained using LFP phases
recorded at points in time when spikes occurred and an equal size sample of LFP phases,
selected at random, when no spike occurred. The first model used as predictors the phase at
the time of each spike or non-spike for (1) theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), and
low gamma (30-50 Hz) narrowband filtered LFP. The second model used a single predictor: the

narrowband beta phase (15-30 Hz), and the third model also used a single predictor: the

13
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wideband (4-50 Hz) LFP GP computed on the same training set. In order to linearize the
circular phase variables we used the sine and cosine of each phase value as separate
predictors(Cremers and Klugkist, 2018), resulting in 8 predictors for the narrowband model and

2 predictors for the single narrow and wideband models.

Eq. 7:
Y; = Ko + Ky sin(@g) + Kk, cos(@g) + k3 sin(@y) + k4 cos(@y) + ks sin((pﬁ) + kg cos(qoﬁ) +

Ky sin((py) + Kg cos(goy)

Single narrowband GLM:
Eq. 8:

Y = Ko + Ky sin(pp) + K, cos(pp)

Single wideband GLM:
Eq. 9:
Y; = Ko + Ky sin(@yp) + K, cos(@yg)

Where the model output Yi for the phases at time sample i is determined by the coefficients on
the sine and cosine of the filtered LFP phase. The GLM was fitted using a binominal logit link
function to relate changes in the phase predictor variables to the binary output variable at each
time sample (spike or no spike). GLMs were fit to half the data in each data set (N = 20 across
2 monkeys) and the predictor coefficients were tested on the other half of the data. The
predictive power of each GLM was evaluated by measuring the area under the curve (AUC) for
the receiver-operator characteristic (ROC) curve generated by comparing each model output’s

true spike hit rate to the spike false alarm rate given the model output.

Simulated spike and LFP generation
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In order to generate surrogate spiking and LFP data, we first generated a normal
distribution of random frequency values with a mean of 10 Hz and a standard distribution of 1
Hz. We then generated a 100 second sinusoidal signal whose frequency drifted with random
draws from the frequency distribution. In the case where spikes were generated from the phase
of this narrowband signal, we first filtered this signal between 8-15 Hz and used the phase to
generate spike times. We also generated a broadband noise signal generated from a Gaussian
distribution with mean of 0 and a standard deviation of 1 whose power spectrum followed a 1/f
power-law(Kasdin, 1995). In the case where spikes were generated from the phase of the
broadband signal, the drifting sinusoidal and pink noise signals were summed in the frequency
domain and transformed back into the temporal domain and filtered between 1-100 Hz. The
combination of the sinusoidal signal and the noise signal made up our surrogate LFP signal,

which was identical between the alternative spike generating conditions.

Spike times were generated using a phase-dependent Poisson spike generator. The
phase-dependent spiking probability was defined with a circular-linear function across 21
phase bins with a 0% spiking probability at 0 rad phases and a 1% spiking probability at +m rad
phases. At each millisecond in time, a random value was drawn from a Poisson distribution
whose lambda corresponded to the probability of a spike occurring at the phase of either the
sinusoidal (narrowband hypothesis) or surrogate LFP (broadband hypothesis) signal at that
millisecond. Any drawn value that exceeded 0 produced a single spike time. The relative
phase-dependent spike probabilities produced irregular spike trains with mean firing rates
roughly between 5-6 Hz in both conditions. The calculation of spike-phase coupling was
performed identically as to that in the recorded data. The surrogate LFP was filtered in either
narrow or wide filters and the GP was drawn at the time of each spike to generate spike-phase

distributions.

Statistical Analysis
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Statistical tests used in this study include the parametric pair-wise student’s t test, the
non-parametric Wilcoxon signed-rank test, and Wilcoxon rank sum test. Two monkeys were
used in this work. No power analyses were performed as the number of monkeys used
followed with standard conventions to reduce the number of primates required for neuroscience
research. All results were consistent across both monkeys and were therefore collapsed for
analysis. Individual measurements within N = 20 recording session were averaged and
statistical tests were performed on the averages across recording sessions.

Author Contributions: Conceptualization, ZW.D., J.R., L.M.; Data Curation, Z.W.D; Formal
Analysis, ZW.D; Funding Acquisition, ZW.D., J.R.; Investigation, Z.W.D., L.M.; Methodology,
ZW.D., L.M.; Supervision, J.R., L.M.; Visualization, ZW.D., L.M.; Writing - original draft,
ZW.D., J.R., L.M.; Writing - review and editing, ZW.D., J.R., L.M.

Materials & Correspondence: Correspondence and requests for material should be addressed
to J.Rand ZW.D.

Data Availability: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code Availability: An open-source code repository for the Generalized Phase algorithm is
available on http://mullerlab.github.io.

Results

We measured spike-phase coupling for single- and multi-unit spiking activity across
traditional narrowband and broadband filtered LFP signals. Spiking activity and LFP data were
previously recorded from chronically implanted multielectrode arrays (Utah array, Blackrock
Microsystems) in Area MT of two common marmosets (Callithrix jacchus; 10 recording
sessions in each monkey) as they fixated a point on an otherwise blank screen (gray
background, 75 candela/m?; Figure 1a), awaiting the appearance of a faint visual target during
a challenging visual detection task(Davis et al., 2020). Similar experimental paradigms have
been used to study the relationship between pre-stimulus oscillatory phase and sensory
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processing and behavioral performance(Busch et al., 2009; Balasubramanian et al., 2020;
Zareian et al., 2020). The raw LFP (filtered from 1-100 Hz) sporadically exhibited rhythmic
fluctuations across a range of timescales, but there was not a clear peak in the power spectral

density that would be consistent with a clear and consistent oscillatory component (Figure 1b).

The LFP during periods of fixation was filtered in classically defined frequency bands—
theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), and low gamma (30-50 Hz)—or in a wideband
filter that spanned all of these narrow bands from 5-50 Hz (Figure 1c-g). The bounds of the
wideband filter were selected to exclude low frequency fluctuations (< 5 Hz) that are
associated with slow changes in arousal(Steriade et al., 2001; Petersen et al., 2003), and high
frequency components that may be contaminated by spiking artifacts and could, therefore,
induce spurious spike-LFP correlations(Ray et al., 2008a; Zanos et al., 2011). However, it
could be possible spiking artifacts exist at sub-50 Hz frequencies, which could, in principle,
bias our estimate of the relationship between spiking activity and LFP phase in our broadband
representation. To mitigate this potential confound, we performed a “de-spiking” procedure on
the data as described in Zanos et al. 2011(Zanos et al., 2011). This removes spike waveforms
from the raw (30 KHz) recorded electrode data signals through spike-waveform subtraction and
interpolation before downsampling and filtering into the LFP. Any remaining relationship
between the phases of sub-50 Hz activity in any frequency band must therefore be due to an
indirect relationship between the population currents that give rise to the LFP and individual

neuronal spiking, and not the direct contribution of that spike occurring itself.

If spiking activity is either organized into oscillations, giving rise to narrowband
fluctuations in the LFP, or if LFP oscillations reflect population-wide subthreshold fluctuations
that modulate the probability of spiking within a particular band, then spikes should tend to be
aligned in phase with the LFP, within these frequency ranges. Alternatively, if no individual

rhythmic component of the LFP dictates the excitability of neurons, but rather the precise,
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moment-by-moment fluctuations of the LFP reflect the state of the population, we would expect
spikes to occur more often at phases of the broadband LFP that correspond to states of

depolarization across the local population, regardless of frequency.

To test these competing hypotheses, we measured the phase of each filtered LFP
signal at the times of multi-unit spiking activity. Phase is conventionally measured for
oscillatory or spectrally narrow signals by calculating the analytic signal(Feldman, 2011/4;
Marple, 1999), where instantaneous amplitude and phase can be expressed in polar
coordinates and whose real and imaginary parts are related to each other by the Hilbert
Transform. However, for spectrally broad signals, the standard computational implementations
break down(Le Van Quyen et al.,, 2001). Low frequencies can shift the analytic signal
representation by a constant in the complex plane, distorting the estimated phase angle. In
addition, high frequency intrusions introduce complex riding cycles that generate phase
reversals and appear as negative frequencies which distort the analytic signal. To address
these problems, we introduced an updated approach to the analytic signal representation,
termed “generalized phase” (GP)(Davis et al., 2020). Briefly, in this approach we first impose a
high-pass cutoff on the signal (5 Hz). This step aims to eliminate low-frequency intrusions,
while also preserving a significant portion of the signal spectrum and minimizing waveform
distortion. Second, we identify negative frequencies, which can arise from high-frequency
intrusions, and remove them, replacing the phase values with shape-preserving interpolation.
This approximates the continuation of the dominant fluctuation’s trajectory. The result, after
filtering, is an estimate of phase that tracks with the dominant frequency component of the LFP
as it shifts over time (Figure 2a) while minimizing phase distortions that arise due to
narrowband filtering a non-stationary broad spectrum signal such as the raw LFP(Yael et al.,
2018). All results reported here, for both broadband and narrowband filtered data, were

computed using GP. Low- and high-frequency intrusions are rare in narrowband filtered signals
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so, for narrowband filtered data, computation of GP should yield very similar phase estimates
to those estimated using the Hilbert transform. To confirm this, all analyses were repeated for
narrowband filtered signals using the Hilbert Transform. As expected, the results were virtually

identical. All future mentions of phase therefore refer to the GP of the signal.

The phase of the wideband filtered signal is strongly coupled to the timing of measured
multi-unit spiking activity (Figure 2b). We measured an index of the coupling of spikes to each
filtered LFP by calculating the mean resultant length of the circular spike-phase distribution.
This spike-phase coupling index (SPI) value ranges from 0 (uniform spike-phase distribution) to
1 (spikes perfectly coupled to a single phase), and for the 5-50 Hz wideband filtered signal, the
average SPIl was 0.15 + 0.009 S.E.M. (N = 20 sessions across 2 monkeys). The wideband
filtered SPI was significantly stronger than the coupling observed after filtering in theta (SPI =
0.08 + 0.005; p < 1x10°%; two-tailed paired sample t-test), alpha (SPI = 0.07 + 0.005; p < 1x10°
19 beta (SPI = 0.11 + 0.007; p < 1x10™"") or gamma (SPI = 0.08 # 0.009; p < 1x10®) frequency
bands (Figure 2c-f). These results suggest that the instantaneous rhythmic state of neuronal
excitability is better reflected in the phase of the ensemble LFP activity rather than in the phase

of any particular narrowband subcomponent.

If oscillations reflect information streams analogous to channels on a radio, then it could
be the case that some neurons are more coupled to one embedded oscillation and other
neurons are more coupled to a different oscillation, and that by collapsing across multiunit
activity the phase-dependence of the spiking activity is diluted for each narrowband filter. If
true, we might find stronger spike-phase coupling for the wideband filter across the populations
even though individual neurons are best coupled to different narrowband oscillations. To test
this, we measured the spike-phase coupling across filters for well-isolated single units in our
recordings. We did not find any evidence of differential preference across neurons for

narrowband signals. Rather, the majority of neurons had a stronger SPI to the state of the
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wideband signal as compared to theta (78.50%, N = 107 single units; Figure 3a), alpha
(78.50%, Figure 3b), beta (83.18%, Figure 3c), or gamma (85.98%, Figure 3c) filtered signals.
Additionally, for the minority of neurons that did show stronger SPI to a narrowband filtered
signal, they were more weakly coupled in general (average SPI = 0.09) and did not show
specific preference to any one narrowband frequency. Thus, variable population phase-
coupling to narrowband signals could not explain why the wideband filtered signals exhibit

stronger spike-phase coupling.

One possibility is that spike timing is only governed by each narrowband oscillation
when that oscillation is strongly present in the data, and as each oscillation is only transiently
present, it is unfair to expect, for example, gamma to predict spike timing when gamma is not
present in the data. To test this we restricted our analysis to only count spikes for each
frequency band at times when there is strong oscillatory power in that band. To do this we
calculated the signal-to-noise (SNR) ratio between the filtered and raw (1-100 Hz) LFP and
identified epochs where the narrowband signal exceeded a -5 dB threshold for at least 1 cycle
of the center frequency of the filter bandwidth. Only spikes that occurred during these epochs
were included for that narrowband’s SPI measure. Despite restricting each filter band to spikes
that occur when those oscillations are transiently apparent in the data, the wideband measure
still captures the strongest SPI values (Figure 4a; wideband mean SPI = 0.16 + 0.010 S. E. M.
as compared to theta: 0.11 £ 0.010, alpha: 0.08 + 0.005, beta: 0.12 £ 0.010, and gamma: 0.09
1 0.005; p < 0.001, Wilcoxon signed-rank test), while also describing a majority of the recorded
data (approximate fraction above dB threshold; wideband: 92% vs. theta: 16%, alpha: 46%,

beta: 42%, and low gamma: 19%).

Thus, spike timing is better predicted by broadband phase than narrowband phase for
any of the bands tested. We next asked how well spike timing could be predicted based on the

combination of all four narrowband filtered signals. To test this we constructed a generalized
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linear model (GLM) that took as its input the phase values measured over the four narrow band
frequencies (spanning 4 to 50 Hz) at times when a spike occurred and an equal number of
randomly drawn times when no spike occurred. The GLM was trained to predict whether or not
a spike occurred, based on the four phases. The model was trained on half the data in each
recording session, with the remaining data held out as a test set. The model’s ability to predict

spiking was measured using Receiver Operator Characteristic (ROC) analysis.

We reasoned that if oscillatory activity across the multiple narrow bands drives spiking
activity, the four-factor GLM, which has simultaneous access to the phases of all four
oscillatory signals, should predict spiking better than a GLM trained to predict spiking based on
the phase computed in an individual band (four-factor GLM AUC = 0.578 + 0.004 S. E. M;
single narrowband GLM AUC = 0.545 + 0.003 S. E. M.; p = 0.00009. Wilcoxon signed-rank
test). This analysis shows that more information about spiking is present across multiple
bands. This is consistent with two different hypotheses. The first is that the narrow bands
capture the individual contribution of oscillations that fall within each band, and the four factor
GLM reflects the joint contributions of these oscillatory drivers. An alternative hypothesis is that
the processes that drive spiking activity fluctuate over time in their power spectrum, and spiking
activity follows these fluctuations over time, regardless of where they travel in frequency. If the
first hypothesis is true, the four-factor GLM, which has access to the phase within each band,
should perform better than a single-factor broadband GLM, which is provided with a single
measure of phase that is blind to the interactions across the same frequency space. If the
second hypothesis is true, the single-factor broadband GLM, which uses a measure of phase
that tracks with the dominant LFP frequency as it changes over time, should do as well as the

four-factor GLM.

To test this, a GLM was trained on the same data that was used to train the four-factor

GLM, but instead of providing it with four phases computed within the four narrow bands, it was
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trained using only a unitary measure of phase — GP applied to the wideband (4-50 Hz) signal
as its input, and its ability to predict spiking was measured using the same ROC analysis. As
shown in Figure 4b, there was no significant difference in the ability of the combined 4
narrowband or one wideband GLM to predict spike times as defined by the area under the
curve for each session’s ROC (wideband mean AUC = 0.579 + 0.005 S. E. M.; p = 0.16,
Wilcoxon signed-rank test). Thus, even when combining signals across multiple frequency
bands, narrowband filtering adds no information beyond what is already present in the phase of
the momentarily dominant fluctuation in the LFP preserved in the wideband representation and

as measured using generalized phase.

Our results suggest spontaneous neuronal spiking in the neocortex is not organized by
oscillatory activity, but rather is modulated by fluctuations in synaptic activity that can be
estimated from the instantaneous phase of the broadband LFP. If true, then SPI values should
be correlated with how much filtering alters the LFP phase relative to the raw recorded LFP. To
test this, we compared the strength of spike-phase coupling to each band pass filtered signal
with the degree of correlation between the LFP signal before and after filtering (Figure 4c).
There was a significant positive correlation between SPI and the raw-filtered LFP correlation
across recording sessions ((Pearson’s r = 0.65 + 0.11 95% ClI, p < 1x10°™"?), suggesting a direct
relationship between spike-phase coupling and how well the filtered LFP tracked with the raw

LFP.

If spikes are more coupled to the broadband LFP than any embedded narrowband
oscillation, then the optimal filter band for maximizing SPI should be one that is as broad as
possible. To test for an optimal filter band, we scanned across a large parameter space varying
the lower and upper bounds of the band pass filter. The lower bound ranged from 1 to 50 Hz
and the upper bound ranged from 5 to 125 Hz with a minimum bandwidth of 4 Hz. Consistent

with our prior results, the strongest spike-phase coupling was observed for filters that included
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the largest width of the signal spectrum, with an exception for the lowest frequencies (Figure
4d). These results indicate optimal filters for maximizing spike-phase coupling estimates span
from 3 Hz in the lower band and as high as we sampled in the upper band (125 Hz), assuming
spike-artifacts are effectively removed from high frequency components in the LFP. If not, a
cautious step then is maintaining a low-pass filter which serves to help mitigate spurious

coupling values due to residual spike artifacts in higher frequencies.

Spiking activity can bleed into the LFP, artifactually inflating estimates of spike-phase
coupling in high frequency bands. Spike artifacts may be responsible for some gamma phase
relationships with spiking activity, as the contribution of spike artifacts in the LFP had been
previously observed down to 50 Hz(Ray and Maunsell, 2011; Zanos et al., 2011). To avoid this
we performed a de-spiking procedure, and examined the consequence of that de-spiking on
SPI estimates. A comparison of SPI values on the same data with and without de-spiking found
that the de-spiking procedure significantly reduced SPI values for frequency bands that
included frequencies below 50 Hz (but not below 15 Hz) such as low gamma (30-50Hz; not de-
spiked SPI =0.13, p=1.65 x 107 two-tailed Wilcoxon ranked sum test), beta (15-30 Hz; SPI =
0.13, p = 0.026) and the wideband (5-50 Hz; SPI = 0.18, p = 0.009). There was no significant
reduction in either alpha (8-15 Hz; SPI = 0.08, p = 0.067) or theta (4-8 Hz; SPI = 0.09, p =
0.190) when we de-spiked the LFP. These observations are consistent with recent reports of
spike-artifacts impacting spike-LFP synchronization at frequencies as low as 20 Hz(Banaie
Boroujeni et al., 2020). These results argue either that the artificial coupling of spiking activity
to LFP phase may be present at low frequencies, or that de-spiking techniques are overly
liberal in the removal of spike waveforms. Regardless, even if we consider the possibility that
the de-spiking procedure is introducing more noise than it is eliminating, the main result —that
the broadband LFP phase produces the strongest SPI values— holds when this technique is

not applied and the raw data is left intact.
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The results described so far are limited to spontaneous activity recorded during a
period in which animals foveated a fixation point at the center of a blank screen while awaiting
the appearance of a faint visual target. Do these findings generalize to more naturalistic
viewing conditions? To test this, we calculated SPI for each frequency band in animals as they
freely viewed natural scene images. Since the focus here is on intrinsic fluctuations, not the
transient responses that are evoked at the time of the saccade, neural activity at the time of the
saccade (from 50 ms before and ending 200 ms after saccades) was eliminated from
analysis. Consistent with the pattern observed during fixation of a blank screen, the wideband
filtered signal produced the strongest SPI values (0.16 + 0.008; N = 142 multi-units across 2
sessions in Monkey T and 1 session in Monkey W), which was significantly stronger than the
SPI values measured for theta (0.14 = 0.007; p < 1x10” Wilcoxon signed rank test), alpha
(0.13 + 0.007; p < 1x107'®), beta (0.10 + 0.006; p < 1x10™*), and low gamma (0.11 + 0.006; p <
1x107"?). Thus the spontaneous coupling of spiking activity to broadband fluctuations is not

limited to fixating a blank screen, but is apparent during more dynamic active vision.

While our experimental results suggest spiking activity is better correlated with the
instantaneous state of the broadband LFP rather than any individual oscillatory component, the
ground truth mechanism relating spiking to rhythmic LFP activity is unknown in our recordings.
To explore whether our observations can be explained by the hypothesis that spiking activity is
coupled to broadband LFP phase as opposed to a narrowband oscillation, we simulated an
LFP signal by combining a narrowband oscillatory fluctuation that consisted of spectral power
drifting between 8-15 Hz with broad spectrum noise. The power spectral density of this
simulated LFP fluctuation was designed to be consistent with the typical 1/f power-law
observed in cortical recordings in vivo(Miller et al., 2009) (Figure 5d). We then generated spike
times from a Poisson spike generator where the probability was dependent on either the phase

of the narrowband 8-15 Hz oscillatory signal (hypothesis A; Figure 5a) or the phase of the
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combined narrowband and broad spectrum signals (hypothesis B; Figure 5b). Spike probability
was phase dependent with spikes most likely to occur near 11 radians and spikes least likely
to occur near O radians. Importantly, the spectral content of the simulated LFP was identical
between the two alternative hypotheses and only the timing of spikes differed between the two

conditions (Figure 5c).

In order to recover the signal correlated with spike-generation we filtered the simulated
LFP in either a narrow bandpass filter from 8-15 Hz, or a wide band pass filter from 5-100 Hz.
In the case where spikes were correlated with the phase of the narrowband oscillatory
component (hypothesis A, blue), the narrowband filtered LFP signal was relatively weakly
correlated with the raw simulated LFP (Pearson’s r = 0.49, Figure 6a). However, spike timing
was strongly coupled to the phase of the narrowband filtered LFP signal (SPI = 0.34 + 0.002
S.E.M; N = 20 simulations). This coupling was significantly stronger than when using the
wideband filter to recover spike phases (SPI = 0.16 + 0.002 S.E.M; p = < 0.0001 two-tailed
Wilcoxon signed-rank test; Figure 6b). In the case where the spikes were generated from the
phase of the broad spectral content of the simulated LFP (hypothesis B, orange), the wideband
filtered LFP was strongly correlated with the raw simulated LFP (Pearson’s r = 0.84, Figure 6¢)
and the spike-phase relationship was significantly stronger after filtering in the wideband (SPI =
0.29 + 0.002 S.E.M.) as compared to the spike-phase coupling to the narrowband filtered LFP
(SPI = 0.14 £ 0.002 S.E.M.; p = < 0.0001 two-tailed Wilcoxon signed-rank test; Figure 6d).
These results indicate that, in principle, if neurons were coupled to an oscillatory component,
then narrowband filtering to extract that oscillation would indeed yield stronger spike-phase

coupling than the broadband signal.

We next asked whether a narrowband or broadband spike-correlated signal could
reproduce the observed relationship of increasing spike-phase coupling with increasing

correlation between the filtered and raw LFP signal. We filtered the signal under various filters
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(theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), wideband (5-50 Hz)) as in the cortical
recordings, as well as a broad band pass from 1-100 Hz, and measured both the spike-phase
coupling for narrowband and broadband correlated spike generation and the correlation
between the filtered and raw LFP signal. In the case where spikes were correlated with the
narrowband signal, the best filter was the 8-15 Hz filter (matching the source of the spike
generating signal), followed by the wideband and broadband filters which each included the
spike generating signal band within its bandwidth, but also included a smaller and larger part of
the “noise” spectrum respectively (Figure 7a). In the case where spikes were correlated with
the broadband signal, the best filter was the broadband filter, and decreased as the filters
became narrower (Figure 7b). The narrowband spike source had a weak correlation between
the SPI (Pearson’s r = 0.27), and the degree of filter-raw signal similarity as the optimal filter
was one that eliminated the broadband noise from the simulated LFP. In contrast, the
broadband spike source reproduced the strong positive correlation between SPI and filtered-
raw LFP similarity observed in our recordings (Pearson’s r = 0.92; Figure 7c). Our results
indicate a model where spikes are coupled to the state of fluctuations in the broad spectral
content of the LFP is sufficient to account for our observations in vivo, and suggest neuronal
spiking is not preferentially coupled to narrowband oscillations.
Discussion

A central goal of systems neuroscience is to understand how brain activity underlies
information processing and behavior. Ideally, we would like to record every action potential of
every neuron and ask how they relate to one another in the service of behavior, but even with
the best available neurophysiological tools -- sets of electrode arrays with contacts numbering
in the thousands -- we can only sample a tiny fraction of the neurons in the brain. Therefore,
neurophysiologists typically rely on indirect measures of the activity to estimate the spiking
statistics of larger cortical populations. These include LFP, EEG, or MEG, which provide
indirect measures of the activity of larger populations of neurons. Rhythmic patterns of activity
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are often observed in these measures, and it is common to treat these rhythmic patterns as
meaningful computational units, potentially serving as independent channels of information
processing, or if not independent in the context of cross-frequency phase-amplitude
coupling(Munia and Aviyente, 2019), at least functionally dissociable from the signal in which
they are embedded(Thut et al., 2012; Einevoll et al., 2013), similar to turning the dial on a radio

to receive different streams of information.

One way of thinking about rhythmic dynamics is that the spiking probabilities of the
neurons in the larger population co-vary within some frequency band and that this results in an
oscillation — for the example studied here, in the LFP. If so, then by filtering the LFP within that
oscillatory band and asking how it relates to some measure of either behavior (e.g.
performance on a discrimination task), a neural property (such as spike timing or transmission
of information across areas), or its covariation with some behavioral manipulation (e.g.
directing attention into or away from the retinotopic locus of the electrode), one can identify the
contribution of the oscillation to neural computations or behavior. However there are some
problems with treating neural fluctuations as oscillations. First, neural fluctuations are often
only transiently rhythmic in the awake state(Jones, 2016), and even then they are not purely
sinusoidal(Cole and Voytek, 2017) as they drift in frequency content from moment to moment
with changes in arousal(Vinck et al.,, 2015), attention(Fries et al., 2001), or sensory
input(Henrie and Shapley, 2005). Even in the case when neural fluctuations are strongly
rhythmic, we find narrowband filtering captures less of the spike-phase relationship than when
maintaining a wideband representation. This may be because the application of narrowband
filters to signals that are non-stationary in their frequency content can result in a loss of timing

precision in phase estimates(Yael et al., 2018).

The results presented here argue that neurons are not specifically coupled to

narrowband oscillatory activity, but rather it is the state of the broadband moment-to-moment
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fluctuations that are informative of the relative excitability of the local population. This is not to
say that rhythms are not apparent in fluctuating dynamics or that they are irrelevant for cortical
function. Nor are we suggesting that rhythmic power is limited to what one would expect from
stochastic synchronizations in a 1/f noise process. For example, it is not the case that
oscillatory rhythms are only as informative as their fraction of the spectral content of broadband
fluctuations. We observed that low gamma filtered signals had stronger SPI values than one
might expect based on their relative power in the PSD and given how poorly correlated the
gamma filtered signals were to the raw LFP. Similarly, the alpha band filtered signals had much
more power and were relatively well correlated with the raw LFP, yet had weaker SPI values
than the beta band filtered signals, which were more poorly correlated with the raw LFP.
Indeed, there is variation in the degree to which spikes couple to LFP phase across the five
frequency bands studied here. However, that does not imply those frequency bands are
independent information channels, distinct from the rest of the LFP. It is evident that they are

not, as we see the strongest SPI values for the broadest frequency bands.

In order to test what one would expect to see if it were the case spikes preferentially
coupled to a narrow set of frequencies, we simulated spike trains generated from the phase of
oscillatory signals embedded in an otherwise 1/f noise spectrum (Hypothesis A). Under these
conditions, we found stronger SPI to the narrowband filter that best matched the signal
underlying spike generation signal. We also found a reduction in SPI values when the
broadband filter was used. This matches what one would intuitively expect from a system
composed of an oscillatory signal combined additively with a broad noise. This is the intuition
that often underlies narrowband filtering approaches in electrophysiological signal analysis.
While there may be alternative explanations for why a broadband signal produces stronger SPI

values in our cortical recordings, the second model, where spikes are fluctuation driven
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(Hypothesis B), was sufficient to account for the spike-LFP coupling relationships observed in

the data.

Since the phase of narrowband oscillatory activity does not predict spiking activity as
well as the phase of wideband activity, it raises a question as to whether and when narrowband
filtering is appropriate to study rhythmic spiking dynamics. The use of narrowband filters
assumes a frequency resolved signal in the brain that is embedded in noise. As shown by
hypothesis A and in Figure 5, when neural activity is strongly coupled to latent oscillatory
activity, narrowband filtering is effective at recovering the signal. Therefore, in situations with
steady, ongoing oscillatory activity that has low variance in frequency, such as sleep spindles,
hippocampal theta, or gamma oscillations due to strong feed-forward input, narrowband
filtering may better capture spiking. However, if the signal is not known, narrowband filtering
imposes an assumption of what is signal and noise that may not be warranted and may yield
misleading results. Analytic techniques that allow for the contribution of broader frequency
ranges, as used here, may reveal the degree to which results are frequency dependent or filter

dependent.

It is important to note the limitations of the present findings. First, all analyses here
have focused on spontaneous activity. We cannot generalize the present results to neural data
collected under other conditions such as data collected during stimulus-evoked responses.
Some narrow-band frequency ranges, such as the gamma band, do not exhibit much power in
the absence of strong sensory input(Henrie and Shapley, 2005; Ray and Maunsell, 2010).
Additional experiments will be needed to determine the degree to which gamma band and
generalized phase predict spike timing under these conditions. Further, the majority of the data
analyzed here were recorded from the visual cortex in monkeys performing a particular task, in
which they foveated a fixation spot at the center of a blank screen, awaiting the appearance of

a faint visual target. In our spontaneous cortical recordings, which are largely representative of
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the aperiodic 1/f power law observed in primate visual cortex(Fries et al., 2001; Henrie and
Shapley, 2005; Yu and Ferster, 2010), even when oscillations are transiently present,
narrowband filtering produces a weaker estimate of the spike-LFP relationship than a wider

representation.

The Generalized Phase approach used here provides a meaningful measure of phase
for spectrally broad signals(Davis et al., 2020), and reveals a stronger relationship between
broadband LFP fluctuations and spiking probability than could be estimated from any individual
narrowband filtered signal. The advantage of GP over narrowband signals is that it follows the
moment-to-moment fluctuations in the signal and provides a phase value that generalizes
across changes in frequency content. This approach can reveal patterns that would not be
clear from an analysis of narrowband oscillations. For example, analysis of broadband
measures of phase led to the discovery that the alignment of spontaneous traveling waves of
cortical activity with the retinotopic locations of faint visual targets was predictive of the
magnitude of evoked activity and perceptual sensitivity(Davis et al., 2020). These effects were
only apparent in the data when the state of broadband LFP fluctuations was considered. When
filtered in narrow bands, the predictive power of wave phase on behavioral performance was
abolished. Consistent with those findings, the results presented here show that, at least in the
spontaneous waking activity of Area MT, the instantaneous state of cortical populations is
better estimated from the GP of broadband LFP fluctuations than from any narrowband
oscillatory component. These results suggest that the phase of broadband neural fluctuations,
rather than any specific narrowband frequency content, is the main influence on spontaneous

spiking activity in the cortex.
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Figures

Figure 1. Cortical LFP recordings are inherently broad spectrum (a) Spikes and local field
potentials (LFP) were recorded from area MT of common marmosets while they held fixation
on a blank screen. 3 seconds of raw LFP (filtered 1-100 Hz) and spike times from a well
isolated neuron recorded on the same electrode is plotted on the right. The red box indicates a
period of fixation during the recording epoch. (b) The power spectrum for the LFP trace in (a) is
plotted in black. 10 additional 3 second epochs are plotted in grey. The red dashed line is the
mean power spectrum across trials. (¢) The raw LFP during fixation is plotted in black against
the narrowband filtered theta oscillatory component (4-8 Hz, red dotted line). (d, e, f, same as
c, but for alpha (8-15 Hz), beta (15-30 Hz), and low gamma (30-50 Hz) band pass filters. (g)
The wideband filtered (5-50 Hz) LFP follows the dominant fluctuation in the raw LFP as it shifts

in temporal frequency.
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Figure 2. Spikes are more strongly coupled to the phase of wideband filtered LFP
signals than narrowband oscillatory components. (a) The raw (5-200 Hz) filtered LFP trace
from Figure 1 is plotted in black. The wideband filtered trace (5-50 Hz) is plotted in pseudocolor
corresponding to the generalized phase (GP) of the wideband filtered trace according to the
color wheel. GP captures the troughs (blue/purple) and peaks (yellow/green) of the dominant
fluctuations while interpolating over the higher frequency, lower amplitude riding cycles. (b)
Histogram showing the fraction of spikes that occurred during different phases of the wideband
filtered LFP (10 phase bins, N = 20 sessions across 2 monkeys; error bars indicate S.E.M.) (c)
The spike-phase distribution was flatter for theta band (4-8 Hz) filtered LFP. The mean spike-
phase index (SPI), which quantifies the mean vector length of the circular distribution of spike
phases, is plotted across 20 sessions from 2 monkeys. The wideband filtered LFP (blue) had
significantly stronger SPI values than theta filtered LFP (red; p < 1x10°, two-tailed paired
sample t-test) (d-f) Same as c, but for alpha (green; p < 1x107"°), beta (pink, p < 1x10™""), and

gamma filtered LFP (green; p < 1x10°).

Figure 3. Stronger wideband spike-phase coupling is consistent across the population
of recorded single-units. (a) Scatter plot comparing the magnitude of SPI after use of a
broadband filter (x-axis) or theta band filter (y-axis) for each identified single unit (N = 107
across 20 recordings sessions). (b-d) Same as for (a) but for alpha, beta, and gamma filters.
The wideband filter had a consistently stronger SPI than the narrowband filtered oscillatory

phases across the population of single-units.

Figure 4. Narrowband signals do not contain more spike-phase information. (a) SPI
values after restricting the inclusion of spikes to when significant power is present in each
individual filter band (-5 dB SNR threshold, percentages indicate fraction of data above
threshold; colored dots are N = 20 sessions from 2 monkeys; black dots are the population
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mean). (b) Representative ROC curves for GLM analyses comparing model sensitivity for
identifying spike times based on phase, computed in four narrowband frequency ranges that
tile the frequency space from 4-50 Hz (red), a single measure of narrowband oscillatory phase
(blue), or the single wideband GP measure applied to the same frequency range as the 4-
factor GLM (black). There was no significant difference between the 4-factor and wideband
models in identifying spike times based on phase (Wilcoxon signed-rank test, p = 0.16),
whereas the single best narrowband model was significantly weaker (beta; p = 0.00008). (c)
Scatter plot comparing the correlation between the raw LFP and the filtered LFP signal (y-axis)
and the SPI after filtering (x-axis) in each filter band. There was a significant positive
correlation between SPI and how similar the raw LFP was with the signal after filtering
(Pearson’s r = 0.65, p < 1x102). (d) SPI for a range of band pass filters ranging in high pass
(lower band, 1-50 Hz) and low pass (upper band, 5-125 Hz). Each pixel is color coded with its
average SPI across each recording session (N = 20 sessions from 2 monkeys). White pixels
are filter combinations that have bandwidths less than 4 Hz. Black contour lines denote SPI

intervals (0.02).

Figure 5. Two alternative hypotheses regarding the relationship between spiking activity
and LFP fluctuations. (a) Signals generated under the hypothesis embedded narrowband
fluctuations drive spiking activity. We generated a narrowband oscillatory fluctuation with power
between 8 and 15 Hz. Spikes were generated with a Poisson spike generator coupled to a
phase-dependent probability distribution with spikes more likely at 11/-1r phases and less likely
at 0 phases of the narrowband oscillation. This narrowband signal was added to randomly
generated broadband noise to create a simulated LFP. (b) Signals generated under the
hypothesis ensemble broadband fluctuations drive spiking activity. We generated the same
narrowband oscillatory fluctuation and added the same randomly generated broadband noise
as in the simulated LFP in a. Spikes were then generated as in (a), but to the phase of the
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broadband simulated LFP signal. (c) The result of the 2 signal generation paradigms is 2
identical simulated LFP traces, but with different spike trains generated in relation to the state
of either the narrow (blue raster) or broadband (red raster) signal. (d) The mean power

spectrum across 20 simulated LFP signals (error bars are S.E.M).

Figure 6. Spike-phase relationship is best recovered when the filter matches the signal
(a) The 8-15 Hz narrowband filtered LFP (solid blue line) is the recovered spike-generating
signal from the ensemble simulated LFP (dotted blue line) under hypothesis A. (b) The SPI
from the phase of the narrowband signal is significantly stronger after narrowband filtering as
compared to wideband filtering for the simulation where spikes were coupled to the phase of
the narrowband component (5-100 Hz; N = 20 simulations; p < 0.0001 two-tailed Wilcoxon
signed-rank test). (c) The wideband filtered LFP (5-100 Hz, red line) is the recovered spike-
generating signal from the broadband simulated LFP under hypothesis B (dotted red line). (d)
The SPI from the phase of the wideband is significantly stronger after wideband filtering as
compared to narrowband filtering for the simulation where spikes were coupled to the phase of

the broadband LFP (p < 0.0001 two-tailed Wilcoxon signed-rank test).

Figure 7. The model with a broadband spike correlation best matches cortical recordings.
(a) SPI values after filtering simulated LFP in various band passes when spike times are
correlated to the phase of 8-15 Hz narrowband component. In this case, the optimal filter is
aligned to the signal source (8-15 Hz). (b) Same as (a), but when spike times are coupled to the
phase of the broadband LFP. The pattern of SPI across filters is well matched to the pattern
observed in data (Figure 4c). (c) SPI (x-axis) is poorly correlated with the similarity between
filtered and raw simulated LFP (y-axis) when spikes are correlated with narrowband signal

phase (blue dots, r* = 0.08). Conversely, the correlation is strong when spikes are correlated

46



1079  with broad-band signal phase (red dots, r* = 0.85). The relationship for a broad-band signal

1080  source is well matched to the pattern observed in the cortical recordings (Figure 4c).
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