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We construct an approximate metric that represents the spacetime of spinning binary black holes (BBH)

approaching merger. We build the metric as an analytical superposition of two Kerr metrics in harmonic

coordinates, where we transform each black hole term with time-dependent boosts describing an inspiral

trajectory. The velocities and trajectories of the boost are obtained by solving the post-Newtonian (PN)

equations of motion at 3.5 PN order. We analyze the spacetime scalars of the new metric and we show that it

is an accurate approximation of Einstein’s field equations in vacuum for a BBH system in the inspiral

regime. Furthermore, to prove the effectiveness of our approach, we test the metric in the context of a 3D

general relativistic magnetohydrodynamical (GRMHD) simulation of accreting minidisks around the black

holes. We compare our results with a previous well-tested spacetime construction based on the asymptotic

matching method. We conclude that our new spacetime is well-suited for long-term GRMHD simulations

of spinning binary black holes on their way to the merger.

DOI: 10.1103/PhysRevD.104.044041

I. INTRODUCTION

There is abundant evidence that most galaxies harbor

supermassive black holes (SMBHs) at their centers [1,2].

A non negligible fraction of these galaxies undergo one or

more mergers within a Hubble time [3,4]. After two

galaxies merge, various processes, such as dynamical

friction, might drive their SMBHs to close separations of

subparsec scales [5–7].

In this situation, the binary system starts emitting

gravitational radiation efficiently, losing energy, and even-

tually merging [8–10]. The frequencies of these gravita-

tional waves (GWs) span from nano-Hertz for the inspiral

phase [11], up to milli-Hertz for the merger. Pulsar

timing array consortiums and LISA are actively working

toward detecting these GW for the first time in the next

decade [12–15].

Because galaxy mergers can be very efficient at driving

interstellar gas toward the galactic center [3,16,17], SMBH

binary mergers should accrete enough gas and emit

observable electromagnetic (EM) radiation [18]. The total

energy radiated is proportional to the gas mass present

during the SMBH binary merger [19], and its characteristic

form of this EM emission is expected to be distinct relative

to ordinary accreting supermassive black hole holes, such

as single active galactic nucleus (AGN) [20–22].

Identifying those signatures, however, requires complex

calculations of the SMBH binary mergers and their

associated luminosity, spectrum, and time-dependence.

Some numerical calculations have started to reveal inter-

esting properties associated with these EM signals [23–27].

However, because they depend strongly on the system’s

properties such as the total binary mass, mass-ratio, spins

(magnitude and direction), and accretion rate, much work

remains to be done.

Since the interstellar gas of the merged galaxies is

expected to have a considerable amount of angular

momentum, a circumbinary disk will form around the

BHs [28]. Semianalytical models of these systems pre-

dicted that the binary would decouple from the fluid and*
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coalesce in a dry merger; in other words, the inflow time of

the accreted matter would become larger than the inspiral

time at short orbital separations [29,30].

Since the equations of magnetohydrodynamics (MHD)

in dynamical spacetimes are highly nonlinear, we need

numerical simulations to make accurate predictions. In the

past decade, α-viscous simulations and 3D MHD simu-

lations demonstrated that accretion onto the binary occurs

even in the late inspiral phase [25,27,31–46], with appre-

ciable accretion sustained right up to the time of merger

when using relativistic inspiral rates [38]. These simula-

tions also showed that the circumbinary disk is truncated at

a distance approximately twice the binary separation from

the system’s center-of-mass. Outside this truncation radius,

mass piles up, forming a local peak in the surface density

profile; inside this radius, the accretion flow onto the binary

is confined within two narrow streams traversing a low-

density gap. Each of these streams is associated with one of

the BHs, forming minidisks around each hole.

Moreover, most of these simulations revealed the for-

mation of a characteristicm ¼ 1mode overdensity, or lump,

in the circumbinary disk for mass-ratios close to unity

[27,31,38–41,43,44,46]. In that case, the lump modulates

the accretion of the system, and feeds the BHs with a single

arm stream. If the mass ratio is small, the lump is weak [47],

and the lighter BH receives most of the mass, carving a path

near the inner edge of the circumbinary disk.

Solving Einstein’s field equations for the metric of

SMBH binaries coupled to MHD fields is computationally

challenging. This has been done in the past in the force-

free regime [48–51], or for close binary separations

[36,37,52–54]. Recently, authors in Ref. [55] have evolved

a spinning BBH in full GRMHD for a few orbits in the

inspiral regime, focusing on minidisks dynamics.

In order to model realistic scenarios in these systems,

however, we need first to evolve the circumbinary disk for

many binary orbits until reaching a steady-state [56]. In

particular, the presence of the m ¼ 1 lump mode in the

circumbinary disk is very important to determine the

dynamics of what happens in the inner cavity [57]. An

alternative approach to achieve this is to use approximate,

semianalytical, solutions of Einstein’s equations for the

spacetime, and evolve the MHD equations on it. This

allows one to explore the parameter space of the spacetime

more efficiently and to focus computational resources (such

as the configuration of the grid) on the MHD fields. As an

example of this approach, previous work evolved relativ-

istic circumbinary disks with a post-Newtonian (PN) metric

during the inspiral regime [47,58,59]. Since this metric is

only valid far from the BHs, these simulations must excise

the binary region from the computational domain.

To analyze the strong-field behavior of the plasma near

the BHs, we need a background metric that is valid at these

scales. Such metric can be built, for instance, through the

so-called asymptotic matching approach [60–62] that

stitches different known analytical approximations for a

binary black hole (BBH) metric. In this approach, a

perturbed Schwarzschild or Kerr solution is used for the

inner-zone, a PN expansion for the near-zone, and a post-

Minkowskian expansion for the far-zone are glued together

via the transition techniques developed in Refs. [63,64].

This metric has been used to perform GRMHD simulations

of accretion flows with minidisks around nonspinning BHs

for the first time [57,65,66].

This approach for the spacetime construction can be

generalized to spinning BHs [61,67,68], but the analytical

matching metric becomes too complex and computation-

ally expensive for long-term GRMHD simulations. This

motivates the search for more efficient approaches for

building an analytical spinning BBH metric. From numeri-

cal relativity simulations, we know that spins play a key

role in BBH inspirals and mergers. Spins aligned with the

orbit, for example, can significantly alter the pace of orbital

evolution by gravitational radiation [69–71]. Oblique spins

can drive complex precession and nutation whose ampli-

tude increases rapidly at smaller separations [72]; spins

with partial orbital alignment can repeatedly flip sign

[73–76]; spin-orbit PN resonances can also tilt the orbital

orientation [77].

In Ref. [56], we introduced a new approach for spinning

BBHs, building the approximate metric as a linear super-

position of two boosted Kerr-Schild BHs. We used this new

approximate spacetime to analyze the accretion of a circum-

binary disk around the BBH in a Keplerian orbit and unveil

the influence of the spin in the circumbinary flow.We found

that streams falling into the binary cavity as well as the

accretion rate are affected by the magnitude and direction of

the BH spins, while other properties in the bulk of the

circumbinary disk remain unaffected. In particular, due to

framedragging effects, accretion decreases (increases)when

the spins are (anti-)aligned, with important effects in the

overall luminosity of the system. We also find that the

circumbinary disk is stabilized after more than 100 orbits,

which implies that long simulations are required for making

realistic predictions. In the present work, we formalize and

extend this previous approach by superposing two boosted

Kerr BHs in harmonic coordinates, solving the PN equations

of motion (EOM) for the BH trajectories. This allows us to

have amore accurate approximation for the spacetime and to

analyze the influence of the inspiral on matter orbiting the

BBHs.We test this metric by analyzing its spacetime scalars

and using it in a full 3D GRMHD simulation of accreting

minidisks. We compare our results with the more expensive

and complex matching metric for nonspinning BHs. Having

tested the viability and accuracy of our spacetime, in an

upcomingworkwewill use our newmetric for analyzing the

influence of spins in the minidisk dynamics and their

outflows.

We organize the paper as follows: in Sec. II, we build the

approximate metric in the harmonic gauge by boosting and
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superposing two BH terms. In Sec. III, we test the metric by

analyzing its spacetime scalars and comparing them with

the asymptotic matching approach. In Sec. IV, we test the

metric as a background spacetime for a GRMHD simu-

lation, comparing again with previous results from the

asymptotic matching approach. We conclude that the

metric is accurate and robust to be used in accretion disk

simulations of BBH in the inspiral regime.

Notation and conventions. We use the signature

ð−;þ;þ;þÞ and we follow the Misner-Thorne-Wheeler

convention for tensor signs. We use geometrized units,

G ¼ c ¼ 1. We use Latin letters a; b; c;… ¼ 0, 1, 2, 3 for

four dimensional components of tensors, and

i; j; k;… ¼ 1, 2, 3 for space components. An orthonormal

space basis is written as e⃗ðiÞ ¼ eaðiÞ∂a, where its components

are denoted as ðiÞ; ðjÞ; ðkÞ;… ¼ 1, 2, 3.

II. CONSTRUCTION OF SUPERPOSED BINARY

BLACK HOLES METRIC

To solve Einstein’s field equations with numerical meth-

ods, one usually starts from a three-dimensional slice of the

spacetime metric and matter fields as initial data for the

problem [78–80]. This initial data cannot be arbitrary since it

has to satisfy the constraints of Einstein’s equations; there is,

however, a significant amount of freedom to choose it

because the equations are invariant under diffeomorphisms.

In general relativistic simulations, some of these choices are

preferred over others by their numerical robustness and

accuracy. For instance, in the extended conformal thin

sandwich formalism [81,82] used by the spectral Einstein

code (SPEC) [83], we can freely-specify the conformal

metric, the trace of the extrinsic curvature, and their time

derivatives. For BBH simulations, a widely used and well-

tested choice for the conformal metric is a superposition of

two BHs in Kerr-Schild coordinates [84–87].

Motivated by this approach, we shall test an ansatz for a

4-dimensional BBH metric constructed as a superposition

of the form gabðtÞ ∼ ηab þH
ð1Þ
ab ðtÞ þH

ð2Þ
ab ðtÞ, where ηab is

the Minkowski background metric and the terms H
ðnÞ
ab ðtÞ,

n ¼ 1, 2, correspond to each BH. Each BH term is boosted

with a time-dependent transformation following the tra-

jectories of the holes. These trajectories can be accurately

described solving the PN equations of motion [88] for

orbital separations larger than ∼10M. The final BBHmetric

is a simple, time-dependent, analytical function that we can

use as a background spacetime for MHD simulations. In

this section, we show how to build this ansatz.

A. Kerr black hole in harmonic coordinates

The metric of a spinning BH in Kerr-Schild (KS)

coordinates, ftKS; xKS; yKS; zKSg, is the natural choice for

building a superposed metric since it has the form of a

background term plus a BH term (see Ref. [89,90]):

gab ¼ ηab þ 2Hlalb; ð1Þ

where ηab is the Minkowski metric in Cartesian coordi-

nates, and the null covector la is defined as

−ladx
a
KS ≔ dtKS þ

rxKS þ ayKS

r2 þ a2
dxKS

þ ryKS − axKS

r2 þ a2
dyKS þ

zKS

r
dzKS; ð2Þ

with the spin parameter a, the function:

H ≔
2Mr3

r4 þ a2z2KS
; ð3Þ

where M is the mass of the black hole, and the Boyer-

Lindquist radius r is given by

r2 ≔
1

2
ðr2KS − a2Þ

 

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4a2z2KS
ðr2KS − a2Þ2

s
!

; ð4Þ

where

r2KS ≔ x2KS þ y2KS þ z2KS: ð5Þ

This coordinate system was used in our previous work

[56] to build an approximate spacetime metric for a BBH

system in a Keplerian orbit, using a simple prescription to

boost the BHs. Since we want to describe an inspiraling

BBH using PN trajectories, we must use a coordinate

system compatible with the PN gauge. As we explain in

the next subsection, we use the PN trajectories in the

standard harmonic coordinate system [88] and, for this

reason, we build our superposition directly in harmonic

coordinates [91].

The Kerr metric has a well-known harmonic coordinate

system introduced by Cook and Scheel [92], which is also

horizon penetrating. This is an important feature of the

coordinates for doing GRMHD simulations because the

excision can be placed inside the horizon (we analyze more

features of this harmonic coordinate system in the

Appendix A). Using the known transformation from in-

going Kerr to this harmonic coordinate system

(cf. Appendix B in Ref. [68]), we express the trans-

formation from Kerr-Schild coordinates, fxaKSg, to Cook-

Scheel harmonic coordinates, fxaHg, as:

tKS ¼ tH þ 2M log ðr − r
−
Þ − 2M logð2MÞ; ð6Þ

xKS ¼ xH þM

�ðr −MÞyH − axH

ðr −MÞ2 þ a2

�

; ð7Þ

yKS ¼ yH þM

�ðr −MÞxH þ ayH

ðr −MÞ2 þ a2

�

; ð8Þ
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zKS ¼ zH þM

�

zH

r −M

�

; ð9Þ

where we have:

r −M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQþWÞ=2
p

; W ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ 4a2z2H

q

; ð10Þ

and

Q ≔ r2H − a2; r2H ≔ x2H þ y2H þ z2H: ð11Þ

The space components are thus related by the elegant

relation:

ðxiKS − xiHÞδijðx
j
KS − x

j
HÞ ¼ M2: ð12Þ

If we apply this transformation to the Cartesian

Minkowski part of the Kerr-Schild metric (1):

ηHabða;MÞ ¼ ∂xa
0

KS

∂xaH

∂xb
0

KS

∂xbH
ηa0b0 ; ð13Þ

we note that the transformed quantity ηHabða;MÞ now

depends on the spin and mass of the BHs. However, we

can still write this as a flat Cartesian metric plus a source

term:

ηHabða;MÞ ¼ ηab þMAabða;MÞ; ð14Þ

where ηab is again the Cartesian Minkowski metric. It can

be shown thatAabða;MÞ is well-behaved at spatial infinity:

A ∼ 1=r; for r → ∞: ð15Þ

The second term of the Kerr-Schild metric can be

transformed in the same manner and is also well behaved

at infinity. We conclude that the Kerr metric in harmonic

coordinates can be written as a background plus a BH term,

suitable for superposition, as:

gab ¼ ηab þMHab; ð16Þ

where Hab ≔ 2HlHa l
H
b þAab. In these coordinates, we

shall build an effective metric (superposed harmonic PN,

or SHPN) of the form:

gab ¼ ηab þ ϕ�
ð1ÞðMð1ÞH

ð1Þ
ab Þ þ ϕ�

ð2ÞðMð2ÞH
ð2Þ
ab Þ; ð17Þ

where Mð1Þ and Mð2Þ are the masses of each BH, H
ð1Þ
ab and

H
ð2Þ
ab their corresponding tensorial functions Hab, and ϕ�

ð1Þ
and ϕ�

ð2Þ are transformations that boost the BH terms to

describe the global metric of a BBH system, using a PN

approximation for the trajectories. We show how to build

this transformation in the next subsection.

B. Moving superposed black holes

with PN trajectories

The Kerr metric in harmonic coordinates (16) represents

a BH at rest with respect to an asymptotically inertial

frame. To describe a uniformly moving BH, we can apply a

Lorentz boost transformation and convert our coordinates

to boosted coordinates (cf. Ref. [93]). Physical quantities at

spatial infinity transform as four-vectors in Minkowski

space-time. For instance, the asymptotic observer will

measure that a boosted BH has a mass MB ¼ γM, where

M is its rest ADM mass. This is simply a frame trans-

formation, and it does not change gauge-invariant quan-

tities such as the Ricci or Kretschmann scalars.

Let us suppose that we have a binary system, where the

BHs move in an inspiraling orbit with respect to the origin

of a (Cartesian) coordinate systemO, with their trajectories

given by:

saAðtÞ ¼ ðt; s⃗AðtÞÞ≡ ðγAτA; s⃗AðτAÞÞ; ð18Þ

where A ∈ fBH1;BH2g, s⃗AðtÞ is the spatial trajectory of a

BH, τA the proper time, and γA the Lorentz factor.

Throughout this work, we assume that the BH spins are

(anti)aligned, which implies that there is no precession and

the orbit lies on the xy plane.

For our approximate BBH metric, we are going to boost

two BH terms Hab from Eq. (16) and superpose them, as

sketched in Eq. (17). We build the time-dependent boosts as

coordinate transformations from the BH framesO0fXag, to
the (global) center of mass frame Ofxag. In fXag, the BH
is at rest and its metric is locally given by Eq. (16); in the

global coordinates fxag, on the other hand, the BH is

moving according to the worldline (18). This transforma-

tion constitutes a generalized boost since the BHs are not in

uniform motion, i.e., the BH coordinates fXag are non-

inertial coordinates.

The natural (pseudo-Cartesian) coordinate system asso-

ciated with the frame of an accelerated worldline is called a

Fermi Normal coordinate system [94,95]. These widely

used coordinates generalize the boost transformation for

time-dependent velocities (see Ref. [96] for details). Let us

say we want to build this coordinate transformation for a

given event e in spacetime (see Fig. 1). First, find the proper

time for which saðτÞ is simultaneous to e in the noninertial

BH frame. Then define the time coordinate of the systemO0

to be the proper time of the worldline X0 ¼ T ¼ τ. Finally,

assume that the hypersurface orthogonal to the worldline is

approximately Euclidean, so the event e described in the

global coordinate system O is connected with Xa as:

xa ¼ saðτÞ þ XieaðiÞðτÞ; ð19Þ
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where eaðiÞ are the components of the orthonormal basis

carried by the BH, in global coordinates.

In order to find the coordinate transformation we need to

find the components of the orthonormal basis of the BH in

the global coordinates. Let us assume that the frame carried

by the BH is parallel to the axes of the inertial system O.

Since at each point the BH has a time-dependent velocity

with respect to O, locally we have to boost at each point in

time the spatial frame to compare this with the global frame.

The general Lorentz transformation in the xy plane, given

the spatial velocity v⃗ ¼ βn⃗ðtÞ of the BH, can be obtained

with the boost generators, K⃗, and rapidity, ξ ¼ tanh−1ðβÞ, as:

ΛðtÞ ¼ exp ðξn⃗ðtÞ · K⃗Þ

¼

0

B

B

B

@

γ γβnx γβny 0

γβnx 1þ ðγ − 1Þn2x ðγ − 1Þnxny 0

γβny ðγ − 1Þnxny 1þ ðγ − 1Þn2y 0

0 0 0 1

1

C

C

C

A

:

We use this transformation to boost the spatial basis of

the BH. In the BH coordinates, this basis is simply given by

ea
0

ðiÞ ¼ δa
0

i (i.e., the Cartesian spatial basis). Then, in global

coordinates this is given by eaðiÞ ¼ Λ
a
i ðtÞ.

The coordinate transformation, using (19), is given by:

t ¼ γ½T − βðnxX þ nyYÞ�; ð20Þ

x ¼ sxðtÞ þ X½1þ ðγ − 1Þn2x� þ Y½−ðγ − 1ÞnxnyÞ�; ð21Þ

y ¼ syðtÞ þ X½−ðγ − 1Þnxny� þ Y½1þ ðγ − 1Þn2y�; ð22Þ

z ¼ Z: ð23Þ

The noninertial coordinates Xa in terms of the global

coordinates xa are easily obtained inverting these equa-

tions. Note that this transformation reduces to a standard

Lorentz boost if the trajectory of the BH is a straight line

with uniform rapidity. superposing the two BH terms and

performing this transformation for each term, with world-

lines sa
1
ðtÞ and sa

2
ðtÞ, we have explicitly our SHPN metric:

gab ¼ ηab þM1

�

∂Xā
1

∂xa
∂Xb̄

1

∂xb
Hā b̄

�

þM2

�

∂Xā
2

∂xa
∂Xb̄

2

∂xb
Hā b̄

�

;

ð24Þ

where the tensors are transformed through the Jacobian of

the coordinates Xa
AðxÞ. We still have to supplement the

metric with the position, velocity, and acceleration of the

BHs. In the case of a BBH, we can obtain those solving

the PN equations of the system in harmonic coordinates, as

we show in the next section.

C. Post-Newtonian trajectories

for spinning BH binaries

We assume for now that the orbit of the binary has

circularized and the system is well described by the so-

called adiabatic approximation [88]. We also assume that

the spins of the holes are (anti)aligned with the orbit and

thus we ignore orbital precession. In this case, the inspiral is

driven by the loss of binding energy of the orbit, E,
balanced by the gravitational wave flux of energy, F ,

and change in mass _M:

_E ¼ −F − _M; ð25Þ

where a dot represents a derivative with respect to the

global time t. From this equation we can obtain the orbital

phase, ΦðtÞ, and separation, r12ðtÞ, of the system. In the

case of quasi-circular orbits, the gauge-dependent separa-

tion r12 is linked to the orbital frequency through the

relativistic generalization of Kepler’s law [88].

First, we solve for the orbital phase. We rewrite Eq. (25)

as two equations in terms of the (gauge invariant) variable

v ≔ ðMdΦ=dtÞ1=3:

dv

dt
¼ −

F ðvÞ þ _MðvÞ
dEðvÞ=dv ; ð26Þ

dΦ

dt
¼ v3

M
; ð27Þ

and replace EðvÞ, F ðvÞ, and _MðvÞ, with their explicit

expressions at 3.5 PN order for the case of nonprecessing

binaries, as presented in Ref. [97].

Following the TaylorT4 scheme [98], we expand the

right-hand side of Eq. (26) in a Taylor series to the proper

FIG. 1. Diagram of the BH rest frame, O0, which is noninertial,
and the global frame, O. The coordinates fXag and fxag both

describe the event e.
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PN order, and integrate it to obtain tðvÞ (see, e.g.,

Refs. [99–101] for Taylor PN approximants). Then, we

invert this quantity, and solve Eq. (27) for ΦðtÞ. Next, we
solve for the orbital separation r12ðtÞ within numerical

accuracy although it is directly derived from the orbital

frequency in the PN approximation. We write its time

derivative in terms of the orbital energy:

_r12 ¼
dE=dt

dE=dr12
≡ −

F ðr12Þ þ _Mðr12Þ
dE=dr12

; ð28Þ

and integrate to find:

tðr12Þ ¼ tc −

Z

r12

0

dr̃12
dE=dr̃12

F ðr̃12Þ þ _Mðr̃12Þ
; ð29Þ

where tc is the time until coalescence. We replace Eðr12Þ,
F ðr12Þ, and _Mðr12Þ with their explicit expressions, found

in Ref. [88] and references therein, and solve for tðr12Þ.
Finally, we invert using a Newton-Rawson method to

obtain r12ðtÞ. With ΦðtÞ and r12ðtÞ we can reconstruct

the worldlines (18) of each spinning hole in harmonic

coordinates, as required by our metric (24).

Note that, even though we use the PN approximation to

obtain the BH trajectories, our metric is valid in the inner

zone because we are using the full relativistic BH terms that

include the ergosphere and horizon (see Appendix A). In

other words, we are restricted to binaries with separations

larger than ∼10M, but the metric, as we will show now, is

accurate in both inner and near zones.

III. ANALYSIS OF THE SPACETIME METRIC

In this section, we test the global validity of our SHPN

metric (24). The metric of a BBH system must satisfy

Einstein’s field equation in a vacuum, and thus the Ricci

tensor must be zero. In numerical relativity, violations of

Einstein’s equation are tracked using the Hamiltonian and

momentum constraints. Since we intend to use the four-

dimensional form of th metric in our applications, here we

focus first on four-dimensional quantities to quantify

deviations from the exact solution. In particular, following

Ref. [60,68], we investigate the Ricci scalar, R ≔ gabRab,

where Rab is the Ricci tensor. Violations of the Ricci scalar

R are not absolute and, thus, they are only meaningful when

compared with other quantities. For instance, if we have

that jRðt1Þj > jRðt0Þj for t1 > t0, we can state that the

approximate metric has deteriorated or deviated from a

vacuum solution over time. Similarly, we can compare the

Ricci scalar of different systems or at different points in

space to assess locally where the metric is a better

approximation to a vacuum solution.

We also compare the validity of our solution with the

alternative approach presented in Refs. [60,68], where an

analytical metric is built by stitching different approximated

solutions of Einstein’s equations at three characteristics

zones of a binary compact system, namely, the inner-zone

(IZ), the near-zone (NZ), and the far-zone (FZ) [102,103].

This so-called asymptotic matching procedure brings all

these different parts into the same harmonic coordinate

system and the global metric can be written as:

gab ¼ ð1 − fFZÞffNZ½fIZ;1gðNZÞab þ ð1 − fIZ;1ÞgðIZ1Þab �

þ ð1 − fNZÞ½fIZ;2gðNZÞab þ ð1 − fIZ;2ÞgðIZ2Þab �g

þ fFZg
ðFZÞ
ab ; ð30Þ

where transition functions fi are used to go from one zone to

the other. This analytical metric, however, is computation-

ally expensive and complex to handle. The Jacobians

required to stitch the different parts of the metric into the

same coordinate system are very long, and many operations

are required to compute themat each timestep.Moreover, for

the spinning case, thematching procedure renders themetric

prohibitively expensive for MHD simulations. In our new

approach, we lose some accuracy in comparison with the

matching metric but we gain much more efficiency.

A. Spacetime scalars

Although the metric is analytical, we compute its

spacetime scalars numerically as it is faster and more

practical to incorporate the PN trajectories. The functional

form of the metric is built using Mathematica [104] and

exported to C language in an optimized form. We use then a

C based code that implements fourth-order finite

differences in a Cartesian grid for the derivatives of every

metric function. We analyze and plot the outputs using

NumPy and MATPLOTLIB [105,106] The convergence analy-

sis of these methods is presented in Appendix B.

We are interested in using the metric in the inspiraling

regime, where the PN approximation holds, and the

system is emitting a significant amount of gravitational

radiation. We explore the characteristics of the system for a

fiducial configuration, with a separation of r12ðt0Þ ¼ 20M,

equal BH masses, and the adimensional spin parameter,

χ ≔ a=M, in the interval 0 < χ < 0.9.

As a first check of consistency, we analyze the metric

determinant
ffiffiffiffiffiffi

−g
p

. In Fig. 2, we plot the determinant for a

separation of r12 ¼ 20M and several values of the spin

parameter χ, along with the determinant for the matching

metric. We see that for all these values, the determinant for

the superposed metric is globally well-behaved, free of

pathologies, and similar to the matching space-time.

In Figure 3, we plot some components of both metrics. It

is interesting to note that the gtt component of the SHPN

metric is globally similar to the matching one, meaning that

the effective PN potential of both spacetimes is much akin

[65]. The differences between the two metrics are important

in the transition regions and the far-zone. In the latter, the
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matching metric incorporates the post-Minkowski back-

ground of gravitational waves, while our new SHPN is

asymptotically flat; however, we do take into account the

gravitational radiation losses in the trajectories of the BHs.

In Fig. 4, we plot the Ricci scalar of the SHPN metric

over the positive x axis at z ¼ y ¼ 0, for different values of

spin, and we compare it with the Ricci scalar of the

matching metric for a binary of the same characteristics.

First, we see that R varies very little under different spin

parameters, consistent with Ref. [68]. Note that the

matching metric is better in the IZ but the violations are

worse at the transition regions outside the ISCO, where the

SHPN is smoother and performs better. A good metric

accuracy in this region is an important feature for deter-

mining the correct gas dynamics of an accreting disk near

the hole. In Fig. 5, we show an equatorial plot of the Ricci

scalar. As expected, the higher violations are concentrated

in the middle region between the BHs and drop sharply

with distance. In Fig. 6, we plot the Ricci violations for

different mass-ratios q ≔ M1=M2. We find the values of R
depend smoothly on q, improving in the middle region for

smaller q.
Besides R, we can explore other curvature scalars to

assess the global behavior of the metric. In particular,

considering the ADM equations for a general spacetime,

we can define the Hamiltonian constraint H as:

H ≔
3Rþ K − KabK

ab ¼ 16πρ̃; ð31Þ

where 3R is the spatial Ricci curvature, Kab the extrinsic

curvature, and ρ̃ the energy density of matter. For our BBH

FIG. 3. Absolute value of several metric components for the superposed and matching metric in the fiducial configuration. Note that

the superposed metric components are much smoother than the matching metric because there are no transition regions.

FIG. 2. Determinant of superposed metric for different values

of the spin and separation of r12 ¼ 20M. Note that the curves for

different spins are very similar. For comparison, we include the

determinant of the matching metric for χ ¼ 0.
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vacuum metric, a nonzero H means that the spacetime has

“fake mass” due to the approximation. This will introduce

errors in the true gravitational potential and thus in the

geodesic motion of matter. Since we are interested in using

this spacetime as a background scenario for evolving an

MHD fluid, it is important to analyze this quantity and its

evolution. We consider the volume-integrated value ofH as

a measure of the total fake mass introduced by the

approximated metric:

Mfake ¼
1

16π

Z

V

HdV: ð32Þ

Considering a cube of radius r ¼ 50M around the center

of mass, we can track the evolution of Mfake for different

orbital separations. As we show in Fig. 7, this fake mass is

overall small with respect to the total mass of the BBH in

both SHPN and matching metric but starts increasing

exponentially at ∼8M, where the PN approximation breaks.

Finally, in Fig. 8, we plot the Ricci scalar, theHamiltonian

constraint, the square root of the Momentum constraints,

M, and the Kretschmann scalar, K ≔ RabcdR
abcd, for

the SHPN metric. We observe here that the Hamiltonian

constraint and the Ricci scalar have similar behaviors,

indicating that the errors of the approximation come

essentially from the fake mass component.

IV. SUPERPOSED METRIC IN

GRMHD SIMULATIONS

We built our new superposed metric in harmonic

coordinates, which allows us to use accurate PN trajectories

and directly compare our simulations with previous results

that use the same gauge. Moreover, the metric is accurate

enough near the BH, allowing us to analyze what happens

with the plasma physics around each BH.

FIG. 4. Ricci scalar for the matching and superposed metric

with r12 ¼ 20M, equal mass-ratio, and different values of spin.

The dashed green lines denote the location of the horizon and the

solid green lines the location of the ISCO for a nonspinning BH.

FIG. 5. Equatorial logarithmic plot of the Ricci scalar for the

SHPN metric with r12 ¼ 20M, equal masses, and χ ¼ 0.9

FIG. 6. Ricci violations of the SHPN metric, for r12 ¼ 20M,

χ ¼ 0.5, and different mass-ratio values.

FIG. 7. Fake mass introduced in the spacetime by the SHPN

and matching metric approximations for different orbital dis-

tances.
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The matching metric approach has been tested in simu-

lations, both as a background spacetime for MHD [57,66],

and in numerical relativity [107]. MHD simulations of

BBHs accretion disks with the spinning matching metric,

as we said, are prohibitively expensive. In contrast, the

SHPN metric is computationally cheaper, allowing us to

simulate this type of system for the first time. In this section,

we show the results of a full 3DGRMHDsimulationwith the

SHPNmetric using the codeHARM3D. In particular, we focus

on comparing an accretion disk simulation using the SHPN

metric for nonspinning BHs and the analog simulation

presented in Refs. [23,25], that uses the nonspinning

matching metric. We will present full details of the spinning

BBH simulation with the new metric in an upcoming

work [108].

A. GRMHD evolution

Assuming the surrounding gas does not influence the

spacetime dynamics, we can use our superposed metric to

simulate the MHD evolution of accretion disks in a BBH

system. For that purpose, we implement the new metric in

the GRMHD code HARM3D [38,109–111], which evolves

the ideal GRMHD equations in flux-conservative form, for

an arbitrary metric and coordinate system. The equations of

motion are the continuity equation, the local conservation

of energy and momentum, and Maxwell’s equations, which

can be written as:

∂tUðPÞ ¼ −∂iF
iðPÞ þ SðPÞ; ð33Þ

where P are the primitive variables, U are the conserved

variables, Fi the fluxes, and S are the source terms. These

can be expressed as

P ≔ ½ρ; u; ũi; Bi�;

UðPÞ ≔ ffiffiffiffiffiffi

−g
p ½ρut; Tt

t þ ρut; Tt
j; B

k�;

FiðPÞ ≔ ffiffiffiffiffiffi

−g
p ½ρui; Ti

t þ ρui; Ti
j; ðbiuk − bkuiÞ�;

SðPÞ ≔ ffiffiffiffiffiffi

−g
p ½0; Tκ

λΓ
λ
tκ − F t; T

κ
λΓ

λ
jκ − F j; 0�;

where Γ
c
ab are the Christoffel symbols, ba ¼

ð1=utÞðδab þ uaubÞBb is the magnetic 4-vector projected

into the fluid’s comoving reference frame, Bi is the

magnetic field in the reference frame of the space normal

hypersurface, u is the internal energy density, uα are the

components of the fluid’s 4-velocity, and ũi is the fluid

velocity in the zero-angular-momentum observer (ZAMO)

frame. The stress-energy tensor is written as

Tab ¼ ðρhþ 2pmÞuaub þ ðpþ pmÞgab − babb; ð34Þ

where h ¼ 1þ ϵþ p=ρ is the specific enthalpy, ϵ ≔ u=ρ is

the specific internal energy, p is the gas pressure, pm ¼ 1

2
b2

is the magnetic pressure, and ρ is the rest-mass density. We

include a source term F ν into the local energy conservation

equation in order to approximate effects from radiative

cooling, designed to preserve the height ratio of the

disk [23]. We assume and ideal Γ-law equation of state:

p ¼ ðΓ − 1Þρϵ, with Γ ¼ 5=3.
HARM3D uses high-resolution shock-capturing methods

to integrate the conservation equations (33). In particular,

we use the piece-wise parabolic reconstruction of primitive

variables for the local Lax-Friedrichs fluxes, a flux-CT

scheme to maintain the solenoidal constraint [112],

and a robust recovery procedure from conserved to primi-

tive variables [113]. The code uses fourth-order finite

differences for spatial derivatives of the metric to find

the Christoffel symbols, and the method of lines for time

integration with a Runge-Kutta method of second-order

(more details of the algorithm in Refs. [111] and [38]).

B. Minidisk dynamics in a binary black hole system:

Comparison with previous simulations

In Ref. [25], the matching metric (30) was used to

simulate the MHD dynamics of a circumbinary disk around

a BBH and the formation of minidisks. Reference [66]

showed, for the first time, that minidisks in tight binary

systems are out of inflow equilibrium, filling and depleting

their mass in less than an orbital period, showing interesting

modulations [26,57].

We perform a simulation with the same configuration

and initial data as Refs. [57,66] but switching the matching

metric for our superposed metric (30) with zero spin. The

simulation uses a double-fisheye spherical grid [114] that

focuses more cells in the vicinity of the BHs and maintains

a spherical topology at the circumbinary region. The initial

FIG. 8. The Ricci scalar (R), the Hamiltonian (H) and mo-

mentum (M) constraint, and the Kretschmann scalar K of the

SHPN metric, for a BBH with r12 ¼ 20M, equal mass, and

χ ¼ 0.9. We can notice that the Kretschmann scalar follows the

decay ∼1=r6 typical for a single BH. The solid green lines

denotes the location of the ISCO for a nonspinning BH.
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separation of the BHs is r12 ¼ 20M and the initial data

for the matter fields are constructed from a stabilized

snapshot of the circumbinary simulation performed in

Ref. [38], with additional quasiequilibrated minidisks

around each BH (see Ref. [57] for more details). Since

we are starting with the same initial data and grid, we

renormalize the primitive Bi field by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gmatch

p
=
ffiffiffiffiffiffiffiffiffiffiffi

−gsup
p

to

maintain the solenoidal constraint of the field after switch-

ing to the new metric.

As shown in Ref. [57], the simulation has an initial

transient that lasts for ∼2 orbits. We thus evolve the system

with the new metric for ∼3.5 orbits as was done in [66].

After equilibration, both matching and superposed metric

simulations are in good agreement, as it can be seen, for

instance, from the equatorial density snapshots in Fig. 9.

For a more quantitative assessment of both simulations we

analyze the evolution of the mass contained in each

minidisk (Fig. 10), defined as the integrated rest-mass

density:

Mi ¼
Z

Vi

ρu0
ffiffiffiffiffiffi

−g
p

d3x; ð35Þ

where we take Vi as a spherical volume between the BH

horizon, ri ¼ rH, and rf ¼ 0.4aðtÞ, which is close to the

Newtonian truncation radius [65]. We also investigate the

volume integral of the magnetic energy b2 of each minidisk

(see Fig. 11).

As we mentioned, for an equal-mass binary, the mini-

disks are subject to a filling and depletion cycle. While the

circumbinary lump feeds material to one of the minidisks,

the plasma in the other BH is completely accreted, and the

BH starves. After the initial transient, we see a remarkable

overlap of each minidisk massMi for both simulations. The

cycle is evident earlier in the superposed metric simulation.

Since we are using the same initial data for both simulations

(not just the same prescription), the equilibration of the

minidisks changes in the transient phase for the superposed,

as the equilibrated minitori were set up using the matching

FIG. 9. Equatorial plot of the rest-mass density ρ in logarithmic scale for (right) the superposed metric and (left) the matching metric,

at T ¼ 1810M, which represents approximately ∼3 orbits.

FIG. 10. Mass in each BH’s minidisk region for the superposed

metric simulation (thick lines) and the matching metric simu-

lation (dashed lines).

FIG. 11. Magnetic energy in each BH’s minidisk region for the

superposed metric simulation (thick lines) and the matching

metric simulation (dashed lines).
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metric. We also observe a good agreement in the behavior

of the magnetic energy contained in each minidisk after the

transient.

V. CONCLUSIONS

We have presented a new approximate solution of

Einstein’s field equations for a spinning BBH in the inspiral

regime. We built this solution as a linear superposition of

boosted Kerr BHs in harmonic coordinates, supplemented

with PN trajectories at 3.5 PN order. We compared our new

metric with the well-tested asymptotic matching approach

through an analysis of spacetime scalars. Although the

matching approach has better accuracy in some specific

regions, we found that the superposed metric has compa-

rable accuracy, is smoother, and much cheaper. We also

compared the performance of the metric in an GRMHD

simulation using the same setup as previous simulations

with the matching metric. We found that the superposed

metric reproduces the same physical features of the

matching metric simulation. We conclude that a superposed

metric is a robust approach for exploring the MHD plasma

on BBH systems.

Based on these results, in an upcoming paper we will

analyze the effects of the BH spins and orbital evolution on

the minidisk dynamics and outflows of a BBH system

embedded in a circumbinary disk [108]. When the black

holes spin, jets of entirely new characteristics may emerge

in a BBH system. Any jet launched should have a helical

structure with a diameter equal to the major axis of the

responsible black hole’s orbit. If each black hole produces a

jet, the two jets may collide or interact. Because jets are

intrinsically unsteady, and the minidisks’ mass accretion

rates vary with a phase difference of ≃π [57], intersection

dynamics are expected to be asymmetric in general even if

the black holes have the same mass. This would generate a

whole range of unexplored phenomena, such as periodic

nonthermal flares produced by the collision region [115].

One of the main advantages of our approach is that it

assumes very little of the BBH properties. Although we

have restricted to quasicircular orbits in this work, imple-

menting a general orbital motion is straightforward because

the superposition does not assume any symmetries in the

trajectories. As long as the trajectories are solutions of the

post-Newtonian equations, the constraints should remain

low. On the other hand, even though we assume that the

spins of the BHs are aligned to the orbital plane, we can

easily generalize this by applying a rotation to the BH term

in (24) before the boost transformation. Moreover, this

rotation can be time-dependent to take into account the

post-Newtonian evolution of spins. In this way, we will be

able to describe the metric of precessing binaries approach-

ing merger in all generality. The last two points, however,

must be tested in the same way we did here. We leave them

for future work. Finally, using the multigrid Patchwork

MHD code [116], we would have the possibility to handle

the entire parameter space of the system for inspiraling

binaries in a computationally efficient way.
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APPENDIX A: HORIZONS IN

HARMONIC COORDINATES

To perform GRMHD simulations in a BBH space-

time, we need a clear picture of how the BH singularities

and horizons behave in the chosen coordinates. In this

Appendix, we will show how the harmonic coordinates

compare with usual Kerr-Schild coordinates defined

in Eq. (1).

We are interested in the ergosphere rE and the outer

horizon rþ of our spacetime. In Boyer-Lindquist (BL)

coordinates, these are given by [89]:

rBL
E

¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
− a2 cos2ðθBLÞ

q

; ðA1Þ

rBLþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
− a2

p

: ðA2Þ

The radius in harmonic coordinates can be related with

the BL radius, rBL, as:

r2H ¼ ðrBL −MÞ2 þ a2ð1 − cos2ðθBLÞÞ; ðA3Þ
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where

cosðθBLÞ≡
zH

rBL −M
; ðA4Þ

and rBL ¼ rðxH; yH; zHÞ is calculated from Eq. (4). From

these expressions, we can derive parametric equations for

the horizons and ergosphere in harmonic coordinates:

rH
E
¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2ð2 cos2ðθBLÞ − 1Þ
q

; ðA5Þ

rHþ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2 cos2ðθBLÞ
q

: ðA6Þ

From Eq. (A4), we observe that the harmonic coordi-

nates become singular at rBL
S

¼ M, which means that there

is a disk singularity at zH ¼ 0 with radius given by:

rH
S
¼ Mχ: ðA7Þ

The radius of the horizon in harmonic coordinates shrinks

at the poles as χ increases, while the radius of the horizon at

z ¼ 0 is fixed at rHþðz ¼ 0Þ ¼ M for any value of the spin.

Then, the distance between the singularity and the horizon at

z ¼ 0 shrinks with increasing spin as δH ≔ Mð1 − χÞ.
In contrast, in Kerr-Schild coordinates, the horizon is further

away from the singularity, with a separation of δKS ≔

δH þMgðχÞ, where gðχÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p

q

− 1 > 0 (see

Fig. 12).

To avoid any spurious effect of the inner boundary of

the domain, it is usually placed inside the horizon to mask

the singularity of the spacetime. In this way, the coor-

dinates must be horizon penetrating and the singularity

should be sufficiently far from the horizon. In this

regard, the Kerr-Schild coordinate system is more con-

venient than harmonic coordinates since the distance δKS
is bigger than δH. For performing high-spin simulations

with the harmonic coordinates, one could artificially

remove the singularity by implementing a modification

of the metric inside the horizon, e.g., modifying the

function rBLðxHÞ.
Note that the Cartesian Kerr-Schild coordinates used

here are not the usual coordinates that accretion disk

theorists call ‘Kerr-Schild’ [117,118]. The “accretion-disk

Kerr-Schild” coordinates are a modification of the BL

coordinates that renders the metric horizon-penetrating

but maintains the singularity at rAKS ¼ rBL ¼ 0. The

“Cartesian Kerr-Schild” coordinates that we use here are

more common in numerical relativity and appears in the

original work of Kerr [90,119].

Finally, let us note that our spacetime contains moving

BHs, boosted with respect to the asymptotically flat region.

This means that the morphology of the ergosphere would

be different from a static BH and these differences can be

significant for high velocities. As discussed in Ref. [93],

even a nonspinning BH acquires an ergosphere when the

BH is boosted. In the case of a spinning BH, we can see

from Fig. 12 that the ergosphere increases when the BH has

higher velocities.

FIG. 12. Left: ergosphere region of Kerr BH with spin χ ¼ 0.9 for Kerr-Schild coordinates (blue) and harmonic coordinates (orange).

Note that the surfaces in harmonic coordinates are more oblique compared with the Kerr-Schild coordinates. The radius of the

singularity (green) is the same for both coordinate systems. Right: ergosphere regions for a x-boosted harmonic Kerr BH with spin

χ ¼ 0.9 for different velocities (v=c ¼ 0, 0.1, 0.5, 0.9). The horizon (red) and singularity (green) are the same in each case, but the

ergosphere region increases with increasing velocity.
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APPENDIX B: CONVERGENCE TESTS

Since we are using a finite difference scheme for

computing the metric and connection derivatives, we show

here the convergence to the analytical solution of the

fourth-order discretization. As explained in Ref. [68], since

the metric spans several length scales, we need different

mesh spacing to resolve the solution. Given a numerical

quantity U, we explore the convergence factor, QhðUÞ,
defined as:

QhðUÞ ≔ Uð4hÞ
−Uð2hÞ

Uð2hÞ
− UðhÞ ; ðB1Þ

where h is the size of the mesh spacing and UðkÞ is the

numerical approximation with spacing k. If the method is

well behaved, we have [120]:

QhðUÞ ¼ 2p þOðhÞ: ðB2Þ

We explore the convergence of the Ricci scalar along the

x axis in the equatorial plane, which is the most relevant

region. We calculate the derivatives of the metric on a

uniform Cartesian grid using a fourth order finite difference

method, so we use p≡ 4 in (B2). In Fig. 13, we show

convergence for different regions. In the top panel, for the

vicinity of the BH at ½0M; 20M�, we use a mesh spacing

given by h=M ¼ 0.0125. Away from the BH, a high

resolution mesh drops the convergence because of the

limited machine precision to represent numbers (double

precision in our case) [121], so we change the mesh to

h=M¼0.1 at ½20M; 60M� and h=M ¼ 0.8 at ½60M; 200M�.
From Fig. 13 we can check that convergence is achieved in

the different regions, were we expect Q ∼ 16.
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