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Abstract

Accreting supermassive binary black holes (SMBBHs) are potential multimessenger sources because they emit both
gravitational-wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be
periodically modulated by an asymmetric density distribution in the circumbinary disk, often called an “overdensity”
or “lump;” this modulation could possibly be used to identify a source as a binary. We explore the sensitivity of the
overdensity to SMBBH mass ratio and magnetic flux through the accretion disk. We find that the relative amplitude
of the overdensity and its associated EM periodic signal both degrade with diminishing mass ratio, vanishing
altogether somewhere between 1:2 and 1:5. Greater magnetization also weakens the lump and any modulation of the
light output. We develop a model to describe how lump formation results from internal stress degrading faster in the
lump region than it can be rejuvenated through accretion inflow, and predicts a threshold value in specific internal
stress below which lump formation should occur and which all our lump-forming simulations satisfy. Thus, detection
of such a modulation would provide a constraint on both mass ratio and magnetic flux piercing the accretion flow.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663); Astrophysical black holes (98);
Magnetohydrodynamics (1964); Accretion (14); Black hole physics (159); Active galactic nuclei (16); Relativistic
disks (1388); High energy astrophysics (739)

1. Introduction

Somewhere in the universe, several pairs of supermassive
black holes (SMBHs) should merge every year, leaving behind
a still more massive single black hole at the centers of the
galaxies where this occurs (Klein et al. 2016; Katz et al. 2020).
These events are extremely challenging to observe, but are of
great interest because they are the most distant gravitational-
wave sources we can hope to detect, and complementary
photon and gravitational-wave data could provide uniquely
powerful diagnostics of these events (Baker et al. 2019; Kelley
et al. 2019; Mangiagli et al. 2020). In addition, the
consequences of such mergers for galactic evolution are
profound, including strong correlations between the galaxies
and the (merged) central black holes. Moreover, the physics of
accretion onto a binary is by no means limited to relativistic
systems—it may also be applied to protoplanetary disks in
binary stellar systems (Keppler et al. 2020).

A short time before the merger, these systems are in the post-
Newtonian (PN) regime, in which the binary loses energy and
inspirals rapidly due to the emission of gravitational radiation.
Because of their small separations (a fraction of a parsec) and
the greater chance of a relatively rare supermassive binary
black hole (SMBBH) system being outside our local
extragalactic neighborhood, spatially resolving the two BHs
is unlikely. Hence, electromagnetic identification of SMBBH
systems requires matching theoretical expectations to observed
phenomena in their light curves, spectra, or polarization.

Accreting binaries whose mass ratios q≡M2/M1 0.01
generically exhibit a gap within a radius∼2a, where a is the

binary’s semimajor axis. Matter travels across this gap in a pair of

streams, which convey the accreted mass to small accretion disks

(“mini-disks”) around each member of the binary. The binary can

also break the axisymmetry of the circumbinary accretion disk

(MacFadyen & Milosavljević 2008; Noble et al. 2012; Shi et al.

2012), causing it to concentrate much of its inner rings’ mass in a

limited range of azimuthal angles, a feature we refer to as the

“lump,” following Noble et al. (2012) and Shi et al. (2012). As a

result, the accretion rate onto the binary is modulated at a

frequency;0.2Ωbin (here Ωbin is the binary orbital frequency).
Periodic modulation of the accretion rate can lead to a

corresponding modulation of the system luminosity if the

residence time of matter in the mini-disks is short compared to

the modulation period (Bowen et al. 2018, 2019; d’Ascoli et al.

2018). Moreover, because the mass falling through the gap

onto a black hole’s mini-disk is expected to shock against the

outer edge of the mini-disk, the hard X-rays radiated by that

shocked gas should also be modulated on the same timescale as

the accretion rate (Sesana et al. 2012; Roedig et al. 2014).
The heating rate directly associated with the lump is also

modulated; when q= 1, the frequency is twice the beat

frequency between the binary’s orbital frequency and the

lump’s orbital frequency (Noble et al. 2012). The lump is

bright for the same reason it exists. As shown by Shi et al.

(2012), it forms because some of the matter leaving the

circumbinary disk’s inner edge gains enough angular momen-

tum from the binary’s gravitational torques to travel back out to

the circumbinary disk—rendezvousing there with the matter it

left shortly before. The shock associated with its return drives
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heating within the lump. The modulation frequency has this
beat frequency because passing close to a black hole triggers
inflow from the disk’s inner edge. In Noble et al. (2012), we
put forth the idea that such a periodic signal could be used to
identify SMBBHs photometrically and possibly constrain a
SMBBH’s mass ratio: the signal frequency would be less than
twice the beat frequency for unequal-mass binaries because the
secondary BH predominantly interacts with the lump in those
cases (Noble et al. 2012).

Purported observations of periodic emission from AGN have
been reported (Graham et al. 2015; Liu et al. 2015; Charisi
et al. 2016). In principle, they might originate from periodic
phenomena similar to those just described. However, evidence
of a periodic signal in the candidate, PG 1302-102, identified in
the first two of these studies, diminished with additional data
(Liu et al. 2018);7 larger surveys have turned up additional
results that are marginal at best (Liu et al. 2019; Chen et al.
2020; Liao et al. 2021). Because well-established periodic
variation might yet be found, it is critical for us to understand
the particular conditions from which such a signature arises, as
well as the relation between the period of such a modulation
and the binary orbital period.

Circumbinary black hole accretion simulations have been
conducted in numerous ways, and each way or method has
demonstrated the development of a lump or nonaxisymmetric
overdense feature under the right conditions and measured the
effect of mass ratio on accretion flow properties. Most of the
simulations have been performed using 2D α-model viscous
hydrodynamics (2D VH) and Newtonian gravity using Eulerian
grid-based codes (MacFadyen & Milosavljević 2008; D’Orazio
et al. 2013, 2016; Farris et al. 2014, 2015; Muñoz & Lai 2016;
Miranda et al. 2017; Derdzinski et al. 2019, 2021; Muñoz et al.
2019, 2020; Moody et al. 2019; Mösta et al. 2019; Duffell et al.
2020; Muñoz & Lithwick 2020; Tiede et al. 2020; Zrake et al.
2021). Others have used α-viscosity hydrodynamics with
Newtonian gravity in 3D, either using SPH (Ragusa et al.
2016, 2017; Fontecilla et al. 2020; Heath & Nixon 2020; Ragusa
et al. 2020) or Eulerian grid-based methods (Moody et al. 2019).

Unfortunately, VH simulations use ad hoc internal stress models
that poorly represent the expected angular momentum transport
mechanism in real systems: internal magnetic stress. Further, the
vast majority of VH work uses unrealistic isothermal equations of
state or neglects the vertical extent of the system. These
approximations have real consequences to predictions; for instance,
VH simulations are never turbulent, are laminar, and exhibit
relatively steady accretion flows, which is very different from the
red-noise-dominated variability always found in AGN light curves.
3D MHD simulations, such as ours here, eliminate these
approximations. For example, MHD simulations of single-BH
accretion disks generically show large amplitude variations in both
their mass accretion rate and luminosity, and the Fourier power
spectra of these variations are, like the observations, dominated by
red noise (Noble & Krolik 2009; Reynolds & Miller 2009; Hogg
& Reynolds 2016; Shiokawa et al. 2017; Bollimpalli et al. 2020).
There have been a few MHD binary disk simulations using
Newtonian gravity and an isothermal equation of state (Shi et al.
2012; Bankert et al. 2015; Shi & Krolik 2015, 2016), those using
approximate GR spacetimes to describe the binary’s gravitational

influence and our thermodynamic model (Lopez Armengol et al.
2021), those using high-order PN gravity (such as ours here; Noble
et al. 2012; Zilhão et al. 2015; Bowen et al. 2018, 2019), and those
using full numerical relativity (NR) techniques (though not always
evolving the spacetime in order to hold the binary to fixed
separations) and our thermodynamic model (Farris et al. 2012;
Gold et al. 2014a, 2014b; Paschalidis et al. 2021; see also the
review by Gold 2019).
Only those using PN gravity and full NR have used more

realistic thermodynamics and MHD. The full NR simulations,
however, are often too expensive to run for O(100) binary
orbits that preclude them from reaching relaxed conditions,
demonstrating significant lump development, and covering a
sufficiently vast temporal dynamic range needed for accurate
variability analysis. Our 3D GRMHD simulations with PN
gravity therefore fall into a particularly useful niche that allows
one to include the most realistic physical assumptions for the
lengths of time needed to explore the lump and variability in
the circumbinary disk region.
In this paper, we begin to explore how the parameters

characterizing circumbinary disks using 3D GRMHD and PN
gravity affect the nature of the signal. Along the way, we will
also attempt to further elucidate how the overdensity feature
arises. Our approach will be to use the simulation called RunSE
in Noble et al. (2012) as a benchmark, contrasting it with new
simulations having different parameters, but all sharing the
identical high-order PN spacetime—a binary black hole system
with a nonevolving circular orbit of separation 20M. These new
simulations can be grouped into two sets. One is a survey of
mass ratios: 1:1, 1:2, 1:5, and 1:10. The second studies the
effects of differing amounts of mass and magnetic flux in the
accretion disk. Our work here represents the first time anyone
explores how mass ratio and magnetic field conditions affect the
circumbinary disk with PN gravity and GRMHD techniques.
The specifications of our simulations are given in Section 2.

So that we can cleanly separate the lump from smooth
behavior, we begin our presentation of results with a
description of axisymmetric features (Section 3). In the
following section (Section 4), we report how distinctly lump
behavior depends on parameters. With these results in hand, we
are able to discuss the dynamics controlling the growth of the
lump (Section 5.1). All the results are discussed together and
summarized in Section 6. Animations of the runs discussed in
this paper may be found online here: https://youtube.com/
playlist?list=PLNaEA0qwDBaeApzLr2oarVKiO3AFnklTV.

2. Simulation Details

In this section, we explain the methods we use to model our
circumbinary accretion disk system and the parameters
specifying its state. The gravitational aspects of the simulation
are described in Section 2.1, while the aspects regarding the
circumbinary magnetized gas are given in Section 2.2. We
discuss how we selected each run’s parameters in Section 2.3.
We use geometrized units in which G= c= 1. We will use

Greek letters (e.g., μ, ν, λ, κ) to represent spacetime indices
[ ]0, 1, 2, 3 , and Roman letters (e.g., i, j, k, l) to represent spatial
indices [ ]1, 2, 3 .
Although the unit of time in our calculations is M, the most

important physical unit of time is the binary orbit’s dynamical
time Ωbin

−1. This timescale depends on mass ratio q, but only
weakly, due to post-Newtonian physics. For instance, the
relative difference between the two most extreme orbital

7
A Bayesian analysis shows that periodic signals with red noise may not

always strengthen with additional time-series data, and that in PG 1302-102 the
data weakly favor a quasiperiodic oscillation over the strictly periodic one
expected from a binary (Zhu & Thrane 2020).
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frequencies considered, Ωbin(q= 1) and Ωbin(q= 1/10), is
0.8%. In this paper, when we present data all taken from the
same run, we will use the q-specific value for Ωbin; when we
discuss data in runs with different mass ratios, we will ignore
this distinction.

2.1. Binary Black Hole Spacetime

Because our investigation focuses on dynamics close to the
SMBBH, we can safely ignore the gravitational influence of the
disk’s gas and assume that gravity is entirely dictated by the
binary. As in our previous work (Noble et al. 2012; Zilhão et al.
2015), we use a 2.5PN closed-form expression for the
spacetime metric as described in Mundim et al. (2014). Only
the so-called “Near Zone” (NZ) metric is used because our
numerical domain does not extend either close enough to the
black holes or far enough from the binary for the other zones to
be needed. In the present work, unlike our previous, we will
consider spacetimes in which the mass ratio, q=M2/M1< 1,
where the primary massM1 is always expected to be larger than
that of the secondary BH (M2), and we set M1+M2=M= 1.
We therefore concentrate in this section on the spacetime’s
dependence on q.

It is easiest to write down the metric in PN harmonic
coordinates, a Cartesian basis system. Using the work of
Blanchet et al. (1998), we find that the leading-order, nontrivial
components of the NZ metric are
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where vN
i denotes the coordinate velocity of the Nth BH, and

rN= |x− yN|, i.e., computed from the Cartesian PN harmonic

coordinates. Even though the metric is most simply represented

in this Cartesian basis, in our simulation it is transformed to a

spherical basis for use in our spherical coordinate system.
The NZ metric is valid only at distances more than 10MN

from the Nth black hole (Yunes & Tichy 2006; Yunes et al.
2006; Johnson-McDaniel et al. 2009). This constraint means
that rin, the inner radial coordinate of our numerical domain, is
bound from below to ensure the metric’s validity. It can be
estimated through the following argument. The positions of the
two BHs relative to the center of mass are

( ) ( )

( ) ( ) ( )

= + =
+

+

=- + = -
+

+

 

 

y a a

y a a

M

M
v

q

q
v

M

M
v

q
v

1
,

1

1
, 2

1
2 4 4

2
1 4 4

where a denotes the separation vector from the secondary BH

to the primary BH, and we have ignored the 2PN order

correction. The constraint on rin is then
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where n= r/r, ˆ = aa a, λ is the unit vector tangent to the

black hole’s orbit, and we have included only the nontrivial

leading-order PN terms. For each component, the second line

shows a series expansion with respect to a/r up to O((a/r)2)
beyond the leading-order nontrivial contribution.
The quantity q/(1+ q)2, which appears in every metric

component, decreases monotonically as q falls from 1 to 0. The
quadrupolar component in g

00
NZ and g

ij
NZ, which has an angular

dependence [ ( · ˆ) ]-n a3 12 , therefore diminishes for smaller
mass ratios. On the other hand, the quadrupolar component in
g
i0
NZ, which is a higher-order PN contribution to the equations

of motion, has a maximum at q≈ 0.27.8 For further details
about the range of validity for the NZ metric, see Appendix A.

2.2. Matter

We use the flux-conservative code HARM3D to evolve the
GRMHD equations on the dynamical spacetime (Gammie et al.
2003; Noble et al. 2006, 2009, 2012). It uses a piecewise
parabolic reconstruction of the primitive variables at each cell
interface, a Lax–Friedrichs-type flux, and a 3D version of the
2D FluxCT constrained transport scheme originally described
in Tóth (2000). The stationary spacetime version, the same
MHD methods as we use here, was described in Noble et al.
(2010), while the modifications for handling dynamic space-
times were explained in Noble et al. (2012). We refer the reader
to these papers for further details on our numerical algorithms,
and only briefly describe the equations of motion (EOM) for
purposes of definition.
The EOM dictating magnetized gas’s evolution are the

Euler–Lagrange–Maxwell equations on a curved background
spacetime with metric gμν. The entire set may be written in the
manifestly conservative form

( ) ( ) ( ) ( )¶ = -¶ +U P F P S P , 5t i
i

8
In the PN approach, g00 becomes the dominant contribution in the geodesic

equation, as ∂ig00 and g0i will be 1PN higher order. Therefore, in the
Newtonian limit, the different q-dependence in g0i can be ignored when
considering its effect on the accretion flow.

3
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where U is a vector of “conserved” variables, Fi is a vector of

fluxes, and S is a vector of source terms:
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Here p=B F 4i it* is the magnetic field,
*

Fμ ν is the Maxwell

tensor, uμ is the fluid’s 4-velocity, and ( )d= +m m
n

m
n

nb u u B
u

1
t

is the magnetic 4-vector (which is the magnetic field when

projected into the fluid’s comoving frame). In addition,

= -W u gt tt is the fluid’s Lorentz function,  is the fluid-

frame bolometric energy loss rate, and =m m u is the

radiative flux 4-vector. Lastly, g is the determinant of the

metric, and Glmk is the metric’s affine connection. The stress-

energy tensor Tμν is defined as

( ) ( ) ( )r= + + + -mn m n mn m nT h p u u p p g b b2 , 9m m

where pm= bμbμ/2 is the magnetic pressure, p is the gas

pressure, ρ is the rest-mass density, h= 1+ ò+ p/ρ is the

specific enthalpy, and ò is the specific internal energy.
Often, we look at reduced properties of the accretion flow

and examine spherical shell-averaged or shell-integrated
quantities. Shell averages are made using

( )
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We also sometimes smooth time-dependent quantities to

highlight trends over longer timescales, and these are

designated by overbars:
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2.3. Run Details

The parameters defining run configurations are stated in
Table 1. Measured quantities resulting from the runs are given
in Table 2.

Our goal is to define how “lump” behavior (and a few other
aspects of circumbinary disk dynamics) depend on mass ratio
and magnetic content of the disk. To that end, we made every
new simulation as similar as possible to our fiducial simulation,
RunSE of (Noble et al. 2012). However, technical considera-
tions demanded small departures in certain instances.

The binary was held at a fixed separation of 20M in all cases,
like RunSE, so that we can explore the development of the
lump and the quality of the periodic EM signal from it. Also
like RunSE, in all runs, the binary orbit was circular, and the
black holes were nonspinning.

We endeavored to make the problem spacetime volume very
nearly the same as in RunSE, extending radially from an inner

excision radius of 0.75a to an outer boundary radius of 13a.
However, in the three runs with q< 1, the inner excision radius
was moved outward to a in order to accommodate the orbit of
the secondary black hole, and in two runs the outer boundary
was pushed out to 50a in order to contain a larger disk. The
larger value of rin is within the limit—rin/a= 1.1—at which Shi
et al. (2012) began to see it significantly alter the structure of the
circumbinary disk’s inner edge. In every case, we used the same
angular excision around the polar axis as in RunSE, and, as is
necessary for binary dynamics, all runs covered a full 2π in
azimuth. All the new runs had durations at least as long as the
original RunSErun, from 1.25× to more than 2× that of RunSE.
The angular grid in every run was the same as in RunSE,

with Nθ= 160 cells in polar angle and Nf= 400 cells in
azimuthal angle. The disks always satisfied the MRI quality
conditions of Hawley et al. (2011) well, so there was no need to
increase the number of points. The ratio Δr/r was the same in
every run, and the number of cells Nr= 300 was also the same
in all but two. The outer radius of our numerical grid, rout, was
chosen to lie beyond the extent of the initial distribution of gas.
WithΔr/r fixed, Runmed and Runlrg required more radial zones
to reach their extended outer boundaries.
The initial gas distribution of each run was an equilibrium

state with respect to the time average of the run’s spacetime, in
which the gas was supported against gravity by pressure
gradients and rotation. Appendix A of Noble et al. (2012)
provides the details of how the hydrostationary solutions were
found. The parameters that constrain the solution are the radius
of the inner edge of the disk Rdisk in, the radius of the pressure
maximum Rp, and the initial aspect ratio (H/r) of the disk at the
pressure maximum. All of these were identical to the values of
RunSE, except in the two runs studying larger disks, where Rp

was larger by 20%–25% and Rdisk out was larger by a factor

Table 1

Parameters Determining the Simulations of the Mass Ratio Series and
Magnetic Flux Series

Name q Nr rin rout Rdisk in Rp Rdisk out

RunSE 1 300 0.75 13 3 5 11.7

Runq=1/2 0.5 300 1 13 3 5 11.7

Runq=1/5 0.2 300 1 13 3 5 11.7

Runq=1/10 0.1 300 1 13 3 5 11.7

Runmed 1 400 0.75 50 3 6 23.4

Runlrg 1 420 0.75 50 3 6.5 39.1

Runinj 1 300 0.75 13 3 5 11.7

Note. All radii are given in units of the binary separation, a = 20M.

Table 2

Measured Characteristics of the Simulations of the Mass Ratio Series and
Magnetic Flux Series

Name Σ0 ωlump[Ωbin] Tlump[10
3
M] tend[10

3
M]

RunSE 0.096 0.27 ± 0.05 52 76

Runq=1/2 0.083 0.26 ± 0.05 77 107

Runq=1/5 0.082 L L 95

Runq=1/10 0.082 L L 97

Runmed 0.085 0.25 ± 0.09 91 143

Runlrg 0.087 0.26 ± 0.12 133 158

Runinj 0.096 0.25 ± 0.26 113 126

Note. The circumbinary disk’s initial peak surface density, Σ0, is in units of

code units for density times M2.

4
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2–3. In all cases, H/r= 0.1. The disks were initially isentropic,
with entropy K= p/ρΓ= 10−2 and adiabatic index Γ= 5/3.
All simulations used an ideal-gas equation of state with

( )= G -p u1 for internal energy density u.
In every run, the initial magnetic field was given a poloidal

distribution in the same way as in Noble et al. (2012). The
magnetic field amplitude was normalized so that the ratio of the
volume-integrated magnetic and gas pressure, an approx-
imation to the volume-averaged plasma β= p/pm, was 100.

So that we can tally the amount of energy dissipated during
evolution, all runs cool to the same target entropy, which we
choose to be the initial entropy, uniform throughout the flow.
We parameterize this entropy by a proxy K≡ p/ρ γ. Its value in
the initial state K0= 10−2. A fluid element is cooled if its
entropy is above K0, and neither cooled nor heated if K< K0.
Writing K= K0+ΔK, the cooling rate is

⎜ ⎟
⎛
⎝

⎞
⎠

( )
r

=
D

+
D


T

K

K

K

K
. 14

cool 0 0

1 2

Note that Noble et al. (2012) erroneously omitted the exponent

of 1/2 in the paper, though they used it in the simulations

reported there. The cooling time is ( )p=T r M2cool
3 2, the

period of a circular equatorial orbit at radius r without any

quadrupolar contributions to the potential.
The cooling rate is recorded as 3D data for the duration of

each simulation, so that it may serve as a proxy for the gas’s
bolometric emissivity.

With all these quantities fixed, we performed two series of
parameter exploration runs, one varying the black hole mass
ratio, the other varying the initial magnetic flux given the disk.

2.3.1. Mass Ratio Series

Real supermassive black hole binaries can have a variety of
mass ratios. To measure the effect the mass ratio has on the
circumbinary flow, we performed a series of simulations labeled
RunSE, Runq=1/2, Runq=1/5, and Runq=1/10, having mass ratios

{ }= =q M M 1, 1 2, 1 5, 1 102 1 , respectively, but all other
physical parameters the same. This set was chosen in the hope of
covering the whole range relevant to gas accretion. When q→ 0,
the secondary black hole acts only as a mild perturber, producing
little effect on the circumbinary flow. In fact, well before it
reaches that limit, as we will show later in the paper, small q
leads to weaker overdensities: even at q= 1/5, the lump
amplitude is quite small if detectable at all. Simulations RunSE,
Runq=1/2, Runq=1/5, and Runq=1/10 ran until approximately
76 kM, 107 kM, 95 kM, and 97 kM, respectively.

2.3.2. Magnetic Flux Series

The idea that parts of an accretion disk can have regions of low
angular momentum transfer, like the lump, is not a new one. For
instance, in protoplanetary disks, the midplane of the accretion
disk may be so shielded from cosmic radiation and its central
source that it may be too cold to be adequately ionized and
magnetized. Because accretion manifests from angular momen-
tum transport mediated by magnetic stresses, such “dead zones”
will be uncoupled from the rest of the disk (Gammie 1996; Gole
et al. 2016). The transition from an actively accreting region to
inactivity leads to a buildup of matter, similar to the development
of our overdensity. Just as a protoplanetary dead zone may be
revived by a local heating event thereby turning active again, so

may our “dead” overdensity be eroded away if given an injection
of additional magnetic flux. We present new runs here designed
to see whether added magnetic flux may reignite activity in the
dead zone or overdensity.
The control run for this series is also RunSE from Noble

et al. (2012). From this run, we learned that the growth in the
amplitude of the overdensity feature was coincident in space
and time with a decline in how well the simulation can resolve
the MHD turbulence, as defined by the quality factor

( )º D WQ v xi
A
i i

K , where v iA is the Alfvén speed associated
with the ith magnetic field component, ΩK is the local circular
orbit frequency, and Δx i is the cell size in the ith direction
(Noble et al. 2010; Hawley et al. 2011). Here vAi is the Alfvén
speed for the magnetic field component in the ith direction and
Δx i is the cell size in that dimension. Two mechanisms, logical
converses of each other, may explain this effect:

1. A decline in local MHD stress per unit mass (signaled by
decreasing Q) fosters the growth of the overdensity.

2. The lump’s increasing density decreases vA, degrading
the effective resolution of the simulation; this numerical
effect then retards, or even eliminates, magnetic field
growth.

It is also entirely possible that both act, reinforcing one another.
As we will see, Mechanism 1, i.e., that a natural decline in
MHD stress accommodates lump growth, is supported by our
simulations.
The first possibility implies the correlation is physical and

our results are potentially predictive. The second possibility
implies that our simulations have little predictive power since
we cannot say whether higher resolution (i.e., what nature uses)
would yield an overdense feature.
With three additional runs, we aim to test whether either of

these mechanisms operates. In Runinj, we ask whether a late-
time strengthening of the magnetic field can, by restoring
resolution quality, sustain magnetic stress despite increasing
gas density in the lump. In Runmed and Runlrg, we increase the
total magnetic flux available to the disk to test whether a
stronger field retards lump growth.
For Runinj, at t= 5× 104M we added to the existing

magnetic field an additional poloidal field whose geometry
matches that of the initial field, i.e.,

( )= +
-

-
B B f B

g

g
, 15i

O
i

O
i O

O

2 1
1

2

where the subscript “O1” (“O2”) means the quantity comes

from RunSE at t= 0M (t= 5× 104M). This procedure

automatically preserves the solenoidal character of the field,

while also minimizing significant transient behavior. Adding a

poloidal field is also desirable because, for equal field intensity,

the poloidal field leads to more rapid MRI growth than the

toroidal field Hawley & Krolik (2002), Beckwith et al. (2008).

We set the constant factor f= 2 to make the field dynamically

significant after an orbital timescale. The ratio of -g at

different times is necessary in our case because -g is time

dependent, and the determinant is included in the covariant

form of the magnetic field’s constraint equation:

( ) ( ) =
-

¶ - =m
mB

g
g B

1
0. 16i

i
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Because the magnetic field in the late-time snapshot of

RunSE is turbulent, the magnetic field has a large dynamic

range; consequently, the added ordered magnetic field may

change the field locally by an amount ( ) 1 . However, the total

magnetic field energy added to the system through this

procedure is less than 7% of the existing energy. Once the

magnetic field is added, the disk is allowed to evolve for an

additional 7.5× 104M in time.
In Runmed and Runlrg we increased the initial reservoir of

magnetic flux available by increasing the size of the

hydrostationary torus that encompasses the initial poloidal

magnetic field distribution. The initial extent of the magnetic

field distribution and its integrated flux content all scale with

the size of the disk. Because these disks also have a larger mass

reservoir, we expect them to sustain longer periods of accretion

than what we observed with the smaller disk (Section 3.1). This

longer run time also helps to eliminate a concern that the

overdensity develops because diminishing mass accretion at

late times also leads to diminishing magnetic flux delivery, and

therefore might permit a longer-lived lump. Runmed (Runlrg)

included 37% (78%) more magnetic flux and 40% (72%) more

mass than RunSE.

3. Axisymmetric Structure

In order to justify our reliance on time averages and make

comparisons to steady-state disk theory, we need to evaluate

how well our simulations have reached an equilibrium with

respect to the accretion of mass. This is important to

observables (e.g., electromagnetic luminosity) because the

emissivity is proportional to the local rest-mass density (Noble

et al. 2010, 2012; d’Ascoli et al. 2018). Further, if the system

fluctuates with ( ) 1 fluctuations on timescales comparable to

our simulation’s duration, then our results have little predictive

power. To assess the degree to which a simulation has entered a

state of mass inflow equilibrium we will measure the accretion

history, the time evolution of surface density, and the history of

the integrated mass at sample radii. These are all most

efficiently evaluated using poloidal- and azimuthally integrated

quantities, the focus of this section.

3.1. Mass Accretion Rate

The accretion rate history through the spherical surface at
r= a is shown in Figures 1 and 2. All runs show a gradual
decline of the accretion rate after a period of rapid accretion
early on. The peak is due to the burst of inflow that occurs after
the linear growth of the MRI saturates. The decline is slow and
has only minor fluctuations, allowing us to scale out this slowly
varying secular trend when necessary.
Mass ratio does not appear to have a large effect on the

accretion history compared to the accretion rate variability at
any one instant. The similarity between the curves highlights
the fact that the long timescale trend is primarily dictated by the
initial conditions of the torus.
The accretion rate’s dependence on the initial physical state

of the torus is emphasized in the magnetic flux series. Although
the accretion rates of all the runs in this group are very similar
within the first 3× 104M of time, at later times they develop
larger fluctuations and no longer mimic one another so closely.
Nonetheless, all but Runinj may be fairly described as having a
late-time accretion rate that fluctuates within the range
≈0.01–0.02, a rate several times greater than the long-term
accretion rate for the runs in the mass ratio series. The larger
mass reservoirs of Runmed and Runlrg explain the greater
sustained rates of accretion.
The addition of the ordered magnetic field at the run’s start,

t= 5× 104M, makes Runinj different from the others. The burst
of accretion seen in Runinj at t≈ 5.5× 104M is triggered by the
added ordered magnetic field; the delay is the time required for
MRI growth to amplify the MHD turbulence to the saturation
level associated with the larger magnetic flux.
A key question to answer in regard to circumbinary accretion

is how much of the mass accretion rate in the outer disk can
penetrate into the domain of the binary despite the binary’s
gravitational torque. This quantity, most often called the
“leakage fraction,” gauges the degree to which the overall
system is in inflow equilibrium. Most of the effort on this topic
hitherto used hydrodynamics simulations employing a phe-
nomenological “α” viscosity to transfer angular momentum in
2D Eulerian codes (MacFadyen & Milosavljević 2008; D’Or-
azio et al. 2013; Farris et al. 2014; Muñoz & Lai 2016; Miranda
et al. 2017; Duffell et al. 2020; Tiede et al. 2020) or in 3D

Figure 1. Mass accreted r = a as a function of time, ( ) =M r a t, , for the mass
ratio series.

Figure 2. Mass accreted r = a as a function of time, ( ) =M r a t, , for the
magnetic flux series.
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Smoothed Particle Hydrodynamics (SPH) codes (Ragusa et al.

2016; Heath & Nixon 2020); much less attention has been

given to inflow dynamics resulting from genuine MHD stresses

(Noble et al. 2012; Shi et al. 2012; Gold et al. 2014a; Shi &

Krolik 2015; Zilhão et al. 2015). The consensus from both

hydrodynamic and MHD work for any explored mass ratio is

that the “leakage fraction” is essentially unity; in other words,

the system reaches inflow equilibrium.9 The ratio between the

mass accretion rate and the peak surface density near the inner
edge may, however, depend on the disk aspect ratio (Tiede
et al. 2020).

Figures 3 and 4 portray our results on this question. For all

the new runs in the mass ratio series, the extended duration of

our simulations led to a significant improvement in the quality

of inflow equilibrium. Cases with smaller q generally have

smaller departures from inflow equilibrium, but by the end of

all the new simulations, the accretion rate became reasonably

close to constant as a function of radius out to; 5a.
The time-averaged accretion rate as a function of radius is

displayed for the magnetic flux series in Figure 4. Again, we

see the same flattening of ( )M t r, over time in these runs. Both

Runmed and Runlrg asymptote to similar profiles at late times.

Because they were both run to longer times, this fact supports

the notion that eventually ( )M t r, asymptotes to a flat profile in
all cases.
The accretion rate profile from Runinj contrasts strongly with

all the others, curving downward with the radius. As we will
see in further analyses, the magnetic field perturbation of Runinj
leads to a sudden accretion episode that drains a majority of the
available mass in the domain. After this happens, the torus in
this run no longer has a mass reservoir able to sustain mass
inflow equilibrium.

3.2. Enclosed Mass

The next means by which we evaluate mass inflow
equilibrium is through the mass enclosed within a given radius
versus time, M(<r, t):

( ) ( )ò ò r< º ¢ W -M r t dr d g, . 17
r

r

in

In Figure 5, we plot these trends at sample radii r/a= 2, 3, 4

for each mass ratio run. The M(<r, t) curves for disks in

Figure 3. Time average of the mass accretion rate as a function of r for the
mass ratio series. The time intervals used for the averages is 40,000 <
t/M < 76,000 (solid curves), the secularly evolving period of RunSE, and the
last 3 × 104M of each run (dashed curves).

Figure 4. Time average of the mass accretion rate as a function or r for the
magnetic flux series. The time intervals used for the averages are 40,000 <
t/M < 76,000 (solid curves), the secularly evolving period of RunSE, and the
last 3 × 104M of each run (dashed curves).

Figure 5. Mass enclosed within a set of radii as a function of time for the mass
ratio series. The sample radii are at r/a = 2, 3, 4 from bottom to top.

Figure 6. Mass enclosed within a set of radii as a function of time for the
magnetic flux series. The sample radii are at r/a = 2, 3, 4 from bottom to top.

9
Only Ragusa et al. (2016) and Heath & Nixon (2020) dissent from this view.

7

The Astrophysical Journal, 922:175 (29pp), 2021 December 1 Noble et al.



perfect equilibrium at all radii should all be flat. Therefore,

deviations from constancy indicate departures from inflow

equilibrium. As we found previously for RunSE, the mass

within r= 2a hardly changes throughout the post-transient,

secularly evolving period (i.e., t; 5× 104M); this is also true

to within 10% for all the other mass ratios. We also find that all

the q< 1 runs exhibit flatter M(<r, t) trends in time at the

largest enclosed radii, with all becoming nearly flat by

t= tend; we provide the values of tend for all runs in Table 2.

This implies that each simulation in the mass ratio series is in

approximate mass inflow equilibrium out to these radii.

Fluctuations in enclosed mass for all runs are strongest at the

smallest radii and grow weaker with decreasing mass ratio,

which is expected since the magnitude of the binary’s

gravitational torque decreases with distance and mass ratio.
The small decline of M(<r, t) from peak to tend decreases in

magnitude as the mass ratio decreases, with only ∼3% change

for Runq=1/10. We also see that Runq=1/10 has significantly

more mass enclosed at radii r/a= 1.5, 2 for all times. This

implies that there is a more massive distribution of steady gas

within these smaller annuli. As we will see, this is consistent

with the fact Runq=1/10 has a fuller “cavity” region.
These measures taken together suggest that all the mass ratio

simulations exhibit a (weakly) secularly evolving steady state

of mass flow within 2< r/a< 4 for t 5× 104M.
For the magnetic flux series, the trends in enclosed mass are

shown in Figure 6. For the larger radii, r/a= 3, 4, the mass-

enclosed curves for RunSE rise steadily all the way to

t= tend; the curves for Runmed and Runlrg follow closely that

of RunSE until its end, but plateau, and to the same level, at

t; 1.2× 105M. In fact,M(<r, t) for Runmed and Runlrg are also

nearly identical at late times at r/a= 1.5, 2 suggesting that

these runs have likewise achieved steady state at these smaller

radii. Because their initial distributions of mass and magnetic

flux are quite different, this late-time matching suggests that

their mass inflow equilibrium is generic for this thermodynamic

model.
The Runinj M(<r, t) trends are significantly different from

those of any other run, however. After the time of injection, we

see a dramatic increase in mass followed by a rapid decline for

all probed radii r< 4a. In contrast, all runs but Runinj had

growing M(<r, t) at r/a= 3, 4. Apparently, the magnetic field

injection resulted in a sudden redistribution of mass inward that

left the entire circumbinary disk with significantly less mass
than in the other runs.

3.3. Surface Density Evolution

One of the key differences between circumbinary disks and
disks around a single black hole is the very low surface density
gap carved out of the accretion flow when there is a binary at its
center. The surface density is conventionally defined as the
rest-mass density integrated along its “vertical height.” For our
relatively thin disks aligned with the binary’s angular
momentum, the vertical integral is approximated well by an
integral along the poloidal direction:

( )
∣

( )
òf
q r

S =
-

ff q p=
r t

d g

g
, , . 18

2

Often it is useful to examine azimuthal averages of the surface

density, which we calculate as:

( )
{ }

∣
( )

ò
r

f
S =

ff q p=
r t

d g
, . 19

2

It can be convenient to measure the surface density in units of

the initial peak surface density, Σ0; the values of Σ0 for all runs

are given in Table 2.
As time progresses through each run, in all but RunSE there

is a strong convergence in Σ(r). Much of this convergence
takes place at times earlier than the duration of RunSE,
indicating that time steadiness is achieved more rapidly with
smaller q. The steadiness of Σ(r) at late times in all runs is
consistent with the near steady state of enclosed mass shown in
Section 3.2.
During this convergence, the shape of Σ(r) gradually

changes, and the nature of the converged shape is a function
of q. We show ( ) ( )( )S = S D =r r t t M, 2000 at a number of
times in each run in Figure 7. Several properties show clear
trends as the mass ratio decreases. First, the surface density’s
peak broadens and its contrast with the surface density at a
larger radius diminishes. Second, the inner edge of the gap
moves inward in terms of r/a, consistent with the decline of
the binary’s quadrupole moment, which destroys closed orbits.
This effect may also be viewed as a weakening of the binary
torques, which can repel material outward. Previous Newtonian
work in 2D α-viscosity hydrodynamics (D’Orazio et al.
2013; Farris et al. 2015; Miranda et al. 2017), and in MHD

Figure 7. Azimuthally averaged surface density as a function of radius at various times. Radial distance is in units of a, surface density in units of Σ0. Time averages
were performed over windows Δt = 2000M in size centered on different times, given in units of 104M in the legend. (Left to right) RunSE, Runq=1/2, Runq=1/5,
Runq=1/10.
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(Shi & Krolik 2015), found a similar trend, while full GRMHD
simulations around closer binaries (Gold et al. 2014a) showed
little dependence of the circumbinary disk edge position on
mass ratio.

The magnetic flux series show a greater variety of behavior
and, by this measure, are slower to approach inflow equilibrium
(Figure 8). The larger and more distant mass reservoirs of
Runmed and Runlrg result in flatter Σ(r) profiles at earlier times
as mass more slowly redistributes itself to smaller radii. For
instance, the local maximum in Σ(r) is apparent in Runmed and
Runlrg only after t 8× 104M, and appears to converge to a
steady value by t; 1.1× 105M in both runs. Also, the surface
density’s local maximum in Runmed seems to be significantly
narrower and larger compared to its value at larger radii. This
last distinction may be the result of the inner portion of Runlrg’s
accretion flow equilibrating with its outer part; the difference
between Σ(r= 2.5a) and Σ(r= 5a) is much larger for Runmed,
and Runlrg’s enclosed mass at r= 3a, 4a appears to be growing
faster than that of Runmed at late times.

The effect of the magnetic flux injection is apparent in Σ(r, t)
of Runinj. The perturbation creates a broad peak in Σ(r) just
after the time of injection, t= 5.2× 104M. As the perturbation
enhances redistribution of gas and angular momentum, the
local maximum’s relative amplitude decays over time—as does
the absolute magnitude of Σ(r, t). Thus, as already noted, this
run does not come particularly close to inflow equilibrium.

3.4. Torque Density

Several different mechanisms transport angular momentum
within the circumbinary disk. Because angular momentum
conservation is broken by nonaxisymmetry in the gravitational
spacetime, we discuss this issue here.

The total angular momentum J is the integral over the spatial
volume of the time component of its associated current, jμ:

ò= -J j g dVt , where dV is the spatial volume component

in the spacelike hypersurface (e.g., drdθdf). We are interested
in the azimuthal component of the momentum, so the
desired current is f=m m

n
nj T , and ( )f f= ¶ = ¶ ¶ =n

f
n nx

[ ]0, 0, 0, 1 in spherical coordinates, which is what we use.
Radial transport of angular momentum can be traced through

examination of the several mechanisms contributing to the
local rate of change of angular momentum density, d2J/dtdr:

{ } { }

{ } { }

{ } { } ( )

¶ ¶ = - - ¶
= - - ¶
- ¶ - ¶

f f

f f

f f




J dT dr T

dT dr M

R A . 20

r t r
r

r
r

r
r

r
r

The radial density of gravitational torque is

( ) ( )ò q f= ¶ -mn
f mn

dT

dr
T g g d d

1

2
. 21

The quantities fMr , fRr , and fA
r are—respectively—

the Maxwell (MHD) stress, Reynolds stress, and advected

flux of angular momentum. The Maxwell stress =m
nM

d+ -m
n

m
n

m
np u u p b b2 m m is the EM part of the stress-energy

tensor, while the Reynolds stress and the advected angular

momentum flux sum to the hydrodynamic part: ( )+ =m
n

m
nR A

r d= +m
n

m
n

m
nT hu u pH .

The quantities { }mnR and { }mnA can be separated by defining
the advected flux in terms of the mean radial flow and then

subtracting it from the total hydrodynamic angular momentum
flux:

{ }
{ }{ }

{ }
( ) r r

r
fA

ℓ hu
. 22r

r

{ } { } { } { } ( )r d d= -f f f fR h u u T A . 23r r
H
r r

Here ℓ≡− uf/ut.
We show each of these contributions separately in Figure 9.

The contributions are displayed averaged over two different
epochs: an earlier period (4× 104< t/M< 7.6× 104) to
compare with the final part of RunSE, and the last 3× 104M
of each run in order to illustrate how the system evolves as it
nears inflow equilibrium.
Several qualitative conclusions can be drawn from these

figures. First, all the runs of the mass ratio series reach a steady
state with respect to angular momentum transport at r 3a by
the time of the later period, evidenced by the total angular
momentum gradient lying close to zero. The magnitudes of all
the contributions diminish slightly in time, with the largest
decrease in the advected and magnetic contributions.
Second, there is only weak dependence on mass ratio. The

peak of the gravitational torque density, dT/dr, moves inward
as q decreases. With only a few exceptions where both are
small, the radial gradient of the Reynolds stress contributes to
the total torque so as to cancel the gravitational torque; in other
words, when gravitational torque adds angular momentum to
the fluid in a grid cell, Reynolds stress carries it away.
This figure also illustrates the transition from linear

gravitational torques to nonlinear. At late times (bottom row
of this figure), as q rises from 0.1 to 1, the damped sinusoidal
oscillations in both gravitational torque density and Reynolds
stress as functions of radius flatten out into low-amplitude
plateaus at the third extremum. This plateau feature resides at
the location of the lump and demonstrates that the response of
the circumbinary disk matter to external torques can no longer
be described by linear perturbation theory when q 1/4.
On the other hand, the Maxwell stress is consistently close to

uniform spatially for all q; the magnitude of this spatially
uniform stress is almost the same for all q� 0.5. The degree to
which the Maxwell stress maintains the same constant value
over all mass ratios suggests that its magnitude reflects the
asymptotic behavior of the MRI. As shown in Noble et al.
(2012) for RunSE, and found in the other runs but not shown
here, the plasma β= p/pm exhibits a local maximum at
r; 2.5a; this maximum is more pronounced for larger q. The
two trends together imply that larger q leads to higher pressure
at the radius of the surface density maximum. This greater
pressure may be the end result of the stronger gravitational
torques associated with higher q doing more mechanical work,
and the eventual dissipation of this work into heat, rather than a
loss of magnetic field intensity.
The angular momentum budget for the magnetic flux series

is shown in Figure 10. Like the mass ratio series, the fact that
d2J/dtdr settles toward the zero line at late times gives strong
evidence of an approach to a steady state. There is also a
resemblance to the mass ratio series in the sense that, like
RunSE and Runq=1/2, the magnetic flux series show an absence
of the third peak in the Reynolds stress at late times.
However, there is more contrast between these runs than those

in the mass ratio series. During the earlier averaging period,
d2J/dtdr is far from zero throughout the circumbinary disk in
RunSE, Runmed, and Runlrg, indicating that this is a transient
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phase in mass/magnetic flux redistribution for all three. In Runinj,
d2J/dtdr; 0 for r 3.5a, but grows rapidly at larger radii,
showing that this run reached a steady state in its inner regions
more rapidly than the others, but in this time span is evolving
rapidly at larger radii. At later times, all three new runs come
much closer to equilibrium in their angular momentum evolution.

Another way to evaluate each run’s proximity to a steady
state w.r.t. the angular momentum flux distribution is to plot the
radial-integrated d2J/dtdr as is commonly done in Newtonian
viscous hydrodynamics studies (e.g., Miranda et al. 2017). We
perform this analysis in Appendix B.

To close this section on axisymmetric properties, we remark
on how the nonaxisymmetric lump can influence azimuthally
averaged properties such as the vertically integrated magnetic
stress and the MRI quality factors. The largest value of the
former over the entire radial extent of the circumbinary disk is
found at the radial location of the lump, even though the
minima for the latter are found at the ( )fr, locations of the
lump (see Appendix C). To explain this diminution in MRI
quality, we point out that the magnetic stresses of RunSE,
Runmed, and Runlrg all agree at r= 5a, suggesting that the
variations between those runs neither strengthen nor weaken

Figure 9. Contributions to the time-averaged radial distribution of ∂r∂tJ (black) in the mass ratio series. Shown are the radial derivatives of the Maxwell stress in the
Eulerian frame ({ }fMr , red), the angular momentum flux due to shell-integrated Reynolds stress in the Eulerian frame ({ }fRr , green), and advected angular momentum

({ }fA
r , gold). Also shown are the torque densities per unit radius due to the actual binary spacetime (dT/dr, blue) and radiative cooling source term ({ }f , cyan). The

net rate of change of angular momentum ∂r∂tJ (solid black). All quantities in the top (bottom) row plots are time-averaged over 40,000 < t/M < 76,000 (last 30,000M
of evolution per run). (Left to right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10. Note that { }¶ fMr

r , { }¶ fRr
r , { }¶ fAr

r , and { }f have all been multiplied by a factor of

−1 to match the sign they have in Equation (20) so their curves add up to that of ∂r∂tJ.

Figure 8. Temporal and azimuthal averaged surface density as a function of radius in units of a. Time averages are performed over windows Δt = 2000M in size
centered on different times, specified in units of 104M in each legend. (Left to right) RunSE, Runmed, Runlrg, Runinj.
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the field in the outer disk. Nonetheless, in Runmed and Runlrg,

the stresses at r; 2a, i.e., the lump region, are even larger than

in RunSE. This fact suggests that most of the degradation in

MRI quality in these runs must be due to increased density in

the lump region.
In order to explore how magnetic stress may influence lump

dynamics and evolution, it is useful to define a measure of the

magnitude of the magnetic stress per unit mass, which we will

call fW r following Balbus & Hawley (1998):

{ }

{ }
( )

r
=f

f
W

M
. 24r

r

This quantity for the mass ratio series and the magnetic flux

series is shown in Figures 11 and 12, respectively. In every run

of the mass ratio series, fW r at radii r 2a drops abruptly by

about a factor of 4 at a time ≈40,000M. Particularly for low q,

this drop begins at a large radius and only then extends inward.

The evolution of fW r in the magnetic flux series is very

different because we deliberately manipulated the magnetic

flux available.
For those runs with a lump, we find that once the specific

magnetic stress drops to f
-W 10r 4 the lump appears when

one uses the criteria described in Section 4. The significance of

this value will be discussed in Section 5.1.

4. Nonaxisymmetric Structure

4.1. Lump Amplitude

Although Figures 7 and 8 illustrate well the azimuthally

averaged pileup of material at the edge of the gap for all runs,

they lack information about the nonaxisymmetric structure. In

particular, they say nothing about the lump feature (MacFadyen

& Milosavljević 2008; Shi et al. 2012; Noble et al. 2012),

which can affect the electromagnetic signal both by the

dissipation associated with it directly and by its modulation of

the accretion rate. In order to investigate the nonaxisymmetric

structure of the flow, in Figures 13 and 14 we plot the

distribution of the surface density, Σ(r, f) at evenly spaced

intervals over the secularly evolving period of the runs.
In all cases with a lump, we find that the overdensity region

spans π/3 δflump π in azimuthal angle, and a radial extent

of 0.1 δrlump a. In many cases, the density contrast

between the lump and its surroundings is quite large.
In the mass ratio series, the development of an azimuthally

asymmetric overdensity is obvious only in runs RunSE and

Runq=1/2, with the latter run showing weaker development at

all the times shown in Figure 13. The lump does not appear at

any time in either Runq=1/5 or Runq=1/10.
On the other hand, all four runs in the magnetic flux series

show lumps in at least one of the snapshots shown. The lumps

develop more slowly in tori extending to larger radius such as

Figure 10. Contributions to the time average radial distribution of ∂r∂tJ (black) in the magnetic flux series. Shown are the radial derivatives of the Maxwell stress in
the Eulerian frame ({ }fMr , red), the angular momentum flux due to shell-integrated Reynolds stress in the Eulerian frame ({ }fRr , green), and advected angular

momentum ({ }fA
r , gold). Also shown are the torque densities per unit radius due to the actual binary potential (dT/dr, blue) and radiative cooling source term ({ }f ,

cyan). The net rate of change of angular momentum ∂r∂tJ (solid black). All quantities in the top (bottom) row plots are time-averaged over 40,000 < t/M 76,000 (last
30,000M of evolution per run). (Left to right) RunSE, Runmed, Runlrg, Runinj. Note that { }¶ fMr

r , { }¶ fRr
r , { }¶ fAr

r , and { }f have all been multiplied by a factor of

−1 to match the sign they have in Equation (20) so their curves add up to that of ∂r∂tJ.
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Runmed and Runlrg. When their lumps form, however, the peak
surface density in each is significantly greater than in RunSE.
The impact of additional mass supply is evident.

The images of Runinj look different than the others, but this
is a visual artifact of the burst of accretion triggered by the
injected magnetic field. As a result, substantially less mass
remains in the disk. Nonetheless, the contrast between the
surface density of the lump and the azimuthally averaged
surface density at late times is comparable to that in the other
runs (see Figure 15 for a clearer view of this contrast). Note
that at t= 5.8× 104M one may still see the remnant of the
m= 1 lump structure created in RunSE before the extra
magnetic flux was injected in Runinj.

To quantify the surface density contrast between the lump
and its surroundings, we compute the Fourier transform m of
θ-integrated r -g with respect to f in the coordinate frame.
We call its absolute magnitude Am, with the definitions

( ) ∣ ( )∣ ( ) { } ( )r= = f A r t r t r t e, , , , . 25m m m
im

The phase of the Fourier modes indicates the azimuthal

location of the lump:

ArcTan( ) ( ( ( )) ( ( ))) ( )j = -  r t r t r t, Im , , Re , 26m m m

where our ArcTan( )y x, function returns the angle between

the y= 0, x> 0 line and the line connecting the point (x, y) and

the origin.

As shown in Figure 16, A1(r, t)/A0(r, t) for RunSE and

Runq=1/2 increases substantially over time. The m= 1 mode

amplitude is strongest in the accretion stream region but grows

significantly in the region of the lump proper, r≈ 2.5a, as well.

That both the inner region of the circumbinary disk and the

stream region develop the same sort of asymmetry is no

coincidence. If there were no disk asymmetry, the stream

region would be modulated strongly for m= 2, not m= 1; that

the streams also have m= 1 character is a sign that the

accretion streams originate in the lump. The amplitude of the

m= 1 mode in the gap is larger than in the disk because the

Figure 11. Log10 of the ratio of shell-averaged Maxwell stress, fMr , to shell-

averaged mass density, 〈ρ〉, vs. radius and time, shown in units of binary
separation and total BH mass, respectively. The scale is shown in the color bar.
The ranges of time and radius used in the plots cover the full extent of each
simulation. (Left to right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10.

Figure 12. Log10 of the ratio of shell-averaged Maxwell stress, fMr , to shell-

averaged mass density, 〈ρ〉, vs. radius and time, shown in units of binary
separation and total BH mass, respectively. The scale is shown in the color bar.
The ranges of time and radius used in the plots cover the full extent of each
simulation. (Left to right) RunSE, Runmed, Runlrg, Runinj.

Figure 13. Color contours of surface density in units of Σ0 as a function of
radius and azimuthal angle, i.e., Σ(r, f)/Σ0, at four different times indicated by
the number in the upper-right corner of each frame in units of 104M. The first
three times were chosen to span RunSE’s secularly evolving state; the time of
the right-most column is the last time in each run. (Top to bottom) RunSE,
Runq=1/2, Runq=1/5, Runq=1/10. (Right) the linear color scale used in all
frames.

Figure 14. Color contours of surface density in units of Σ0 as a function of
radius and azimuthal angle, i.e., Σ(r, f)/Σ0, at four different times indicated by
the number in the upper-right corner of each frame in units of 104M. The first
three times were chosen to span RunSE’s secularly evolving state; the time of
the right-most column is the last time in each run. (Top to bottom) RunSE,
Runmed, Runlrg, Runinj. (Right) the linear color scale used in all frames.
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streams grow narrower and denser as they fall toward the

nearest black hole and the remainder of the gap has such low

density. By contrast, Runq=1/5 and Runq=1/10 show almost no

signs of growth in the relative amplitude of the m= 1 mode.
All the magnetic flux series runs show enhancements of

A1/A0 similar to those seen in RunSE and Runq=1/2, but at

rather later times (the brief appearance of significant A1/A0 at

the beginning of Runinj is the remnant of the lump in RunSE as

it is destroyed by the injection of magnetic flux).

Interpreting a large relative mode strength of the m= 1 mode
as a signature of the lump, we determine the onset of the lump
using the criterion

( )
( ) ( )

( ) ( )
( )

ò

ò
= >C t

A r t t dr

A r t t dr

, 2

, 2
0.2. 27a

a

a

alump
2

3

1 lump

2

3

0 lump

We plot Clump(t) for each run in both series, along with the

m= 0, 1, 2 mode amplitudes integrated over [ ]Îr a a2 , 3 , in

Figure 16. The ratio of the m = 1 mode to the m = 0, ( ) ( )D DA r t t A r t t, , , ,1 0 , as a function of radius and time for the mass ratio series. Here the smoothing period
slides along t and has duration Δt = 2tlump. (Left to right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10.

Figure 15. The ratio of the m = 1 mode to the m = 0, ( ) ( )D DA r t t A r t t, , , ,1 0 , as a function of radius and time for the magnetic flux series. Here the smoothing
period slides along t and has duration Δt = 2tlump. (Left to right) RunSE, Runmed, Runlrg, Runinj.

13

The Astrophysical Journal, 922:175 (29pp), 2021 December 1 Noble et al.



Figures 17 and 18. Satisfaction of the criterion coincides with

the time when the amplitude of the m= 1 mode begins to rise

above that of the m= 2 mode and approaches the m= 0 mode

strength. We define Tlump to be the time the lump criterion is

first satisfied. The measured values of Tlump for all lump-

forming runs are presented in Table 2.
Similar behavior is seen in the magnetic flux series. We find

that each run in this series satisfies the criterion within its

duration. Consistent with the surface density plots, the lump

forms later for Runmed and Runlrg. The m= 1 amplitude of

Runmed reaches more than half that of its m= 0 mode, while in

Runlrg this ratio crosses the threshold of 0.2 near the end of the

simulation and reaches 0.3 at the very end. In Runinj, the run

begins with the decay of the existing lump from RunSE, but the

lump recovers and crosses the threshold later.
An important characteristic of the lump is its phase

coherence. In order to quantify the instantaneous phase of the

lump, jlump(t), and its associated orbital frequency, ωlump(t), we
rely on our means of calculating the amplitude of the
overdensity Equation (25). As we want to track the lump,
which resides close to the cavity’s edge, we first integrate the
density’s m= 1 Fourier amplitude over the radial extent of the
lump:

˜ ( ) ( ) ( )ò fº t r t dr, , 28
a

a

1
2

4

1

which is then immediately used to find jlump(t):

ArcTan( ) ( ( ˜ ( )) ( ˜ ( ))) ( )j º -  t t tIm , Re . 29lump 1 1

The instantaneous orbital frequency of the lump, ωlump(t), is

simply the time derivative of the phase:

( )
( )

( )w
j

=t
d t

dt
. 30lump

lump

Figure 17. Lump criterion, Clump(t), (top rows) used to determine Tlump, and the m = 0, 1, 2 mode amplitudes integrated over the lump region (bottom rows) for the
mass ratio simulations. The horizontal dashed line indicates the threshold Clump = 0.2 above which we recognize the presence of an overdensity; the vertical lines
denote the time, Tlump, at which it first satisfies this criterion. (Left to right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10.

Figure 18. Lump criterion, Clump(t), (top rows) used to determine Tlump, and the m = 0, 1, 2 mode amplitudes integrated over the lump region (bottom rows). The
horizontal dashed line indicates the threshold Clump = 0.2 above which we recognize the presence of an overdensity; the vertical lines denote the time, Tlump, at which
it first satisfies this criterion. (Left to right) RunSE, Runmed, Runlrg, Runinj.
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When referenced without an argument, ωlump is to be

interpreted as the time average of ωlump(t) over the period

Tlump< t< tend for the specified run. Table 2 shows the values

of ωlump for each run.

4.2. Eccentricity

Even if the circumbinary gas begins the simulation on
circular orbits, previous investigations reported that it acquires
nontrivial levels of eccentricity over time (MacFadyen &
Milosavljević 2008; Shi et al. 2012; Farris et al. 2014;
D’Orazio et al. 2016; Miranda et al. 2017). At late times, the
azimuthally averaged eccentricity rises sharply just inside the
cavity wall and decays exponentially outward ( )» -r aexp
(MacFadyen & Milosavljević 2008; Shi et al. 2012). Previous
MHD simulations reported smaller eccentricities than viscous
hydrodynamics simulations, but it is unclear if the MHD
simulations reached a true steady state in terms of eccentricity.
We explore here how our simulations compare with previous
work and how eccentricity is associated with the growth and
strength of the lump.

We define the eccentricity of a disk annulus at radius r in a
way analogous to the Newtonian expressions used in
MacFadyen & Milosavljević (2008) and Shi et al. (2012), but
expressed in terms of the 4-velocity and the metric:

( )
∣{ }∣

{ }
( )

r
r

=
f

f
e r t

u e

ru
, . 31

r i

We further define the quantity elump to be the eccentricity of the

region 2a< r< 4a:

( )

{ }

{ }
( )

ò

ò

r

r
=

f

f
e t

dr u e

dr ru
. 32

a

a
r i

a

alump
2

4

2

4

In order to accentuate variability or trends occurring at longer

timescales, we display elump(t) in Figures 19 and 20 smoothed

over a binary orbit: ( )e t t,lump bin , calculated using Equation (13).
As shown in Figures 19 and 20, in all cases the inner disk

eccentricity grows exponentially during the early development

of the circumbinary disk. However, once it reaches∼ 10−2,
further growth is a function of mass ratio and magnetic flux.
For fixed magnetic properties, but varying mass ratio, the

eccentricity decreases slightly during the first∼ 104M after
rising to∼ 10−2. When the mass ratio takes its maximum
value, i.e., q= 1, the eccentricity then renews its exponential
growth, but at a slower rate. For smaller values of q, the growth
is delayed longer, and therefore begins from a lower level.
However, once begun, growth proceeds at roughly the same
rate for all values of q. There is, however, one possible
exception: for q= 0.1, the slow decline in eccentricity runs all
the way to the end of the simulation. We cannot say whether
the eccentricity might begin growing at still later times.
On the other hand, for fixed mass ratio and varying magnetic

properties, the development of eccentricity is very similar in all
the runs of this series. The smoothed form of the eccentricity
history, ( )e t t,lump bin , ultimately reaches the same value in each
run to within ∼20%. The only significant contrast between
them occurs in Runinj, where the eccentricity drops sharply
when the additional magnetic flux is added and the lump
temporarily dissolves. When the lump returns, this run, too,
returns to the common path.
The range of eccentricities we find all lie within the range of

eccentricities observed in another GRMHD series (Lopez
Armengol et al. 2021) and about 50% smaller than that reported
in a Newtonian MHD study (Shi et al. 2012). Our results are
also in agreement with 2D VH results (D’Orazio et al. 2016),
and some 3D SPH studies show a similar trend with q (Ragusa
et al. 2020).
Generally speaking, in all the runs that exhibit a lump as

determined by our lump criterion, ( )e t t,lump bin , grows as the
m= 1 density mode amplitude, A1, grows. In both series, in
each run exhibiting a lump, ( )e t t,lump bin begins its second
period of exponential growth approximately 104M before
satisfying the lump criterion. Moreover, the radial profiles are
also quite similar to one another: the time-averaged radial
eccentricity profile for all cases declines exponentially with
increasing radius from r≈ 1 to r≈ 3 with an e-folding scale
consistently≈ a.
The timescales of variability seen in elump(t) for each run of

the magnetic flux series are also similar. Each run exhibits a

Figure 19. The lump’s eccentricity smoothed over Δt = tbin, ( )e t t,lump bin (left); elump(t) over the last 10 orbits of each simulation (right); tend represents the final time

of each simulation of the mass ratio series.
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low-frequency oscillation at ωlump, the orbital frequency of the
lump, and a carrier signal at twice the beat frequency,

( )wW -2 bin lump . The mass ratio series show more differences
in their elump(t) variability than do the magnetic flux series.
Whereas RunSE and Runq=1/2 exhibit variability at these two
frequencies, elump(t) in Runq=1/5 fluctuates at 2Ωbin and elump(t)
in Runq=1/10 only at Ωbin. The weakness of the lump in
Runq=1/5 and Runq=1/10 explains they are not varying at the
beat frequency; the lower frequency variability of Runq=1/10 is
due to the fact that the secondary BH dominates the
gravitational torque in the would-be lump region at this small
mass ratio.

4.3. Accretion Streams and Variability

We ultimately aim to provide a quantitative model of how
electromagnetic emission depends on q so that system
parameters may be derived from observables. The bolometric
luminosity L is the simplest of observable measures. Just as in

Noble et al. (2012), we calculate L by integrating the local
cooling rate, , in the Eulerian frame over the numerical
domain:

( ) ( )ò q f= -L t u g dr d d . 33t

In such a method, Doppler and gravitational shifts are ignored,

but the magnitude of their effect is smaller than other

uncertainties. Each simulation is cooled toward the same target

entropy, at the same cooling timescale, starting from tori at the

same initial scale height (H/R= 0.1 at the pressure maximum)

and target entropy. Hence, any changes in L should be the

result of the mass ratio or magnetic flux distribution, modulo

statistical fluctuations.
In Figure 21 we show the light-curve and accretion rate for

each simulation in the mass ratio series. After the initial burst of
accretion, i.e., t> 2.5× 104M, the luminosity in each run
generally tracks the run’s accretion rate, implying that the

Figure 20. The lump’s eccentricity smoothed over Δt = tbin, ( )e t t,lump bin (left); elump(t) over the last 10 orbits of each simulation (right); tend represents the final time

of each simulation of the magnetic flux series.

Figure 21. Light curves and accretion rates, ( ) =M r a t, , over each simulation’s full extent. Each curve is normalized by its peak value. (Left to right) RunSE,
Runq=1/2, Runq=1/5, Runq=1/10.
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radiative efficiency, h º L M , remains nearly constant. Closer

inspection, however, shows a sharp increase in η at the time of

maximum luminosity; after this time, η declines slowly from this

elevated value. Similar trends are also seen in the magnetic flux

series, in Figure 22. We note that η is a nontrivial, time-dependent

result from our simulations and is not immediately derived from

our target temperature, Tcool. The radiation efficiency of any one

simulation depends on how efficient the gas is at turning the free

energy of orbital motion into heat, and this is in and of itself a

nonlinear process that depends on the disk’s thermodynamics,

motion, mass distribution, and local gravitational field.
In all cases, the accretion rate exhibits larger relative

amplitude and higher frequency fluctuations than the luminosity

does, an observation we found with single-BH accretion disk

simulations using similar thermodynamics (Noble & Krolik

2009). The luminosities of the mass ratio series are all quite

similar, demonstrating that the mass inflow provided by the outer

disk is the dominant regulator of light output.
Although the magnitude of the luminosity in the magnetic

flux series is quite similar to that of the mass ratio series, their

time dependence is quite different. Runmed and Runlrg both

exhibit a plateau period in their luminosities following the

initial peak. The perturbation imparted in Runinj is apparent in

both L(t) and ( )M t . In effect, it causes the disk to go through

two cycles of rise and fall, rather than the single one of the

other simulations. Interestingly, there is a short delay

(∼2000M) between the second peak in accretion and the

subsequent peak in luminosity.

Figure 22. Light curves and accretion rates, ( ) =M r a t, , over each simulation’s full extent. Each curve is normalized by its peak value. (Left to right) RunSE,
Runmed, Runlrg, Runinj.

Figure 23. Normalized correlations between the light curves, L(t), and accretion rates, ( ) =M r a t, , calculated since the onset of the lump (gray curves) or the last two
periods of the lump’s orbit in a simulation (blue curves). The correlations are plotted vs. the lags, and are calculated using Equation (34). A 5th-order polynomial fit to
each curve has been removed prior to calculating the correlation. Each plot is displayed over a span of lag time approximately equal to 3tlump. (Left to right) RunSE,
Runq=1/2, Runq=1/5, Runq=1/10.
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Phase alignment in the fluctuations of L(t) and ( )M t for the
mass ratio series and magnetic flux series is best seen through
their normalized correlations, which we show in Figures 23 and
24, respectively. We calculate the normalized correlations
between L(t) and ( )M t using

Corr[ ]( )
( ) ( )

∣∣ ∣∣ ∣∣ ∣∣
( )


D =

å - D
L M t

L t M t t

L M
, , 34i i i

2 2

where ||L||2 (∣∣ ∣∣M 2) is the l
2-norm of the luminosity (accretion

rate) time series minus a 5th-order polynomial fit to the raw

data to remove secular trends. For runs clearly exhibiting a

lump (RunSE and Runq=1/2), the correlations show larger peak

amplitudes than for those without (Runq=1/5 and Runq=1/10).

In addition, the lump runs show variability on both the

tlump(;4tbin) and twice the beat frequency (1.5Ωbin) timescales,

though RunSE shows relatively weak lump period variability.

Because lump-producing runs all show correlations that peak at

positive lags, the luminosity variation follows that of the

accretion rate. This reflects the sequence of events in which an

accretion stream leaves the inner edge of the circumbinary disk;

part of it feels sufficient torque to return to the circumbinary

disk, and once it arrives, dissipates some of its energy in a

shock, whose heat is then radiated (Noble et al. 2012; Shi &

Krolik 2015). Further evidence supporting the picture of how

the lump region in lump-forming runs undergoes excessive

heating that can be seen in the vertical scale height of the disk

as measured from the gas’s pressure (Appendix D).
Using the detrended and normalized functions of time, we

plot the normalized Fourier power distributions in Figure 25
and Figure 26 for the mass ratio series and magnetic flux series,
respectively. The power spectra are calculated using the period
t> Tlump if the run exhibits a lump, and t> tend− 2.5× 104M
if not.

The character of the variability changes with mass ratio.
Neglecting the peak at very low frequency, which could be an
artifact of the detrending, the nature of the strongest peak in the

luminosity power spectrum is different in each case. In RunSE,

it is at; 1.5Ωbin, twice the beat frequency between the lump

orbital frequency and the binary orbital frequency. In Runq=1/2,

there is also a strong peak at twice the beat frequency for M ,

but the peak for L is much smaller than in RunSE, and there is a

comparable peak at; 0.75Ωbin, the actual beat frequency. In

Runq=1/5, there is a very strong peak at almost exactly Ωbin.

Lastly, in Runq=1/10, there is no significant periodic behavior in

the light output at all. The presence of a small peak at Ωbin in

Runq=1/2 and a larger one in Runq=1/5 may be interpreted as

due to the closer approach of the secondary to the inner edge of

the circumbinary disk as q decreases, and the consequent

enhancement of modulation at the secondary’s orbital

frequency; the disappearance of this peak in Runq=1/10 is

likely a sign that when the mass ratio is this small, the

secondary has hardly any effect on the accretion. In all cases,

there are contrasts between the power spectra of the accretion

rate and the luminosity; in other words, there are significant

contributions to the rate of heat dissipation that are not due

immediately to mass accretion.
In Table 3 we provide the relative standard deviations of

fluctuations in the accretion rate and luminosities. The most

striking feature is that the fractional variation in accretion rate

is consistently an order of magnitude larger than the fractional

variation in the luminosity. This fact, too, strongly indicates

that the luminosity is not directly related to the accretion flow.

No clear trends exist in the relative variabilities within each

series, though if a run is more variable than another in one

quantity it typically is more variable in the other quantity

as well.
We plot the PSDs of different quantities related to the lump

in Figures 27 and 28. The functions analyzed are the m= 1

mode amplitude of the density integrated over the lump region

(ò A dr
a

a

2

4

1 ), the phase difference between the binary and the

lump’s phase (∣ ∣f f-lump bin ), the orbital frequency of the lump

(ωlump), and elump(t). The phase of the lump is found by

Figure 24. Normalized correlations between the light curves, L(t), and accretion rates, ( ) =M r a t, , calculated since the onset of the lump (gray curves) or the last two
periods of the lump’s orbit in a simulation (blue curves). The correlations are plotted vs. the lags, and are calculated using Equation (34). A 5th-order polynomial fit to
each curve has been removed prior to calculating the correlation. Each plot is displayed over a span of lag time approximately equal to 3tlump. (Left to right) RunSE,
Runmed, Runlrg, Runinj.
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locating the maximum of the m= 1 mode amplitude integrated

over the radial extent of the lump region.
The lump’s orbital frequency can then be defined by

w fºlump lump. The average ωlump over this period (for those

runs with a lump) is reported in Table 2; it is consistently

0.26Ωbin or;Ωbin/4 for all runs, suggesting a 4:1 resonance

between the lump and binary. As expected, in the runs

exhibiting a lump, the phase difference is modulated at the beat

frequency ( )wW -bin lump and its higher harmonics.
Several aspects of this timing analysis confirm the coherence of

lump motion. Plots of ωlump(t) are continuous. Most clearly seen in

RunSE and—to a lesser extent—in the other lump-forming runs,

ωlump varies at twice the beat frequency, suggesting that the lump is

accelerated by each passing BH. The eccentricity of lump orbits

fluctuates primarily at the lump’s average Keplerian rate, ωlump as

well as at twice the beat frequency; this, too, indicates that the

lump is a distinct physical element, not a pattern.
In order to connect the accretion rate and light-curve

variability to the lump, we compare their PSDs (in Figure 25)

to those associated with the density structure of the lump-

forming region (in Figure 27). Strikingly, in both sets of PSDs

the most prominent peaks for RunSE and Runq=1/2, the runs

with the clearest lumps occur at the same frequencies, twice the

beat frequency and ωlump, for q= 0.5, 1.
For the magnetic flux series we compare Figure 26 to

Figure 28. Relative to the other runs, those exhibiting larger or

Figure 25. Fourier power spectra of the light curves and accretion rates, ( ) =M r a t, , including only times t > Tlump. For those runs with no observed lump, we use
the simulation’s last 2.5 × 104M of time. Before performing the Fourier power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then
applying a normalization factor equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ω = ωlump, Ωbin, and ( )wW -2 ;bin lump

for those runs without a lump, ωlump of RunSE is used instead. (Left to right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10.

Figure 26. Fourier power spectra of the light curves and accretion rates, ( ) =M r a t, , including only times t > Tlump. For those runs with no observed lump, we use
the simulation’s last 2.5 × 104M of time. Before performing the Fourier power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then
applying a normalization factor equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ω = ωlump, Ωbin, and ( )wW -2 ;bin lump

for those runs without a lump, ωlump of RunSE is used instead. (Left to right) RunSE, Runmed, Runlrg, Runinj.
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smaller fluctuation power in the lump’s properties at ωlump and
twice the beat frequency also exhibit larger or smaller signals in
L(t) and ( )M t at these frequencies. Runinj, which is the only run
of this series that does not show significant variability in
∣ ∣j j-lump bin at ( )wW -2 bin lump , does show significant

variability in this quantity at twice the other beat frequency,
( )wW +2 bin lump as does its accretion rate.

5. Discussion

5.1. Origins and Conditions of Lump Formation

A primary goal of our paper is to investigate how and why the
lump forms, and what conditions are amenable to the lump’s
growth. We used multiple diagnostics to verify the presence of a
coherent, orbiting, overdense region of gas. In particular, the
surface density, cavity wall eccentricity, lump phase, and orbital
velocity, and the PSD spectra of several quantities all
consistently show signs of the lump when one is present.

The mass ratio series demonstrated that sufficiently large
mass ratios are required to manifest a significant lump. From
the magnetic flux series, we learned that the amount of mass in
the disk had little effect on the lump, but the amount of
magnetic flux did: adding a relatively modest, ordered, poloidal
magnetic field distribution beyond the lump region was enough
to perturb it to the point the nascent lump was disrupted and
formed approximately;100tbin or 25tlump later. Also, the time,
Tlump, at which a run passed our lump-formation criterion,
increased with decreasing mass ratio (gravitational torque) and
with increasing available mass/magnetic flux. These results
suggest that a circumbinary disk’s ability to form a lump is
robust to minor deviations in conditions, though requires a
sufficiently strong gravitational torque.

Although MHD turbulence usually has the most power on
the longest spatial wavelength modes, implying that small m
azimuthal modes have the most power, a distinct mechanism
for sustaining a coherent m= 1 mode is required, as a m= 1
turbulent mode would be incoherent. This coherence is
supplied by the binary’s gravitational torque in two ways.
One has previously been cited: the lump is reinforced by those
portions of the accretion streams thrown back to the
circumbinary disk by the gravitational torque (Shi et al.
2012; D’Orazio et al. 2013). Phase coherence is further
maintained because the lump’s orbit is resonant with the
binary’s orbit: tlump: tbin= 4: 1. The importance of this
resonance is evident in these two timescales’ prominence in

the PSDs of the accretion rate, luminosity, eccentricity, and
m= 1 density mode.
As we saw in Runinj a perturbation to the magnetic field was

sufficient to disturb the lump, so why is the inherent magnetic
field insufficient to shear apart a growing m= 1 fluctuation?
After all, one typically finds, in disks about single black holes,
the magnetic stress per unit mass is nearly uniform in azimuth,
with incoherent fluctuations having a fairly smooth inverse
polynomial power spectrum w.r.t. wavelength. Obviously there
is a competition between the forcing and the local shear stress.
From measuring the MRI quality factors (Appendix C), we

know that the magnetic field per unit enthalpy degrades within
the overdensity region. So how does the resonant interaction
encourage mass growth over magnetic field growth in the
circumbinary disk? For there to be a physical origin for the
depletion of specific magnetic field strength in the lump, we
need to understand how the magnetic field is preferentially
destroyed there. The mechanism also needs to depend on the
mass ratio since we find that a significant lump forms for only
sufficiently large q. The answer comes from animations of
magnetic field structure in the torqued streams striking the
circumbinary disk, which show that the magnetic field in these
streams is directed opposite to the field in the disk where the
stream arrives. The collision of oppositely oriented magnetic
field distribution with the inner cavity wall material leads to
large-scale reconnection and dissipation of the field into heat.
This process can therefore explain how the magnetic field in the
lump region decreases.
The local magnetic field may grow through local MHD

instabilities like the MRI and be replenished by the field carried
into the region by inward fluid motion. Our interest in
exploring these processes was the reason for plotting the
magnetic stress per unit mass, fW r in Figures 11 and 12.
Lumps form only when fW r falls below; 10−4 in the region
near the circumbinary disk’s inner edge. While this is just a
correlation, it is one that works for runs with different Tlump,
suggesting it is not a simple function of the mass ratio or initial
conditions. In order to explore why this value is important, let
us compare the timescales for magnetic field advection across
the lump, Δ tlump, and the timescale over which the magnetic
field is dissipated, tdiss, by compression of expelled streams
with an oppositely oriented magnetic field.
Assuming time steadiness of the accretion flow and that

Maxwell stress accounts for the majority of the total stress, one
can show that far from the edge of the disk:

( ) ( ) W á ñf rW r r u , 35r
K

r

where ΩK is the local Keplerian orbital rate, and 〈u r〉ρ is the

accretion inflow speed which can be used to estimate the

timescale for advection of plasma across the lump, Δtadv:
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Table 3

Standard Deviations sM (σL) of Accretion Rate (Luminosity) for Each Run

Run Name s MM [ ] -M 10 3 s LL [ ]-L 10 4

RunSE 0.29 5.6 0.027 3.3

Runq=1/2 0.54 3.3 0.048 1.9

Runq=1/5 0.33 2.2 0.025 1.4

Runq=1/10 0.20 4.8 0.022 1.8

Runmed 0.30 11. 0.043 5.4

Runlrg 0.38 10. 0.033 5.1

Runinj 0.56 4.1 0.054 1.4

Note. Each standard deviation is normalized by the mean of the quantity in

question over this period. These averages are also displayed, though in code

units. Runs were taken over the same period in which the PSDs were calculated

in Figures 25 and 26.
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where we have used the Newtonian rotation rates, w =lump

( ) ( ) ( )=- - - - -M r M M r a a M1
lump

3 2 1
lump

3 2 3 2, and =tbin

( )pM a M2 3 2. The average radial extent of the growing lump,

Δ rlump, is often found to be a fixed fraction of the binary

separation, a. This fraction is generically small because the

m= 1 overdensity originates from an expelled accretion stream

compressed by its shock against the cavity wall. We estimate

Δrlump∼ 0.1a at the time the lump begins to form, which has

been observed in a number of simulations (MacFadyen &

Milosavljević 2008; Noble et al. 2012; Zilhão et al. 2015;

Farris et al. 2014; Miranda et al. 2017).
The dissipation timescale of magnetic field loss in the

lump is the period between successive BH-overdensity
interactions, which occur at twice the beat frequency

( ( )) W = W - W Wr2 Kdiss bin lump
3

2 bin:

( )p=
W

t t
2 2

3
. 39diss

diss
bin

Figure 27. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times t > Tlump. For those runs with no observed
lump, we use the simulation’s last 2.5 × 104M of time. Before performing the Fourier power spectrum, the function is conditioned by subtracting a 5th-order
polynomial fit and then applying a normalization factor equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ω = ωlump,
Ωbin, and ( )wW -2 ;bin lump for those runs without a lump, ωlump of RunSE is used instead. (Left to right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10.

Figure 28. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times t > Tlump. For those runs with no observed
lump, we use the simulation’s last 2.5 × 104M of time. Before performing the Fourier power spectrum, the function is conditioned by subtracting a 5th-order
polynomial fit and then applying a normalization factor equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ω = ωlump,
Ωbin, and ( )wW -2 ;bin lump for those runs without a lump, ωlump of RunSE is used instead. (Left to right) RunSE, Runmed, Runlrg, Runinj.
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If one process occurs at a faster rate, it will eventually win out.

The ratio of the two timescales, Y, is therefore useful:
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We would expect a lump to develop once Y< 1, and may not

otherwise because the MRI operates on a tlump? tbin timescale

at the location of the lump. For our parameters, we find this

ratio implies a lump will grow. We found that the lump does

not occur earlier in the lump-forming evolutions because fW r is

an order of magnitude larger, pushing Y> 1. When we inject

magnitude field in Runinj, fW r grows by an order of magnitude

resulting in Y> 1 until the specific magnetic stress returns to

the 10−4 level and the lump returns. We also note that once the

lump begins to form, its radial extent grows, which makes it

more difficult to rejuvenate its magnetic field through advective

mixing because µ D -Y rlump
1 .

Although this model does not explicitly depend on the mass
ratio, the qualitative picture does help us understand why it is
more difficult for binaries with smaller q to form a lump. First,
the magnitude of the binary’s time-dependent quadrupole
moment decreases for smaller q. As a result, the binary’s
gravitational torque weakens, diminishing how much of the
matter entering the gap is thrown back at the disk to feed the
lump. This effect may also decrease the effectiveness of magnetic
field dissipation for smaller q because a smaller amount of mass
returned to the disk carries a smaller amount of (oppositely
directed) magnetic field, thereby increasing fW

r. This trend is
bolstered by the fact that Y increases by a further factor of 2 as the
BH-lump interaction frequency falls from twice the beat
frequency (for q= 1) to exactly the beat frequency (for q= 1).

Simulations employing viscous hydrodynamics have also
demonstrated lumps (MacFadyen & Milosavljević 2008;
D’Orazio et al. 2013, 2016; Farris et al. 2014, 2015; Muñoz &
Lai 2016; Miranda et al. 2017; Moody et al. 2019; Mösta et al.
2019; Muñoz et al. 2019, 2020; Duffell et al. 2020; Muñoz &
Lithwick 2020; Tiede et al. 2020; Zrake et al. 2021), even
though magnetic reconnection cannot limit their internal stresses.
However, the mathematical form of α-viscosity leads to the same
effect. If a coherently orbiting structure (a nascent lump) happens
to form, it has, by definition, little internal shear. Consequently,
the stress given by the α-model is also small, so there is no
tendency for the structure to be pulled apart by a viscous stress
coupling it to surrounding matter following different orbits. On
the other hand, it may grow in mass as binary torques fling
outward material that has begun to move inward from the cavity
wall’s edge (Shi et al. 2012; Shi & Krolik 2015). The only
analysis of velocity gradients in a VH simulation (Ragusa et al.
2017) found evidence supporting this picture: the vorticity
component orthogonal to the disk plane has a significant local
minimum in the lump. Thus, by a lucky coincidence, α-viscosity
mimics the action of physical MHD in fostering the growth and
longevity of lumps in circumbinary disks.

5.2. Comparison to Prior Work

In the following, we will summarize how our results compare
and contrast with prior work, limiting our comparison to those
studies using binaries on fixed circular orbits with prograde disks.
By all accounts, the lump is a significant density enhance-

ment that forms near or along the cavity wall, spans a relatively
narrow radial extent, and orbits as a coherent structure at
the local Keplerian rate (Section 4 and MacFadyen &
Milosavljević 2008; Farris et al. 2012; Noble et al. 2012; Shi
et al. 2012; D’Orazio et al. 2013, 2016; Gold et al. 2014a; Zilhão
et al. 2015; Bowen et al. 2018, 2019; Lopez Armengol et al.
2021; Paschalidis et al. 2021). In its asymptotic state,
Δrlump; a, while spanning a significant fraction of the possible
azimuthal extent π/3 δflump π. VH simulations deviate a
little from this picture, at least for the larger q cases that exhibit
significant m= 1 structure, in that they also develop a density
enhancement at the apoapse (MacFadyen & Milosavljević 2008;
D’Orazio et al. 2013, 2016; Farris et al. 2015; Miranda et al.
2017; Ragusa et al. 2020) that precesses at a much slower rate
than the local Keplerian velocity of the disk. Some report that the
lump travels through this “traffic jam” of gas at the local
Keplerian rate (Ragusa et al. 2020), while others show the lump
vanish and return cyclically Miranda et al. (2017).
Regardless of differences in the azimuthal distribution of the

lump, all10 simulations find that it leads to accretion rate
modulation at a timescale approximately equal to the Keplerian
period at the cavity’s edge. This modulation timescale usually
is approximately tlump; 4− 5tbin for cases with h/r∼ 0.1
(MacFadyen & Milosavljević 2008; Noble et al. 2012; Shi et al.
2012; D’Orazio et al. 2013, 2016; Farris et al. 2015; Zilhão
et al. 2015; Muñoz & Lai 2016; Miranda et al. 2017; Moody
et al. 2019; Muñoz et al. 2020; Duffell et al. 2020; Dittmann &
Ryan 2021; Lopez Armengol et al. 2021). All our simulations
with a lump show tlump; 4tbin, which were the cases when
q> 0.2. Interestingly, Duffell et al. (2020) and Dittmann &
Ryan (2021) also report the modulation changes rather sharply
at q= 0.2 for circular orbits and h/r= 0.1 disks, and they both
found that tlump gradually decreased from 5tbin at q= 1 to 4tbin
at q→ 0.2. Others show transitions in the same ballpark:
q> 0.25–0.5 (D’Orazio et al. 2013), q> 0.25− 0.43 (Farris
et al. 2015), and q� 0.4 (Muñoz et al. 2020). For cases with
larger cavities (e.g., with colder disks), longer periods are
found: Ragusa et al. (2016) find tlump; 5tbin (tlump; 4tbin) for
h/r= 0.04 (h/r= 0.1), and Ragusa et al. (2020) report
modulations at 7−8tbin from a cavity of radius r; 3.5a. A
dissenting case is the q= 0.1 simulation of Shi & Krolik (2015)
which shows evidence of the lump in the surface density and
the accretion rate, with the lump even forming later in their
q= 1 case; the difference may be due to their use of an
isothermal equation of state. As our MHD simulations, like
those of others, include turbulent circumbinary disks, our PSDs
of ( )M t are more complex than those of VH simulations and
include significant power over a range of frequencies, like
those observed in real AGN disks. Demonstrating that
variability associated with the lump is evident above these
broadband fluctuations for several different cases is a key
finding of this paper.

10
Few numerical relativity simulations have the temporal range to calculate a

PSD of ( )M t , and those that have PSDs have relatively poor frequency
resolution and dynamic range to yield significant signal-to-noise ratios (Gold
et al. 2014a).
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Few papers, however, investigate how the lump forms and
endures. Shi et al. (2012), D’Orazio et al. (2013), and Shi &
Krolik (2015) went to significant lengths to show how
returning streams reinforce the lump. In Noble et al. (2012)
we showed how the MRI quality of our simulation degraded in
the lump; this analysis is repeated for our simulations here in
Appendix C. Evidence of degradation of magnetic and
hydrodynamic turbulence in the lump is shown in Shi &
Krolik (2016) by spatially associating the lump with the
relative contributions of the vertical components of the velocity
and magnetic field. And, as we mentioned earlier, Ragusa et al.
(2017) explore whether the lump is stabilized by vorticity,
which they found to not be the case as vorticity was shown to
be smaller in the lump than in the rest of the circumbinary disk.
All evidence presented so far is consistent with the notion that
the lump is a coherently orbiting structure with a deficit or
absence of internal differential rotation or local vorticity; as we
have mentioned, the lack of differential rotation helps to
stabilize it by hindering the MRI or viscous stresses.

6. Summary

We have explored two series of simulations of circumbinary
accretion disks about binary black holes using GRMHD and
2.5PN approximate spacetimes: the mass ratio series, in which
the relative masses of the black holes were q= 0.1, 0.2, 0.5, or
1, while all other aspects remained the same, and the magnetic
flux series, which used an equal-mass binary but different
distributions of mass and magnetic field. Axisymmetric and
nonaxisymmetric properties of the circumbinary disks were
explored in each series. Special emphasis was given to aspects
of the circumbinary disk that may affect binary signatures in
EM emission, such as the lump.

In terms of axisymmetric aspects, we found that the
circumbinary disk in most cases approached a steady state of
mass inflow by the end of each run. Aspects such as the surface
density peak (gradient) were found to broaden (move inward)
as the mass ratio decreased. Runs with larger distributions of
mass/magnetic flux took longer to asymptote to a steady state,
but otherwise resembled the other equal-mass runs in
axisymmetric aspects.

Regarding the nonaxisymmetric properties, we explored the
disk’s azimuthal structure, eccentricity, and variability. We
found a new diagnostic for the relative strength of the m= 1
azimuthal mode of density such that lump formation was
always sustained if this quantity exceeded a certain value. The
growth in time of this diagnostic was found to be coincident
with the growth rate of the eccentricity of material near the
cavity. When arising, the lump is found to be a coherent
structure in which magnetic stress is kept comparatively weak
by repeated collisions with expelled material carrying oppo-
sitely oriented magnetic field. The lump is also associated with
variability in the light-curve and accretion rate on two
timescales related, but not identical, to the binary period:
4tbin and 2/3tbin, the former associated with the lump’s local
Keplerian period, the latter with the beat mode between the
binary and the lump.

The lump was observed in q= 0.5, 1 and not found in
q= 0.2, 0.1, suggesting the no-lump/lump transition lies
between 0.2< q< 0.5 for our simulation conditions. We also
demonstrated that persistent reservoirs of mass and magnetic
flux available to be accreted into the lump region do not hinder
its growth. However, a perturbation to the accretion flow in the

form of a modest additional ordered magnetic field was
sufficient to disrupt a nascent lump and delay its development
for∼ 10tbin.
Previous work on the origin and sustenance of lumps

stressed the coordinated delivery of matter to the lump region
by “torqued-up” streams (Shi et al. 2012; D’Orazio et al. 2013;
Shi & Krolik 2015). We have found that the matter returned to
the disk in this way carries with it a magnetic field that tends to
be directed opposite to the already-existing field in the lump.
Reconnective dissipation then suppresses the magnetic stress
per unit mass in the lump, helping the lump region retain its
mass. As a result, lumps grow once the magnetic stress per unit
mass falls below a critical level, a threshold that is essentially
independent of simulation parameters. Our model may also
explain how lumps are stabilized in viscous hydrodynamics
simulations since these calculations include shear stress
proportional to the velocity shear of the flow and the lump
region has insignificant shear; without shear stress, there is no
local mechanism for angular momentum transport across the
lump and no means to disrupt it.
Because we have not explored the entire parameter space of

conditions, our conclusions are limited to the choices made
herein (e.g., the thermodynamic model, disk aspect ratio). We
will reserve exploring other parts of parameter space for future
work. Further, these new, relaxed circumbinary disk simula-
tions provide starting conditions with which we may pursue
simulations with resolved black holes (Bowen et al.
2018, 2019; d’Ascoli et al. 2018), as we have done using
circumbinary disk data of Noble et al. (2012).
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Appendix A
NZ Metric Range of Validity

In order to discuss the range of validity for the NZ metric, we

must first discuss the two types of PN approximation. The first
is the PN approximation to the metric. For simplicity, we

consider grr= 1/(1− 2M/r) of the Schwarzschild metric in the

Schwarzschild coordinates, and the series expansion with

respect to M/r up to 2PN order, ( ) = + +g M r1 2
rr
3PN

M r4 2 2. In practice, we do not have O((M/r)3) terms in the

spatial component of the NZ metric. The error due to the PN

truncation is evaluated as ∣ ∣( ) - =g g 1 1.6%
rr rr
2PN , 0.8% and

0.24% for r/M= 8, 10, and 15, respectively.
The second type of PN approximation is in the PN equations

of motion. Here, we apply the result shown in Sago et al.
(2016) and Fujita et al. (2018) which are extensions of Yunes
& Berti (2008) and Zhang et al. (2011) for the PN region of
validity for quasi-circular orbits of a point particle orbiting
around a massive BH. According to the appendix of Sago et al.
(2016), we have the radius of convergence for the orbital
velocity v around v≈ 0.5. Considering the orbital velocity as

=v M r , the above fact means that we may use 1/(1− 4M/
r) as a resummed form. The series expansion with respect to
M/r up to 3PN order that is used in this paper, becomes
1+ 4M/r+ 16M2/r2+ 64M3/r3. From a similar analysis to
the metric case, we have the PN truncation error, 6.3%, 2.6%,
and 0.51% for r/M= 8, 10, and 15, respectively. The above
two analyses give only the PN truncation errors, and in
practice, we need to compare the PN orbital evolutions with
those obtained by numerical relativity simulations for BBHs
(see, e.g., Szilagyi et al. 2015 for comparisons of the
waveforms). According to Ajith et al. (2012) which gives a
guideline for a gravitational-wave frequency to hybridize the
PN and numerical relativity waveforms, the PN approximation
may be good up to r/M ∼9. Furthermore, from the right figure
of Figure 3 in Mundim et al. (2014), which is shown for the
M1=M2=M/2 and a/M= 20 case, the accuracy of the NZ
and inner zone metrics becomes comparable around r/M1= 5,

Figure 29. Contributions to the time-averaged radial distribution of Jnet (red) in the mass ratio series. Shown are the contributions from the hydrodynamic stress ( Jadv,
blue), gravitational torque ( >T r

grav, orange), Maxwell stress ( JMHD), green), and torque from the radiation flux ( Jrad, black). All quantities in the top (bottom) row plots are

time-averaged over 40,000 < t/M < 76,000 (last 30,000M of evolution per run). (Left to right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10.
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i.e., r/M= 10. From the above observations, the NZ metric is
appropriate for the region of both r1 10M1 and r2 10M2 to
describe the spacetime, and this gives rin/a (1/2+ q)/
(1+ q) from the primary BH and rin/a (1+ q/2)/(1+ q)

from the secondary BH. Therefore, the constraint on rin is
derived as Equation (3).

Appendix B
Net Angular Momentum Transfer Rate

One way we explored the contributions of the angular
momentum transfer budget was through the gradient of the net
angular momentum rate, d2J/drdt, as we did in Section 3.4.
Any local departures from steady state, during the time periods
we averaged over, are reflected in nonzero values of this time-
averaged quantity. Another way to evaluate the torque budget
and steady state is to compare the contributions to the
integrated rate,  =J dJ dt , as was done in Miranda et al.
(2017) and repeated in other Newtonian viscous hydrody-
namics studies. These analyses reported the rates of angular
momentum change in terms of advected mass, viscous, and
gravitational components. Since we use GRMHD, we cannot
use the exact expressions employed in prior work, but must
generate our own based on the covariant conservation laws,
described in Farris et al. (2011) and Appendix C of Noble et al.
(2012).

Starting from the gradient expressions, Equation (20), and
combining the two hydrodynamics-only terms together, we

obtain:

{ } { } { } ( )¶ = - - ¶ - ¶f f fJ dT dr M T . B1r r
r

r H
r

Since each term should asymptote to zero as r→∞ , we will

assume that this condition holds at our outer boundary and

integrate to it from each radius to obtain each rate as a function

of r:

( ) ( )  òº - = ¶ ¶ ¢
¥

¢J J r J dr , B2
r

r tnet

{ } ( ) òº ¶ ¢f¢J T dr , B3
r

r

r H
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out

{ } ( ) òº - ¶ ¢f¢J M dr , B4
r

r

r
r

MHD

out

{ } ( ) òº - ¢fJ dr , B5
r

r

rad

out

( )òº ¢>T
dT

dr
dr . B6r

r

r

grav

out

We have defined these angular momentum rate variables with

the appropriate sign to be consistent with the convention of

Miranda et al. (2017) so that Equation (B1) times a minus sign

yields Equation (A15) of Miranda et al. (2017), where our Jnet
equals their “ á ñJ ”:

( )   = - - ->J J J T J . B7r
net adv MHD grav rad

Figure 30. Contributions to the time-averaged radial distribution of Jnet (red) in the magnetic flux series. Shown are the contributions from the hydrodynamic stress

( Jadv, blue), gravitational torque ( >T r
grav, orange), Maxwell stress ( JMHD, green), and torque from the radiation flux ( Jrad, black). All quantities in the top (bottom) row

plots are time-averaged over 40,000 < t/M < 76,000 (last 30,000M of evolution per run).
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As far as we know, this is the first time that this expression has

been derived for GRMHD systems.
From our d2J/drdt analysis, each run grows steadier in the

later time averages, demonstrated here by the flatter Jnet curves
in Figures 29 and 30. The flattest Jnet curves are seen at later
times for Runmed and Runlrg, which both were run longer than
any other of the simulations, implying that further evolution is
needed for each simulation to achieve a steadier state as
evaluated by this criterion. When Jnet is flat, we find that
  -J 0.25 0.75net , though only Runq=1/2 and Runq=1/5 yield
 <J 0.5net over the flatter inner portion of ( )J rnet .

Appendix C
MRI Resolution

The ability for a finite volume/difference code to adequately
resolve MHD turbulence depends largely on whether the fastest
growing mode of the MRI is resolved Sano et al. (2004). By
performing a series of resolution studies of global MHD disks,
Hawley et al. (2011), Sorathia et al. (2012) found that global,
extrinsic characteristics of the accretion flow asymptote with
resolution. They found that those simulations that met or
surpassed a particular set of resolution criteria would reside in
the asymptotic regime. We follow these guidelines in
constructing the simulations here, just as we did in Noble
et al. (2012), and use the same resolution before. Please refer to
Appendix B of Noble et al. (2012) for more details.

The MRI quality factors ( )Q i are ratios of the local MRI
wavelength and the local grid scale in a particular direction
Noble et al. (2010):

∣ ∣
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where index “i” denotes the spatial numerical coordinate, with

i= 1, 2, 3 representing the radial, poloidal, and azimuthal

directions, respectively. Averages in polar angle ( ( )x 2 ) are

mass-weighted to bias the integral over the turbulent portion

near the disk’s midplane rather than the laminar regions of the

corona and funnel:
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The vertically averaged quality factors, ( )á ñrQ 1 , ( )á ñrQ 2 , ( )á ñrQ 3

are shown in Figure 31 for the mass ratio series and Figure 32

for the magnetic flux series. The quality factors ( )Q 2 and ( )Q 3

are typically the most challenging to achieve, especially for

thinner disks. This is why Hawley et al. (2011) recommend

targets for ( )Q 2 and ( )Q 3 of 10 and 25, respectively, above

which they found simulations to be in the convergent regime.
In the mass ratio series (Figure 31), we find that all runs satisfy

the ( ) >Q 102 and ( ) >Q 253 MRI quality conditions for all

Figure 31. (Left to right) The mass-weighted vertically integrated MRI quality factor, ( )á ñrQ i , in the radial, polar, and azimuthal directions, respectively, at three

overlapping times and the final time of each simulation. The times of each snapshot are specified in the upper-right corner of each frame in units of 104M. The vertical
and horizontal axes are in units of a = 20M. (Top to bottom) RunSE, Runq=1/2, Runq=1/5, Runq=1/10.

Figure 32. (Left to right) The mass-weighted vertically integrated MRI quality factor, ( )á ñrQ i , in the radial, polar, and azimuthal directions, respectively, at three

overlapping times and the final time of each simulation. The times of each snapshot are specified in the upper-right corner of each frame in units of 104M. The vertical
and horizontal axes are in units of a = 20M. (Top to bottom) RunSE, Runmed, Runlrg, Runinj.
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times, with some exceptions. The first exception is that

Runq=1/5’s quality factors diminish to just below their threshold

values for t 7.6× 104M; Runq=1/10 also shows a decrease in

MRI quality over this period, but not as steep a decline in time,

and only in localized regions are sub-threshold levels reached.

Also, all quality factors are less than their targets in the lump

once it forms, as we found in Noble et al. (2012), too.
The magnetic flux series (Figure 32) on the other hand is much

better resolved in terms of its MRI quality factors. The only place

where the MRI quality factors drop slightly below their target

values is within the lump toward the end of each run, with the

quality factors far exceeding the targets everywhere else.

Interestingly, the perturbation added in Runinj seems to have led

to conditions in which the quality factors are sustained at much

higher levels than otherwise, i.e., in RunSE; it is somewhat not

surprising that ordered poloidal field fosters more active MRI-

driven turbulence, which is precisely why we added it in the first

place.
In general, we consider our simulations well resolved, with

the loss of MRI quality explained as a natural consequence of

binary-stream interactions (Section 5.1) or marginal enough to

not affect our qualitative conclusions.

Appendix D
Aspect Ratio

The aspect ratio, H(r)/r, where H(r) is the vertical scale

height of the disk at radius r, is often used in accretion disk

theory to understand a disk’s steady-state thermodynamics.

Retained heat can lift gas from the minimum energy surface at

the equator, therefore, the aspect ratio is directly related to the

vertical distribution of rest-mass density, ρ, and the local

temperature, T(r).
In our simulations, the density and temperature are indepen-

dent quantities, which means that there are two primary means at

arriving at the aspect ratio: 1) from the vertical density-weighted

angular moment of the disk (Hρ/r), and 2) from the available

local pressure support of the gas (Hp/r) (e.g., Noble et al. 2010).

The aspect ratio from the density distribution is:

∣ ∣ ( )q pº á - ñr
qq r

H

r
g 2 . D1

If T* is the temperature of an isothermal disk with aspect ratio

H/r, then the condition for vertical gravity equilibrium yields:

⎡
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where Rz(r) is related to the Ricci tensor and includes a

relativistic correction to the vertical gravity component

( ) [ ( )] ( )= - -R r
r
l a

1
1 , D3z k k

2 2 2

and lk and òk are—respectively—the specific angular moment

and energy of circular time-like geodesics in the equator of a

Kerr black hole with spin parameter a (Abramowicz et al. 1997;

Krolik 1999; note the correction in Rz(r) reported in Footnote 5

of Noble et al. 2010). Since our gas is not isothermal, we must

approximate T* with an average temperature of our gas. Because

the gas may be supported by thermal or magnetic pressure, we

calculate this average temperature with just the gas pressure,

{ } { }r=T p
*

, or with the sum of the gas and magnetic

pressures, ptot≡ p+ pmag: { } { }r=T ptot*
. Then Hp(r)/r or

( )H r rptot
are found by solving Equation (D2) for H/r using the

appropriate T*. We only include bound material in the shell

integrals when calculating T*.
The different aspect ratios for the two series of runs are

shown in Figures 33–34. In all runs, we find that Hρ/r and
H rptot

deviate by less than 10% for any time interval and for
radii r> 2a, and Hp/r is typically 10%–20% smaller than Hρ/r
over the same radial range. This demonstrates that total
pressure support can explain the vertical density distribution on
average, with thermal pressure providing the majority of
support.
In general, there is no clear trend in any of the scale height

measures with respect to mass ratio or initial data. Each aspect
ratio quantity is constant to within 10% over 2.5a< r< 5a,
which means that our cooling function works well at regulating
a constant aspect ratio in the disk. However, we see that each
H/r function ratio shows significant deviations within r= 2a
indicating that the cooling rate is less than the heating rate
there, not surprising due to the significant dissipation and
ballistic nature of the accretion streams. In runs with
measurable lumps we see excess in Hp/r in the region
2a< r< 3a, but no clear sign in the other measures of aspect
ratio. This indicates that extra heating occurs at the site of the
lump and this extra heating does not significantly alter the

Figure 33. Time average of the aspect ratio as a function of r for the mass ratio series. The time intervals used for the averages are 40,000 < t/M < 76,000 (solid
curves), the secularly evolving period of RunSE, and the last 3 × 104M of each run (dashed curves).
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density scale height of the disk, likely because the excess heat
is removed through the cooling mechanism before it may
further lift the gas. We do see small excesses in the two runs
without a lump, Runq=1/5 and Runq=1/10, but they reside closer
to r= 2a, are narrower in extents, and are likely due to excess
dissipation occurring at the site of the maximum gradient in the
surface density.
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