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Are enzymes transported in soil by water fluxes?
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Highlights
* Hydrolytic enzymes are transported convectively, attached to soil colloids
» This transport is soil and enzyme specific
* Soil colloids released jointly with ions which alter ionic strength in effluents

* Enzyme activity demonstrated a bell-shape relationship with the ionic strength

ABSTRACT
Transport of extracellular hydrolytic enzymes in soils has always been a subject of doubt. The
considerations against its importance are that (i) enzymes benefit their producers the most when
they remain in close proximity; and (ii) enzymes are large molecules with low mobility due to
high affinity to fine soil particles and organic matter. However, soil mineral colloids (SMC), to
which extracellular enzymes also have an affinity and which are known to facilitate transport of
a broad variety of chemicals and microorganisms in soils, can serve as vehicles for enzyme
transport as well. Since current literature lacks information on enzyme transport in soils, our goal
was to determine whether enzymes are transported and, if so, whether they are transported in a
free- or in a colloid-associated form. We conducted column transport experiments with four
hydrolytic enzymes, namely, /2-glucosidase, acid-phosphatase, cellobiohydrolase, and

xylosidase, in soils with contrasting textures. The eluents containing enzymes were applied on
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top of soil columns, while enzyme activities, SMC, and electrical conductivity were measured in
the effluents from the columns. Our results provided evidence of joint enzyme transport with soil
colloids. The enzymes associated with the coarse SMC (1 um < @) contributed 52 - 88% of the
total enzyme activity in the effluents. The remaining enzyme activity was attributed to the
enzymes associated with organic colloids, fine SMC (@ < 1 um) and free enzymes in solution.
This study suggested a dual effect of ionic strength in the soil suspension on enzyme activity and

their release from soils with soil colloids.

Keywords: Soil hydrolytic enzymes, colloid-facilitated transport, column experiments, ionic

strength.

Abbreviations: 1S, ionic strength; EC, electrical conductivity, POM, particulate organic matter;
SMC, soil mineral colloids; CMC, coarse mineral colloids; FMC, fine mineral colloids; TN, total
nitrogen; TC, total carbon; SL, Sandy loam; SL-S, sandy loam soil from summit; SL-D, sandy

loam soil from depression.

INTRODUCTION

Most plant and microbial cell debris present within soil as polymeric molecules are quickly
transformed by extracellular enzymes to oligo- and monomers, which then become readily
available to microbial decomposers. Like most proteins, soil extracellular enzymes are capable to
diffuse away from their parent cell in free solutions due to Brownian motion (Burns et al., 2013).
Moreover, several studies in artificial solutions have reported a self-propelled diffusion of
enzymes, which enhanced their movement by 30-80% during substrate catalysis (Yu at al., 2009;
Muddanaet al., 2010; Riedel et al., 2015; Jee et al., 2018; Gunther et al., 2018). Still, there is no
consensus on the enzyme diffusivity. On one hand, diffusivity of free enzymes should increase as
substrate availability decreases, thus the enzyme producer can potentially access more distant
substrates (Allison et al., 2011). On the other hand, competition for products between enzyme
producers suggests relatively low enzyme diffusivity (Burns et al., 2013). The amount of reaction
products captured by a microbial cell per unit of enzyme produced declines with increasing
distance between the cell and the produced enzymes due to diffusion losses of the product to the

environment, cell competition for reaction products, and decreasing enzyme and substrate
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concentrations. These product losses increase exponentially with the distance between the
enzymes and microbial cells, and less than 4% of the product can reach the microbial cells
located at a distance > 200 um from the enzymes (Guber et al, 2021). Therefore, low enzyme
diffusion, and thus lower diffusion losses of the product might represent a beneficial strategy for
microbial cells.

The enzyme's capacity to move within an unrestricting volume of liquid does not imply that
enzymes can similarly freely diffuse through soil pores. Among factors restricting such diffusion
are: (1) enzyme attachment to soil particles and soil colloids (Nannipieri et al., 2003); (i)
relatively low water retention and fast draining of large pores resulting in reduction of pore
volume available for enzyme movement (Allison et al., 2011); (ii1) hydraulic discontinuity of
water pathways in partly saturated pores and layers of extracellular polymeric substances,
created by microorganisms on surface of soil particles, restricting free enzyme motion (Or et al .,
2007). Moreover, most free enzymes survive only briefly in pore solutions due to fast
denaturation by physical and chemical factors or consumption by proteolytic microorganisms
(Sarkar and Burns, 1984; Burns, 1986). However, adsorption confers protection against
microbial degradation (Lahdesmaki & Piispanen, 1992; Kedi et al., 2013). Therefore, most
viable enzymes and microorganisms in soil are bound to organic surfaces (Ahmed and Oades,
1984; Christensen and Bech-Andersen, 1989; Jocteur Monrozier et al., 1991) and fine soil
particles (Singh and Singh, 1995; Schulten et al., 1993; Stemmer et al., 1998; Kandeler et al .,
1999a). Association of microbial cells and enzymes with soil particles and organic surfaces
precludes their free diffusive transport due to relatively large size of these particles and low pore
volume available for the diffusion in partly water-saturated soil. However, rapid water
infiltration after heavy rainfalls or overland irrigation causes both physical and chemical
perturbations in the soil and results in a release of colloids from soil matrix and their transport
via large pores (Ryan and Elimelech, 1996). These colloids are composed of organic and mineral
particles (including clay and partly silt soil fractions) with effective diameters < 10 um
(McCarthy and Zachara, 1989; Sposito, 2016). The colloids within size range 0.01-10 um are
regarded as the most stable (Buffle and Leppard, 1995) and are common carriers of soil
microorganisms, organic substances (Smith et al., 1985; McCarthy & Zachara, 1989; Natsch et
al., 1996), and environmental contaminants (Ryan & Elimelech, 1996; de Jonge et al., 2004).

Strong adsorption of enzymes on fine soil particles and their low extractability in free form
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(Fornasier et al., 2011), suggests possibility of their transport by moving colloids. However,
despite extensive study of enzyme interaction with clay minerals and soil colloids during last 4
decades, surprisingly, enzyme transport in soils has never been reported. Therefore, the goal of
this study was to explore the possibility of enzyme transport in intact soils with contrasting
textures under water flow conditions that mimic those during heavy rainfalls.

The activity of four hydrolytic enzymes involved in C and P acquisition were studied in the
transport experiment: 3-glucosidase, acid-phosphatase, cellobiohydrolase, and xylosidase. The
former two participate in the last step of decomposition, i.e., release of monomers (glucose and
phosphate) that are easily available for microorganisms. The latter two are involved in the early

stage of decomposition destroying long polymeric chains of cellulose and hemicelluloses.

2. MATERIALS AND METHODS
2.1. Soil properties

Soil for the column experiments was collected at three experimental sites with contrasting
soil texture located in Michigan, USA. Sandy soil of Riddles-Hillsdale series (fine-loamy, mixed,
active, mesic Typic Hapludalfs) was obtained from Michigan State University's (MSU) Sandhill
farm site, East Lansing, MI. We further refer to this soil as Sand. Two sandy loam soils of Capac
series (fine-loamy, mixed active, mesic Aquic Glossudalf) were obtained from summit and
depression topographical positions at MSU's Mason experimental farm, East Lansing, MI. We
refer to them as sandy loam soils SL-S and SL-D, for summit and depression respectively.
Loamy soil of Kalamazoo series (fine-loamy, mixed, active, mesic Typic Hapludalfs) was from
Cellulosic Biofuel Diversity Experiment at Kellogg Biological Station Long-Term Ecological
Research site, Hickory Corners, M1, referred to further as Loam soil. At each site, undisturbed
soil cores (=2.5 cm, height=10 cm) were taken from 5-15 ¢cm depth and stored at 4°C for 2-3
days prior to experiments. In addition, disturbed soil samples in amounts of approximately 300 g
were taken from the immediate vicinity of the intact cores for basic soil analyses. At the time of
sampling, Sand soil was under corn, SL-S and SL-D soils were under corn-soybean rotation, and
Loam soil was under long-term (>10 years) native prairie vegetation. We collected 3 cores from
each site and one additional core from Loam soil site, for a total of 13 cores. The number of soil

cores was selected arbitrarily solely for exploring purposes.
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The following soil analyses were conducted using disturbed soil samples. Soil texture and
soil mineral colloids (SMC), operationally defined as mineral particles @ < 10 um, were
measured using the pipette method (Gee & Or, 2002). Total nitrogen (TN) and total carbon (TC)
were measured using an elemental analyzer ECS 4010 CHNSO (Costech Analytical
Technologies Inc., Valencia, CA, USA). Soil particulate organic matter (POM) was measured by
wet sieving (Cambardella and Elliot, 1992). Soil pH and electrical conductivity (EC) were
measured using SevenCompact Duo s213 meter (Mettler-Toledo LL.C, Columbus, OH USA) in
Soil-DI water suspensions at 1:1 solid/liquid ratio. General characteristics of the studied soils are

given in Table 1.
2.2 Applied suspensions

The compositions of applied suspensions, referred to as eluents, for the enzyme transport
experiment were designed to minimize artificial effects of solution chemistry on the transport
and transformation processes within the soil cores. This composition mimicked soil suspensions
generated in the field during heavy rainfalls by kinetic energy of rain drops or runoff water.
Therefore, the eluents were prepared individually for each soil by adding 1 g of fresh soil to 100
ml of DI water followed by 5 min low-energy sonication using Fisher Scientific FS20 Ultrasonic
Cleaner (Thermo Fisher Scientific Inc., Waltham, MA, USA). The sonication settings were
chosen to break up soil aggregates, while preserving SMC (Stemmer et al., 1998), soil organic
colloids, microorganisms and enzymes (Kandeler et al., 1999b). Soil suspensions were kept for
30 min to allow settling of sand particles, and the supernatant solutions separated from the
sediment were used as eluents. Thus, the prepared eluents contained dissolved chemicals, soil
particles, microorganisms, and enzymes native to the respective soils. The activities of -
glucosidase, phosphatase, xylosidase and cellobiohydrolase were measured in the eluents before
and after precipitating the coarse mineral colloids (CMC) as described in Sections 2.3 and 2.4.

Soil mineral colloids were measured in the eluents as described in Section 2.2.
2.3 Column experiment

Soil column experiments were conducted to quantify possible activity of the four hydrolytic
enzymes in the suspensions passing through the intact soil cores, which we will refer to as
effluents. We used undisturbed soil cores to preserve distribution of enzymes and water flow

pathways unchanged in the soils. For Sand soil the entire soil cores were used as experimental



154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172

173

174

175

176

177

178

179

180

181

182

columns, that is, the column height was 10 cm. For finer textured SL-S, SL-D, and Loam soils,
due to their low water infiltration rates, the intact cores were cut to 5 cm experimental columns.
Longer Sand columns as compared with those for SL-S, SL-D, and Loam soils reduced the water
flow velocity in the Sand columns and prevented mechanical detachment of colloids from soil.
The eluents were applied by a pipette to the top of the columns in 1 ml increments to prevent
water ponding on the soil surface (Fig. 1). A pressure head of -30 kPa, which is an equivalent to
the field capacity, was maintained at the bottom of the columns during the experiment to keep
steady-state flow through the columns. Coarse porous filters with particle retention @ > 40 um
(Filter Paper Grade 417, VWR®, Radnor, PA, USA) were installed at the bottom of the columns.
The filters, permeable for SMC, microorganisms, and enzymes, prevented detachment of soil
particles from the columns. The effluents were collected in 4 ml increments from the bottom of
Loam, SL-S and SL-D columns, and in 8 ml increments from Sand columns. Collected effluents
were analyzed for activity of the four enzymes, SMC contents, pH, and EC. The enzyme
activities were measured in the effluents with all colloids and in the supernatant solutions which
contained only the colloidal particles smaller than 1 um (Fig. 1). To precipitate the coarse
mineral colloids (CMC) size of large 1 um, the effluents were centrifuged for 5 min at 5000 rpm
using a Heraeus Megafuge 16 centrifuge (Thermo Fisher Scientific Inc., Waltham, MA, USA).
Diameter of precipitated CMC was calculated (Gee and Or, 2002) as:

187in (:—i)

(1)

(ps—ppyw?t

where r1 to ;2 are distances from the axis of centrifuge rotor to the particle [cm], 7 is the fluid
viscosity [g cm™ sec!], ps~ 2.6 g ecm™is the density of soil mineral particles, p;is the liquid
density [g cm™], w is the centrifuge angular velocity [rpm], 7 is time for particle of diameter d to
settle from 71 to 2 [sec]. It was confirmed in a preliminary study that selected centrifugation
settings had a negligible effect on the activity of colloid-free almond S-glucosidase and wheat
germ acid phosphatase (CALZYME Laboratories, Inc., San Luis Obispo, CA U.S.A.) dissolved
in DI water. Precipitating mineral colloids smaller than 1 um (e.g., 0.45 mm) and organic
colloids (ps< 2.6 g cm™) requires increasing of angular velocity of centrifugation proportionally
to w or increasing the duration of centrifugation as t°. Such changes in the centrifugation settings

results in partial precipitation of bio colloids and free enzymes in the effluent suspension in
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amounts that are generally unknown. Therefore, most organic colloids, bio colloids enzymes and
mineral colloids size of smaller 1 um remained in supernatants, while CMC were precipitated by
centrifugation.

For comparison purposes the results of the column experiments were expressed in a
normalized form. Specifically, volumes of eluent that passed through the columns were
expressed in total pore volumes, where the total pore volume in each soil column was calculated
from its bulk density, particle density [~2.6 g cm™], and column's volume. The SMC contents,
enzyme activities and EC values in the effluents from the columns were normalized by the
corresponding values in the eluents. To evaluate the effect of ionic strength in the effluents on
the enzyme activity, the measured EC values were transformed using the Marion-Babcock
equation (Sposito, 2016):

logio(I) = -1.841 + 1.009 logio (EC) for /<02 M )
where / is the ionic strength in the solution [M], and EC is the electrical conductivity in the

solution [dS m™].
2.4. Enzyme assay

The activity of f-glucosidase, acid-phosphatase, xylosidase and cellobiohydrolase were
measured in the soil, eluents, and effluents collected in the column experiments before and after
precipitating CMC as described in Section 2.3 (Fig. 1). For the activity measurements we used a
microplate fluorometric assay technique described in Saiya-Cork et al. (2002) and Deng et al.
(2011) with minor modifications of the substrate concentrations. Specifically, we used substrates
based on 4-methylumbelliferone (MUF) fluorescent reagent (i.e. MUF--D-glucopyranoside,
MUF-Phosphate, MUF-b-D-xylopyranoside, and MUF-f-D-cellobioside) in quantities of 40
nmol well™! per 50 pul well™! soil suspensions with 5.0 umol well! of sodium MES buffer
(CsH13NO4SNao s, pH 6.1 at 25°C) solution. The calibration was performed using 0, 100, 200
and 400 pmol well! MUF solutions with the same aliquots of soil suspensions. The fluorescence
intensity in the plates was measured using a Multilabel Plate Reader Victor® (PerkinElmer Inc.,
Waltham, MA, USA) every 15 min for 2 hours. The enzyme activities were calculated from
linear parts of the intensity time series with correction for the substrate autohydrolysis (Deng et

al., 2011).

f

The enzyme activity associated with CMC in the effluents v:’ was calculated as:
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v =v v 3)
were v is the total enzyme activity in the effluent [pmol min™ ml"], and v¢” is the enzyme
activity in the supernatant from centrifuged effluent [pmol min™! ml!].

Since the mass of SMC differed in the effluents from the four soils and changed over time, to
evaluate the effect of ionic strength on the enzyme activity associated with SMC, the activity was
normalized by the dry mass of colloids in the eftluent:

v = v /S “)
where v; is the activity of enzymes associated with CMC per mass of dry colloids [nmol min™ g
dry colloids], and S, is the dry mass of CMC in the effluent [g L™!]. Note, that the dry mass of
colloids in supernatants from the effluents was within the accuracy range of analytical balance

(0.1 mg). Therefore, the dry mass of SMC measured in the effluents was attributed to CMC.
2.5. Data processing and statistical analysis.

Differences among the soils in terms of the studied properties were conducted via analysis of
variance, with soils as the only studied factor, using /m function of R (version 4.1.2). To compare
the enzyme activities within the soils we fitted the data with a statistical model that consisted of
(1) the fixed effects of the soils and the enzymes and their interaction, and (i1) a random effect of
the replicated samples, nested within the soils, also used as an error term for testing the soils’
effect. Model fitting was conducted using /mer function from R’s /me4 package. When the
effects of the studied factors were found to be statistically significant (p<0.05) we performed t-
tests to conduct all pairwise comparisons among the means using emmeans package.

We used correlation analysis to explore possible relationships between enzyme activity
associated with CMC and colloid contents in the effluents from the soil columns using Analysis
tool of SigmaPlot software (Systat Software Inc., San Jose, California, USA). Pearson
correlation coefficients were reported as statistically significant and p < 0.05 and marginally

significant at p <0.1.

3. RESULTS

3.1.  Properties of the soils and applied suspensions.

The soils of the four locations differed in their properties. The bulk density was the lowest in

the sandy soil (Sand) due to its loose structure. The highest sand content was expectedly
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observed in Sand, lowest in Loam, and intermediate in the sandy loam SL-S and SL-D soils
(Table 1). An inverse trend was observed for SMCs, which contents were the highest in Loam,
lowest in Sand, and intermediate, though close to Loam, in SL-S and SL-D soils (Table 1). The
POM content was rather low in all soils (0.11 % — 0.31%) but tended to be the highest in Sand.
TN and TC increased in the soils in the order of decreasing sand content. The pH values ranged
from 5.4 to 6.0. The EC values were 2 to 3 times higher in SL-S and SL-D as compared to Sand
and Loam, indicating overall higher contents of dissolvable ions in sandy loam soils.

The SMC content in the eluents increased in the order Sand < SL-D < SL-S < Loam. The pH
values were slightly higher than in the soil suspensions and ranged from 5.9 to 6.7, while the EC
values were much lower (6-9 puS cm™) in the eluents as compared to those in the soils, as an
expected result of a 100-fold dilution of the soil suspensions (Table 1).

The differences in the soil properties were mirrored by enzyme activities, which for /-
glucosidase and phosphatase were the highest in Loam and SL-S, and the lowest in Sand (Table
1). For xylosidase and cellobiohydrolase the highest activities were observed in SL-S, and the
lowest in Sand. The enzyme activity in the eluents followed the same general trend as that in the
soils, with much smaller differences between S-glucosidase and phosphatase activities as
compared with those in the soils. Among the four enzymes, the activities in most soil samples
and eluents increased in the order xylosidase < cellobiohydrolase < phosphatase < f-glucosidase
and were up to one order of magnitude higher for phosphatase and S-glucosidase than for
xylosidase and cellobiohydrolase (Table 2). Precipitation of CMC by centrifugation considerably
reduced enzyme activity in the eluents. The enzyme activity associated with CMC calculated
using Eq.(3) ranged from 33% to 100% in the eluents in the four soils. The lowest activities of
CMC-associated enzymes were observed in Sand (Table 2), while the highest activities were
observed in Loam, where the enzyme activities in the supernatants after eluent centrifugation

were below the detection limit.

3.2.Column experiment

The relative concentrations of SMC in the effluents were the highest in the first portions of
effluent collected from the columns and decreased with the relative volumes of the solution
passed through the columns (i.e. pore volumes) (Fig. 2 and Fig. S1). The recovered SMC
differed in the four soils and ranged from 7% of that applied in Loam to 49% in Sand, with
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intermediate values for SL-S and SL-D (Table 2). The relative concentrations of SMC were the
highest for Sand and the lowest for Loam columns (Fig. 2ab). Noticeably, in the Sand columns
the relative concentrations of SMC from the first portions of the effluent were >1 (Fig. 2a),
indicating that the effluents contained more SMC than the applied eluents. For Loam (Fig. 2b),
SL-S (Fig. Sla), and SL-D (Fig. S1b) columns, the SMC contents in the effluents were always
smaller than in the eluents.

The EC dynamics in the effluent resembled that of SMC, though unlike SMC, the highest
relative EC were observed in SL-S and SL-D columns (Fig. S1). The relative EC values in the
effluents were >> 1 in all samples of all studied soils, indicating much higher concentrations of
soluble chemicals in the effluents as compared to those in the applied eluents.

As was the case with SMC and EC, the relative activity of four enzymes in the effluents
decreased with the amount of eluent passing the columns (Fig. 3). Among the four enzymes, the
absolute values of activities in the effluents were the lowest for xylosidase and cellobiohydrolase
and the highest for phosphatase (Table 3). Enzymatic activity in the first portions of the effluents
1.5 to 8 times exceeded those in the eluents (Fig. 3 and Fig. S2), with exception of f-glucosidase
in SL-S and SL-D columns (Fig. S2a) and cellobiohydrolase in the Loam column (Fig. 3b).
Among the four enzymes, the relative activity in the first portions of effluents was the highest for
phosphatase (Fig. 3b and Fig. S2b), the smallest for S-glucosidase (Fig. 3a and Fig S2a), and
intermediate for xylosidase (Fig. 3¢ and Fig. S2¢) except the Loam soil, where xylosidase and
cellobiohydrolase were not detected in the effluents. Among the four soils, the relative activities
in the effluent were the highest for Sand, the lowest for Loam (Fig. 3), and intermediate for SL-S
and SL-D columns (Fig. S2), which was consistent with the dynamics of SMC outflow from the
columns (Fig. 3 and Fig. S1). For example, f-glucosidase activities in the effluent corresponding
to 1 pore volume in Sand was >2 times higher than that in Loam, while for phosphatase it was >4
times higher than in Loam (Table 3).

For fglucosidase and phosphatase the activity associated with CMC constituted a substantial
portion of the total enzyme activity (Fig. 4, Table 3). For example, for f-glucosidase in the
effluent corresponding to the first pore volume, the activity associated with CMC constituted
66% and 52% of the total activity for Loam and Sand, respectively (Table 3). For phosphatase, it
was even higher and constituted 79% and 88% for Loam and Sand, respectively. In most tested

enzymes, their activity associated with CMC was positively correlated with concentration of

10
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SMC in the effluents (Fig. 5 and Fig. S3). The correlation coefficients between v, and
concentration of SMC in the effluents were high at p < 0.1 and p <0.05 for all enzymes except
xylosidase and cellobiohydrolase in the Loam column where the activities were below the
detection level (Fig. 5), and except phosphatase, xylosidase and cellobiohydrolase in SL-D
columns (Fig. S3).

The relationships between the activity of enzymes associated with SMC v T and ionic
strength in the effluents, as derived from EC using Eq.(2), were rather scattered. Still, a sharp
increase of f-glucosidase and phosphatase activity associated versus not associated with CMC
can be seen in the Sand and Loam columns with increasing ionic strength from 0.1 to 2.3 mM
(Fig. 6). The slope of linear regression between the enzyme activity and IS ranged from 4.5 to 43
pmol min' g mM! and was steeper for Sand as compared with that in the Loam columns. For
the SL-S and SL-D columns the activity of all enzymes was somewhat decreasing within the
ionic strength range 1.4 - 21.4 mM. This trend was less expressed but still visible for xylosidase
(Fig. S4 a,c) and cellobiohydrolase (Fig. S4 b,d) in the SL-S and SL-D columns.

The pH values in the effluents moderately increased with pore volumes during the

experiment from 6.0t0 6.6, 6.3 to 7.1 and 5.2 to 6.3 in the Sand, Loam, and both SL-S and SL-D

columns, respectively. However, v, 7 did not corelate with pH in the effluents.

4. DISCUSSION
The results of column experiments demonstrated possibility for soil hydrolytic enzymes to

be transported by water fluxes during heavy rainfall events in the soils with different soil texture.
4.1. Associations between enzymes and colloids in the eluents

Precipitation of CMC in the eluents reduced considerably activity of the four enzymes
suggesting their association with colloids (Table 2). CMC are comprised of clay and silt
particles, which hydrolytic enzymes are mostly associated with (Feller at al., 1994; Turner et al.,
2002; Sinsabaugh et al., 2008; Kandeler et al.,1999a; Kedi et al., 2013). Association of f-
glucosidase with soil mineral colloids in paddy soil has been reported by Yan et al. (2010 a,b).
These authors found approximately 50% higher f-glucosidase association with fine (< 0.2 um)
than with the coarse (0.2 — 2.0 um) SMC. On the contrary, 86% to 100% of f-glucosidase

activity was associated with CMC in our study. The discrepancy likely results from Yan et al

11
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(2010 a,b) using highly diluted (1:100 solid to liquid ratio) soil suspensions, where all added
enzymes freely interacted with all resuspended soil particles. Yet, in intact soils, as used in our
study, enzyme-colloid interaction occurs primarily in hydrologically active pores occasionally
and not completely saturated by liquids.

It should be noted that enzyme-CMC associations in eluents were enzyme and soil specific.
While activity of all enzymes was completely associated with CMS in Loam soil, in the coarser
textured soils the percent of CMC associated activity was lower. Of the four studied enzymes, [-
glucosidase seemed to be the most associated with CMC, while activity of xylosidase and
cellobiohydrolase tended to be the least associated, especially in Sand (Table 2). While it is not
clear what is the cause for the differences among the enzymes, the results suggest high
possibility of joint transport of enzymes with CMC, especially in fine-textured soils, though

transport of not associated enzymes cannot be excluded.
4.2. Colloid and enzyme transport through the soil columns

The transport experiments demonstrated high mobility and recovery of SMC in sandy and
sandy loam soils and low mobility in the Loam (Fig. 2), likely caused by straining of colloids
within small pores of the finer textured soil. This result is consistent with other studies (Bradford
et al., 2002, 2003), where straining of colloids was shown to increase with increasing colloid size
and with decreasing soil grain size (Bradford et al., 2003).

Soil colloids appeared to be involved in enzyme transport, the result that was consistently
observed in all cases when the enzymes were present in the soil in appreciable amounts (Table

3). High significant correlation between the activity of these enzymes associated with CMC

(e 4 ) and SMC contents in the effluent (Fig. 5, Fig. S3) imply that vy T was proportional to the
mass of transported colloids for each portion of the solution passed the columns. Closeness of the
intercepts of the linear regressions to zero for all enzymes in Sand and Loam columns (Fig. 5),
and considerable (from 2 to10-fold) decreases in the enzyme activity after precipitation of CMC
in the effluents (Table 3 and Fig. 5) suggested that large fraction of the enzymes was transported
convectively attached to SMC.

High correlation coefficients between enzyme activity and contents of SMC in the
effluents do not imply that all detected enzyme activity was associated solely with SMC. Non-

zero activities of all enzymes were detected in the supernatants after centrifugation of effluents

12
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from SL-D columns (Fig. S3). The centrifugation removed mostly CMC (@ > 1 um) from the
effluents. Fine mineral colloids, organic colloids, microbial cells and macromolecules, with
density much smaller than that of soil mineral particles (p; < 2.6 g cm™), were only partly
precipitated by centrifugation, but could also act as colloidal carriers (Buftle and Leppard, 1995).
The number of fine colloid particles < 0.2 um (not necessarily mass) can constitute up to 70% of
the total number of mobile colloids during a heavy rainfall (Lehmann et al., 2021). Moreover, the
activity of S-glucosidase associated with fine (<0.2 um) SMC can be higher than that associated
with coarse (0.2 — 2.0 um) SMC (Yan et al., 2010 a,b). Therefore, enzymes remaining in the
effluents after centrifugation were more likely associated with not-precipitated FMC, viable
microbial cells (Nannipieri et al., 2012), and/or organic colloids rather than being free floating
enzymes, whose lifetime in soil solutions is rather short (Burns, 1982; Ladd, 1985; Nannipieri,
1994, Nannipieri et al., 2002). Possible enzyme association with soil colloids suggest that in real-
world systems enzyme transport depends on the source and composition of moving colloids.
Specifically for agricultural environments, colloid-facilitated transport of enzymes can be
expected after irrigation by reclaimed wastewater or heavy rainfalls followed manure
application.

Colloidal transport is known to affect soil hydraulic properties, e.g., conductivity of soil
pores and their sizes (Miller and Baharuddin, 1986; McDowell-Boyer et al., 1986). Precipitation
and straining of colloids in soil pores during colloidal transport results in progressive straining of
colloids and in the associated decrease of pore volume available for transport. Therefore, it is
reasonable to suggest that, with time, the ratio between large and small colloids in the effluents
shifts toward small colloids. Since the proportion of organics and the surface area of colloids
increases with decreasing sizes of colloidal material (Buffle and Leppard, 1995), higher
association of enzymes with fine colloids is expected. This fact can be illustrated by £-
glucosidase (Fig. 4a) and xylosidase (Fig. 4¢) activities in SL-S columns, where the ratio
between activities of enzymes associated (filled bars) and not associated (open bars) with CMC
decreased with the number of pore volumes.

The relationship between SMC content in effluents and activity of CMC-associated
enzymes was enzyme specific (Fig. 5 and Fig. S3) possibly due to mineralogical composition of
transported colloids and differences in enzyme-mineral interactions. The mineral composition of

Ap horizon in fine, mixed, mesic, Typic Hapludalfs, used in our study, varies greatly among soil
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fractions. According to Sparks et al. (1979), quartz and mica dominate (>50%) in > 5 um and <2
um mineral fractions of Typic Hapludalfs. The 2-5 um soil fraction is composed of quartz, mica
and kaolinite in approximately equal amounts. Kaolinite contents vary from 7 to 28% in the soil
fractions with approximately two-fold greater contents in < 5 um than in > 5 um soil fractions.
Feldspar is present only in silt fractions, while vermiculite only in clay fractions, in the amounts
of less than 10%. Different enzyme affinity to the substrates in presence of soil minerals has
been reported in multiple studies (Ross, 1983; Makboul and Ottow, 1979; Haska, 1975; Pflug
(1982); Gianfreda and Bollag, 1994). Therefore, it is reasonable to suggest that SMC-enzyme
associations and enzyme activities in the effluents were aftfected by changing sizes and
mineralogy of transporting colloids. For example, the share of quartz particles in the total SMC
mass passing the columns likely decreased with time, while the share of mica and kaolinite
particles increased. Due to differences in soil texture, it is expected that the ratios between
contents of different minerals in the effluents was soil specific. Therefore, the differences in the
enzyme activities observed in Fig. 5 and Fig. S3 can likely be attributed to different association
of enzymes and their activity on SMC, which mineralogy changed in the effluents with respect to
the textural, mineralogical, and hydraulic properties of these soils. We realize that it is infeasible
to conduct particle and mineralogical analysis in the effluents, but it is worth to note that the
relationship between the enzyme activity and quantities of transported colloids is more
complicated than any adsorption isotherm used to model interactions between chemicals,
microorganisms, and soil particles.

4.3. Whether ionic strength in solution affect enzyme transport?

Soil’s ionic strength affected recovery of SMC applied with eluent in the fine-textured soils
(Loam, SL-S and SL-D). The recovery was greater in the SL-S and SL-D columns (Table 2),
where soil EC and, respectively, IS were much higher than those in the Loam soils (Table 1).
Increasing IS causes coagulation, while decreasing IS causes disaggregation and mobilization of
soil colloids (Ryan and Elimelech, 1996). Rainfall water has typically much lower IS as
compared with that in soil solutions (McCarthy and Zachara, 1989). Therefore, decrease of soil
IS, due to dilution of pore solution by rainwater, results in a release of colloids from the soil
matrix at early stages of rainwater infiltration into the soil (Flury et al., 2002; Grolimund and
Borkovec, 1999). With time the difference between IS in soil pores and the applied solution

decreases slowing down soil disaggregation. However, soil, disaggregated by low IS, becomes

14



426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448

449

450
451
452
453
454
455
456

less conductive and filters out new infiltrated colloids via straining or physical-chemical
collection by attractive surfaces ofthe immobile soil matrix (McCarthy and Zachara, 1989)
Visually, this process manifested itselfin this study via a noticeable reduction ofthe infiltration
rate in the fine textured soils after 1-1.5 pore volumes ofthe effluent were collected. The high
recovery of colloids from the Sand columns (49.1%) was less affected by soil disaggregation due
to much lower clay to sand ration as compared with the other soils (Table 1). Therefore, the
effect of IS on colloidal outflow was less pronounced in the Sandy, and more pronounced in
Loam and Sandy loam columns.

The IS also affects the activity oftransported enzymes. In batch experiments with pure clay
minerals and in solutions with controlled pH and EC the relationships between enzyme activities
and IS could be well described quantitatively (e g., Quiquampoix et ah, 1993; Leprince &
Quiquampoix, 1996). In real soil and transport conditions this relationship is rather scattered
(Fig. 6) and likely altered by: (i) possible differences in mineralogy of soil colloids ofthe four
soils and effluents from the columns (Jaber et ah, 2018; Nannipieri et ah, 1996); (ii) different
affinity of enzymes to different minerals and colloids (Makboul and Ottow, 1979; Ross, 1983;
Sarkar et ah, 1989); (iii) and different and likely changing during the transport experiment ionic
and colloidal composition ofthe effluents. Yet, we attempt to derive a relationship between the
activity of adsorbed enzymes and IS for out column studies using dependencies between
phosphatase catalytic activity and pH measured for montmorillonite at different IS levels
reported by Leprince & Quiquampoix (1996, Fig. 2, central column). The original data were
reorganized to depict relationships between the rate ofthe catalytic reaction (F) and IS at pH
levels within 5.0 - 7.0 interval (Fig. 7, symbols). The reorganized relationships were fitted using
an empirical equation:

V = "exp[-b(In(lS) - c)2] )

where a, b, and c are the fitting parameters. The regression wizard of SigmaPlot software (Systat
Software Inc., San Jose, California, USA) was used to fit Eq.(5) to the data shown in Fig. 7. The
similarity in shapes between the regression curves and experimental data was assessed using the
two-sample Kolmogorov-Smirnov test in the Real Statistics Resource Pack software (Release
7.6, Copyright (2013 - 2021), Charles Zaiontz, www.real-statistics.com).

Despite a small number of experimental points (6 on each curve), Eq.(5) adequately (p <

0.05) reproduced shapes ofthe V(IS) curves (Fig. 7). Therefore, Eq.(5) was applied to reconstruct

15



457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

487

the shape of experimental curves describing relationships between activities of enzymes (i.e., /7-
glucosidase and phosphatase associated (Fig. 6 a,b) and not associated (Fig. 6 c,d) with CMC)
and IS in effluents from the four soils. Based on the Kolmogorov-Smirnov test the fitted curves
reproduced adequately (p < 0.05) the shapes of/*-glucosidase and phosphatase activity curves in
the Sand and Loam columns for enzymes not associated with CMC (Fig. 6 c,d). The shapes of
fitted curves differed significantly (p<0.05) from those experimental for enzymes associated with
the CMC. Fitting Eq.(5) to xylosidase and cellobiohydrolase activity was not successful due to
scattered data on these curves (Fig. S4).

Several mechanisms can potentially explain a bell-shape relationship between enzyme
activity and IS. The first one is a competition between enzymes and cations in the effluents for
adsorption sites on mineral and organo-mineral colloids. Large IS values imply higher contents
of anions and cations in the effluents, and stronger competition with enzymes for the adsorption
sites on SMC. The increase in IS also alters repulsive electrostatic interactions and weakens
enzyme association with colloids. The competition mechanism explains the decrease of enzyme
activity but does not explain its increase within the IS range 0.2-1.3 mM. It also does not explain
the decrease in activity ofthe enzymes not associated with CMC (Fig. 6 ¢,d) which were likely
partly associated with unprecipitated colloids and partly were in a free form in the effluents.

The second mechanism, affecting the relationship between the enzyme activity and IS, is
based on enzyme activity association with pH, which commonly has a bell-curve shape with the
maximum activity at an optimal pH level (Leprince and Quiquampoix, 1996; Turner, 2010; Kedi
et ah, 2013). Importantly, the optimal pH level of enzyme activity narrows and shifts toward the
alkaline pH when enzymes are adsorbed on mineral surfaces ofsoil particles (McLaren and
Estermann, 1957; Aliev et ah, 1976; Leprince and Quiquampoix, 1996). Furthermore, the
enzymes activity peaks shift towards more acid pH values with increasing IS in the suspensions
(Goldstein et ah, 1964). Given almost one unit difference in the pH between the surface ofthe
colloids and the soil solution and changing chemical composition ofthe effluents, the pH optima
for particular enzyme species, as well as the activity ofthe colloid associated enzymes, can vary
strongly and deviate from that in chemically clean laboratory solution. Therefore, less adequate
reproduction of our experimental curves (Fig. 6) by Eq.(5) than those derived from Leprince and
Quiquampoix (1996) (Fig. 7) can be attributed to variations in mineral composition of soil

colloids and chemical composition of effluents.
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4.4.  Implications of colloid-facilitated transport.

The colloid-facilitated transport of microbial cells and enzymes is likely part of microbial
survival strategy. While microorganisms in soil are primarily attached to the solid surfaces and
form associations there (e.g., colonies, films, or flocks), their activity is mainly associated with
soil solution. Most organic materials entering the soil (plant residue, dead roots, manure) are
insoluble or only partly soluble in water, and barely mobile. Therefore, soil microorganisms must
either populate most of available pore space or be highly mobile to access new organic inputs.
However, microbial cells and free enzymes are unlikely capable to travel far in soil pores in
searching for new energy sources due to: (i) their relatively large size and slow diffusion rates

i.e., for 1-10 um s ! for enzymes and 7-8 pm s~!
= y =

microbial cells according to Young et al., 1980;
Dechesne et al., 2010; and Zhang and Hess, 2019); (ii) small pore volumes available for
diffusion because of pore discontinuity and low thickness of water menisci in partly saturated
soils; (ii1) overall short presence of free enzymes in soil solutions due to denaturation and
proteolysis, or interaction with clay and organic surfaces (Burns, 1982; Ladd, 1985; Sarkar et al,
1989; Nannipieri, 1994, 2002). Moreover, most enzymes are irreversibly attached to soil solids,
as evident through low extractability of enzymes from bulk soil (Vepsaldinen, 2001; Stursova
and Baldrian 2011). Therefore, only a small fraction of soil enzymes can potentially freely
diffuse in soil pores and reach newly added organic materials.

Mobilization of colloids and their convective transport through soil macropores during fast
water flow events, e.g., irrigation or rainfall, as well as in partly saturated soils, are important for
soil microorganisms in exploring new sources of energy. The benefits of colloid-facilitated
transport for soil microbes are obvious: (i) much shorter times and longer travel distances as
compared with the restricted diffusion; (ii) better protection from protozoa on colloid surfaces
(Sarkar et al., 1980; Nannipieri et al., 1982); (iii) energy savings for production of new enzymes,
since enzymes can be transported by the colloids; (iv) influx of new partly degraded organic
materials from soil surface and their joint transport with microbial cells. Such transport explains
appearance of new hotspots of microbial activity commonly observed in soil after heavy rainfalls
much better than the diffusion theory does. Soil hotspots and hot moments are defined based on
time and rates of microbial activity exceeding the average rates in bulk soil (Kuzyakov and
Blagodatskaya, 2015). Input of labile substrates to the hotspots triggers microbial activity and
thus drives the hot moments. We suggest that, in addition to the substrate-triggered hot spot
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activation, the colloid-facilitated transport enables enzymes and microbial cells to move quickly
and in relatively large quantities to or with the labile substrates, thus forming new transport-
triggered hotspots during high precipitation and preferential flow events.

The results of this study and communication with anonymous reviewers have risen research
questions that require further in-depth exploration. Among them there are: (1) how to separate the
release of colloids and enzymes from soil matrix and their transport through pores; (i1) how sizes
and mineralogy of colloids present in soil affect enzymes association with them; (iii) how sizes
and mineralogy of colloids are changing in the effluents, and to what extend these changes affect
enzyme association and transport with colloids; (iv) what drives the differences between
enzymes in their associations with mineral and biological soil colloids and subsequent transport;
(v) are enzymes transported with their producers; (vi) how soil structure affects enzyme locations
within the soil matrix and their transport with colloids; (vii) which factors are the dominant

drivers of enzyme transport in soils?

CONCLUSIONS

This study revealed a possibility for hydrolytic enzymes (i.e. S-glucosidase, acid-
phosphatase, xylosidase and cellobiohydrolase) to be transported through soil pores by water
fluxes. Strong association of hydrolytic enzymes with fine soil particles and mobility of soil
colloids results in their joint convective transport. This transport is affected by ionic strength in
pore solution via dissociation and release of soil colloids from soil and alteration of enzyme
activity in the transported suspensions. The former effect can be attributed to the shift of optimal
pH of enzyme activity near the surface of soil colloids. It remains to be seen how soil texture and
structure, colloid size and composition, enzyme properties and location in soil pores contribute to

their release and transport in the field conditions.
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755  Table 1. Selected properties of the soils collected from the four studied experimental sites.

Soil texture Sand Loam Sandy loam (SL-S)  Sandy loam (SL-D)
Sand % 87H2% a ** 38£2 b 58+8 ¢ S56+2 ¢
Silt % 83 a 48+l ¢ 29+7b 3183 b
Clay % 5+2 a 14+1 b 13+1b 13+1b
SMC* % T+2 a 29+2 ¢ 24+1b 26+1b
POM % 0.31+0.07 a 0.15+0.09 ab 0.15+0.10 ab 0.11£0.01 b
BD, g cm™ 1.41£0.09 a 1.62+0.08 b 1.73+0.05 be 1.80£0.05 ¢
pH 5.7+£0.2 6.0£0.2 54403 5.440.2
EC, uS cm™ 75+19 a 86+24 a 148+£28 b 247£37 ¢
TN % 0.03+£0.01 a 0.14+0.03 ¢ 0.11+£0.01 be 0.10£0.01 b
TC % 0.49+0.11 a 1.53+0.34 ¢ 1.13+0.01 cb 0.98+0.01 ab
Enzyme activity in soil, pmol min™! g’!
F-glucosidase 2.23+0.42aA  6.53£1.01 cA 6.90+1.05 cA 4.94+0.18 bA
Phosphatase 1.09+£026 aB  3.41+0.31cB 2.77+0.16 bB 2.46+0.06 bB
Xylosidase 0.20+0.04 aC  0.30+0.08 aC 0.82+0.12 bC 0.66+0.12 bC
Cellobiohydrolase 0.23+0.03 aC  0.46+0.29 aC 0.89+0.04 bC 0.55+0.13 aC

756  * Data presented as mean + one standard deviation.

757 " Means within the same row followed by the same low case letter are not significantly different
758  from each other (p<0.05); means of enzyme activity within the same column followed by the
759  same upper-case letter are not significantly different form each other (p<0.05).

760  *Particle size < 50 um

761  SMC denotes the soil mineral colloids, POM denotes the particulate organic matter, BD denotes
762  the soil bulk density, EC denotes the electrical conductivity, TN denoted the total nitrogen, and
763  TC denotes total carbon.

764

765

26



766  Table 2. Selected properties of the applied suspensions generated from the soils from the four
767  studied experimental sites

. Sandy loam Sandy loam
Soil texture Sand Loam (SL-S) (SL-D)
SMC, g I 0.68+0.16* a ** 2.89+0.15¢ 2.42+0.09 b 2.28+0.11b
pH 5.9 6.7 6.2 6.4
EC, uS cm™ 6 7 8 9

Enzyme activity in the applied suspensions, pmol min™' ml™!

F-glucosidase 6.03£1.13aA  9.66+1.22 bA 14.95+£2.28 cA 14.06+0.52 cA
Phosphatase 3.13£0.75aB  10.63+1.23 bA 10.26+0.60 bB 12.61+0.30 cB
Xylosidase 1.09+0.24 bC  0.28+0.08 aB 1.81+£0.26 cD 1.60+0.30 cC
Cellobiohydrolase 0.69+0.09aC  0.48+0.30 aB 3.43£0.16 cC 1.77+0.41 bC

Average enzyme activity associated with coarse mineral colloids (CMC) in the applied
suspensions, %

F-glucosidase 85.7 aA 100.0 aA 94.1 aA 97.3 aA
Phosphatase 97.6 bA 100.0 bA 57.4 aB 99.5bA
Xylosidase 33.1aB 100.0 bA 65.4 abB 57.3 abB
Cellobiohydrolase 32.9bB 100.0 aA 99.5 aA 78.0 aAB

SMC recovered in the column experiment

0
SMC recovered, % 01,115, 73£25a 313+3.3b 40.5+15.0 be
of applied

768
769 " Data presented as mean + one standard deviation.

770 ™ Means within the same row followed by the same letter are not significantly different from
771  each other (p<0.05); means of enzyme activity within the same column followed by the same
772 upper-case letter are not significantly different form each other (p<0.05).

773
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780

Table 3. Estimated enzyme activities in the effluent from the column experiments in Sand and
Loam soils obtained for the eluent amount that replaced 1 pore volume in the columns. Shown
are averages from all columns for the total enzyme activity in the effluent and the proportion of
the total activity from the enzymes associated with CMC.

Total enzyme activity in ~ Activity of the enzymes

Enzymes Soil the effluent, associated with CMC, %
pmol min™! ml’! of total
S-glucosidase Ié(;irg ; g 22
Phosphatase Ié(;irg ;2 ;z
Xylosidase Ié(;irg (1)8 5_0
Cellobiohydrolase Ié(;irg 88 3_0
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Eluent:
Soil-water
suspension after
precipitating sand
fraction
Removal of coarse
. . Volume, pH, EC,
mineral colloids . .
Intact soil mass of colloids,
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core enzyme assays
enzyme assays
Suction
P= -30kPa
783

784  Figure 1. Experimental design and measurements conducted in the eluents and effluents from the
785  columns.
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Figure 2. Concentrations of soil mineral colloids (SMC) and electrical conductivity (EC) in the
effluents relative to those in the applied solutions for Sand (a) and Loam (b) soil columns for

eluent volumes that passed the columns relative to the pore volumes. Data are combined from 3

Relative EC

columns from each soil. Horizontal line (a) marks the relative SMC in the effluent corresponding
to that in the eluent. Different scales are used in (a) and (b) for better data visibility.
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pore volumes. Zero values indicate enzyme activities below the detection limit. Data are
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corresponding to that in the eluent.
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Figure 5. The relationships between activity ofthe four enzymes associated with CMC and SMC
contents in the effluents from Sand and Loam soil columns. Zero values indicate concentration
of colloids and enzyme activities below the detection limit. Lines denote linear regressions
between enzyme activity and SMC contents. Data are combined from 3 columns for each soil.
The numbers show the Pearson correlation coefficients at p < 0.1 (*) and p < 0.05 (*%*),

respectively.
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Figure 7. Rate ofthe catalytic reaction (V) of phosphatase adsorbed on montmorillonite as
function ofionic strength in solutions with different pH values (symbols) reconstructed from

Leprince and Quiquampoix (1996) (Fig. 2, Central column). Lines show lognormal distribution

fit to the experimental data.
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columns of each soil.

36



846
847
848
849
850

2.0 - (a) “Dglucosidase SL-S
O SL-D
1.5 -
c 1.0 -
P o
1 Oo V
@ 05 - o Y
O O =
o \%
v \Y
0 0.0 s .
)
D
E 2.0 (C) xylosidase
Rr 0
C
)
; 1.5 - Or
e 0 Vv
0 ()}
1.0 - O 0)
(0] 0]
O Vv
0.5 - \%
0.0 - O V.V v

i
00 05 10 15 20 25

Pore volumes

2.0 - (b) phosphatase
\%
1.5 -
\%
o
1.0 - -
o
0.5 - 0 o * -
v ¥ 0O
0.0 - 00 A
' L 1 | |
2.0 - @) cellobiohydrolase
15 - 0
0
1.0 - 0
<
. @)
%20
0.5 - \%
»V v
o \4
0.0 - VW v

00 05 10 15 20 25 3.0

Pore volumes

Figure S2. Activity ofthe four enzymes in the effluents from SL-1 and SL-2 soil columns

relative to those in the applied solutions for eluent volumes that passed the columns relative to

the pore volumes. Data are combined from all columns of each soil. Horizontal lines mark the

relative activity in the effluent corresponding to that in the eluent.

37



851

852
853
854
855
856
857

v SL-S phosphatase

O SL-D
0.798
0.626
0.807
xylosidase cellobiohydrolase
0.346
0.502 ~7
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Concentration of SMC in the effluent from columns, g L'

Figure S3. The relationships between activity ofthe four enzymes associated with CMC and
contents of SMC in the effluents from SL-S and SL-D soil columns. Zero values indicate
concentration of colloids and enzyme activities below the detection limit. Lines denote linear
regressions of enzyme activity on SMC contents. Data are combined from all columns of each
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