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The Ensemble Kalman Filter as a tool for estimating temperatures in
the powder bed fusion process
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Abstract—Powder Bed Fusion (PBF) is a type of additive
manufacturing process that builds parts out of metal powder in
a layerwise fashion. Quality control (QC) remains an unsolved
problem for PBF. Data-driven models of PBF are expensive to
train and maintain, in terms of materials and machine time,
because they are sensitive to changes in processing conditions.
The length and time scale discrepancies of the process make
physics-based modeling impractical to implement. We propose
monitoring PBF with an Ensemble Kalman Filter (EnKF).
The EnKF combines the computational efficiency of data-
driven models with the flexibility of physics-based models,
while mitigating the flaws of either method. We validate EnKF
performance for linear process models, using finite element
method data in place of measured experimental data. We show
that the EnKF can reduce the error signal 2-norm and co-norm
relative to the open loop model by as much as 75%.

I. INTRODUCTION

Metal Powder Bed Fusion (PBF) is a type of additive
manufacturing (AM) process that builds parts out of a bed
of metal powder in a layer-by-layer fashion. The PBF build
process is implemented in two ways: using an electron beam
as a heat source (E-PBF, Fig. 1a), or a laser as a heat source
(L-PBF, Fig. 1b). Both implementations operate in a three
stage cycle: (i) spread a layer of metal powder over the
platform base plate or a layer of previously-fused powder, (ii)
run the localized heat source overtop the powder, fusing a 2D
pattern of solid material within the powder, and (iii) index the
base plate in the —z direction to accommodate a fresh layer
of powder, beginning the cycle anew. PBF has greatly ex-
panded its market share in recent years, due to the process’s
ability to manufacture near net-shape parts with unparalleled
geometric complexity and flexibility of production while
simultaneously reducing overhead costs [2], [3]. Despite the
overall rapid adoption of PBF by industry, its expansion
into certain markets has been limited. Such markets include
rotating engine components in airplanes and other parts that
feature strict quality control standards. The reluctance to
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Fig. 1.  System schematic of Powder bed fusion (PBF) additive

manufacturing. (a) Input and output channels for E-PBF. Measurement 2
screenshot reproduced from [1] with permission from The Minerals, Metals,
and Materials Society. (b) Input and output channels for L-PBF and E-PBF
with a slow raster speed.

adopt PBF in these sectors stems from the fact that parts
made with PBF suffer from characteristic flaws, including
irregular microstructures (material property anisotropy) [3]—
[7], porosity [6], [8], [9], and residual stresses [10]-[12].
These flaws typically exist in PBF-produced parts due to a
lack of effective quality control (QC).

Historically, PBF QC has struggled to systematically an-
ticipate, mitigate, and control these flaws. Machine (super-
vised) learning algorithms for recognizing defects in-situ
have been proposed [13]-[16], but these algorithms require
extensive datasets to train. Furthermore, these algorithms are
inflexible to changes in processing conditions, and require
retraining for alterations to parameters like part material,
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part geometry, production facilities, and others. Accurate,
physics-based PBF process models, which could be used to
predict the presence of defects, historically have been far too
computationally expensive to run in-situ [17], [18].

This work applies state estimation to combine the strengths
of both approaches; incorporating in-situ data to correct for
errors in a computationally efficient, but simplistic process
model, that does not require training data. For a two-
dimensional (2D) geometry, we construct linear models of
the E-PBF and L-PBF processes, which are based on the
Finite Element Method (FEM). By incorporating L-PBF
models, we build on previous work in this subject [19]-
[21]. These models are used to subject the test geometry
to simulated E-PBF and L-PBF heat sources, which return
predictions of the associated temperature fields. We call
these models the open loop (OL) models. A nonlincar FEM
model that uses the same physics as the linear E-PBF
and L-PBF models runs alongside the linear models. This
nonlinear FEM model data is our surrogate for physical
system data, which we use to apply an Ensemble Kalman
Filter (EnKF) to the linear E-PBF and L-PBF models. The
EnKF estimates temperature fields by correcting linear model
predictions to comply with the nonlinear FEM model data.
The temperature fields returned by the linear models and the
EnKF are compared against those returned by the nonlinear
FEM model, and their accuracy relative to the nonlinear FEM
model is quantified using the 2-norm and oo-norm of the
error signals. We show that applying the EnKF reduces the
2-norm of temperature field error by up to 75%, relative to
that of the corresponding OL models.

II. METHODOLOGY
A. OL model construction

The OL model is the physical process model which serves
as the basis for the EnKF. Derivation of these models is
detailed in [21], which we now briefly summarize. Since the
EnKF compensates for modeling errors, we prioritize compu-
tational efficiency over accuracy. Therefore, we approximate
the thermal physics within PBF according to Fourier’s Law
of Conduction

T K

ot cp
T=TovVEcA (1)
VI-a=0vEel

VT -fi=u(,t) V€€,

VTV éEeV

where £ = [z,y, 2]’ is the spatial coordinate, ¢ denotes time,
K is the thermal conductivity, p is the density, ¢ is the spe-
cific heat, A is the bottom surface of the part geometry (do-
main) V, Q is the uppermost surface of V, £ represents & €
Q, and I" collects all other surfaces of V. Fig. 2 demonstrates
the location of these surfaces for a simple 2D part geometry.
u(&,t) represents the heat flux from the PBF heat source,
which depends on if the system is E-PBF (Fig. 1a) or L-
PBF (Fig. 1b). We discretize V' into a collection of n nodes,
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Fig. 2. FEM mesh used to test EnKF performance. The mesh consists of
4810 nodes and 8766 elements.

£1,&4,...,&,, connected by edges, and define the state
vector X(t) as K(t) = [T(El': t):T(E% t): e :T(Enu t)]! We
use FEM [22] to formulate the dynamics of x(t) € R™ based
on (1)

x(t) = Ax(t) +r(t,u(€,t)). 2)

A in (2) has real-valued, negative eigenvalues [21], therefore
(2) has stable dynamics. Next, based on (2), we construct
OL models that describe both E-PBF systems and L-PBF
systems. The models differ in their input-state and output-
state relationships, which are rooted in different actuation
and sensing modes available to E-PBF and L-PBE We now
briefly describe the modes used to construct these models,
which are detailed in [21].

1) Actuation modes: As demonstrated in Fig. 1a, the E-
PBF electron beam moves so quickly overtop surface (2 that
it can generate an arbitrary heat flux. This property allows
us to linearize r(t,u(£,t)) by quantization in the spatial
domain. We assume that the FEM mesh on surface (2 is so
fine that u(£,t) can be reasonably approximated as constant
over each element face on 2. Fig. 2 demonstrates such a
mesh. Our linearized heat input, u(t) € R™, collects the
values of u(&, t) at the centroids of all such elements. In this
actuation mode, the controls engineer may alter the input heat
flux at any region of €2 independently of any other region.
This input is distributed onto the state, x(¢), by the input-
state relationship Bu(t), where B identifies which nodes in
the FEM mesh belong to each element laying on €.

The L-PBF laser cannot move fast enough to generate an
arbitrary heat flux on §2. For L-PBF, the spatial distribution of
u(&,t) on (2 is dictated by the laser type, usually Gaussian,
and is parameterized by factors like the overall laser power,
beam diameter, and position. Generally, these parameters
are the inputs available to the controls engineer, as noted
in Fig. 1b. We generate a linear input-state relationship
for L-PBF by assuming that the laser position operates
on a fixed schedule that the engineer cannot control. We
assume that only one laser is present, and define our input
vector as uy(t) = [P(t),r2(¢)]’, where P(t) > 0 is the
laser power, and 72(¢) > 0 is the squared beam radius.
Using this input, we construct a Taylor series linearization
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of r(t,u), which forms r(¢t,u) =~ B(¢)(du(t) + [Py, 0]").
Here, ug = [Py, 72|’ is the linearization operating point, and
su(t) = uy(t) —ug = [6P(t), 6r2(t)] is the deviation from
the operating point. By combining terms, we arrive at the
linearized input-state relationship r(¢, u) ~ B(¢)u(t), where
u(t) = [P(t), o3 (2)].

2) Measurement modes: Our E-PBF system output is
Measurement 2 of Fig. la, which is a thermal camera
that measures the temperature of surface 2 as the PBF
build progresses. Thermal cameras correlate the intensity of
emitted infrared light with temperature. We seek to test the
feasibility of this approach, therefore, we do not factor in
common hardware limitations that restrict the resolution and
sampling rate of this camera. Since the camera measures all
of T(&,t), our system output, y(t) € RP, simply collects
the temperatures at all nodes in the FEM mesh lay on €.
This constructs the output-state relationship y(t) = Cx(t),
where C is a selection matrix of Os and 1s that maps each
component of y(t), y;(t), uniquely to a component of x()
that corresponds to a node on surface €.

The L-PBF system output could be constructed from two
different measurements: Measurements 2 and 3 of Fig. 1b.
Measurement 2 of Fig. 1b is the same as that of Fig. la.
Measurement 3 is a thermal camera that measures light
emitted from surface {2 near the laser, which is reflected back
through the optics used to control the laser, and therefore
measures the temperature field of this region. We call this
region near the laser, clearly shown in Measurement 3 of
Fig. 1b, the PBF melt pool. In this manner, Measurement 3
“moves” with the laser beam, z.(t), and we call it a coaxial
thermal camera. Our system output for L-PBF, y(¢) € RP,
is the temperatures visible within the field of view (FOV)
of Measurement 3. Each component of the output, y;(),
is the temperature recorded by each pixel of the camera.
The output-state relationship, y(t) = C(¢)x(t), interpolates
the temperatures of nodes within the camera FOV into
temperature values for each pixel comprising y(¢). The
relationship is governed by a time-varying C(¢) because the
selection of nodes within the camera FOV changes with time.

This procedure generates two linear OL models,

_ x(t) = Ax(t) + Bu(t)
E-PBF: y(t) = Cx(2) 3)

LPBE: x(t) = Ax(t) + B(t)u(t) @
y(t) = C(t)x(t).

Systems (3)-(4), generated using (2) and the FEM mesh of
Fig. 2, feature A with all-distinct eigenvalues. This property,
when combined with structural features of system (3) such
as self-loops at every node, £;, renders system (3) observable
[21]. Determining conditions for the observability of system
(4) is ongoing, but we can show the existence of systems (4)
that are observable [21].

We discretize (2)-(4) by letting X(txy1) =
At~ (x(tgy1) — x(tx)), where t = kAt, and At =1 ms.

Throughout this paper, we implement an independent
realization of system (2) alongside system (3) or system (4).

The temperature predictions of system (2) are denoted as
XpeMm(tx), and the corresponding outputs as yrgar(tr)-
yreMm(tg) is generated from Xgpgps(tx) using the same
output-state relationships as systems (3) or (4), as applicable.

B. EnKF implementation

We implement the EnKF algorithm of [23], which we
summarize in Algorithm 1. Here, B, and Cj represent
the values of discrete-time B(¢) and C(t) at t = t, as
applicable. Broadly speaking, the EnKF uses an ensemble
of N Kalman filters that generate simultaneous estimates
of systems (3) or (4), grouped into X; € R™V and
X € RPXN of Algorithm 1. This allows the algorithm to
gather sample estimates of the Kalman filter noise statistics.
Using these sample statistics, the EnKF pools the ensemble
estimates into a single, more accurate, state estimate. This
procedure circumvents needing a priori knowledge of the
system statistics, at the cost of greater computational burden.
As indicated in Algorithm 1, physically-measured data is
replaced by yrpn(tx) of Section II-A.

V. of Algorithm 1 simulates taking N independent mea-
surements of systems (3) or (4). Assuming that the engineer
has access to N thermal cameras is unrealistic. We take a
singular measurement, Yrgas (), and construct N copies
by multiplying by a row vector of ones, Yrrar(tx)lixn-
To these copies, we add Vi = [vi,...,v}]. Here, all
vi ~ N(0,I) are independent, identically-distributed (IID)
Gaussian random vectors. The addition of Vj simulates
the presence of N sensors of identical make, model, and
calibration, that synchronously acquire noise-perturbed mea-
surements.

W, of Algorithm 1 simulates the independent perturbation
of all N ensemble estimates by the system process noise.
To help with intuition, we supply an example. Suppose that
oceanic variables were estimated by NV independent stations
throughout a bay. Each station is subjected to random system
perturbations like turbulent waters and random atmospheric
effects, which are incorporated into the stations’ estimates.
No two estimates agree. However, the engineer can pool
estimates from all stations together to get a more accurate
estimation of the oceanic state. We simulate this phenomenon
by perturbing the ensemble propagation of Algorithm 1, X4,
by Wi = [w},...,wy |, where all w ~ N(0,I) are 1ID
Gaussian random vectors.

The addition of W and V) alters the error statistics
between Xg g (tx) and X|k» and the error statistics between
yreMm(tg) and Yk This is because there is process noise
and measurement noise associated with systems (3)-(4) that
exists independently of Wy, and V. However, since these
noise sources are assumed Gaussian-distributed, the addition
of Gaussian-distributed W, and V keeps the noise distri-
butions Gaussian [24]. Therefore, the inclusion of Wy and
Vi, does not effect the optimal nature of X, as generated
by Algorithm 1 [25].

4371

Authorized licensed use limited to: The Ohio State University. Downloaded on June 08,2022 at 19:04:28 UTC from IEEE Xplore. Restrictions apply.



Initialization

Xo € R, initial state ensemble

Xp|o, initial state estimate

while Not end of runtime do

Predict A

Xp = AXi_1 + Bruglicny + Wy, propagate
state ensemble

Yy = yrem(te)lixn + Vi, generate
measurement ensemble

X=N"1X}lyx1, ¥ =N"1Y1yx; compute
ensemble averages

Prjg—1 =
(N — 1)1 (Xg — X11xn)(Xp — XLixn)',
Rijp—1 =
(N —=1)"1(Yr —§11xn)(Yie — F1ixn)'s
compute ensemble covariances

Update

Y=Y, — CiXg, compute ensemble
innovation

Skjk—1 = CxPrx_1C} + Rigje_1., compute
ensemble innovation covariance

Ky = Pklk—lc;cs;qu_]’ compute Kalman gain

-f(k = X + K Yk, compute updated ensemble

K = N—1X; 11, compute EnKF estimate

Vi = CiXgjx, compute Kalman output estimate

end
Algorithm 1: Ensemble Kalman Filter. T denotes pseu-
doinversion.

TABLE I
TEST PROCEDURES

Test OL model OL material set (2) material set

i 3 1 1
ii (3) 2 1
iii @ 1 1
iv @ 2 1

C. Test procedures and error metrics

EnKF performance is assessed in four different simulation-
based tests. These tests return Xpeas(tx) and X of Sec-
tion II-B, as well as the states predicted by system (3)
or system (4) without the incorporation of Algorithm 1
(the OL model predictions), Xor, (tx). Table I describes the
tests. The material properties sets referenced in Table I are
listed in Table II. Realizations of system (2) (Xpgn(tx)),
are generated independently of systems (3)-(4) (Xor(tx)
and Xj), which allows us to prescribe differing material
property sets. Material set 1 represents 304 stainless steel
(SS) at low temperature, and material set 2 represents 304
SS at elevated temperature [26]. Tests i and iii assess how
efficiently Algorithm 1 can remove the linearization errors
of systems (3)-(4), and tests ii and iv compound this error
with inaccurately-known material properties.

For each test, performance is quantified with the follow-

TABLE II
MATERIAL PROPERTIES SETS

Material set K [Wlm—1K~1] ¢ [Jlkg_lK_l] p [kglm_s]
1 16 500 7920
2 24 640 8070
ing error signals: X pnir(ty) = |[Xpea(te) — Xikll2s
X2.0L(te) = |[XrEM(tk) — XoL(tk)||2: Xoo,Enkxr(tk) =
l[xrEp(ts) — Xgjklloos and Xeo,0r(tx) = |[xrEr(ts) —
XorL(tk)||so- To compare the relative magnitude of

these error signals, we also take their overall norms:
|[X2,Enkr(tr)|]2. |[X2,0L(t)||2 » || Xoo,EnkF(tk)||so. and
|[Xoo,0L (k)] co-

D. Test parameters

All tests use the FEM mesh shown in Fig. 2. Surface ()
receives the system input u(¢) and generates the output y(¢).
All nodes on surface A are constrained to have temperature
T = 0. For all tests, the initial condition is x(0) = 0, and
N of Section II-B is N = 50,000. All tests last 1152 time
steps. For both systems, the heat input u(t) is based on a
Gaussian-distributed linear heat source

u(z,t) = P(t) \/%exp (—%) R

where x.(t) = 0.008¢ (m), and P(¢) has a 15 ms duty cycle
consisting of 5 ms at 250 W, followed by 10 ms at 5 W.
u(z,t) represents a L-PBF laser with specified parameters,
or a particular type of E-PBF heat flux function. Systems (2)-
(4) use a value of 5, = 80 pm, except for the realization of
system (2) used in tests iii-iv. This system uses 7, = 100 pm,
so chosen because system (4) is constructed assuming ryp =
80 pm (Section II-A.1), and we wish to test the influence
of nonzero 6r2(t) in u(t) of system (4). Recall that dr2(t)
is the difference between 72(t), the system squared beam
radius (used to realize system (2)), and the operating point,
T2,(t), used to construct system (4). B(¢) of system (4) is
generated using a power operating point of Py = 250 W, as
explained in Section II-A.1.

y(t) of system (4) is constructed by simulating a coaxial
thermal camera with a 3.5 mm FOV and p = 544 pixels.

ITI. RESULTS AND DISCUSSION

To help with reader intuition, we include representative
examples of the estimated temperature fields at time step
k = 905 for tests ii and iv. We include Xz gar(toos ), Xg05(905
yrEM (toos), and §gos)005, Which are shown in Figs. 3-4. In
Fig. 3 and Fig. 4a, we show the interpretation of the state,
X(t), as a temperature distribution. The vertical green bars
in Fig. 4a denote the limits of the coaxial thermal camera
FOV, which governs the output-state relationship of system
(4). Recall that the output of system (4) is the temperatures
in the portion of surface (2 that lay in this FOV (the melt
pool, Section II-A.2), as demonstrated in Fig. 4b.
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Fig. 3. Test ii, representative results from tggs. The green circle indicates
the location of the laser.

We note that in Fig. 4b, there is good agreement between
yreM(toos) and Yoosi905- Fig. 5 expands this observation
by plotting the error signals of Section II-C associated with
each test. Qualitatively, the error 2-norm signals, Xo(tx),
assess the overall accuracy between Xy, or xor(tx) with
xreM(tk), which Algorithm 1 seeks to minimize. The error
oo-norm signals, X.(ty), identify the node (state compo-
nent) with the maximum temperature error, and the error at
this node. During our analysis, we observe that this node
usually lays in the melt pool, as it is the region of x(t)
with the largest temperatures.

Several important trends are noticeable in Fig. 5. With the
exception of X2 gy i F Of test iii, Algorithm 1 produces error
signals with lesser magnitude than the corresponding OL
model, as quantified in Tables III-IV. In test iii, the magni-
tudes of Xo pnir(tr) and Xoo grni r(ty) are always greater
than those of X3 o1 (tx) and Xo0, 01 (tx ), as shown in Fig. Sa
and Table IV. We believe this discrepancy is tied to how test
iii generates xppas(tr), Xor(tk), and Xy, by applying a
common material properties set to (4), thus minimizing the
error between xpga(tr) and xor (ty). Algorithm 1 must
estimate very small error quantities, which effects estimation
accuracy. The value of N used in these tests, N = 50, 000,
may not be sufficient to overcome this deficiency. In test
iv, which applies imperfect material properties knowledge to
(4), Algorithm 1 successfully reduces the 2-norm and oo-
norm error signals (Table IV). We observe the same trend
in tests i and ii, which considered system (3). Compared to
OL error metrics (Fig. 5 and Table III), we note that the
Algorithm 1-produced reductions in X2 () and X (t)) are
less for test i than they were in test ii. We believe this is
because the error is primarily driven by a material property
mismatch, not linearization error.

By comparing Tables III-IV, we observe that system
(3) reduces Xo(tx) more than system (4), and that system
(3) reduces Xoo(t;) less than system (4). y(tx) of system
(3) measures all of surface (2, therefore it contains more

information about the state components far afield of the melt
pool than y(t) of system (4), which only measures surface
2 near the melt pool. Using more extensive measurements of
the state results in superior reduction of Xa(t)). In contrast,
because y(tx) of system (4) is more focused on the melt
pool than y(t;) of system (3), Algorithm 1 is more biased
towards removing error in the melt pool. Therefore, system
(4) reduces X () more than system (3).

Finally, we note that reduced error signal magnitudes do
not imply reduction in error everywhere in V. For example,
in Fig. 4a, we observe that at £ = 905 ms into test iv, the
melt pool (region of elevated temperatures) of Xy; extends
overly far into the —z axis, as measured by the emulator
of the true system, xg g (t). In this portion of the build,
Algorithm 1 increases the error. However, by observing Fig.
5b, we note that Xo g i r(toos) 18 well beneath X2 o1, (905 )-
The discrepancy is due to reductions in X0, grn i (%), Which
means reducing the errors in the melt pool estimation, where
the temperature magnitudes are the largest and the associated
errors have the largest magnitude. As noted in Table IV,
[|Xoo, Eni F (tk)|| oo 1s beneath ||Xoo o1 (tk)|| oo for test iv. Re-
ducing the melt pool error lowers the magnitude of X2 grn ik F
so much that it stays less than X5 oz, even though there
are minor increases in error far afield of the melt pool. Our
analysis reveals that this was not an occasional occurrence.
Algorithm 1 generates an overly-deep melt pool whenever a
material properties mismatch is present (test iv and test ii,
Fig. 3). The presence of this phenomenon throughout test ii is
especially interesting, given the large reduction in ||X2(¢x)||2
shown in Table III. We intend to minimize the error signal
more uniformly far afield of the melt pool by introducing
localization [27] to Algorithm 1. Minimizing this error is
desirable for several reasons. For example, several defects
in PBF parts are correlated with unusually-deep melt pools.
Artificially-deep estimated melt pools, as shown in Fig. 3-4a,
would cause a PBF QC algorithm to incorrectly flag a build
for supposedly having these defects.

IV. CONCLUSIONS

This paper demonstrates the feasibility of using an Ensem-
ble Kalman Filter (EnKF) to estimate internal temperature
distributions in the PBF process. Our analysis was restricted
to two-dimensional models, to reduce computational bur-
den. We used FEM models of the PBF process instead
of physically-measured data, which allowed us to directly
quantify the state error. Our tests assessed EnKF estimation
error for E-PBF and L-PBF systems when the assumed
material properties matched the FEM simulation, and when
they differed. These tests showed that the EnKF can reduce
the error 2-norm with respect to the open loop (OL) model,
for both E-PBF and L-PBF systems, when material properties
differed. This reduction was as high as a 75% reduction
in error 2-norm. When material properties matched, the L-
PBF system produced an anomalous 2-norm error signal,
which we attribute to inaccurate assumptions of the system
statistics.

4373

Authorized licensed use limited to: The Ohio State University. Downloaded on June 08,2022 at 19:04:28 UTC from IEEE Xplore. Restrictions apply.



%1074 (a)

£ g
= =
z o8
y 0 :
0 0.002 0.004 0.006 0.008 0.01 50 100 150 200 250 300 350 400 450 500
Surface A (m) Pixel of coaxial camera
x10°%
40 |
o K
0 5 2 1
2 =
z 1098 >
y 0 0 I I I I L I I L
0 0.002 0.004 0.006 0.008 0.01 50 100 150 200 250 300 350 400 450 500
Surface A (m) Pixel of coaxial camera

Fig. 4. Test iv, representative results from tgo5. (2) Comparison of x g g (tx) and )Ack‘k.. The green circle indicates the location of the laser, and the
green bars denote the boundary of the coaxial camera FOV. (b) Comparison of FEM output and EnKF-estimated output.

(a)

A40 | S—CE
R4 (3) EnKF
= (4) OL
E 20 (4) EnKFf : (¢
2 ' ' ;Hmﬂmil i
0 200 400 600 800 1000 200 400 600 800 1000
Time step, k Time step, k
6 i 15
<4 < |
ilII|||I|||||||I|||||||||||II|||||||||||||||||nmn||| = LHHE Y
72 ‘ 75 HECARARKRARAR mnnmn,
e ‘ " e il ]
o 200 . 400 600 800 B 0 260 4(;0 660 8(;0 1000
Time step, k Time step, k

Fig. 5. Comparison of error norms for each test. Here, “EnKF” refers to Algorithm 1. (a) Tests i and iii. (b) Tests ii and iv.

TABLE III
OVERALL ERROR NORMS OF ALL TESTS FOR SYSTEM (3)

Test i Test ii
[[Z2(ti)ll2 [[Roo(ti)lloo  [1X2(tr)llz [1%oo (tk)l]oo
Algorithm 1 23.11 0.59 712.44 9.27
OL 2547 0.98 2870.34 15.12
Reduction (%) 9.3 39.8 75.2 38.7

Our tests also showed that minimizing the 2-norm does not ~ higher than the OL model in regions far afield of the system
imply minimizing the error everywhere in the part geometry.  outputs, for both E-PBF and L-PBF systems. Despite this
We showed that the EnKF estimation error was slightly error increase, the error 2-norm decreased due to large error
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TABLE IV
OVERALL ERROR NORMS OF ALL TESTS FOR SYSTEM (4)

Test iii Test iv
[[Z2(ti)ll2 Koo (ti)lloo  [1X2(tr)llz [1%oo (tk)l]oo
Algorithm 1 753.06 2.74 1267.67 8.03
OL 264.77 522 2879.48 14.26
Reduction (%) -184.4 47.5 56.0 43.7

reductions in the vicinity of the system output, where the
process generated the highest temperatures. As such, the
EnKF did not correct the far-afield error increase, because
the objective of minimizing the 2-norm was already satisfied.

We will pursue several avenues of research in light of
these results. First, encouraged by our EnKF performance
with simulated data, we will implement the EnKF with
experimental data [28]. We intend to incorporate localization
[27] into our algorithm, to ensure that the algorithm more
heavily prioritizes reducing error far afield of the system
output. We also intend to assess the algorithm performance
for 3D process models. This research will demonstrate al-
gorithm efficacy under increasingly-realistic models of the
PBF process, thus affirming the feasibility of this approach
in more realistic contexts.

[1]

[4

[l

[5]

[6]

[8]

[10]

REFERENCES

S. Ridwan, J. Mireles, S. Gaytan, D. Espalin, and R. Wicker,
“Automatic layerwise acquisition of thermal and geometric data of
the electron beam melting process using infrared thermography,” in
Proceedings of the Annual International Solid Freeform Fabrication
Symposium, Austin, TX, USA, 2014, pp. 343-352.

V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, and R. Snigh, “A
review of powder bed fusion technology of metal additive manufac-
turing,” in 4th International conference and exhibition on additive
manufacturing technologies, Banglore, India, 2014, pp. 1-2.

T. Wang, Y. Zhu, S. Zhang, and H. Wand, “Grain morphology
evolution behavior of titanium alloy components during laser melting
deposition additive manufacturing,” Journal of Alloys and Compounds,
vol. 632, pp. 505-513, 2015.

J. Keist and T. Palmer, “Role of geometry on properties of additively
manufactured ti-6al-4v structures fabricated using laser based directed
energy deposition,” Materials and Design, vol. 106, pp. 482-494,
2016.

H. Wei, J. Elmer, and T. DebRoy, “Origin of grain orientation during
solidification of an aluminum alloy,” Acta Materialia, vol. 115, pp.
123-131, 2016.

T. Mower and M. Long, “Mechanical behavior of additive manu-
factured, powder-bed laser-fused materials,” Materials Science and
Engineering: A, vol. 651, pp. 198-213, 2016.

A. Yadollahi, N. Shamsaei, S. Thompson, and D. Seely, “Effects
of process time interval and heat treatment on the mechanical and
microstructural properties of direct laser deposited 3161 stainless steel,”
Materials Science and Engineering: A, vol. 644, pp. 171-183, 2015.
P. K. Gokuldoss, S. Kolla, and J. Eckert, “Additive manufacturing
processes: Selective laser melting, electron beam melting and binder
jetting — selection guidelines,” Materials (Basel), vol. 10, no. 6, June
2017.

T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski,
A. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manu-
facturing of metallic components — process, structure and properties,”
Progress in Materials Science, vol. 62, pp. 112-224, 2017.

H. Peng, D. B. Go, R. Billo, S. Gong, M. R. Shankar,
B. Aboud Gatrell, J. Budzinski, P. Ostiguy, R. Attardo, C. Tomonto,
J. Neidig, and D. J. Hoelzle, “Fast prediction of thermal distortion
in metal powder bed fusion additive manufacturing: Part 1, a thermal

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

4375

circuit network model,” Additive Manufacturing, vol. 22, pp. 852-868,
2018.

H. Peng, M. Ghasri-Khouzani, S. Gong, R. Attardo, P. Ostiguy, R. B.
Rogge, B. Aboud Gatrell, J. Budzinski, C. Tomonto, J. Neidig, M. R.
Shankar, R. Billo, D. B. Go, and D. J. Hoelzle, “Fast prediction of
thermal distortion in metal powder bed fusion additive manufacturing:
Part 2, a quasi-static thermo-mechanical model,” Additive Manufac-
turing, vol. 22, pp. 869-882, 2018.

T. Krol, C. Seidel, J. Schilp, M. Hofmann, W. Gan, and M. Zaeh,
“Verification of structural simulation results of metal-based additive
manufacturing by means of neutron diffraction,” Physics Procedia,
vol. 41, pp. 849 — 857, 2013, lasers in Manufacturing (LiM 2013).
M. Cola and S. Betts, “In-situ process mapping using thermal quality
signatures™ during additive manufacturing with titanium alloy ti-6al-
4v,” Sigma Labs, Tech. Rep. BY6-2018-003IR Rev0, 2018.

A. Gaikwad, R. Yavari, M. Montazeri, K. Cole, L. Bian, and P. Rao,
“Toward the digital twin of additive manufacturing: Integrating thermal
simulations, sensing, and analytics to detect process faults,” IISE
Transactions, 2020.

Z. Yang, D. Eddy, S. Krishnamurty, and I. Grosse, “Investigating
grey-box modeling for predictive analytics in smart manufacturing,”
in ASME IDETC/CIE 2017, 2017, pp. DETC2017-67 794.

T. Mukherjee and T. DebRoy, “A digital twin for rapid qualification
of 3d printed metallic components,” Applied Materials Today, vol. 14,
pp. 59-65, 2019.

S. Khairallah and A. Anderson, “Mesoscopic simulation model of
selective laser melting of stainless steel powder,” Journal of Materials
Processing Technology, vol. 214, pp. 2627-2636, 2014.

P. Witherell, Y. Zhang, and V. Shapiro, “Towards thermal simulation of
powder bed fusion on path level,” in ASME 2019 International Design
Engineering Technical Conferences and Computers and Information
in Engineering Conference, Anaheim, CA, USA, August 2019.

N. Wood and D. Hoelzle, “On the feasibility of a temperature state
observer for powder bed fusion additive manufacturing,” in 2018
Annual American Control Conference (ACC), 2018, pp. 321-328.

, “‘seeing’ the temperature inside the part during the powder bed
fusion process,” in Solid Freeform Fabrication Symposium (SFF) 2019,
2019, pp. 172-191.

——, “On the controllability and observability of temperature states
in powder bed fusion,” 2021, submitted to IEEE TCST.

R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and Applica-
tions of Finite Element Analysis, 3rd ed. John Wiley and Sons, Inc.,
1989.

G. Evensen, “The ensemble kalman filter: theoretical formulation and
practical implementation,” Ocean Dynamics, vol. 53, pp. 343-367,
2003.

Y. Tong, The Multivariate Normal Distribution.
Springer-Verlag, 1990.

R. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME—Journal of Basic Engineering,
vol. 82, no. Series D, pp. 3545, 1960.

F. Cverna, Ed., Thermal Properties of Metals.
ASM International, 2002.

S. Greybush, E. Kalnay, T. Miyoshi, K. Ide, and B. Hunt, “Balance
and ensemble kalman filter localization techniques,” Monthly Weather
Review, vol. 139, no. 2, pp. 511-522, 2011.

N. Wood, H. Mendoza, P. Boulware, and D. Hoelzle, “Interrogation
of mid-build internal temperature distributions within parts being
manufactured via the powder bed fusion process,” in Solid Freeform
Fabrication Symposium (SFF) 2019, 2019, pp. 1445-1481.

New York, NY:

Materials Park, Ohio:

Authorized licensed use limited to: The Ohio State University. Downloaded on June 08,2022 at 19:04:28 UTC from IEEE Xplore. Restrictions apply.





