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High-significance measurements of the monopole thermal Sunyaev-Zel’dovich cosmic microwave
background spectral distortions have the potential to tightly constrain poorly understood baryonic feedback
processes. The sky-averaged Compton-y distortion and its relativistic correction are measures of the total
thermal energy in electrons in the observable universe and their mean temperature. We use the CAMELS
suite of hydrodynamic simulations to explore possible constraints on parameters describing the subgrid
implementation of feedback from active galactic nuclei and supernovae, assuming a PIXIE-like
measurement. The small 25 h−1 Mpc CAMELS boxes present challenges due to significant sample
variance. We utilize machine learning to construct interpolators through the noisy simulation data. Using
the halo model, we translate the simulation halo mass functions into correction factors to reduce sample
variance where required. Our results depend on the subgrid model. In the case of IllustrisTNG, we find that
the best-determined parameter combination can be measured to ≃2% and corresponds to a product of active
galactic nuclei (AGN) and supernova (SN) feedback. In the case of SIMBA, the tightest constraint is≃0.2%
on a ratio between AGN and SN feedback. A second orthogonal parameter combination can be measured to
≃8%. Our results demonstrate the significant constraining power a measurement of the late-time spectral
distortion monopoles would have for baryonic feedback models.

DOI: 10.1103/PhysRevD.105.083505

I. INTRODUCTION

A robust prediction of the standard model of cosmology
is the presence of subtle deviations from the blackbody
spectrum in the cosmic microwave background (CMB)
(e.g., [1,2]). Such monopole spectral distortions can be
caused by a variety of physical processes in both the early-
and late-time Universe. Among these various distortion
signals, most easily accessible to near-future experiments
will be the y-type distortion.1 The y distortion arises from

inverse Compton scattering of CMB photons with hot
electrons, the thermal Sunyaev-Zel’dovich (tSZ) effect
[3,4]. The y signal is mostly sourced by massive, collapsed
structures at z≲ 2. Thus, the tSZ effect informs us about
two aspects: First, the thermodynamic properties of the hot
electron gas in massive halos; these are very sensitive to
astrophysical small-scale processes. Second, the abundance
of such halos, which translates into a constraint on the
amount and clustering of matter in the Universe. This
makes SZ cluster measurements a unique tool for cosmol-
ogy and astrophysics [5,6].
To illustrate this point, consider Fig. 1. There, we plot a

range of theory predictions (blue and magenta points) from
the CAMELS suite of hydrodynamic simulations [7].

*lthiele@princeton.edu
1For conciseness, we will use the term “y distortion” or similar

to mean both the nonrelativistic and the relativistic effects.
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The axes are the two distortion monopole observables
considered in this work, further discussed below. Between
the plotted simulations the astrophysical subgrid model
differs, translating into a large spread of theory predictions.2

For comparison, we also show a covariancematrix for a near-
future monopole distortion measurement (cf. Sec. III). The
forecast measurement errors are tiny compared to the current
theoretical uncertainty, which means that a near-future
measurement would provide a substantial gain in informa-
tion on astrophysics. This basic observation forms the
underpinning of the calculations performed in the following:
forecast constraints on simulation subgrid models from a
measurement of the y-distortion monopoles, using simula-
tions from the CAMELS suite.
Conventionally, the y distortion is separated into a

nonrelativistic and a relativistic [9–13] component, each

having a distinct spectral signature that makes it possible to
disentangle them observationally.3 The nonrelativistic con-
tribution is determined by a line-of-sight integral over
electron pressure,4

hyi≡ hyðn̂Þin̂ ¼
Z

dn̂
4π

σT
me

Z
Peðn̂; lÞdl; ð1Þ

where σT denotes the Thomson cross section,me is electron
mass, n̂ is the line of sight, and l is physical length along the
line of sight. To leading order, the relativistic component
is proportional to the y-weighted mean electron temper-
ature [15]

hTei≡ hTeðn̂Þin̂ ¼ hyi−1
Z

dn̂
4π

σT
me

Z
½TePe�ðn̂; lÞdl: ð2Þ

This effective temperature is typically higher than the mass-
weighted (or τ-weighted) temperature [16,17], and can be
directly obtained from a moment expansion of the SZ
signal (see Appendix A for additional discussion).
In this work we focus on the dominant and theoretically

well-established contributions to the distortion signals. In
particular, we will neglect the ≃10% contribution of reioni-
zation to hyi, which we discuss in Appendix C, as well as
signals due to the Milky Way and local group (which are
estimated to be another 1 and 2 orders of magnitude below
the reionization signal, respectively). We also neglect other,
more exotic sources of y distortions, for example from
primordial magnetic field heating (e.g., [18–20]) or decaying
particles (e.g., [21–26]). Conversely, if one is interested in
using the y distortions to constrain or detect such processes
beyond standard Λ cold dark matter (ΛCDM), astrophysical
feedback must be very well understood.
There are further relativistic corrections involving higher

moments of the electron temperature, as well as the kinetic
Sunyaev-Zel’dovich effect sourced by coherent motion; we
will neglect these complications and simply treat hyi and
hTei as observables, as in Ref. [15].
Locally, the tSZeffect iswell establishedobservationally as

a CMB temperature change correlating with the locations of
clusters. However, the global distortion to the CMB spectrum
has not yet been detected. Only an upper limit on the
nonrelativistic y distortion exists from the COBE FIRAS
experiment, which yielded jhyij < 15 × 10−6ð95%clÞ [27],
which is about 1 order of magnitude above the expected
ΛCDM signal [15]. We thus anticipate significant detections
with future CMB spectroscopy [28–31].
A monopole measurement would be complementary to

the existing higher-moment tSZ analyses (e.g., [32–46]),
since it features very different systematics and would also
yield the relativistic component at high significance [8].

FIG. 1. Comparison between the range of CAMELS simula-
tions with the forecast covariance matrix for the PIXIE experi-
ment (the PIXIE ellipses are centered at the fiducial model
assumed in Ref. [8]: hyifid ¼ 1.77 × 10−6, hTeifid ¼ 1.24 keV;
they correspond to 68 and 95% cl). From CAMELS, we plot both
the LH and the 1P set. The LH data points are contaminated by
sample variance in addition to varying subgrid parameters, while
the 1P points have the same initial conditions and only differ by
their subgrid parameters. We have also indicated the values
measured from the large boxes (triangles), as discussed in Sec. II
B. All simulation data have been rescaled to the fiducial
CAMELS cosmology but each data point corresponds to a
different subgrid model. It is worth noting that the 1P initial
conditions appear to be slightly atypical, with generally larger
hTei than expected from the LH set.

2For IllustrisTNG, the spread is dominated by sample variance
[as can be seen by comparing the latin hypercube (LH) and one
parameter (1P) points], a point that we will return to later.

3All these signals can be accuratelymodeled using SZpack [14].
4We set the speed of light and Boltzmann’s constant to one.
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Furthermore, in contrast to cluster-stacking and power
spectrum [47–49] approaches, the hyi measurement is more
sensitive to lower-mass objects, as illustrated in Fig. 2.
The hyi and hTei signals constitute unique probes of

baryonic physics in galaxy clusters and groups. Since hyi
probes thermal energy, it is subject to the energy con-
servation equation

Eth;tot
e|ffl{zffl}
Total

¼ Ecoll
e|{z}

Collapse

þ Einj
e|{z}

Injected

− Ecool
e|ffl{zffl}

Cooling

: ð3Þ

The most uncertain term in the above equation is Einj
e which

can largely be attributed to feedback processes from
massive stars, supernovae (SNe), and active galactic nuclei
(AGN). These processes inject additional energy into the
interstellar, intergalactic, and intracluster media (ISM,
IGM, and ICM, respectively). Such feedback processes
are standard ingredients in any theoretical models of galaxy
formation, both semianalytic (e.g., [50,51]) and simulation-
based models e.g., [52–57].
The most reliable way to explore how feedback models

influence the y distortions is by analyzing hydrodynamical
simulations with qualitatively and quantitatively different
subgrid prescriptions. Such an approach is complicated by
the fact that, owing to their bias towards rare high-density
peaks, the distortion signals are heavily influenced by
sample variance. Furthermore, the parameter space of
subgrid models is vast and poorly explored, meaning that
ideally we would need many large-volume hydrodynamical
simulations, which is currently not feasible. We will
demonstrate later that these problems can be overcome
by utilizing machine learning methods as well as analytical
corrections using the halo model.
Since the y distortions are predominantly sourced by

galaxy groups and clusters [15], an analytical description
based on the halo model [58–60] is a natural first
approximation. In the halo model formalism, we assume
spherically symmetric halos described only by massM and
redshift z, yielding

hyihm ¼ σT
me

Z
dzdM

ð1þ zÞ2
4πHðzÞ

dn
dM

Z
d  rPeðj  rj;M; zÞ; ð4Þ

where dn=dM is the halo mass function and  r denotes
position within a given halo, and the expression assumes a
flat universe. The expression for hTeihm is analogous. Note
that the halo model neglects the IGM contribution dis-
cussed in Appendix D.
In the following, it will be useful to think of the

observables xi ≡ fhyi; hTeig in terms of the approximate
factorization

xi ∼ fci ðσ8;Ωm;…Þfbi ðfAjgÞfCVi ðδÞ; ð5Þ

where fci describe the dependence on cosmological param-
eters, fbi are functions of a set of feedback parameters Aj,
and fCVi depends on the initial conditions and thus
encapsulates sample variance. Such factorizations are
frequently used and good approximations to observables
that are well described by the halo model. Nonetheless, our
results typically only weakly depend on the validity of this
approximation.
It should be noted that we group all our uncertainty on

the simulation subgrid model in the feedback parameters
Aj. These supernova and AGN feedback parameters,
further elaborated on in Sec. II A, predominantly affect
the ICM contribution to the distortion signals. There is a
non-negligible IGM contribution, however, which in
Appendix D we show is a ∼10% effect with ∼40%
theoretical uncertainty.
The rest of this paper is structured as follows. In Sec. II

we describe the CAMELS simulations as well as the larger
reference boxes. Section III provides a short summary of
the assumed experimental setup used for forecasting. In
Sec. IV we describe how we interpolate through the
CAMELS data. Section V contains the main results of
this work, namely, dependence of the distortion signals on
feedback parameters and a Fisher forecast. We conclude in
Sec. VI. The Appendices contain several technical details
and some new computations that did not fit in the main
discussion.

II. SIMULATIONS

The y-distortion components described above can easily
be measured from a hydrodynamical simulation. In fact,
Eq. (1) can be rewritten as

hyi ¼ σT
me

Z
dz

ð1þ zÞ2
HðzÞ hPc

eðzÞi; ð6Þ

where Pc
e is now in comoving units and the average is over

the volume of a given simulation snapshot. An analogous
expression holds for hTei.

FIG. 2. Illustration of the halo mass and redshift contributions
to the y-distortion observables. Plotted is the normalized inte-
grand in Eq. (4), using the fitting formulas described in Sec. IV B.
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A. CAMELS

We primarily use the CAMELS suite of hydrodynamical
simulations [7] that consists of several thousand
25 h−1Mpc boxes, each run with 2563 dark matter particles
and 2563 initial fluid elements. Each simulation is
described by the following parameters: (i) the simulation
code/subgrid model, (ii) two cosmological parameters (σ8,
Ωm), (iii) four feedback parameters5 (ASN1, ASN2, AAGN1,
AAGN2), and (iv) the random seed for the initial condi-
tions. The remaining cosmological parameters are fixed
at Planck-compatible flat ΛCDM values, Ωb ¼ 0.049,
h ¼ 0.6711, ns ¼ 0.9624 [62].
Two different simulation codes are used. The simulations

labeled “IllustrisTNG” were run with the Arepo code
[52,63] and the same subgrid model as the flagship
IllustrisTNG simulations [64–69]. The simulations labeled
“SIMBA” were run with the GIZMO code [70] and the
same subgrid model as the flagship SIMBA simulations
[71]. These codes differ substantially in their subgrid
implementations, so having comparable simulations with
both gives a good indication of the theoretical uncertainty.
The cosmological parameters σ8, Ωm are varied in the

intervals [0.6, 1.0] and [0.1, 0.5], respectively, the fiducial
model being (0.8,0.3).
The precise definition of the four feedback parameters is

given in Ref. [7]. Broadly, ASNi parametrize the subgrid
prescription for galactic winds, while AAGNi describe the
efficiency of black hole feedback. The i ¼ 1 components
can be thought of as “energy” normalizations, while the
i ¼ 2 components scale the speed of outflows. In detail,
however, the meaning of the feedback parameters differs
substantially between IllustrisTNG and SIMBA. We thus

caution against any direct comparison in terms of the
feedback parameters between the two subgrid models. All
the Aj are multiplicative factors relative to the fiducial
efficiencies in the original IllustrisTNG and SIMBA
simulations; the fiducial model is therefore unity for all
feedback parameters. ASN1 and AAGN1 are varied in [0.25,
4.0], while ASN2 and AAGN2 are varied in [0.5, 2.0]. These
intervals were chosen heuristically by the CAMELS team,
and as we will see the corresponding variations in the y
observables differ drastically between IllustrisTNG and
SIMBA. Some of the simulations at the corners of
parameter space are so extreme that they are certainly
not realistic, for example with regard to galaxy properties.
For each of the two simulation codes, the CAMELS suite

comprises the following sets of simulations, all of which
will be used in this work.

(i) LH: (latin hypercube) 1000 simulations in which
cosmology and feedback parameters are varied on a
latin hypercube, each run having a different ran-
dom seed,

(ii) 1P: (one parameter at a time) 10 variations for each
cosmological and feedback parameter individually
at fixed random seed,

(iii) CV: (cosmic variance) 27 simulations at the fiducial
model with differing random seeds.

B. Larger boxes

In addition to the CAMELS suite, we also use larger
boxes, namely IllustrisTNG300-1 (205 h−1Mpc) and
SIMBA100 (100 h−1 Mpc). These simulations are useful
to calibrate against the fact that hfCVi ðδÞi [cf. Eq. (5)] is
relatively more biased for the small 25 h−1Mpc CAMELS
boxes. Denoting an observable measured in one of the large
boxes as xlbi [cf. Eq. (5) for the notation], we compute an
estimator for this multiplicative bias as

bi ¼ xlbi =hxiiCV; ð7Þ

TABLE I. Comparison between statistics over the CAMELS CV set and the larger boxes of sizes L ¼ 205 and 100 h−1 Mpc for
IllustrisTNG and SIMBA respectively. The left half of the table is in log since log-normal is a decent approximation; for clarity the right
half gives the same information in more familiar units but without error bars. The error bars in the first line are on the mean of the CV set.
The error bars on the large box measurements are, in the naive Poissonian approximation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL=25 h−1 MpcÞ3=27

p
, smaller by factors 4.5

and 1.5 for IllustrisTNG and SIMBA respectively, and omitted in the table. All large-box measurements have been rescaled to the
fiducial CAMELS cosmology, as explained in Sec. II B. The third line lists the differences between the large-box and CVmeasurements,
in units of the error bars on the CV means; these numbers highlight significant biases in the CV set due to box-size effects. The last line
gives the corresponding bias factors introduced in Eq. (7).

log10 106hyi log10hTei [keV] 106hyi hTei [keV]
IllustrisTNG SIMBA IllustrisTNG SIMBA IllustrisTNG SIMBA IllustrisTNG SIMBA

CAMELS CV 0.046� 0.026 0.369� 0.014 −0.386� 0.034 0.1407� 0.0054 1.11 2.34 0.41 1.38
Large box 0.1928 0.3995 0.02728 0.2349 1.56 2.51 1.06 1.72
Δ½σ� −5.6 −2.1 −12 17
bi 1.41 1.07 2.59 1.25

5Note that other works, e.g., Ref. [61], explicitly differentiate
in their notation between the IllustrisTNG and SIMBA feedback
parameters. We choose not to do so since it simplifies the notation
in various places.
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where the latter average is over the CAMELS CV set and
we apply the correction formula

xi ← xibi ð8Þ

to the hyi, hTei measured in the CAMELS simulations.
Values for the bi are listed in Table I.
The large boxes have the same subgrid prescription as

the CAMELS fiducial model with the corresponding label,
but slightly different cosmologies. We account for this fact
by rescaling xlbi to the CAMELS fiducial cosmology, using
power laws in h, Ωm, Ωb, ns, σ8. These power laws were
fitted using the halo model, since the scalings that could be
derived from the 1P set are unreliable and do not encom-
pass all differences in cosmology. We refer to Sec. IV B for
a detailed description of the assumptions made in the halo
model calculation. For reference, the power laws are listed
in Appendix B.
There is, of course, a remaining bias due to the finite

volume of both the larger boxes and the CV set. However,
as seen in Table I, this is a relatively small source of error
compared to the overall bias, since Eq. (7) is significantly
different from unity for all cases except perhaps the SIMBA
hyi. We note that the finite error bars on the large box
measurements do not affect our forecasts in the later parts
of this work.

III. PIXIE EXPERIMENTAL MODEL

For deriving our forecasts later in Sec. V, we use
parameters corresponding to the “extended” PIXIE experi-
ment [28,29,72] from Ref. [8]. Their most complete model
includes marginalization over a variety of foregrounds,
namely galactic dust thermal emission, the cosmic infrared
background, synchrotron radiation, free-free emission,
spinning dust (anomalous microwave emission), and inte-
grated CO. For each foreground component, fitting for-
mulas were assumed for the spectral energy distribution
(SED) according to Planck measurements [73]. There are
some caveats to this approach, related to the spatial
variation of the foregrounds and the relatively simplistic
modeling of their SEDs (see [74] for related discussion).
However, for the purposes of this work, the derived
forecasts should be accurate enough. The forecast considers
all non-negligible CMB spectral distortion signals (black-
body, y, relativistic y, μ) and marginalizes over them when
computing the hyi − hTei posterior.

While Ref. [8] used a full MCMC pipeline to arrive at
their posteriors, in the hyi − hTei plane, these are well
approximated as Gaussian. We thus compress the margin-
alized posterior into a simple 2 × 2 covariance matrix,
illustrated in the inset in Fig. 1. In general, the fiducial
models used in this work differ somewhat from the fiducial
model of Ref. [8]; we assume that the covariance matrix is
constant regardless of the mean. This approximation is not
a dominant source of systematic uncertainty.

IV. INTERPOLATING NEURAL NETWORKS

Using Eq. (6), we compute hyi and hTei for the
CAMELS LH, CV, and 1P sets. It is our primary goal to
extract the functions fbi ðASN1; AAGN1; ASN2; AAGN2Þ, in the
language of Eq. (5). It may be argued that in the limit in
which these fbi factorize even further into functions of the
individual feedback parameters (which, as we shall see, is
quite a good approximation), the 1P set should be all we
need. However, the substantial sample variance in the small
CAMELS boxes makes this approach unreliable.
Therefore, we will instead utilize the LH set. There, σ8,
Ωm, and the four feedback parameters are varied by
sampling from a latin hypercube. Furthermore, each data
point is a noisy sample in a 6-dimensional space. Thus, we
will use neural networks as smoothing interpolators
through the LH set.

A. Training

We aim to learn functions

hyi or hTei ¼ Fαðσ8;Ωm; fAjgÞ; ð9Þ

where α ∈ fIllustrisTNG; SIMBAg and F is parametrized
as a multilayer perceptron. A multilayer perceptron is a
series of affine transformations Wxþ b, each followed by
a nonlinear activation function (in our case the leaky
rectifying linear unit). To mitigate overfitting, we allow
dropout, i.e., probabilistic zeroing of neurons during
training.
The relatively small dataset of 1,000 LH simulations

makes this a somewhat nontrivial task, thus we perform
automated hyperparameter optimization using the Optuna
package [75] to converge at good architectures. Generally,
our networks have 2–4 hidden layers with a few hundred
neurons each and high dropout rates 20%–70%. A useful
null-test is the following. From the 1P set we can
interpolate the dependence on σ8, Ωm (simple linear
interpolators which will generally be biased due to sample
variance). Using these interpolants, we can remove most of
the dependence on the cosmological parameters from the
LH data (cf. the cyan data points in Fig. 3). If the neural net
is well-converged, it should matter very little whether the
training data have the full dependence on cosmology or
whether it is mostly factored out. The point here is that we
are essentially fitting the same data, just with different
transformations applied. It is not actually very important
what these transformations are as a function of σ8 and Ωm,
we simply chose ones that remove most of the dependence
on these cosmological parameters.
Indeed, in the case of SIMBA, this null test is passed

satisfactorily. However, IllustrisTNG is more challenging,
since the feedback parameters generally have a much
smaller effect on the y observables in this simulation.

PERCENT-LEVEL CONSTRAINTS ON BARYONIC FEEDBACK … PHYS. REV. D 105, 083505 (2022)
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Thus, we need to apply an additional transformation, as
described in the following section.

B. Halo model correction factors for IllustrisTNG

Asmentioned before, naively training the neural networks
on the IllustrisTNG LH simulations does not yield robust
results according to the null test described above. The reason
is that, in contrast to SIMBA, the dependence on feedback
parameters is obscured by the overwhelming noise due to
sample variance. This issue can be seen in Fig. 1, where for
IllustrisTNG the 1P data points scatter much less than the LH
points. There is, however, a simple method to mitigate this
problem. As we have argued in the Introduction, the halo
model provides a relatively good description of sparse fields
such as Compton y. Furthermore, the factorization of Eq. (5)
should be a good initial guess. This motivates the following
“correction” formula:

hyi ← hyi hyiTinker HMF
hm

hyimeasuredHMF
hm

: ð10Þ

Here, “Tinker HMF” stands for the halo mass function from
Ref. [76] and the expression is analogous for hTei. On the

other hand, the mass function can also be measured in the
individual CAMELS simulations. In order for the numerical
integrations to be well behaved, we express it as

dn
d logM

∼ exp
�
−
1

2

�
logM0

σ

�
2
�
�
X
i

δðlogM0 − logMiÞ;

ð11Þ

where � indicates convolution and we have dropped some
prefactors. Our results are relatively insensitive to the hyper-
parameter σ; in the following we will use σ ¼ 0.19 dex. The
halo masses Mi were measured using a friends-of-friends
finder [77]. We interpolate the smoothed mass function in
mass and redshift using a bilinear routine.
In order to perform the halo model calculation, we use

the pressure profile fitting formula from Ref. [78] and
assume isothermal halos with temperatures according to
Ref. [79]. We apply a 20% correction to the halo masses
entering the temperature fitting formula to account for
hydrostatic mass bias; the same value was used in Ref. [15].
It should be noted that the fitting formula from Ref. [79] is
likely not as accurate as more recent proposals (e.g., [17]),

FIG. 3. Illustration of the effectiveness of analytical correction factors for the IllustrisTNG simulation outputs. Blue markers are direct
measurements from the simulations. The cyan markers represent a rescaling to the fiducial cosmology (Ωm ¼ 0.3, σ8 ¼ 0.8), using fits
to the CAMELS 1P set. Since the CAMELS CV set is at constant cosmological and astrophysical parameters, the cosmology correction
is meaningless there. For the red markers, in addition to the cosmology correction, a correction for sample variance has been applied, as
described in the text. The dashed black lines represent the “ground truth”measurements from the larger boxes, while the solid black lines
are smoothing splines through the red markers (these are solely to guide the eye). For the LH panels on the left, all data points have been
rescaled using Eq. (7). We have also plotted histograms corresponding to the cyan and red markers.
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but as we show in the following, it is sufficient for our
purposes. Following Ref. [15], we assume a radial cutoff at
2.5Rvir with the virial radius definition of Ref. [80].
Of course, this procedure rests on a number of assump-

tions, and we should verify that it yields reasonable results.
Figure 3 shows in the right panel in blue the original
measurements and in red the mass function-corrected
values for the 27 realizations in the CV set. Indeed, we
see that the corrected values scatter much more tightly; the
fact that the procedure is more successful for hyi than hTei
is likely because the temperature fitting formula used is
calibrated at larger halo masses than those that dominate the
signal. In the left panel of Fig. 3, we show projections of the
LH set onto the σ8 and Ωm axes. As expected, the blue
measurement data points have a large scatter and show a
mean evolution with the cosmological parameters. The
cyan data points illustrate our procedure for dividing out
most of the cosmology dependence, as described in the
previous section. However, they still display a large scatter
which is dominated by sample variance. Finally, the red
data points have the mass function correction applied in
addition. It is striking how much tighter they cluster
compared to the cyan markers, again indicating that the
mass function correction is working rather well. The scatter
is relatively independent of cosmology, except for the low-
Ωm points where the halo model approach seems to start to
break down. We observe that the remaining scatter in the
LH panels significantly exceeds what is observed for the
red markers in the CV panels, demonstrating that applying
the mass function correction yields an LH set that is
dominated by signal from the feedback parameters.
Indeed, the neural networks trained on these denoised
LH simulations pass the null test described in Sec. IVA.
It is worth noting that we tried the described mass

function correction procedure for SIMBA as well.
However, for these simulations it did not work well at
all, indicating that halos in SIMBA are not well approxi-
mated by the fitting formulas we used in the halo model
(this may be related to the very long-range effects feedback
has in SIMBA [81]). Fortunately, the signal from feedback
parameters is strong enough in SIMBA that it was possible
to extract from the LH data with full sample variance
contamination.

V. RESULTS AND DISCUSSION

In the previous section, we have constructed interpolat-
ing neural networks which return the y-distortion monop-
oles hyi and hTei as functions of astrophysical feedback
parameters ASN1, AAGN1, ASN2, AAGN2 and cosmological
parameters Ωm, σ8. We now aim to explore the dependence
on the astrophysical parameters and translate it into forecast
constraints assuming the spectral distortion measurement
described in Sec. III.

A. Parameter dependence

We first explore how hyi and hTei depend on individual
feedback parameters with the remaining ones (as well as σ8
and Ωm) fixed. In Fig. 4, we show as blue markers the
measurements from the CAMELS 1P set, rescaled such
that, their value at the fiducial point, is equal to that from
the corresponding large box (indicated by the red crosses).
The blue lines in Fig. 4 are evaluations of the trained neural
nets. Agreement between the 1P results and the neural nets
is generally better for SIMBA, because the observables
depend much more strongly on the feedback parameters
than in IllustrisTNG. For IllustrisTNG, there are substantial
differences, although in many cases the qualitative trends
are similar in 1P and the neural nets. As we have argued
before, we believe that generally the neural nets are more
robust since they marginalize over the simulation initial
conditions. However, this may not be true for some of the
cases in IllustrisTNG for which the dependence is com-
paratively weak, because the neural net may have little
incentive to accurately capture this dependence. There are,
however, strong counterarguments against this hypothesis.
It seems clear from the SIMBA panels that in almost all
cases the SN and AGN parameter pairs each work in the
same direction. This behavior is mirrored in IllustrisTNG,
also in the cases where strong deviations from the 1P set are
observed. We emphasize that our neural net architecture has
no implicit preference for grouping the parameters in such a
way. Furthermore, we have evidence that the initial con-
ditions for the 1P set happen to be somewhat anomalous.
Visually, this manifests itself by the presence of an
unusually large void in the z ¼ 0 density field. More
quantitatively, this can be seen in Fig. 1, where the 1P
data points (for both IllustrisTNG and SIMBA) tend to fall
at higher hTei than the mean trend in the LH set. Finally, as
mentioned in Sec. IVA, we have performed a nontrivial
null test on the trained networks which is passed satisfac-
torily (after correcting for sample variance in the case of
IllustrisTNG). Thus, we believe that in fact for all cases the
neural nets are closer to reality than the 1P set.
Turning now to physical interpretation, we observe

striking differences between SIMBA and IllustrisTNG.
In the case of hyi, IllustrisTNG has positive slopes for
all four feedback parameters, while for SIMBA the SN
parameters exhibit negative slopes. It seems rather natural
that slopes should generally be positive because integrated
electron pressure is a measure of thermal energy. However,
it has also been established that stronger supernova feed-
back can counteract the AGN contribution, since the
outflow of matter due to stellar feedback limits the black
hole growth rate [54] (see also [82]). Reference [82] used
the OWLS subgrid model which in terms of hyi and hTei is
closer to SIMBA than to IllustrisTNG. This is consistent
with the frequency of negative slopes with ASNi in Fig. 4.
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Interestingly, in some cases there are saddle points. That
these are probably mostly real and not artifacts in the neural
networks is supported by the fact that they are also visible
in the 1P markers. Fortunately, these saddle points are
generally away from the fiducial model (except for the
AGN dependence of hTei in IllustrisTNG), so they will not
contaminate the Fisher forecasts significantly.

As we show in Appendix E, the leading-order behavior
of the y-distortion observables as a function of the four
feedback parameters is well described by a factorization,

xi ¼
Y
j

gðjÞi ðAjÞ; ð12Þ

FIG. 4. Dependence of spectral distortions on individual simulation feedback parameters. In each panel, all cosmological and
astrophysical parameters are held fixed apart from the one shown on the horizontal axis. The blue markers are measurements from the
CAMELS 1P set, rescaled such that at the fiducial model they agree with the measurements from the larger boxes, which are indicated
by the red crosses. The blue lines are evaluations of neural networks trained on the CAMELS LH set. We argue in the text that the LH-
trained networks are likely more robust than the 1P data in most cases. Note that the vertical plot ranges are identical within each
quadrant.
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where the gðjÞi are identical to the 1-parameter functions in
Fig. 4 up to normalization.
As a cross-check, we also test our results using another

machine learning tool called symbolic regression. The
results, presented in Appendix F, support the factorization
approximation Eq. (12).

B. Fisher forecasts

We now turn to forecasting constraints on the simulation
feedback parameters given our fiducial model for the PIXIE
constraints on hyi, hTei presented in Sec. III. It should be
emphasized that the primary goal of this exercise is to
demonstrate the substantial constraining power of a real-
istic y-distortion measurement on our understanding of
astrophysical feedback processes. In particular, the uncer-
tainty on the fiducial model implies that the constraints
presented in the following should only be interpreted as
qualitative indicators. We make the approximation that the
cosmological model (specifically Ωm and σ8) is known
perfectly; in comparison to our ignorance on the subgrid
model this is a good assumption.
As we have already seen before, the feedback parameters

have very different consequences in IllustrisTNG and
SIMBA. We will need to assume that the chosen priors
on these parameters are reasonable in terms of other
observables, so that a direct comparison between the
constraints (in units of the prior) makes any sense at all.
First, we construct the 4 × 4 Fisher matrices for

IllustrisTNG and SIMBA as usual,

Fab ¼
∂xi
∂Aa C

−1
ij

∂xj
∂Ab ; ð13Þ

with C the 2 × 2 covariance matrix, marginalized over all
foreground nuisance parameters (cf. Sec. III), and the
derivatives are computed from the neural network inter-
polators with finite difference step sizes chosen to match
the scale of the posterior. Of course, these Fisher matrices
are degenerate since two measurements are not sufficient to
constrain four parameters.
For each simulation type, by diagonalizing the Fisher

matrix we identify the best-constrained orthogonal param-
eter combinations as

Að1Þ
IllustrisTNG ¼ Aþ0.20

SN1 Aþ0.13
AGN1A

þ0.77
SN2 Aþ0.59

AGN2;

Að2Þ
IllustrisTNG ¼ Aþ0.52

SN1 A−0.10
AGN1A

þ0.44
SN2 A−0.73

AGN2;

Að1Þ
SIMBA ¼ A−0.17

SN1 Aþ0.30
AGN1A

−0.72
SN2 Aþ0.61

AGN2;

Að2Þ
SIMBA ¼ Aþ0.42

SN1 A−0.37
AGN1A

þ0.36
SN2 Aþ0.74

AGN2: ð14Þ

Note that our methodology of finding the most constrained
parameter combination(s) is similar to that used in galaxy
photometric survey studies for identifying the S8 ≡ σ8Ωα

m
parameter combination [83,84]. The induced 2 × 2 Fisher

matrix on the thus identified subspaces tangent to the
fiducial model is not singular. Of course, these combina-
tions are not unique since the Fisher matrix only gives
linear-order information. Not surprisingly given the intu-
ition from the upper half of Fig. 4, in Að1Þ the powers have
identical signs for IllustrisTNG, while for SIMBA the SN
and AGN parameters have powers of opposite signs.
We compute the 68% constraints

σðAð1Þ
IllustrisTNGÞ ¼ 0.015; σðAð1Þ

SIMBAÞ ¼ 0.0024;

σðAð2Þ
IllustrisTNGÞ ¼ 1.3; σðAð2Þ

SIMBAÞ ¼ 0.075:

Thus, a PIXIE-like experiment could place percent-level
constraints on parameter combinations that are currently
only known to little better than an order of magnitude. In
the case of SIMBA the measurement of the relativistic
component would also allow a ∼10% constraint on a
second parameter combination. This is not possible for
IllustrisTNG, due to the extremely small variation of hTei.
Conversely, this implies that a measurement of hTei
significantly different from the fiducial model has the
potential to simply rule out the CAMELS-based imple-
mentation of the IllustrisTNG model.

1. Robustness check

We have argued before (Sec. VA) that we believe the
neural network interpolators to be more robust than the 1P
data, particularly for IllustrisTNG where they disagree
substantially. As a robustness check, we have repeated
the Fisher analysis using derivatives estimated from one-
dimensional interpolators through the 1P set. In the case of
IllustrisTNG, the error bar on the best-constrained param-
eter combination inflates by a factor ∼3, while the
orthogonal combination remains unconstrained. The slight
inflation is due to the derivatives from the 1P set being
slightly shallower than those from the neural net, see Fig. 4.
In the case of SIMBA, the error bars increase by about
20%. The corresponding parameter combinations differ
from the ones listed in Eq. (14), but the qualitative features
(relative magnitudes and signs of the exponents) are very
similar. These comparisons indicate that our results for
IllustrisTNG are robust within a factor of a few while those
for SIMBA are very accurate.

VI. CONCLUSIONS

This work is one of the first systematic studies of the
information content in the late-time Sunyaev-Zel’dovich
spectral distortions. Besides a simulation-based forecast in
the context of specific subgrid models, in the Appendices
we have also given some novel theoretical results regarding
the IGM and reionization contributions.
We have measured the nonrelativistic and relativistic

mean spectral distortion amplitudes hyi and hTei in the
CAMELS simulations suite. By training neural networks
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on this data, we have constructed interpolators returning the
two signals as a function of Ωm, σ8, and four feedback
parameters. In the case of IllustrisTNG, the observables
depend only weakly on feedback, necessitating the use of
halo model-derived correction factors to reduce the large
sample variance due to the small CAMELS box size.
Incidentally, the described method to reduce scatter

arising from small simulation boxes by using mass func-
tion-dependent scaling factors should be more generally
applicable to many works concerned with fields that can be
approximated with a halo model. We have also tried to
reduce biases as much as possible by matching our data to
the comparatively much larger size flagship IllustrisTNG
and SIMBA simulations.
Using the interpolating neural networks, we have per-

formed a Fisher forecast assuming a Gaussian posterior on
hyi and hTei, which had been computed assuming a PIXIE-
like experiment and a realistic foreground model. Of
course, our work is relevant for experiments other than
PIXIE, e.g., ESA’s Voyage 2050 large-scale proposal (see
e.g., [31]), which is expected to reach even tighter con-
straints on distortion parameters.
We find that in the case of IllustrisTNG, only a single

parameter combination can be strongly constrained, at the
∼2% level. On the other hand, in the case of SIMBA, the
availability of two data points enables two orthogonal
combinations to be measured, to ∼0.2% and ∼8%. We
emphasize again that although the feedback parameters are
qualitatively similar between IllustrisTNG and SIMBA,
their detailed meaning differs substantially so direct com-
parisons must be carried out with caution.
Given the limited information content from only two

observables, it is interesting to ask what other measure-
ments could be added in order to improve the constraints
presented here. The tSZ and kinematic SZ effect (kSZ)
profiles of halos are already being used in order to assess
the viability of simulation models, and Ref. [85] demon-
strates using CAMELS that next-generation CMB experi-
ments could place constraints on the feedback parameters.
Similarly, Ref. [61] shows that deviations from self-
similarity in the integrated tSZ flux—halo mass relation
(YSZ −M)—can also be used to constrain feedback param-
eters. A combination of such constraints could substantially
improve upon the error bars presented in this work.
Furthermore, the CAMELS feedback parameters also affect
observables beyond the SZ effects, like the properties of
galaxies. Typically observations of such astrophysical
nature are difficult to propagate into hard posteriors, but
at least qualitatively the check for simultaneous viability of
a given subgrid model should be very useful for simulators.
The main source of uncertainty in the Fisher forecast is

likely due to errors in the interpolators. We have performed
extensive consistency checks on the trained neural nets, but
the limited number of data points in the 1,000 CAMELS

LH simulations places fundamental limits in the possible
accuracy. For this reason, the given constraints have some
associated uncertainty, of order unity for IllustrisTNG and
at the 10% level for SIMBA. Nonetheless, our results are
indicative of the transformative effect that measurements of
the low-redshift spectral distortions could have for our
understanding of baryonic feedback.
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APPENDIX A: ELECTRON TEMPERATURE AND
THE RELATIVISTIC SZ EFFECT

A cluster’s thermal SZ contribution for a given line of
sight can be written as

ΔIνðn̂Þ ¼ I0

Z
Neðn̂; lÞσTSνðTeðn̂; lÞÞdl ðA1Þ

where I0 ¼ BνðT0Þ is the CMB blackbody spectrum, Ne
denotes the electron number density, dl parametrizes the line
of sight integration and SνðTÞ determines the SZ spectrum
with relativistic temperature corrections. If the electron
temperature is constant along the line of sight, Teðn̂; lÞ≡
Teðn̂Þ, one can simply write ΔIνðn̂Þ ¼ τðn̂ÞI0SνðTeðn̂ÞÞ,
where the Thomson optical depth is τðn̂Þ ¼ R

Neðn̂; lÞσTdl.
However, generally the temperature varies along the line of
sight, such that a moment expansion provides a simpler
method for analyzing and describing the SZ signal [86].
Defining SðkÞν ðTÞ≡ ∂kSνðTÞ=∂Tk, we can perform the

moment expansion of the SZ signal around the τ-weighted
temperature, Tτ

eðn̂Þ ¼
R
Neðn̂; lÞσTTeðn̂; lÞdl=τðn̂Þ. Up to

second order in temperature, this yields

ΔIνðn̂Þ ≈ τI0

�
SνðTτ

eÞ þ
1

2
Sð2Þν ðTτ

eÞ½hT2
eiτ − ðTτ

eÞ2�
	
; ðA2Þ

where we suppressed the dependence on n̂ and introduced
the τ-weighted temperature moments

hTk
eiτ ¼

R
Neðn̂; lÞσTTk

eðn̂; lÞdl
τðn̂Þ ðA3Þ
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such that Tτ
e ≡ hTeiτ. For the standard ΛCDM cosmology

the first two temperature moments from halos alone are
hTeiτ ¼ 0.208 keV and hT2

eiτ ¼ 0.299 keV2 [15].
Alternatively, we can perform the moment expansion

around the y-weighted temperature, Ty
e. By introducing the

y-weighted moments

hTk
eiy ¼

R
Neðn̂; lÞσT Teðn̂;lÞ

me
Tk
eðn̂; lÞdl

yðn̂Þ ðA4Þ

with yðn̂Þ ¼ R
Neðn̂; lÞσT Teðn̂;lÞ

me
dl and Ty

e ≡ hTeiy, again to
second order in the temperature one then has

ΔIνðn̂Þ ≈ yI0

�
S̃νðTy

eÞ þ 1

2
S̃ð2Þν ðTy

eÞ½hT2
eiy − ðTy

eÞ2�
	
: ðA5Þ

where S̃ν ¼ Sν=Θe, S̃ðkÞν ¼ ∂kS̃νðTÞ=∂Tk, and we intro-
duced the dimensionless temperature Θe ¼ Te

me
. These two

representations are essentially equivalent6; however, the
latter is slightly more economic when it comes to capturing
the relativistic tSZ effect, as we will see next.
Low temperature limit and mix of hot and cold gas: In

the low temperature limit one can write (e.g., [9,11])

SνðTÞ ≈ ΘeY0ðxÞ þ Θ2
eY1ðxÞ ðA6Þ

where x ¼ hν
T0

and the functions Y0 and Y1 are the first two
terms of the asymptotic expansion for the tSZ signal (e.g.,
see [11]). It is clear that in this limit, only two independent
spectral parameters can be determined. This is directly
evident when using the y-weighted moments with
S̃ð2Þν ðTÞ ≈ 0:

ΔIνðn̂Þ
I0

≈ ySνðTy
eÞ ¼ y

�
Y0ðxÞ þ

Ty
e

me
Y1ðxÞ

�
: ðA7Þ

Since Ty
e ≡ hT2

eiτ=hTeiτ, the two important parameters for
the spectral analysis in the ΛCDM case are expected to be
y ≈ 1.77 × 10−6 and Ty

e ≈ 1.44 keV [15]. However, the
presence of extremely cold gas from reionization modifies
the observational inference. This can be seen by adding
another y-distortion contribution with no relativistic cor-
rection

ΔItotν ðn̂Þ
I0

≈ yreY0ðxÞ þ y
�
Y0ðxÞ þ

Ty
e

me
Y1ðxÞ

�
: ðA8Þ

The reionization y parameter, yre, is roughly 10% of the
cluster contribution [15,87] and cannot be distinguished
from the cluster contribution with distortion measurements
alone. In an analysis, an effective electron temperature of
Ty;�
e ¼ Ty

e=ð1þ yre=yÞ ≈ 1.30 keV would thus be

recovered. Due to small contributions from higher order
temperature corrections, the recovered result for ΛCDM is
Ty;�
e ≈ 1.24 keV [8].

APPENDIX B: COSMOLOGY DEPENDENCE

Using the halo model we compute how the distortion
monopoles hyi and hTei depend on the relevant ΛCDM
parameters. We use the halo model fitting formulas
described in Sec. IV B to compute the observables xi ¼
fhyi; hTeig as functions of θj ¼ fh;Ωm;Ωb; ns; σ8g. The
resulting functions are well approximated by power laws,

xi ¼ xð0Þi ðθj=θð0Þj Þαij . The resulting one-parameter fits are
given by

106hyiðhÞ ¼ 1.48ðh=0.6711Þ1.59;
keV−1hTeiðhÞ ¼ 1.51ðh=0.6711Þ−0.86;
106hyiðΩmÞ ¼ 1.48ðΩm=0.3Þ0.92;

keV−1hTeiðΩmÞ ¼ 1.51ðΩm=0.3Þ0.36;
106hyiðΩbÞ ¼ 1.48ðΩb=0.0490Þ0.84;

keV−1hTeiðΩbÞ ¼ 1.51ðΩb=0.0490Þ0.09;
106hyiðnsÞ ¼ 1.48ðns=0.9624Þ1.52;

keV−1hTeiðnsÞ ¼ 1.51ðns=0.9624Þ−0.84;
106hyiðσ8Þ ¼ 1.48ðσ8=0.8Þ3.86;

keV−1hTeiðσ8Þ ¼ 1.51ðσ8=0.8Þ1.93: ðB1Þ

Note that the given scalings have a number of uncertainties.
First, they only include the halo contribution. Second, the
assumed cluster temperature model may not be optimal, as
discussed in Sec. IV B. Thus, we caution against blind use
of these equations. However, for small deviations from the
pivot cosmology they should provide reasonable approx-
imations for the slope, even though the prefactors are most
likely not very useful.

APPENDIX C: REIONIZATION CONTRIBUTION

The nonrelativistic hyi receives a small contribution from
the epoch of reionization, which is not modeled in our
simulations. This Appendix describes an estimate of the
magnitude and uncertainty of this effect. We calculate the
hyi from reionization using maps constructed by ray tracing
through the past light cone of a semianalytic realization
from z ¼ 5.5 to z ¼ 20, which defines the redshift range we
consider for reionization. In this semianalytic realization,
reionization fields are constructed on a gravity-only sim-
ulation following the method in Ref. [88]. For each spatial
cell in the N-body simulation we have a density and
ionization state as a function of time. We set the initial
temperature of the cells when they reionize as
T0 ¼ 2 × 104 K, then the ith cell cools adiabatically
according to

6They become indistinguishable when more temperature terms
are included in the expansion.
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TiðzÞ
T0

¼ 1þ z
1þ zi;RE

; ðC1Þ

where zi;RE is the redshift at which the given cell reionizes.
Using the parametric reionization model from Ref. [88], we
change the duration and midpoint of reionization from the
fiducial parameters. We show Compton-y maps from
reionization for our fiducial model and the two extreme
duration models, short and long duration, in Fig. 5. For the
fiducial reionization model, with a median reionization
redshift of zmid ¼ 10, where 50% of the Universe has
reionized by mass, and a duration parameter Δz ¼ 1.05, we
find that hyireio ¼ 9.9 × 10−8. For the short (Δz ¼ 0.2) and
long (Δz ¼ 2.05) duration models we find 9.6 × 10−8 and
1.0 × 10−7, respectively, while the dependence on zmid
(which we varied in [8, 12]) is smaller. Thus, reionization
contributes less than 10% to the total signal and we estimate
the uncertainty as ∼5 × 10−9, significantly below the error
budget for our assumed experiment.
Clearly, the relativistic distortion receives minuscule

contributions from reionization as Te=me ≲ 10−4.

APPENDIX D: IGM CONTRIBUTION

In this Appendix we compute the contribution from the
IGM to the hyi signal. We define this quantity as all
Compton y generated at z < 5.5 (which marks the end of
reionization, cf. Appendix C) outside of any halo. Since the
IGM pressure is low compared to the ICM, a reasonable
approximation is

hyiIGM ¼ σT
me

Z
dl n̄eðzÞTIGMðzÞ ðD1Þ

where the integration is over distance up to z ¼ 5.5,
n̄eðzÞ≡ xeðzÞΩbρcritðzÞ, and xeðzÞ is the free electron
fraction. In our fiducial model, we assume TIGM;0 ¼ 2 ×
104 K for the IGM temperature at the end of reionization.
We then assume the temperature drops adiabatically. The

function xeðzÞ will depend on the redshift zHeII at which
HeII reionizes. In our fiducial model we assume instanta-
neous HeII reionization at zHeII ¼ 3.5 such that

xeðzÞ ¼
� 3XHþ1

4
; z > zHeII;

XHþ1
2

; z < zHeII;
ðD2Þ

where XH is the primordial hydrogen mass fraction. The
fiducial model yields hyireio ¼ 7.1 × 10−8. Changes in the
starting value of TIGM linearly affect the Compton y.
Assuming zHeII ¼ 2.5 results in 7 × 10−8 and zHeII ¼ 4.5
gives 7.2 × 10−8. Thus, the IGM contribution is in magni-
tude comparable to the reionization signal with somewhat
larger theoretical uncertainty driven by the temperature
normalization.

APPENDIX E: TWO-PARAMETER DEPENDENCE

In this Appendix, we consider dependence on pairs of
parameters. The primary goal of this exercise is to establish
how strongly couplings between feedback parameters affect
the y observables. In Fig. 6, in each panelwe plot the quantity

xiðAj; AkÞ
const × xiðAjÞxiðAkÞ

− 1; ðE1Þ

where the constant normalizes such that the ratio is one at the
fiducial point and thexi are evaluations of the neural netswith
either one or two parameters varied from the fiducial point.
Thus, we illustrate deviations from perfect factorization.
We observe that for IllustrisTNG the factorization is a
rather good approximation, with couplings of at most 5%.
SIMBA exhibits stronger corrections, but the factorization
is still relatively accurate to within ∼40% and of course the
variations are also much larger by about an order of
magnitude. In units of the overall differences in the y
observables the inter-parameters couplings are quite sim-
ilar in IllustrisTNG and SIMBA. It must be noted that the

FIG. 5. Maps of the Compton-y field from reionization, generated using a semianalytic model on a gravity-only simulation. The panels
assume different durations of reionization, with the short, fiducial, and long duration models from left to right. Note the slightly different
color scales.
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edges of parameter space are likely not quite accurately
represented by the neural nets. We should emphasize that
the neural nets have no structural preference for factorized
representations. In summary, most of the dependence of y
observables on feedback parameters can be readily read off
from Fig. 4.

APPENDIX F: SYMBOLIC REGRESSION

Symbolic regression identifies equations with parsimo-
nious combinations of input parameters that have the
smallest scatter with the given quantity of interest
[61,89–99]. We employ it to predict hyi and hTei separately
as a function of the feedback parameters:

FIG. 6. Dependence of spectral distortions on pairs of simulation feedback parameters. Each panel shows evaluations of the neural
networks trained on the LH set for two astrophysical parameters varied, divided by the simple model in which the dependence factorizes
(using the curves from Fig. 4). As can be seen, for IllustrisTNG the factorization approximation is good to within ∼5%, while for
SIMBA it is somewhat worse but still reasonable. For readability, the axes ticks have been suppressed. They are exactly identical to the
ones in Fig. 4, so that the fiducial model with all feedback parameters equal one is in the center of each panel.
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fhyi; hTeig ¼ fðASN1; AAGN1; ASN2; AAGN2Þ ðF1Þ

We show the equations obtained and their performance
in Fig. 7. The data points shown are the measurements from
the CAMELS LH set (for the case of TNG, the data has
been corrected for sample variance and the cosmology
dependence has also been removed, cf. Fig. 3). We also
obtained equations more complex than the ones in Fig. 7,
however, as the risk of overfitting goes up as the equations
get more complex, we show simple ones which have a

substantial reduction in the mean squared error. The
equations perform much better for the case of SIMBA.
This could be either because the dependence of hyi; hTei on
the feedback parameters is weaker for TNG, or the
dependence for the case of TNG might have a very
complicated functional form and it is hard to find a good
approximation given the limited size of our data set.
Overall, the results in Fig. 7 are consistent with the
assumption in Eq. (12) that the individual parameter
feedback dependence can be factorized.
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